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Chapter 1

Introduction

Computer systems are undergoing a revolution. From 1945, when the
modern computer era began, until about 1985, computers were large and
expensive. Even minicomputers cost at least tens of thousands of dollars
each. As a result, most organizations had only a handful of computers, and
for lack of a way to connect them, these operated independently from one
another.

Starting around the the mid-1980s, however, two advances in technology
began to change that situation. The first was the development of powerful
microprocessors. Initially, these were 8-bit machines, but soon 16-, 32-, and
64-bit CPUs became common. Many of these had the computing power of a
mainframe (i.e., large) computer, but for a fraction of the price.

The amount of improvement that has occurred in computer technology
in the past half century is truly staggering and totally unprecedented in
other industries. From a machine that cost 10 million dollars and executed 1
instruction per second, we have come to machines that cost 1000 dollars and
are able to execute 1 billion instructions per second, a price/performance
gain of 1013. If cars had improved at this rate in the same time period,
a Rolls Royce would now cost 1 dollar and get a billion miles per gallon.
(Unfortunately, it would probably also have a 200-page manual telling how
to open the door.)

The second development was the invention of high-speed computer net-
works. Local-area networks or LANs allow hundreds of machines within a
building to be connected in such a way that small amounts of information
can be transferred between machines in a few microseconds or so. Larger
amounts of data can be moved between machines at rates of 100 million
to 10 billion bits/sec. Wide-area networks or WANs allow millions of ma-
chines all over the earth to be connected at speeds varying from 64 Kbps
(kilobits per second) to gigabits per second.

17
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The result of these technologies is that it is now not only feasible, but
easy, to put together computing systems composed of large numbers of
computers connected by a high-speed network. They are usually called
computer networks or distributed systems, in contrast to the previous
centralized systems (or (single-processor systems) consisting of a single
computer, its peripherals, and perhaps some remote terminals.

1.1 Definition of a distributed system

Various definitions of distributed systems have been given in the literature,
none of them satisfactory, and none of them in agreement with any of the
others. For our purposes it is sufficient to give a loose characterization:

A distributed system is a collection of independent computers that
appears to its users as a single coherent system.

This definition has several important aspects. The first one is that a
distributed system consists of components (i.e., computers) that are au-
tonomous. A second aspect is that users (be they people or programs) think
they are dealing with a single system. This means that one way or the other
the autonomous components need to collaborate. How to establish this col-
laboration lies at the heart of developing distributed systems. Note that no
assumptions are made concerning the type of computers. In principle, even
within a single system, they could range from high-performance mainframe
computers to small nodes in sensor networks. Likewise, no assumptions
are made on the way that computers are interconnected. We will return to
these aspects later in this chapter.

Instead of going further with definitions, it is perhaps more useful
to concentrate on important characteristics of distributed systems. One
important characteristic is that differences between the various computers
and the ways in which they communicate are mostly hidden from users. The
same holds for the internal organization of the distributed system. Another
important characteristic is that users and applications can interact with a
distributed system in a consistent and uniform way, regardless of where
and when interaction takes place.

In principle, distributed systems should also be relatively easy to expand
or scale. This characteristic is a direct consequence of having independent
computers, but at the same time, hiding how these computers actually
take part in the system as a whole. A distributed system will normally be
continuously available, although perhaps some parts may be temporarily
out of order. Users and applications should not notice that parts are being
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replaced or fixed, or that new parts are added to serve more users or
applications.

In order to support heterogeneous computers and networks while offer-
ing a single-system view, distributed systems are often organized by means
of a layer of software–that is, logically placed between a higher-level layer
consisting of users and applications, and a layer underneath consisting of
operating systems and basic communication facilities, as shown in Figure 1.1
Accordingly, such a distributed system is sometimes called middleware.

Figure 1.1: A distributed system organized as middleware. The middleware
layer extends over multiple machines, and offers each application the same
interface.

Figure 1.1 shows four networked computers and three applications, of
which application B is distributed across computers 2 and 3. Each appli-
cation is offered the same interface. The distributed system provides the
means for components of a single distributed application to communicate
with each other, but also to let different applications communicate. At the
same time, it hides, as best and reasonable as possible, the differences in
hardware and operating systems from each application.

1.2 Goals

Just because it is possible to build distributed systems does not necessarily
mean that it is a good idea. After all, with current technology it is also
possible to put four floppy disk drives on a personal computer. It is just that
doing so would be pointless. In this section we discuss four important goals
that should be met to make building a distributed system worth the effort.
A distributed system should make resources easily accessible; it should
reasonably hide the fact that resources are distributed across a network; it
should be open; and it should be scalable.
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1.2.1 Making resources accessible

The main goal of a distributed system is to make it easy for the users (and
applications) to access remote resources, and to share them in a controlled
and efficient way. Resources can be just about anything, but typical examples
include things like printers, computers, storage facilities, data, files, Web
pages, and networks, to name just a few. There are many reasons for
wanting to share resources. One obvious reason is that of economics. For
example, it is cheaper to let a printer be shared by several users in a
small office than having to buy and maintain a separate printer for each
user. Likewise, it makes economic sense to share costly resources such as
supercomputers, high-performance storage systems, imagesetters, and other
expensive peripherals.

Connecting users and resources also makes it easier to collaborate and
exchange information, as is clearly illustrated by the success of the Internet
with its simple protocols for exchanging files, mail, documents, audio, and
video. The connectivity of the Internet is now leading to numerous virtual
organizations in which geographically widely-dispersed groups of people
work together by means of groupware, that is, software for collaborative
editing, teleconferencing, and so on. Likewise, the Internet connectivity has
enabled electronic commerce allowing us to buy and sell all kinds of goods
without actually having to go to a store or even leave home.

However, as connectivity and sharing increase, security is becoming
increasingly important. In current practice, systems provide little protection
against eavesdropping or intrusion on communication. Passwords and other
sensitive information are often sent as cleartext (i.e., unencrypted) through
the network, or stored at servers that we can only hope are trustworthy. In
this sense, there is much room for improvement. For example, it is currently
possible to order goods by merely supplying a credit card number. Rarely
is proof required that the customer owns the card. In the future, placing
orders this way may be possible only if you can actually prove that you
physically possess the card by inserting it into a card reader.

Another security problem is that of tracking communication to build
up a preference profile of a specific user [Wang et al., 1998]. Such tracking
explicitly violates privacy, especially if it is done without notifying the user.
A related problem is that increased connectivity can also lead to unwanted
communication, such as electronic junk mail, often called spam. In such
cases, what we may need is to protect ourselves using special information
filters that select incoming messages based on their content.



1.2. GOALS 21

1.2.2 Distribution transparency

An important goal of a distributed system is to hide the fact that its processes
and resources are physically distributed across multiple computers. A
distributed system that is able to present itself to users and applications as
if it were only a single computer system is said to be transparent. Let us
first take a look at what kinds of transparency exist in distributed systems.
After that we will address the more general question whether transparency
is always required.

Types of transparency

The concept of transparency can be applied to several aspects of a distributed
system, the most important ones shown in Figure 1.2.

Transparency Description
Access Hide differences in data representation and how a resource is

accessed
Location Hide where a resource is located
Migration Hide that a resource may move to another location
Relocation Hide that a resource may be moved to another location while in use
Replication Hide that a resource is replicated
Concurrency Hide that a resource may be shared by several competitive users
Failure Hide the failure and recovery of a resource

Figure 1.2: Different forms of transparency in a distributed system [ISO,
1995].

Access transparency deals with hiding differences in data representation
and the way that resources can be accessed by users. At a basic level, we
wish to hide differences in machine architectures, but more important is
that we reach agreement on how data is to be represented by different
machines and operating systems. For example, a distributed system may
have computer systems that run different operating systems, each having
their own file-naming conventions. Differences in naming conventions, as
well as how files can be manipulated, should all be hidden from users and
applications.

An important group of transparency types has to do with the location
of a resource. Location transparency refers to the fact that users cannot
tell where a resource is physically located in the system. Naming plays an
important role in achieving location transparency. In particular, location
transparency can be achieved by assigning only logical names to resources,
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that is, names in which the location of a resource is not secretly encoded.
An example of a such a name is the URL http://www.prenhall.com/index.html,
which gives no clue about the location of Prentice Hall’s main Web server.
The URL also gives no clue as to whether index.html has always been at
its current location or was recently moved there. Distributed systems in
which resources can be moved without affecting how those resources can
be accessed are said to provide migration transparency. Even stronger
is the situation in which resources can be relocated while they are being
accessed without the user or application noticing anything. In such cases,
the system is said to support relocation transparency. An example of
relocation transparency is when mobile users can continue to use their
wireless laptops while moving from place to place without ever being
(temporarily) disconnected.

As we shall see, replication plays a very important role in distributed
systems. For example, resources may be replicated to increase availability
or to improve performance by placing a copy close to the place where it is
accessed. Replication transparency deals with hiding the fact that several
copies of a resource exist. To hide replication from users, it is necessary
that all replicas have the same name. Consequently, a system that supports
replication transparency should generally support location transparency
as well, because it would otherwise be impossible to refer to replicas at
different locations.

We already mentioned that an important goal of distributed systems is
to allow sharing of resources. In many cases, sharing resources is done in
a cooperative way, as in the case of communication. However, there are
also many examples of competitive sharing of resources. For example, two
independent users may each have stored their files on the same file server
or may be accessing the same tables in a shared database. In such cases, it
is important that each user does not notice that the other is making use of
the same resource. This phenomenon is called concurrency transparency.
An important issue is that concurrent access to a shared resource leaves
that resource in a consistent state. Consistency can be achieved through
locking mechanisms, by which users are, in turn, given exclusive access
to the desired resource. A more refined mechanism is to make use of
transactions, but as we shall see in later chapters, transactions are quite
difficult to implement in distributed systems.

A popular alternative definition of a distributed system, due to Leslie
Lamport, is “You know you have one when the crash of a computer you’ve
never heard of stops you from getting any work done.” This description puts
the finger on another important issue of distributed systems design: dealing
with failures. Making a distributed system failure transparent means that a
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user does not notice that a resource (he has possibly never heard of) fails to
work properly, and that the system subsequently recovers from that failure.
Masking failures is one of the hardest issues in distributed systems and is
even impossible when certain apparently realistic assumptions are made, as
we will discuss in Chapter 8. The main difficulty in masking failures lies in
the inability to distinguish between a dead resource and a painfully slow
resource. For example, when contacting a busy Web server, a browser will
eventually time out and report that the Web page is unavailable. At that
point, the user cannot conclude that the server is really down.

Degree of transparency

Although distribution transparency is generally considered preferable for
any distributed system, there are situations in which attempting to com-
pletely hide all distribution aspects from users is not a good idea. An
example is requesting your electronic newspaper to appear in your mailbox
before 7 AM local time, as usual, while you are currently at the other end of
the world living in a different time zone. Your morning paper will not be
the morning paper you are used to.

Likewise, a wide-area distributed system that connects a process in San
Francisco to a process in Amsterdam cannot be expected to hide the fact
that Mother Nature will not allow it to send a message from one process
to the other in less than about 35 milliseconds. In practice it takes several
hundreds of milliseconds using a computer network. Signal transmission
is not only limited by the speed of light, but also by limited processing
capacities of the intermediate switches.

There is also a trade-off between a high degree of transparency and
the performance of a system. For example, many Internet applications
repeatedly try to contact a server before finally giving up. Consequently,
attempting to mask a transient server failure before trying another one may
slow down the system as a whole. In such a case, it may have been better to
give up earlier, or at least let the user cancel the attempts to make contact.

Another example is where we need to guarantee that several replicas,
located on different continents, need to be consistent all the time. In other
words, if one copy is changed, that change should be propagated to all
copies before allowing any other operation. It is clear that a single update
operation may now even take seconds to complete, something that cannot
be hidden from users.

Finally, there are situations in which it is not at all obvious that hiding
distribution is a good idea. As distributed systems are expanding to devices
that people carry around, and where the very notion of location and context
awareness is becoming increasingly important, it may be best to actually
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expose distribution rather than trying to hide it. This distribution exposure
will become more evident when we discuss embedded and ubiquitous
distributed systems later in this chapter. As a simple example, consider an
office worker who wants to print a file from her notebook computer. It is
better to send the print job to a busy nearby printer, rather than to an idle
one at corporate headquarters in a different country.

There are also other arguments against distribution transparency. Recog-
nizing that full distribution transparency is simply impossible, we should
ask ourselves whether it is even wise to pretend that we can achieve it. It
may be much better to make distribution explicit so that the user and appli-
cation developer are never tricked into believing that there is such a thing
as transparency. The result will be that users will much better understand
the (sometimes unexpected) behavior of a distributed system, and are thus
much better prepared to deal with this behavior.

The conclusion is that aiming for distribution transparency may be a
nice goal when designing and implementing distributed systems, but that it
should be considered together with other issues such as performance and
comprehensibility. The price for not being able to achieve full transparency
may be surprisingly high.

1.2.3 Openness

Another important goal of distributed systems is openness. An open dis-
tributed system is a system that offers services according to standard rules
that describe the syntax and semantics of those services. For example,
in computer networks, standard rules govern the format, contents, and
meaning of messages sent and received. Such rules are formalized in pro-
tocols. In distributed systems, services are generally specified through
interfaces, which are often described in an Interface Definition Language
(IDL). Interface definitions written in an IDL nearly always capture only
the syntax of services. In other words, they specify precisely the names
of the functions that are available together with types of the parameters,
return values, possible exceptions that can be raised, and so on. The hard
part is specifying precisely what those services do, that is, the semantics of
interfaces. In practice, such specifications are always given in an informal
way by means of natural language.

If properly specified, an interface definition allows an arbitrary process
that needs a certain interface to talk to another process that provides that
interface. It also allows two independent parties to build completely differ-
ent implementations of those interfaces, leading to two separate distributed
systems that operate in exactly the same way. Proper specifications are
complete and neutral. Complete means that everything that is necessary
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to make an implementation has indeed been specified. However, many
interface definitions are not at all complete, so that it is necessary for a
developer to add implementation-specific details. Just as important is the
fact that specifications do not prescribe what an implementation should look
like; they should be neutral. Completeness and neutrality are important
for interoperability and portability [Blair and Stefani, 1998]. Interoperabil-
ity characterizes the extent by which two implementations of systems or
components from different manufacturers can co-exist and work together
by merely relying on each other’s services as specified by a common stan-
dard. Portability characterizes to what extent an application developed for
a distributed system A can be executed, without modification, on a different
distributed system B that implements the same interfaces as A.

Another important goal for an open distributed system is that it should
be easy to configure the system out of different components (possibly from
different developers). Also, it should be easy to add new components or
replace existing ones without affecting those components that stay in place.
In other words, an open distributed system should also be extensible. For
example, in an extensible system, it should be relatively easy to add parts
that run on a different operating system, or even to replace an entire file
system. As many of us know from daily practice, attaining such flexibility
is easier said than done.

Separating policy from mechanism

To achieve flexibility in open distributed systems, it is crucial that the
system is organized as a collection of relatively small and easily replaceable
or adaptable components. This implies that we should provide definitions
not only for the highest-level interfaces, that is, those seen by users and
applications, but also definitions for interfaces to internal parts of the
system and describe how those parts interact. This approach is relatively
new. Many older and even contemporary systems are constructed using a
monolithic approach in which components are only logically separated but
implemented as one, huge program. This approach makes it hard to replace
or adapt a component without affecting the entire system. Monolithic
systems thus tend to be closed instead of open.

The need for changing a distributed system is often caused by a com-
ponent that does not provide the optimal policy for a specific user or
application. As an example, consider caching in the World Wide Web.
Browsers generally allow users to adapt their caching policy by specifying
the size of the cache, and whether a cached document should always be
checked for consistency, or perhaps only once per session. However, the user
cannot influence other caching parameters, such as how long a document
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may remain in the cache, or which document should be removed when the
cache fills up. Also, it is impossible to make caching decisions based on
the content of a document. For instance, a user may want to cache railroad
timetables, knowing that these hardly change, but never information on
current traffic conditions on the highways.

What we need is a separation between policy and mechanism. In the
case of Web caching, for example, a browser should ideally provide facilities
for only storing documents, and at the same time allow users to decide
which documents are stored and for how long. In practice, this can be
implemented by offering a rich set of parameters that the user can set
(dynamically). Even better is that a user can implement his own policy in
the form of a component that can be plugged into the browser. Of course,
that component must have an interface that the browser can understand so
that it can call procedures of that interface.

1.2.4 Scalability

Worldwide connectivity through the Internet is rapidly becoming as com-
mon as being able to send a postcard to anyone anywhere around the world.
With this in mind, scalability is one of the most important design goals for
developers of distributed systems.

Scalability of a system can be measured along at least three different
dimensions [Neuman, 1994]. First, a system can be scalable with respect to
its size, meaning that we can easily add more users and resources to the
system. Second, a geographically scalable system is one in which the users
and resources may lie far apart. Third, a system can be administratively
scalable, meaning that it can still be easy to manage even if it spans many
independent administrative organizations. Unfortunately, a system that
is scalable in one or more of these dimensions often exhibits some loss of
performance as the system scales up.

Scalability problems

When a system needs to scale, very different types of problems need to be
solved. Let us first consider scaling with respect to size. If more users or
resources need to be supported, we are often confronted with the limitations
of centralized services, data, and algorithms (see Figure 1.3). For example,
many services are centralized in the sense that they are implemented by
means of only a single server running on a specific machine in the dis-
tributed system. The problem with this scheme is obvious: the server can
become a bottleneck as the number of users and applications grows. Even if
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we have virtually unlimited processing and storage capacity, communication
with that server will eventually prohibit further growth.

Unfortunately, using only a single server is sometimes unavoidable.
Imagine that we have a service for managing highly confidential information
such as medical records, bank accounts, and so on. In such cases, it may
be best to implement that service by means of a single server in a highly
secured separate room, and protected from other parts of the distributed
system through special network components. Copying the server to several
locations to enhance performance may be out of the question as it would
make the service less secure.

Concept Example
Centralized services A single server for all users
Centralized data A single on-line telephone book
Centralized algorithms Doing routing based on complete information

Figure 1.3: Examples of scalability limitations.

Just as bad as centralized services are centralized data. How should we
keep track of the telephone numbers and addresses of 50 million people?
Suppose that each data record could be fit into 50 characters. A single
2.5-gigabyte disk partition would provide enough storage. But here again,
having a single database would undoubtedly saturate all the communication
lines into and out of it. Likewise, imagine how the Internet would work
if its Domain Name System (DNS) was still implemented as a single table.
DNS maintains information on millions of computers worldwide and forms
an essential service for locating Web servers. If each request to resolve a
URL had to be forwarded to that one and only DNS server, it is clear that no
one would be using the Web (which, by the way, would solve the problem).

Finally, centralized algorithms are also a bad idea. In a large distributed
system, an enormous number of messages have to be routed over many
lines. From a theoretical point of view, the optimal way to do this is collect
complete information about the load on all machines and lines, and then
run an algorithm to compute all the optimal routes. This information can
then be spread around the system to improve the routing.

The trouble is that collecting and transporting all the input and output
information would again be a bad idea because these messages would
overload part of the network. In fact, any algorithm that operates by
collecting information from all the sites, sends it to a single machine for
processing, and then distributes the results should generally be avoided.
Only decentralized algorithms should be used. These algorithms generally



28 CHAPTER 1. INTRODUCTION

have the following characteristics, which distinguish them from centralized
algorithms:

1. No machine has complete information about the system state.
2. Machines make decisions based only on local information.
3. Failure of one machine does not ruin the algorithm.
4. There is no implicit assumption that a global clock exists.

The first three follow from what we have said so far. The last is perhaps
less obvious but also important. Any algorithm that starts out with: “At
precisely 12:00:00 all machines shall note the size of their output queue”
will fail because it is impossible to get all the clocks exactly synchronized.
Algorithms should take into account the lack of exact clock synchronization.
The larger the system, the larger the uncertainty. On a single LAN, with
considerable effort it may be possible to get all clocks synchronized down
to a few microseconds, but doing this nationally or internationally is tricky.

Geographical scalability has its own problems. One of the main reasons
why it is currently hard to scale existing distributed systems that were
designed for local-area networks is that they are based on synchronous
communication. In this form of communication, a party requesting service,
generally referred to as a client, blocks until a reply is sent back. This
approach generally works fine in LANs where communication between
two machines is generally at worst a few hundred microseconds. However,
in a wide-area system, we need to take into account that interprocess
communication may be hundreds of milliseconds, three orders of magnitude
slower. Building interactive applications using synchronous communication
in wide-area systems requires a great deal of care (and not a little patience).

Another problem that hinders geographical scalability is that communi-
cation in wide-area networks is inherently unreliable, and virtually always
point-to-point. In contrast, local-area networks generally provide highly
reliable communication facilities based on broadcasting, making it much
easier to develop distributed systems. For example, consider the problem of
locating a service. In a local-area system, a process can simply broadcast a
message to every machine, asking if it is running the service it needs. Only
those machines that have that service respond, each providing its network
address in the reply message. Such a location scheme is unthinkable in a
wide-area system: just imagine what would happen if we tried to locate a
service this way in the Internet. Instead, special location services need to be
designed, which may need to scale worldwide and be capable of servicing a
billion users. We return to such services in Chapter 5.

Geographical scalability is strongly related to the problems of centralized
solutions that hinder size scalability. If we have a system with many cen-
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tralized components, it is clear that geographical scalability will be limited
due to the performance and reliability problems resulting from wide-area
communication. In addition, centralized components now lead to a waste
of network resources. Imagine that a single mail server is used for an entire
country. This would mean that sending an e-mail to your neighbor would
first have to go to the central mail server, which may be hundreds of miles
away. Clearly, this is not the way to go.

Finally, a difficult, and in many cases open question is how to scale a
distributed system across multiple, independent administrative domains. A
major problem that needs to be solved is that of conflicting policies with
respect to resource usage (and payment), management, and security.

For example, many components of a distributed system that reside
within a single domain can often be trusted by users that operate within
that same domain. In such cases, system administration may have tested
and certified applications, and may have taken special measures to ensure
that such components cannot be tampered with. In essence, the users trust
their system administrators. However, this trust does not expand naturally
across domain boundaries.

If a distributed system expands into another domain, two types of
security measures need to be taken. First of all, the distributed system has
to protect itself against malicious attacks from the new domain. For example,
users from the new domain may have only read access to the file system in
its original domain. Likewise, facilities such as expensive image setters or
high-performance computers may not be made available to foreign users.
Second, the new domain has to protect itself against malicious attacks from
the distributed system. A typical example is that of downloading programs
such as applets in Web browsers. Basically, the new domain does not know
behavior what to expect from such foreign code, and may therefore decide
to severely limit the access rights for such code. The problem, as we shall
see in Chapter 9, is how to enforce those limitations.

Scaling techniques

Having discussed some of the scalability problems brings us to the question
of how those problems can generally be solved. In most cases, scalability
problems in distributed systems appear as performance problems caused
by limited capacity of servers and network. There are now basically only
three techniques for scaling: hiding communication latencies, distribution,
and replication (see also Neuman [1994]).

Hiding communication latencies is important to achieve geographical
scalability. The basic idea is simple: try to avoid waiting for responses to
remote (and potentially distant) service requests as much as possible. For
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example, when a service has been requested at a remote machine, an alter-
native to waiting for a reply from the server is to do other useful work at the
requester’s side. Essentially, what this means is constructing the requesting
application in such a way that it uses only asynchronous communication.
When a reply comes in, the application is interrupted and a special han-
dler is called to complete the previously-issued request. Asynchronous
communication can often be used in batch-processing systems and parallel
applications, in which more or less independent tasks can be scheduled
for execution while another task is waiting for communication to complete.
Alternatively, a new thread of control can be started to perform the request.
Although it blocks waiting for the reply, other threads in the process can
continue.

However, there are many applications that cannot make effective use
of asynchronous communication. For example, in interactive applications
when a user sends a request he will generally have nothing better to do than
to wait for the answer. In such cases, a much better solution is to reduce the
overall communication, for example, by moving part of the computation
that is normally done at the server to the client process requesting the
service. A typical case where this approach works is accessing databases
using forms. Filling in forms can be done by sending a separate message for
each field, and waiting for an acknowledgment from the server, as shown
in Figure 1.4. For example, the server may check for syntactic errors before
accepting an entry. A much better solution is to ship the code for filling in
the form, and possibly checking the entries, to the client, and have the client
return a completed form, as shown in Figure 1.4. This approach of shipping
code is now widely supported by the Web in the form of Java applets and
Javascript.

Another important scaling technique is distribution. Distribution in-
volves taking a component, splitting it into smaller parts, and subsequently
spreading those parts across the system. An excellent example of distri-
bution is the Internet Domain Name System (DNS). The DNS name space
is hierarchically organized into a tree of domains, which are divided into
nonoverlapping zones, as shown in Figure 1.5. The names in each zone are
handled by a single name server. Without going into too many details, one
can think of each path name being the name of a host in the Internet, and
thus associated with a network address of that host. Basically, resolving a
name means returning the network address of the associated host. Consider,
for example, the name nl.vu.cs.flits. To resolve this name, it is first passed
to the server of zone Z1 (see Figure 1.5) which returns the address of the
server for zone Z2, to which the rest of name, vu.cs.flits, can be handed. The
server for Z2 will return the address of the server for zone Z3, which is
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Figure 1.4: The difference between letting (a) a server or (b) a client check
forms as they are being filled.

capable of handling the last part of the name and will return the address of
the associated host.

Figure 1.5: An example of dividing the DNS name space into zones.

This example illustrates how the naming service, as provided by DNS, is
distributed across several machines, thus avoiding that a single server has
to deal with all requests for name resolution.

As another example, consider the World Wide Web. To most users,
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the Web appears to be an enormous document-based information system
in which each document has its own unique name in the form of a URL.
Conceptually, it may even appear as if there is only a single server. However,
the Web is physically distributed across a large number of servers, each
handling a number of Web documents. The name of the server handling a
document is encoded into that document’s URL. It is only because of this
distribution of documents that the Web has been capable of scaling to its
current size.

Considering that scalability problems often appear in the form of per-
formance degradation, it is generally a good idea to actually replicate
components across a distributed system. Replication not only increases
availability, but also helps to balance the load between components leading
to better performance. Also, in geographically widely-dispersed systems,
having a copy nearby can hide much of the communication latency problems
mentioned before.

Caching is a special form of replication, although the distinction between
the two is often hard to make or even artificial. As in the case of replication,
caching results in making a copy of a resource, generally in the proximity
of the client accessing that resource. However, in contrast to replication,
caching is a decision made by the client of a resource, and not by the owner
of a resource. Also, caching happens on demand whereas replication is
often planned in advance.

There is one serious drawback to caching and replication that may
adversely affect scalability. Because we now have multiple copies of a
resource, modifying one copy makes that copy different from the others.
Consequently, caching and replication leads to consistency problems.

To what extent inconsistencies can be tolerated depends highly on the
usage of a resource. For example, many Web users find it acceptable that
their browser returns a cached document of which the validity has not
been checked for the last few minutes. However, there are also many
cases in which strong consistency guarantees need to be met, such as in
the case of electronic stock exchanges and auctions. The problem with
strong consistency is that an update must be immediately propagated to
all other copies. Moreover, if two updates happen concurrently, it is often
also required that each copy is updated in the same order. Situations
such as these generally require some global synchronization mechanism.
Unfortunately, such mechanisms are extremely hard or even impossible to
implement in a scalable way, as she insists that photons and electrical signals
obey a speed limit of 187 miles/msec (the speed of light). Consequently,
scaling by replication may introduce other, inherently nonscalable solutions.
We return to replication and consistency in Chapter 7.
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When considering these scaling techniques, one could argue that size
scalability is the least problematic from a technical point of view. In many
cases, simply increasing the capacity of a machine will the save the day (at
least temporarily and perhaps at significant costs). Geographical scalability
is a much tougher problem as Mother Nature is getting in our way. Never-
theless, practice shows that combining distribution, replication, and caching
techniques with different forms of consistency will often prove sufficient in
many cases. Finally, administrative scalability seems to be the most diffi-
cult one, partly also because we need to solve nontechnical problems (e.g.,
politics of organizations and human collaboration). Nevertheless, progress
has been made in this area, by simply ignoring administrative domains. The
introduction and now widespread use of peer-to-peer technology demon-
strates what can be achieved if end users simply take over control [Aberer
and Hauswirth, 2005], [Lua et al., 2005], [Oram, 2001]. However, let it be
clear that peer-to-peer technology can at best be only a partial solution to
solving administrative scalability. Eventually, it will have to be dealt with.

1.2.5 Pitfalls

It should be clear by now that developing distributed systems can be a
formidable task. As we will see many times throughout this book, there
are so many issues to consider at the same time that it seems that only
complexity can be the result. Nevertheless, by following a number of design
principles, distributed systems can be developed that strongly adhere to the
goals we set out in this chapter. Many principles follow the basic rules of
decent software engineering and will not be repeated here.

However, distributed systems differ from traditional software because
components are dispersed across a network. Not taking this dispersion
into account during design time is what makes so many systems needlessly
complex and results in mistakes that need to be patched later on. Peter
Deutsch, then at Sun Microsystems, formulated these mistakes as the follow-
ing false assumptions that everyone makes when developing a distributed
application for the first time:

1. The network is reliable.
2. The network is secure.
3. The network is homogeneous.
4. The topology does not change.
5. Latency is zero.
6. Bandwidth is infinite.
7. Transport cost is zero.
8. There is one administrator.
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Note how these assumptions relate to properties that are unique to
distributed systems: reliability, security, heterogeneity, and topology of the
network; latency and bandwidth; transport costs; and finally administrative
domains. When developing nondistributed applications, many of these
issues will most likely not show up.

Most of the principles we discuss in this book relate immediately to
these assumptions. In all cases, we will be discussing solutions to problems
that are caused by the fact that one or more assumptions are false. For
example, reliable networks simply do not exist, leading to the impossibility
of achieving failure transparency. We devote an entire chapter to deal with
the fact that networked communication is inherently insecure. We have
already argued that distributed systems need to take heterogeneity into
account. In a similar vein, when discussing replication for solving scalability
problems, we are essentially tackling latency and bandwidth problems. We
will also touch upon management issues at various points throughout this
book, dealing with the false assumptions of zero-cost transportation and a
single administrative domain.

1.3 Types of distributed systems

Before starting to discuss the principles of distributed systems, let us first
take a closer look at the various types of distributed systems. In the fol-
lowing we make a distinction between distributed computing systems,
distributed information systems, and distributed embedded systems.

1.3.1 Distributed computing systems

An important class of distributed systems is the one for high-performance
computing tasks. Roughly speaking, one can make a distinction between
two subgroups. In cluster computing the underlying hardware consists
of a collection of similar workstations or PCs, closely connected by means
of a high-speed local-area network. In addition, each node runs the same
operating system.

The situation becomes quite different in the case of grid computing.
This subgroup consists of distributed systems that are often constructed
as a federation of computer systems, where each system may fall under a
different administrative domain, and may be very different when it comes
to hardware, software, and deployed network technology.
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Cluster computing systems

Cluster computing systems became popular when the price/performance
ratio of personal computers and workstations improved. At a certain point,
it became financially and technically attractive to build a supercomputer
using off-the-shelf technology by simply hooking up a collection of relatively
simple computers in a high-speed network. In virtually all cases, cluster
computing is used for parallel programming in which a single (compute
intensive) program is run in parallel on multiple machines.

Figure 1.6: An example of a cluster computing system.

One well-known example of a cluster computer is formed by Linux-
based Beowulf clusters, of which the general configuration is shown in
Figure 1.6. Each cluster consists of a collection of compute nodes that are
controlled and accessed by means of a single master node. The master
typically handles the allocation of nodes to a particular parallel program,
maintains a batch queue of submitted jobs, and provides an interface for
the users of the system. As such, the master actually runs the middleware
needed for the execution of programs and management of the cluster, while
the compute nodes often need nothing else but a standard operating system.

An important part of this middleware is formed by the libraries for
executing parallel programs. As we will discuss in Chapter 4, many of these
libraries effectively provide only advanced message-based communication
facilities, but are not capable of handling faulty processes, security, etc.

As an alternative to this hierarchical organization, a symmetric approach
is followed in the MOSIX system [Amar et al., 2004]. MOSIX attempts to
provide a single-system image of a cluster, meaning that to a process a
cluster computer offers the ultimate distribution transparency by appearing
to be a single computer. As we mentioned, providing such an image under
all circumstances is impossible. In the case of MOSIX, the high degree
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of transparency is provided by allowing processes to dynamically and
preemptively migrate between the nodes that make up the cluster. Process
migration allows a user to start an application on any node (referred to
as the home node), after which it can transparently move to other nodes,
for example, to make efficient use of resources. We will return to process
migration in Chapter 3.

Grid computing systems

A characteristic feature of cluster computing is its homogeneity. In most
cases, the computers in a cluster are largely the same, they all have the
same operating system, and are all connected through the same network. In
contrast, grid computing systems have a high degree of heterogeneity: no
assumptions are made concerning hardware, operating systems, networks,
administrative domains, security policies, etc.

A key issue in a grid computing system is that resources from different
organizations are brought together to allow the collaboration of a group
of people or institutions. Such a collaboration is realized in the form of a
virtual organization. The people belonging to the same virtual organization
have access rights to the resources that are provided to that organization.
Typically, resources consist of compute servers (including supercomputers,
possibly implemented as cluster computers), storage facilities, and databases.
In addition, special networked devices such as telescopes, sensors, etc., can
be provided as well.

Given its nature, much of the software for realizing grid computing
evolves around providing access to resources from different administrative
domains, and to only those users and applications that belong to a specific
virtual organization. For this reason, focus is often on architectural issues.
An architecture proposed by Foster et al. [2001] is shown in Figure 1.7.

Figure 1.7: A layered architecture for grid computing systems.
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The architecture consists of four layers. The lowest fabric layer provides
interfaces to local resources at a specific site. Note that these interfaces
are tailored to allow sharing of resources within a virtual organization.
Typically, they will provide functions for querying the state and capabilities
of a resource, along with functions for actual resource management (e.g.,
locking resources).

The connectivity layer consists of communication protocols for supporting
grid transactions that span the usage of multiple resources. For example,
protocols are needed to transfer data between resources, or to simply access
a resource from a remote location. In addition, the connectivity layer will
contain security protocols to authenticate users and resources. Note that in
many cases human users are not authenticated; instead, programs acting on
behalf of the users are authenticated. In this sense, delegating rights from
a user to programs is an important function that needs to be supported in
the connectivity layer. We return extensively to delegation when discussing
security in distributed systems.

The resource layer is responsible for managing a single resource. It
uses the functions provided by the connectivity layer and calls directly
the interfaces made available by the fabric layer. For example, this layer
will offer functions for obtaining configuration information on a specific
resource, or, in general, to perform specific operations such as creating a
process or reading data. The resource layer is thus seen to be responsible
for access control, and hence will rely on the authentication performed as
part of the connectivity layer.

The next layer in the hierarchy is the collective layer. It deals with han-
dling access to multiple resources and typically consists of services for
resource discovery, allocation and scheduling of tasks onto multiple re-
sources, data replication, and so on. Unlike the connectivity and resource
layer, which consist of a relatively small, standard collection of protocols, the
collective layer may consist of many different protocols for many different
purposes, reflecting the broad spectrum of services it may offer to a virtual
organization.

Finally, the application layer consists of the applications that operate
within a virtual organization and which make use of the grid computing
environment.

Typically the collective, connectivity, and resource layer form the heart of
what could be called a grid middleware layer. These layers jointly provide
access to and management of resources that are potentially dispersed across
multiple sites. An important observation from a middleware perspective
is that with grid computing the notion of a site (or administrative unit)
is common. This prevalence is emphasized by the gradual shift toward
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a service-oriented architecture in which sites offer access to the various
layers through a collection of Web services [Joseph et al., 2004]. This, by now,
has led to the definition of an alternative architecture known as the Open
Grid Services Architecture (OGSA). This architecture consists of various
layers and many components, making it rather complex. Complexity seems
to be the fate of any standardization process. Details on OGSA can be found
in Foster et al. [2006].

1.3.2 Distributed information systems

Another important class of distributed systems is found in organizations
that were confronted with a wealth of networked applications, but for which
interoperability turned out to be a painful experience. Many of the exist-
ing middleware solutions are the result of working with an infrastructure
in which it was easier to integrate applications into an enterprise-wide
information system [Alonso et al., 2004], [Bernstein, 1996].

We can distinguish several levels at which integration took place. In
many cases, a networked application simply consisted of a server running
that application (often including a database) and making it available to
remote programs, called clients. Such clients could send a request to the
server for executing a specific operation, after which a response would
be sent back. Integration at the lowest level would allow clients to wrap
a number of requests, possibly for different servers, into a single larger
request and have it executed as a distributed transaction. The key idea was
that all, or none of the requests would be executed.

As applications became more sophisticated and were gradually separated
into independent components (notably distinguishing database components
from processing components), it became clear that integration should also
take place by letting applications communicate directly with each other. This
has now led to a huge industry that concentrates on enterprise application
integration (EAI). In the following, we concentrate on these two forms of
distributed systems.

Transaction processing systems

To clarify our discussion, let us concentrate on database applications. In
practice, operations on a database are usually carried out in the form of
transactions. Programming using transactions requires special primitives
that must either be supplied by the underlying distributed system or by the
language runtime system. Typical examples of transaction primitives are
shown in Figure 1.8. The exact list of primitives depends on what kinds
of objects are being used in the transaction [Gray and Reuter, 1993]. In a
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mail system, there might be primitives to send, receive, and forward mail.
In an accounting system, they might be quite different. READ and WRITE
are typical examples, however. Ordinary statements, procedure calls, and
so on, are also allowed inside a transaction. In particular, we mention that
remote procedure calls (RPCs), that is, procedure calls to remote servers,
are often also encapsulated in a transaction, leading to what is known as a
transactional RPC. We discuss RPCs extensively in Chapter 4.

Primitive Description
BEGIN_TRANSACTION Mark the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Figure 1.8: Example primitives for transactions.

BEGIN_TRANSACTION and END_TRANSACTION are used to delimit
the scope of a transaction. The operations between them form the body of
the transaction. The characteristic feature of a transaction is either all of
these operations are executed or none are executed. These may be system
calls, library procedures, or bracketing statements in a language, depending
on the implementation.

This all-or-nothing property of transactions is one of the four charac-
teristic properties that transactions have. More specifically, transactions
are:

1. Atomic: To the outside world, the transaction happens indivisibly.
2. Consistent: The transaction does not violate system invariants.
3. Isolated: Concurrent transactions do not interfere with each other.
4. Durable: Once a transaction commits, the changes are permanent.

These properties are often referred to by their initial letters: ACID.
The first key property exhibited by all transactions is that they are atomic.

This property ensures that each transaction either happens completely, or
not at all, and if it happens, it happens in a single indivisible, instantaneous
action. While a transaction is in progress, other processes (whether or
not they are themselves involved in transactions) cannot see any of the
intermediate states.

The second property says that they are consistent. What this means
is that if the system has certain invariants that must always hold, if they
held before the transaction, they will hold afterward too. For example, in a
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banking system, a key invariant is the law of conservation of money. After
every internal transfer, the amount of money in the bank must be the same
as it was before the transfer, but for a brief moment during the transaction,
this invariant may be violated. The violation is not visible outside the
transaction, however.

The third property says that transactions are isolated or serializable.
What it means is that if two or more transactions are running at the same
time, to each of them and to other processes, the final result looks as though
all transactions ran sequentially in some (system dependent) order.

The fourth property says that transactions are durable. It refers to
the fact that once a transaction commits, no matter what happens, the
transaction goes forward and the results become permanent. No failure
after the commit can undo the results or cause them to be lost. (Durability
is discussed extensively in Chapter 8.)

So far, transactions have been defined on a single database. A nested
transaction is constructed from a number of subtransactions, as shown
in Figure 1.9. The top-level transaction may fork off children that run in
parallel with one another, on different machines, to gain performance or
simplify programming. Each of these children may also execute one or more
subtransactions, or fork off its own children.

Figure 1.9: A nested transaction.

Subtransactions give rise to a subtle, but important, problem. Imagine
that a transaction starts several subtransactions in parallel, and one of these
commits, making its results visible to the parent transaction. After further
computation, the parent aborts, restoring the entire system to the state it
had before the top-level transaction started. Consequently, the results of
the subtransaction that committed must nevertheless be undone. Thus the
permanence referred to above applies only to top-level transactions.

Since transactions can be nested arbitrarily deeply, considerable admin-
istration is needed to get everything right. The semantics are clear, however.
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When any transaction or subtransaction starts, it is conceptually given a
private copy of all data in the entire system for it to manipulate as it wishes.
If it aborts, its private universe just vanishes, as if it had never existed.
If it commits, its private universe replaces the parent’s universe. Thus if
a subtransaction commits and then later a new subtransaction is started,
the second one sees the results produced by the first one. Likewise, if an
enclosing (higher-level) transaction aborts, all its underlying subtransactions
have to be aborted as well.

Nested transactions are important in distributed systems, for they pro-
vide a natural way of distributing a transaction across multiple machines.
They follow a logical division of the work of the original transaction. For
example, a transaction for planning a trip by which three different flights
need to be reserved can be logically split up into three subtransactions. Each
of these subtransactions can be managed separately and independent of the
other two.

In the early days of enterprise middleware systems, the component that
handled distributed (or nested) transactions formed the core for integrating
applications at the server or database level. This component was called a
transaction processing monitor or TP monitor for short. Its main task was
to allow an application to access multiple server/databases by offering it a
transactional programming model, as shown in Figure 1.10.

Figure 1.10: The role of a TP monitor in distributed systems.

Enterprise application integration

As mentioned, the more applications became decoupled from the databases
they were built upon, the more evident it became that facilities were needed
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to integrate applications independent from their databases. In particular,
application components should be able to communicate directly with each
other and not merely by means of the request/reply behavior that was
supported by transaction processing systems.

This need for interapplication communication led to many different
communication models, which we will discuss in detail in this book (and for
which reason we shall keep it brief for now). The main idea was that existing
applications could directly exchange information, as shown in Figure 1.11.

Figure 1.11: Middleware as a communication facilitator in enterprise appli-
cation integration.

Several types of communication middleware exist. With remote proce-
dure calls (RPC), an application component can effectively send a request
to another application component by doing a local procedure call, which
results in the request being packaged as a message and sent to the callee.
Likewise, the result will be sent back and returned to the application as the
result of the procedure call.

As the popularity of object technology increased, techniques were devel-
oped to allow calls to remote objects, leading to what is known as remote
method invocations (RMI). An RMI is essentially the same as an RPC,
except that it operates on objects instead of applications.

RPC and RMI have the disadvantage that the caller and callee both need
to be up and running at the time of communication. In addition, they
need to know exactly how to refer to each other. This tight coupling is
often experienced as a serious drawback, and has led to what is known as
message-oriented middleware, or simply MOM. In this case, applications
simply send messages to logical contact points, often described by means
of a subject. Likewise, applications can indicate their interest for a specific
type of message, after which the communication middleware will take
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care that those messages are delivered to those applications. These so-
called publish/subscribe systems form an important and expanding class
of distributed systems. We will discuss them at length in Chapter 13.

1.3.3 Distributed pervasive systems

The distributed systems we have been discussing so far are largely charac-
terized by their stability: nodes are fixed and have a more or less permanent
and high-quality connection to a network. To a certain extent, this stability
has been realized through the various techniques that are discussed in this
book and which aim at achieving distribution transparency. For example,
the wealth of techniques for masking failures and recovery will give the
impression that only occasionally things may go wrong. Likewise, we have
been able to hide aspects related to the actual network location of a node,
effectively allowing users and applications to believe that nodes stay put.

However, matters have become very different with the introduction of
mobile and embedded computing devices. We are now confronted with
distributed systems in which instability is the default behavior. The devices
in these, what we refer to as distributed pervasive systems, are often
characterized by being small, battery-powered, mobile, and having only
a wireless connection, although not all these characteristics apply to all
devices. Moreover, these characteristics need not necessarily be interpreted
as restrictive, as is illustrated by the possibilities of modern smart phones
[Roussos et al., 2005].

As its name suggests, a distributed pervasive system is part of our sur-
roundings (and as such, is generally inherently distributed). An important
feature is the general lack of human administrative control. At best, devices
can be configured by their owners, but otherwise they need to automatically
discover their environment and “nestle in” as best as possible. This nestling
in has been made more precise by Grimm et al. [2004]. by formulating the
following three requirements for pervasive applications:

1. Embrace contextual changes.
2. Encourage ad hoc composition.
3. Recognize sharing as the default.

Embracing contextual changes means that a device must be continuously
be aware of the fact that its environment may change all the time. One of
the simplest changes is discovering that a network is no longer available, for
example, because a user is moving between base stations. In such a case, the
application should react, possibly by automatically connecting to another
network, or taking other appropriate actions.
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Encouraging ad hoc composition refers to the fact that many devices
in pervasive systems will be used in very different ways by different users.
As a result, it should be easy to configure the suite of applications running
on a device, either by the user or through automated (but controlled)
interposition.

One very important aspect of pervasive systems is that devices generally
join the system in order to access (and possibly provide) information. This
calls for means to easily read, store, manage, and share information. In light
of the intermittent and changing connectivity of devices, the space where
accessible information resides will most likely change all the time.

Mascolo et al. [2004] as well as Niemela and Latvakoski [2004] came to
similar conclusions: in the presence of mobility, devices should support
easy and application-dependent adaptation to their local environment. They
should be able to efficiently discover services and react accordingly. It
should be clear from these requirements that distribution transparency
is not really in place in pervasive systems. In fact, distribution of data,
processes, and control is inherent to these systems, for which reason it may
be better just to simply expose it rather than trying to hide it. Let us now
take a look at some concrete examples of pervasive systems.

Home systems

An increasingly popular type of pervasive system, but which may perhaps
be the least constrained, are systems built around home networks. These
systems generally consist of one or more personal computers, but more
importantly integrate typical consumer electronics such as TVs, audio and
video equipment, gaming devices, (smart) phones, PDAs, and other personal
wearables into a single system. In addition, we can expect that all kinds of
devices such as kitchen appliances, surveillance cameras, clocks, controllers
for lighting, and so on, will all be hooked up into a single distributed
system.

From a system’s perspective there are several challenges that need to be
addressed before pervasive home systems become reality. An important
one is that such a system should be completely self-configuring and self-
managing. It cannot be expected that end users are willing and able to keep
a distributed home system up and running if its components are prone to
errors (as is the case with many of today’s devices.) Much has already been
accomplished through the Universal Plug and Play (UPnP) standards by
which devices automatically obtain IP addresses, can discover each other,
etc. [UPnP Forum, 2003]. However, more is needed. For example, it is
unclear how software and firmware in devices can be easily updated without
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manual intervention, or when updates do take place, that compatibility with
other devices is not violated.

Another pressing issue is managing what is known as a “personal space.”
Recognizing that a home system consists of many shared as well as personal
devices, and that the data in a home system is also subject to sharing
restrictions, much attention is paid to realizing such personal spaces. For
example, part of Alice’s personal space may consist of her agenda, family
photo’s, a diary, music and videos that she bought, etc. These personal
assets should be stored in such a way that Alice has access to them whenever
appropriate. Moreover, parts of this personal space should be (temporarily)
accessible to others, for example, when she needs to make a business
appointment.

Fortunately, things may become simpler. It has long been thought that
the personal spaces related to home systems were inherently distributed
across the various devices. Obviously, such a dispersion can easily lead to
significant synchronization problems. However, problems may be alleviated
due to the rapid increase in the capacity of hard disks, along with a decrease
in their size. Configuring a multi-terabyte storage unit for a personal
computer is not really a problem. At the same time, portable hard disks
having a capacity of hundreds of gigabytes are being placed inside relatively
small portable media players. With these continuously increasing capacities,
we may see pervasive home systems adopt an architecture in which a single
machine acts as a master (and is hidden away somewhere in the basement
next to the central heating), and all other fixed devices simply provide a
convenient interface for humans. Personal devices will then be crammed
with daily needed information, but will never run out of storage.

However, having enough storage does not solve the problem of managing
personal spaces. Being able to store huge amounts of data shifts the problem
to storing relevant data and being able to find it later. Increasingly we will
see pervasive systems, like home networks, equipped with what are called
recommenders, programs that consult what other users have stored in order
to identify similar taste, and from that subsequently derive which content to
place in one’s personal space. An interesting observation is that the amount
of information that recommender programs need to do their work is often
small enough to allow them to be run on PDAs [Miller et al., 2004].

Electronic health care systems

Another important and upcoming class of pervasive systems are those
related to (personal) electronic health care. With the increasing cost of
medical treatment, new devices are being developed to monitor the well-
being of individuals and to automatically contact physicians when needed.



46 CHAPTER 1. INTRODUCTION

In many of these systems, a major goal is to prevent people from being
hospitalized.

Personal health care systems are often equipped with various sensors
organized in a (preferably wireless) body-area network (BAN). An important
issue is that such a network should at worst only minimally hinder a person.
To this end, the network should be able to operate while a person is moving,
with no strings (i.e., wires) attached to immobile devices.

This requirement leads to two obvious organizations, as shown in Fig-
ure 1.12. In the first one, a central hub is part of the BAN and collects data
as needed. From time to time, this data is then offloaded to a larger storage
device. The advantage of this scheme is that the hub can also manage the
BAN. In the second scenario, the BAN is continuously hooked up to an
external network, again through a wireless connection, to which it sends
monitored data. Separate techniques will need to be deployed for managing
the BAN. Of course, further connections to a physician or other people may
exist as well.

Figure 1.12: Monitoring a person in a pervasive electronic health care
system, using (a) a local hub or (b) a continuous wireless connection.

From a distributed system’s perspective we are immediately confronted
with questions such as:

1. Where and how should monitored data be stored?
2. How can we prevent loss of crucial data?
3. What infrastructure is needed to generate and propagate alerts?
4. How can physicians provide online feedback?
5. How can extreme robustness of the monitoring system be realized?
6. What are the security issues and how can the proper policies be .br

enforced?
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Unlike home systems, we cannot expect the architecture of pervasive
health care systems to move toward single-server systems and have the
monitoring devices operate with minimal functionality. On the contrary:
for reasons of efficiency, devices and body-area networks will be required
to support in-network data processing, meaning that monitoring data will,
for example, have to be aggregated before permanently storing it or sending
it to a physician. Unlike the case for distributed information systems, there
is yet no clear answer to these questions.

Sensor networks

Our last example of pervasive systems is sensor networks. These networks
in many cases form part of the enabling technology for pervasiveness and
we see that many solutions for sensor networks return in pervasive applica-
tions. What makes sensor networks interesting from a distributed system’s
perspective is that in virtually all cases they are used for processing in-
formation. In this sense, they do more than just provide communication
services, which is what traditional computer networks are all about. Aky-
ildiz et al. [2002] provide an overview from a networking perspective. A
more systems-oriented introduction to sensor networks is given by Zhao
and Guibas [2004]. Strongly related are mesh networks which essentially
form a collection of (fixed) nodes that communicate through wireless links.
These networks may form the basis for many medium-scale distributed
systems. An overview is provided in Akyildiz et al. [2005].

A sensor network typically consists of tens to hundreds or thousands of
relatively small nodes, each equipped with a sensing device. Most sensor
networks use wireless communication, and the nodes are often battery
powered. Their limited resources, restricted communication capabilities,
and constrained power consumption demand that efficiency be high on the
list of design criteria.

The relation with distributed systems can be made clear by considering
sensor networks as distributed databases. This view is quite common and
easy to understand when realizing that many sensor networks are deployed
for measurement and surveillance applications [Bonnet et al., 2002]. In
these cases, an operator would like to extract information from (a part of)
the network by simply issuing queries such as “What is the northbound
traffic load on Highway 1?” Such queries resemble those of traditional
databases. In this case, the answer will probably need to be provided
through collaboration of many sensors located around Highway 1, while
leaving other sensors untouched.

To organize a sensor network as a distributed database, there are essen-
tially two extremes, as shown in Figure 1.13. First, sensors do not cooperate
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but simply send their data to a centralized database located at the operator’s
site. The other extreme is to forward queries to relevant sensors and to let
each compute an answer, requiring the operator to sensibly aggregate the
returned answers.

Figure 1.13: Organizing a sensor network database, while storing and
processing data (a) only at the operator’s site or (b) only at the sensors.

Neither of these solutions is very attractive. The first one requires that
sensors send all their measured data through the network, which may waste
network resources and energy. The second solution may also be wasteful
as it discards the aggregation capabilities of sensors which would allow
much less data to be returned to the operator. What is needed are facilities
for in-network data processing, as we also encountered in pervasive health
care systems.

In-network processing can be done in numerous ways. One obvious
one is to forward a query to all sensor nodes along a tree encompassing
all nodes and to subsequently aggregate the results as they are propagated
back to the root, where the initiator is located. Aggregation will take place
where two or more branches of the tree come to together. As simple as this
scheme may sound, it introduces difficult questions:
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1. How do we (dynamically) set up an efficient tree in a sensor network?
2. How does aggregation of results take place? Can it be controlled?
3. What happens when network links fail?

These questions have been partly addressed in TinyDB, which imple-
ments a declarative (database) interface to wireless sensor networks. In
essence, TinyDB can use any tree-based routing algorithm. An intermediate
node will collect and aggregate the results from its children, along with
its own findings, and send that toward the root. To make matters efficient,
queries span a period of time allowing for careful scheduling of operations
so that network resources and energy are optimally consumed. Details can
be found in Madden et al. [2005].

However, when queries can be initiated from different points in the
network, using single-rooted trees such as in TinyDB may not be efficient
enough. As an alternative, sensor networks may be equipped with special
nodes where results are forwarded to, as well as the queries related to those
results. To give a simple example, queries and results related temperature
readings are collected at a different location than those related to humid-
ity measurements. This approach corresponds directly to the notion of
publish/subscribe systems, which we will discuss extensively in Chapter 13.

1.4 Summary

Distributed systems consist of autonomous computers that work together to
give the appearance of a single coherent system. One important advantage
is that they make it easier to integrate different applications running on
different computers into a single system. Another advantage is that when
properly designed, distributed systems scale well with respect to the size
of the underlying network. These advantages often come at the cost of
more complex software, degradation of performance, and also often weaker
security. Nevertheless, there is considerable interest worldwide in building
and installing distributed systems.

Distributed systems often aim at hiding many of the intricacies related
to the distribution of processes, data, and control. However, this distribu-
tion transparency not only comes at a performance price, but in practical
situations it can never be fully achieved. The fact that trade-offs need to
be made between achieving various forms of distribution transparency is
inherent to the design of distributed systems, and can easily complicate
their understanding.

Matters are further complicated by the fact that many developers initially
make assumptions about the underlying network that are fundamentally
wrong. Later, when assumptions are dropped, it may turn out to be difficult
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to mask unwanted behavior. A typical example is assuming that network
latency is not significant. Later, when porting an existing system to a
wide-area network, hiding latencies may deeply affect the system’s original
design. Other pitfalls include assuming that the network is reliable, static,
secure, and homogeneous.

Different types of distributed systems exist which can be classified as
being oriented toward supporting computations, information processing,
and pervasiveness. Distributed computing systems are typically deployed
for high-performance applications often originating from the field of parallel
computing. A huge class of distributed can be found in traditional office
environments where we see databases playing an important role. Typically,
transaction processing systems are deployed in these environments. Finally,
an emerging class of distributed systems is where components are small
and the system is composed in an ad hoc fashion, but most of all is no
longer managed through a system administrator. This last class is typically
represented by ubiquitous computing environments.
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