
Distributed Systems
Principles and Paradigms

Second edition

Adjusted for digital publishing

Andrew S. Tanenbaum
Maarten van Steen

NOW AVAILABLE FOR DOWNLOAD

GO TO WWW.DISTRIBUTED-SYSTEMS.NET





To Suzanne, Barbara, Marvin, and the memory of Bram and Sweetie π
– AST

To Mariëlle, Max, and Elke
– MvS





Copyright © 2016 Andrew S. Tanenbaum and Maarten van Steen
Published by Maarten van Steen
This book was previously published by: Pearson Education, Inc.

ISBN: 978-15-302817-5-6 (printed version)

ISBN: 978-90-815406-0-5 (digital version)

Edition: 2. Printing: 01 (March 2016)

All rights to text and illustrations are reserved by Andrew S. Tanenbaum and Maarten van Steen. This work may
not be copied, reproduced, or translated in whole or part without written permission of the publisher, except for
brief excerpts in reviews or scholarly analysis. Use with any form of information storage and retrieval, electronic
adaptation or whatever, computer software, or by similar or dissimilar methods now known or developed in the
future is strictly forbidden without written permission of the publisher.





Contents

1 Introduction 17
1.1 Definition of a distributed system . . . . . . . . . . . . . . . . 18
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Making resources accessible . . . . . . . . . . . . . . . 20
1.2.2 Distribution transparency . . . . . . . . . . . . . . . . . 21

Types of transparency . . . . . . . . . . . . . . . . . . . 21
Degree of transparency . . . . . . . . . . . . . . . . . . 23

1.2.3 Openness . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Separating policy from mechanism . . . . . . . . . . . 25

1.2.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Scalability problems . . . . . . . . . . . . . . . . . . . . 26
Scaling techniques . . . . . . . . . . . . . . . . . . . . . 29

1.2.5 Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3 Types of distributed systems . . . . . . . . . . . . . . . . . . . 34

1.3.1 Distributed computing systems . . . . . . . . . . . . . 34
Cluster computing systems . . . . . . . . . . . . . . . . 34
Grid computing systems . . . . . . . . . . . . . . . . . . 36

1.3.2 Distributed information systems . . . . . . . . . . . . . 38
Transaction processing systems . . . . . . . . . . . . . . 38
Enterprise application integration . . . . . . . . . . . . 41

1.3.3 Distributed pervasive systems . . . . . . . . . . . . . . 43
Home systems . . . . . . . . . . . . . . . . . . . . . . . 44
Electronic health care systems . . . . . . . . . . . . . . 45
Sensor networks . . . . . . . . . . . . . . . . . . . . . . 47

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Architectures 51
2.1 Architectural styles . . . . . . . . . . . . . . . . . . . . . . . . . 52

5



6 CONTENTS

2.2 System architectures . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.1 Centralized architectures . . . . . . . . . . . . . . . . . 55

Application layering . . . . . . . . . . . . . . . . . . . . 56
Multitiered architectures . . . . . . . . . . . . . . . . . . 59

2.2.2 Decentralized architectures . . . . . . . . . . . . . . . . 62
Structured peer-to-peer architectures . . . . . . . . . . 63
Unstructured peer-to-peer architectures . . . . . . . . . 66
Topology management of overlay networks . . . . . . 68
Superpeers . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.2.3 Hybrid architectures . . . . . . . . . . . . . . . . . . . . 71
Edge-server systems . . . . . . . . . . . . . . . . . . . . 71
Collaborative distributed systems . . . . . . . . . . . . 72

2.3 Architectures versus middleware . . . . . . . . . . . . . . . . . 74
2.3.1 Interceptors . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.3.2 General approaches to adaptive software . . . . . . . . 77
2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.4 Self-management in distributed systems . . . . . . . . . . . . . 79
2.4.1 The feedback control model . . . . . . . . . . . . . . . . 80
2.4.2 Example: systems monitoring with astrolabe . . . . . . 81
2.4.3 Example: differentiating replication strategies in Globule 83
2.4.4 Example: automatic component repair management

in Jade . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3 Processes 89
3.1 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.1.1 Introduction to threads . . . . . . . . . . . . . . . . . . 90
Thread usage in nondistributed systems . . . . . . . . 91
Thread implementation . . . . . . . . . . . . . . . . . . 93

3.1.2 Threads in distributed systems . . . . . . . . . . . . . . 96
Multithreaded clients . . . . . . . . . . . . . . . . . . . 96
Multithreaded servers . . . . . . . . . . . . . . . . . . . 97

3.2 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2.1 The role of virtualization in distributed systems . . . . 100
3.2.2 Architectures of virtual machines . . . . . . . . . . . . 101

3.3 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.1 Networked user interfaces . . . . . . . . . . . . . . . . 103

Example: the X window system . . . . . . . . . . . . . 104
Thin-client network computing . . . . . . . . . . . . . . 105
Compound documents . . . . . . . . . . . . . . . . . . 107

3.3.2 Client-side software for distribution transparency . . . 108
3.4 Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



CONTENTS 7

3.4.1 General design issues . . . . . . . . . . . . . . . . . . . 110
3.4.2 Server clusters . . . . . . . . . . . . . . . . . . . . . . . 114

General organization . . . . . . . . . . . . . . . . . . . . 114
Distributed servers . . . . . . . . . . . . . . . . . . . . . 117

3.4.3 Managing server clusters . . . . . . . . . . . . . . . . . 120
Common approaches . . . . . . . . . . . . . . . . . . . 120
Example: PlanetLab . . . . . . . . . . . . . . . . . . . . 121

3.5 Code migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.5.1 Approaches to code migration . . . . . . . . . . . . . . 126

Reasons for migrating code . . . . . . . . . . . . . . . . 126
Models for code migration . . . . . . . . . . . . . . . . 128

3.5.2 Migration and local resources . . . . . . . . . . . . . . . 130
3.5.3 Migration in heterogeneous systems . . . . . . . . . . . 133

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4 Communication 137
4.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.1.1 Layered protocols . . . . . . . . . . . . . . . . . . . . . . 138
Lower-level protocols . . . . . . . . . . . . . . . . . . . 141
Transport protocols . . . . . . . . . . . . . . . . . . . . . 142
Higher-level protocols . . . . . . . . . . . . . . . . . . . 144
Middleware protocols . . . . . . . . . . . . . . . . . . . 145

4.1.2 Types of communication . . . . . . . . . . . . . . . . . . 147
4.2 Remote procedure call . . . . . . . . . . . . . . . . . . . . . . . 148

4.2.1 Basic RPC operation . . . . . . . . . . . . . . . . . . . . 149
Conventional procedure call . . . . . . . . . . . . . . . 149
Client and server stubs . . . . . . . . . . . . . . . . . . 151

4.2.2 Parameter passing . . . . . . . . . . . . . . . . . . . . . 153
Passing value parameters . . . . . . . . . . . . . . . . . 153
Passing reference parameters . . . . . . . . . . . . . . . 155
Parameter specification and stub generation . . . . . . 156

4.2.3 Asynchronous RPC . . . . . . . . . . . . . . . . . . . . . 158
4.2.4 Example: DCE RPC . . . . . . . . . . . . . . . . . . . . 159

Introduction to DCE . . . . . . . . . . . . . . . . . . . . 160
Goals of DCE RPC . . . . . . . . . . . . . . . . . . . . . 160
Writing a client and a server . . . . . . . . . . . . . . . 161
Binding a client to a server . . . . . . . . . . . . . . . . 163
Performing an RPC . . . . . . . . . . . . . . . . . . . . . 164

4.3 Message-oriented communication . . . . . . . . . . . . . . . . 165
4.3.1 Message-oriented transient communication . . . . . . 165

Berkeley sockets . . . . . . . . . . . . . . . . . . . . . . 165
The Message-Passing Interface (MPI) . . . . . . . . . . 167



8 CONTENTS

4.3.2 Message-oriented persistent communication . . . . . . 170
Message-queuing model . . . . . . . . . . . . . . . . . . 170
General architecture of a message-queuing system . . 172
Message brokers . . . . . . . . . . . . . . . . . . . . . . 175
A note on message-queuing systems . . . . . . . . . . 176

4.3.3 Example: IBM’S WebSphere message-queuing system 177
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Message transfer . . . . . . . . . . . . . . . . . . . . . . 180
Managing overlay networks . . . . . . . . . . . . . . . . 182

4.4 Stream-oriented communication . . . . . . . . . . . . . . . . . 183
4.4.1 Support for continuous media . . . . . . . . . . . . . . 184

Data stream . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.4.2 Streams and quality of service . . . . . . . . . . . . . . 186

Enforcing QoS . . . . . . . . . . . . . . . . . . . . . . . . 187
4.4.3 Stream synchronization . . . . . . . . . . . . . . . . . . 189

Synchronization mechanisms . . . . . . . . . . . . . . . 190
4.5 Multicast communication . . . . . . . . . . . . . . . . . . . . . 192

4.5.1 Application-level multicasting . . . . . . . . . . . . . . 193
Overlay construction . . . . . . . . . . . . . . . . . . . . 194

4.5.2 Gossip-based data dissemination . . . . . . . . . . . . . 197
Information dissemination models . . . . . . . . . . . . 198
Removing data . . . . . . . . . . . . . . . . . . . . . . . 200
Applications . . . . . . . . . . . . . . . . . . . . . . . . . 201

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5 Naming 205
5.1 Names, identifiers, and addresses . . . . . . . . . . . . . . . . 206
5.2 Flat naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.2.1 Simple solutions . . . . . . . . . . . . . . . . . . . . . . 209
Broadcasting and multicasting . . . . . . . . . . . . . . 209
Forwarding pointers . . . . . . . . . . . . . . . . . . . . 210

5.2.2 Home-based approaches . . . . . . . . . . . . . . . . . . 213
5.2.3 Distributed hash tables . . . . . . . . . . . . . . . . . . 214

General mechanism . . . . . . . . . . . . . . . . . . . . 214
Exploiting network proximity . . . . . . . . . . . . . . 217

5.2.4 Hierarchical approaches . . . . . . . . . . . . . . . . . . 218
5.3 Structured naming . . . . . . . . . . . . . . . . . . . . . . . . . 222

5.3.1 Name spaces . . . . . . . . . . . . . . . . . . . . . . . . 222
5.3.2 Name resolution . . . . . . . . . . . . . . . . . . . . . . 225

Closure mechanism . . . . . . . . . . . . . . . . . . . . 226
Linking and mounting . . . . . . . . . . . . . . . . . . . 227



CONTENTS 9

5.3.3 The implementation of a name space . . . . . . . . . . 230
Name space distribution . . . . . . . . . . . . . . . . . . 230
Implementation of name resolution . . . . . . . . . . . 233

5.3.4 Example: the Domain Name System . . . . . . . . . . . 237
The DNS name space . . . . . . . . . . . . . . . . . . . 238
DNS implementation . . . . . . . . . . . . . . . . . . . . 240
Decentralized DNS implementations . . . . . . . . . . 243

5.4 Attribute-based naming . . . . . . . . . . . . . . . . . . . . . . 245
5.4.1 Directory services . . . . . . . . . . . . . . . . . . . . . 246
5.4.2 Hierarchical implementations: LDAP . . . . . . . . . . 247
5.4.3 Decentralized implementations . . . . . . . . . . . . . . 251

Mapping to distributed hash tables . . . . . . . . . . . 251
Semantic overlay networks . . . . . . . . . . . . . . . . 254

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

6 Coordination 259
6.1 Clock synchronization . . . . . . . . . . . . . . . . . . . . . . . 260

6.1.1 Physical clocks . . . . . . . . . . . . . . . . . . . . . . . 261
6.1.2 Global positioning system . . . . . . . . . . . . . . . . . 265
6.1.3 Clock synchronization algorithms . . . . . . . . . . . . 267

Network time protocol . . . . . . . . . . . . . . . . . . . 268
The Berkeley algorithm . . . . . . . . . . . . . . . . . . 270
Clock synchronization in wireless networks . . . . . . 271

6.2 Logical clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
6.2.1 Lamport’s logical clocks . . . . . . . . . . . . . . . . . . 273

Example: totally ordered multicasting . . . . . . . . . . 276
6.2.2 Vector clocks . . . . . . . . . . . . . . . . . . . . . . . . 278

Enforcing causal communication . . . . . . . . . . . . . 279
A note on ordered message delivery . . . . . . . . . . . 280

6.3 Mutual exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 281
6.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 281
6.3.2 A centralized algorithm . . . . . . . . . . . . . . . . . . 282
6.3.3 A decentralized algorithm . . . . . . . . . . . . . . . . . 283
6.3.4 A distributed algorithm . . . . . . . . . . . . . . . . . . 285
6.3.5 A token ring algorithm . . . . . . . . . . . . . . . . . . 287
6.3.6 A comparison of the four algorithms . . . . . . . . . . 289

6.4 Global positioning of nodes . . . . . . . . . . . . . . . . . . . . 290
6.5 Election algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 293

6.5.1 Traditional election algorithms . . . . . . . . . . . . . . 294
The bully algorithm . . . . . . . . . . . . . . . . . . . . 294
A ring algorithm . . . . . . . . . . . . . . . . . . . . . . 296

6.5.2 Elections in wireless environments . . . . . . . . . . . . 297



10 CONTENTS

6.5.3 Elections in large-scale systems . . . . . . . . . . . . . . 299
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

7 Consistency and replication 303
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

7.1.1 Reasons for replication . . . . . . . . . . . . . . . . . . . 304
7.1.2 Replication as scaling technique . . . . . . . . . . . . . 305

7.2 Data-centric consistency models . . . . . . . . . . . . . . . . . 307
7.2.1 Continuous consistency . . . . . . . . . . . . . . . . . . 308

The notion of a conit . . . . . . . . . . . . . . . . . . . . 309
7.2.2 Consistent ordering of operations . . . . . . . . . . . . 311

Sequential consistency . . . . . . . . . . . . . . . . . . . 312
Causal consistency . . . . . . . . . . . . . . . . . . . . . 315
Grouping operations . . . . . . . . . . . . . . . . . . . . 316
Consistency versus coherence . . . . . . . . . . . . . . . 319

7.3 Client-centric consistency models . . . . . . . . . . . . . . . . . 319
7.3.1 Eventual consistency . . . . . . . . . . . . . . . . . . . . 320
7.3.2 Monotonic reads . . . . . . . . . . . . . . . . . . . . . . 322
7.3.3 Monotonic writes . . . . . . . . . . . . . . . . . . . . . . 323
7.3.4 Read your writes . . . . . . . . . . . . . . . . . . . . . . 325
7.3.5 Writes follow reads . . . . . . . . . . . . . . . . . . . . . 326

7.4 Replica management . . . . . . . . . . . . . . . . . . . . . . . . 327
7.4.1 Replica-server placement . . . . . . . . . . . . . . . . . 328
7.4.2 Content replication and placement . . . . . . . . . . . . 330

Permanent replicas . . . . . . . . . . . . . . . . . . . . . 330
Server-initiated replicas . . . . . . . . . . . . . . . . . . 331
Client-initiated replicas . . . . . . . . . . . . . . . . . . 333

7.4.3 Content distribution . . . . . . . . . . . . . . . . . . . . 334
State versus operations . . . . . . . . . . . . . . . . . . 334
Pull versus push protocols . . . . . . . . . . . . . . . . 335
Unicasting versus multicasting . . . . . . . . . . . . . . 338

7.5 Consistency protocols . . . . . . . . . . . . . . . . . . . . . . . 338
7.5.1 Continuous consistency . . . . . . . . . . . . . . . . . . 339

Bounding numerical deviation . . . . . . . . . . . . . . 339
Bounding staleness deviations . . . . . . . . . . . . . . 340
Bounding ordering deviations . . . . . . . . . . . . . . 341

7.5.2 Primary-based protocols . . . . . . . . . . . . . . . . . . 341
Remote-write protocols . . . . . . . . . . . . . . . . . . 342
Local-write protocols . . . . . . . . . . . . . . . . . . . . 343

7.5.3 Replicated-write protocols . . . . . . . . . . . . . . . . . 344
Active replication . . . . . . . . . . . . . . . . . . . . . . 344
Quorum-based protocols . . . . . . . . . . . . . . . . . 345



CONTENTS 11

7.5.4 Cache-coherence protocols . . . . . . . . . . . . . . . . 346
7.5.5 Implementing client-centric consistency . . . . . . . . . 348

A naive implementation . . . . . . . . . . . . . . . . . . 348
Improving efficiency . . . . . . . . . . . . . . . . . . . . 350

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

8 Fault tolerance 353
8.1 Introduction to fault tolerance . . . . . . . . . . . . . . . . . . . 354

8.1.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . 354
8.1.2 Failure models . . . . . . . . . . . . . . . . . . . . . . . 356
8.1.3 Failure masking by redundancy . . . . . . . . . . . . . 358

8.2 Process resilience . . . . . . . . . . . . . . . . . . . . . . . . . . 360
8.2.1 Design issues . . . . . . . . . . . . . . . . . . . . . . . . 360

Flat groups versus hierarchical groups . . . . . . . . . 361
Group membership . . . . . . . . . . . . . . . . . . . . 362

8.2.2 Failure masking and replication . . . . . . . . . . . . . 363
8.2.3 Agreement in faulty systems . . . . . . . . . . . . . . . 364
8.2.4 Failure detection . . . . . . . . . . . . . . . . . . . . . . 368

8.3 Reliable client-server communication . . . . . . . . . . . . . . 369
8.3.1 Point-to-point communication . . . . . . . . . . . . . . 370
8.3.2 Rpc semantics in the presence of failures . . . . . . . . 370

Client cannot locate the server . . . . . . . . . . . . . . 370
Lost request messages . . . . . . . . . . . . . . . . . . . 371
Server crashes . . . . . . . . . . . . . . . . . . . . . . . . 372
Lost reply messages . . . . . . . . . . . . . . . . . . . . 374
Client crashes . . . . . . . . . . . . . . . . . . . . . . . . 375

8.4 Reliable group communication . . . . . . . . . . . . . . . . . . 376
8.4.1 Basic reliable-multicasting schemes . . . . . . . . . . . 376
8.4.2 Scalability in reliable multicasting . . . . . . . . . . . . 378

Nonhierarchical feedback control . . . . . . . . . . . . 379
Hierarchical feedback control . . . . . . . . . . . . . . . 380

8.4.3 Atomic multicast . . . . . . . . . . . . . . . . . . . . . . 382
Virtual synchrony . . . . . . . . . . . . . . . . . . . . . 383
Message ordering . . . . . . . . . . . . . . . . . . . . . . 385
Implementing virtual synchrony . . . . . . . . . . . . . 387

8.5 Distributed commit . . . . . . . . . . . . . . . . . . . . . . . . . 389
8.5.1 Two-phase commit . . . . . . . . . . . . . . . . . . . . . 390
8.5.2 Three-phase commit . . . . . . . . . . . . . . . . . . . . 395

8.6 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
8.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 398

Stable storage . . . . . . . . . . . . . . . . . . . . . . . . 400
8.6.2 Checkpointing . . . . . . . . . . . . . . . . . . . . . . . 402



12 CONTENTS

Independent checkpointing . . . . . . . . . . . . . . . . 402
Coordinated checkpointing . . . . . . . . . . . . . . . . 404

8.6.3 Message logging . . . . . . . . . . . . . . . . . . . . . . 405
Characterizing message-logging schemes . . . . . . . . 406

8.6.4 Recovery-oriented computing . . . . . . . . . . . . . . . 408
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

9 Security 411
9.1 Introduction to security . . . . . . . . . . . . . . . . . . . . . . 412

9.1.1 Security threats, policies, and mechanisms . . . . . . . 412
Example: the globus security architecture . . . . . . . . 414

9.1.2 Design issues . . . . . . . . . . . . . . . . . . . . . . . . 418
Focus of control . . . . . . . . . . . . . . . . . . . . . . . 418
Layering of security mechanisms . . . . . . . . . . . . . 420
Distribution of security mechanisms . . . . . . . . . . . 422
Simplicity . . . . . . . . . . . . . . . . . . . . . . . . . . 423

9.1.3 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 424
Symmetric cryptosystems: DES . . . . . . . . . . . . . . 427
Public-key cryptosystems: rsa . . . . . . . . . . . . . . 429
Hash functions: md5 . . . . . . . . . . . . . . . . . . . . 430

9.2 Secure channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
9.2.1 Authentication . . . . . . . . . . . . . . . . . . . . . . . 433

Authentication based on a shared secret key . . . . . . 433
Authentication using a key distribution center . . . . . 436
Authentication using public-key cryptography . . . . . 440

9.2.2 Message integrity and confidentiality . . . . . . . . . . 441
Digital signatures . . . . . . . . . . . . . . . . . . . . . . 441
Session keys . . . . . . . . . . . . . . . . . . . . . . . . . 443

9.2.3 Secure group communication . . . . . . . . . . . . . . . 444
Confidential group communication . . . . . . . . . . . 445
Secure replicated servers . . . . . . . . . . . . . . . . . 445

9.2.4 Example: Kerberos . . . . . . . . . . . . . . . . . . . . . 448
9.3 Access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

9.3.1 General issues in access control . . . . . . . . . . . . . 451
Access control matrix . . . . . . . . . . . . . . . . . . . 452
Protection domains . . . . . . . . . . . . . . . . . . . . . 453

9.3.2 Firewalls . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
9.3.3 Secure mobile code . . . . . . . . . . . . . . . . . . . . . 457

Protecting an agent . . . . . . . . . . . . . . . . . . . . . 458
Protecting the target . . . . . . . . . . . . . . . . . . . . 459

9.3.4 Denial of service . . . . . . . . . . . . . . . . . . . . . . 465
9.4 Security management . . . . . . . . . . . . . . . . . . . . . . . 466



CONTENTS 13

9.4.1 Key management . . . . . . . . . . . . . . . . . . . . . . 467
Key establishment . . . . . . . . . . . . . . . . . . . . . 467
Key distribution . . . . . . . . . . . . . . . . . . . . . . 468
Lifetime of certificates . . . . . . . . . . . . . . . . . . . 470

9.4.2 Secure group management . . . . . . . . . . . . . . . . 471
9.4.3 Authorization management . . . . . . . . . . . . . . . . 473

Capabilities and attribute certificates . . . . . . . . . . 473
Delegation . . . . . . . . . . . . . . . . . . . . . . . . . . 476

9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

10 Distributed object-based systems 481
10.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

10.1.1 Distributed objects . . . . . . . . . . . . . . . . . . . . . 482
Compile-time versus runtime objects . . . . . . . . . . 483
Persistent and transient objects . . . . . . . . . . . . . . 484

10.1.2 Example: Enterprise Java Beans . . . . . . . . . . . . . 484
10.1.3 Example: Globe distributed shared objects . . . . . . . 487

Object model . . . . . . . . . . . . . . . . . . . . . . . . 487
10.2 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

10.2.1 Object servers . . . . . . . . . . . . . . . . . . . . . . . . 489
Alternatives for invoking objects . . . . . . . . . . . . . 490
Object adapter . . . . . . . . . . . . . . . . . . . . . . . 491

10.2.2 Example: the Ice runtime system . . . . . . . . . . . . . 493
10.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

10.3.1 Binding a client to an object . . . . . . . . . . . . . . . . 495
Implementation of object references . . . . . . . . . . . 496

10.3.2 Static versus dynamic remote method invocations . . . 497
10.3.3 Parameter passing . . . . . . . . . . . . . . . . . . . . . 499
10.3.4 Example: Java RMI . . . . . . . . . . . . . . . . . . . . . 500

The Java distributed-object model . . . . . . . . . . . . 500
Java remote object invocation . . . . . . . . . . . . . . . 501

10.3.5 Object-based messaging . . . . . . . . . . . . . . . . . . 503
10.4 Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

10.4.1 Corba object references . . . . . . . . . . . . . . . . . . 506
10.4.2 Globe object references . . . . . . . . . . . . . . . . . . 508

10.5 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
10.6 Consistency and replication . . . . . . . . . . . . . . . . . . . . 512

10.6.1 Entry consistency . . . . . . . . . . . . . . . . . . . . . . 512
Replication frameworks . . . . . . . . . . . . . . . . . . 514

10.6.2 Replicated invocations . . . . . . . . . . . . . . . . . . . 516
10.7 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

10.7.1 Example: fault-tolerant corba . . . . . . . . . . . . . . . 518



14 CONTENTS

An example architecture . . . . . . . . . . . . . . . . . . 519
10.7.2 Example: fault-tolerant Java . . . . . . . . . . . . . . . . 520

10.8 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
10.8.1 Example: Globe . . . . . . . . . . . . . . . . . . . . . . . 522

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Secure method invocation . . . . . . . . . . . . . . . . . 525

10.8.2 Security for remote objects . . . . . . . . . . . . . . . . 526
10.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

11 Distributed file systems 531
11.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

11.1.1 Client-server architectures . . . . . . . . . . . . . . . . . 531
File system model . . . . . . . . . . . . . . . . . . . . . 534

11.1.2 Cluster-based distributed file systems . . . . . . . . . . 536
11.1.3 Symmetric architectures . . . . . . . . . . . . . . . . . . 539

11.2 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
11.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

11.3.1 RPCs in NFS . . . . . . . . . . . . . . . . . . . . . . . . 543
The RPC2 subsystem . . . . . . . . . . . . . . . . . . . . 544

11.3.2 File-oriented communication in Plan 9 . . . . . . . . . 546
11.4 Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

11.4.1 Naming in NFS . . . . . . . . . . . . . . . . . . . . . . . 548
File handles . . . . . . . . . . . . . . . . . . . . . . . . . 550
Automounting . . . . . . . . . . . . . . . . . . . . . . . 551

11.4.2 Constructing a global name space . . . . . . . . . . . . 553
11.5 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

11.5.1 Semantics of file sharing . . . . . . . . . . . . . . . . . . 555
11.5.2 File locking . . . . . . . . . . . . . . . . . . . . . . . . . 558
11.5.3 Sharing files in Coda . . . . . . . . . . . . . . . . . . . . 560

11.6 Consistency and replication . . . . . . . . . . . . . . . . . . . . 562
11.6.1 Client-side caching . . . . . . . . . . . . . . . . . . . . . 562

Caching in NFS . . . . . . . . . . . . . . . . . . . . . . . 562
Client-side caching in Coda . . . . . . . . . . . . . . . . 564
Client-side caching for portable devices . . . . . . . . . 566

11.6.2 Server-side replication . . . . . . . . . . . . . . . . . . . 566
Server replication in coda . . . . . . . . . . . . . . . . . 567

11.6.3 Replication in peer-to-peer file systems . . . . . . . . . 569
Unstructured peer-to-peer systems . . . . . . . . . . . . 569
Structured peer-to-peer systems . . . . . . . . . . . . . 570

11.6.4 File replication in grid systems . . . . . . . . . . . . . . 571
11.7 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

11.7.1 Handling Byzantine failures . . . . . . . . . . . . . . . 572



CONTENTS 15

11.7.2 High availability in peer-to-peer systems . . . . . . . . 574
11.8 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

11.8.1 Security in NFS . . . . . . . . . . . . . . . . . . . . . . . 576
Secure RPCs . . . . . . . . . . . . . . . . . . . . . . . . . 576
Access control . . . . . . . . . . . . . . . . . . . . . . . . 579

11.8.2 Decentralized authentication . . . . . . . . . . . . . . . 580
11.8.3 Secure peer-to-peer file-sharing systems . . . . . . . . 582

Secure lookups in dht-based systems . . . . . . . . . . 583
Secure collaborative storage . . . . . . . . . . . . . . . . 584

11.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

12 Distributed Web-based systems 589
12.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

12.1.1 Traditional web-based systems . . . . . . . . . . . . . . 590
Web documents . . . . . . . . . . . . . . . . . . . . . . . 591
Multitiered architectures . . . . . . . . . . . . . . . . . . 593

12.1.2 Web services . . . . . . . . . . . . . . . . . . . . . . . . 595
Web services fundamentals . . . . . . . . . . . . . . . . 595
Web services composition and coordination . . . . . . 597

12.2 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
12.2.1 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
12.2.2 The Apache Web server . . . . . . . . . . . . . . . . . . 601
12.2.3 Web server clusters . . . . . . . . . . . . . . . . . . . . . 603

12.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
12.3.1 Hypertext transfer protocol . . . . . . . . . . . . . . . . 606

HTTP connections . . . . . . . . . . . . . . . . . . . . . 606
HTTP methods . . . . . . . . . . . . . . . . . . . . . . . 607
HTTP messages . . . . . . . . . . . . . . . . . . . . . . . 608

12.3.2 Simple object access protocol . . . . . . . . . . . . . . . 611
12.4 Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
12.5 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
12.6 Consistency and replication . . . . . . . . . . . . . . . . . . . . 617

12.6.1 Web proxy caching . . . . . . . . . . . . . . . . . . . . . 617
12.6.2 Replication for Web hosting systems . . . . . . . . . . . 620

Metric estimation . . . . . . . . . . . . . . . . . . . . . . 620
Adaptation triggering . . . . . . . . . . . . . . . . . . . 622
Adjustment measures . . . . . . . . . . . . . . . . . . . 624

12.6.3 Replication of Web applications . . . . . . . . . . . . . 626
12.7 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
12.8 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
12.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633



16 CONTENTS

13 Distributed coordination-based systems 635
13.1 Introduction to coordination models . . . . . . . . . . . . . . . 635
13.2 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

13.2.1 Overall approach . . . . . . . . . . . . . . . . . . . . . . 638
13.2.2 Traditional architectures . . . . . . . . . . . . . . . . . . 639

Example: Jini and JavaSpaces . . . . . . . . . . . . . . . 640
Example: TIB/Rendezvous . . . . . . . . . . . . . . . . 642

13.2.3 Peer-to-peer architectures . . . . . . . . . . . . . . . . . 643
Example: a gossip-based publish/subscribe system . . 644
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 646

13.2.4 Mobility and coordination . . . . . . . . . . . . . . . . . 646
Example: Lime . . . . . . . . . . . . . . . . . . . . . . . 646

13.3 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
13.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

13.4.1 Content-based routing . . . . . . . . . . . . . . . . . . . 648
13.4.2 Supporting composite subscriptions . . . . . . . . . . . 650

13.5 Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
13.5.1 Describing composite events . . . . . . . . . . . . . . . 651
13.5.2 Matching events and subscriptions . . . . . . . . . . . . 653

13.6 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
13.7 Consistency and replication . . . . . . . . . . . . . . . . . . . . 655

13.7.1 Static approaches . . . . . . . . . . . . . . . . . . . . . . 655
General considerations . . . . . . . . . . . . . . . . . . . 655

13.7.2 Dynamic replication . . . . . . . . . . . . . . . . . . . . 658
Gspace overview . . . . . . . . . . . . . . . . . . . . . . 659
Adaptive replication . . . . . . . . . . . . . . . . . . . . 660

13.8 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
13.8.1 Reliable publish-subscribe communication . . . . . . . 661

Example: fault tolerance in TIB/Rendezvous . . . . . . 662
13.8.2 Fault tolerance in shared dataspaces . . . . . . . . . . . 664

13.9 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
13.9.1 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . 666

Decoupling publishers from subscribers . . . . . . . . 667
13.9.2 Secure shared dataspaces . . . . . . . . . . . . . . . . . 669

13.10Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

Bibliography 51



Chapter 1

Introduction

Computer systems are undergoing a revolution. From 1945, when the
modern computer era began, until about 1985, computers were large and
expensive. Even minicomputers cost at least tens of thousands of dollars
each. As a result, most organizations had only a handful of computers, and
for lack of a way to connect them, these operated independently from one
another.

Starting around the the mid-1980s, however, two advances in technology
began to change that situation. The first was the development of powerful
microprocessors. Initially, these were 8-bit machines, but soon 16-, 32-, and
64-bit CPUs became common. Many of these had the computing power of a
mainframe (i.e., large) computer, but for a fraction of the price.

The amount of improvement that has occurred in computer technology
in the past half century is truly staggering and totally unprecedented in
other industries. From a machine that cost 10 million dollars and executed 1
instruction per second, we have come to machines that cost 1000 dollars and
are able to execute 1 billion instructions per second, a price/performance
gain of 1013. If cars had improved at this rate in the same time period,
a Rolls Royce would now cost 1 dollar and get a billion miles per gallon.
(Unfortunately, it would probably also have a 200-page manual telling how
to open the door.)

The second development was the invention of high-speed computer net-
works. Local-area networks or LANs allow hundreds of machines within a
building to be connected in such a way that small amounts of information
can be transferred between machines in a few microseconds or so. Larger
amounts of data can be moved between machines at rates of 100 million
to 10 billion bits/sec. Wide-area networks or WANs allow millions of ma-
chines all over the earth to be connected at speeds varying from 64 Kbps
(kilobits per second) to gigabits per second.

17



18 CHAPTER 1. INTRODUCTION

The result of these technologies is that it is now not only feasible, but
easy, to put together computing systems composed of large numbers of
computers connected by a high-speed network. They are usually called
computer networks or distributed systems, in contrast to the previous
centralized systems (or (single-processor systems) consisting of a single
computer, its peripherals, and perhaps some remote terminals.

1.1 Definition of a distributed system

Various definitions of distributed systems have been given in the literature,
none of them satisfactory, and none of them in agreement with any of the
others. For our purposes it is sufficient to give a loose characterization:

A distributed system is a collection of independent computers that
appears to its users as a single coherent system.

This definition has several important aspects. The first one is that a
distributed system consists of components (i.e., computers) that are au-
tonomous. A second aspect is that users (be they people or programs) think
they are dealing with a single system. This means that one way or the other
the autonomous components need to collaborate. How to establish this col-
laboration lies at the heart of developing distributed systems. Note that no
assumptions are made concerning the type of computers. In principle, even
within a single system, they could range from high-performance mainframe
computers to small nodes in sensor networks. Likewise, no assumptions
are made on the way that computers are interconnected. We will return to
these aspects later in this chapter.

Instead of going further with definitions, it is perhaps more useful
to concentrate on important characteristics of distributed systems. One
important characteristic is that differences between the various computers
and the ways in which they communicate are mostly hidden from users. The
same holds for the internal organization of the distributed system. Another
important characteristic is that users and applications can interact with a
distributed system in a consistent and uniform way, regardless of where
and when interaction takes place.

In principle, distributed systems should also be relatively easy to expand
or scale. This characteristic is a direct consequence of having independent
computers, but at the same time, hiding how these computers actually
take part in the system as a whole. A distributed system will normally be
continuously available, although perhaps some parts may be temporarily
out of order. Users and applications should not notice that parts are being



1.2. GOALS 19

replaced or fixed, or that new parts are added to serve more users or
applications.

In order to support heterogeneous computers and networks while offer-
ing a single-system view, distributed systems are often organized by means
of a layer of software–that is, logically placed between a higher-level layer
consisting of users and applications, and a layer underneath consisting of
operating systems and basic communication facilities, as shown in Figure 1.1
Accordingly, such a distributed system is sometimes called middleware.

Figure 1.1: A distributed system organized as middleware. The middleware
layer extends over multiple machines, and offers each application the same
interface.

Figure 1.1 shows four networked computers and three applications, of
which application B is distributed across computers 2 and 3. Each appli-
cation is offered the same interface. The distributed system provides the
means for components of a single distributed application to communicate
with each other, but also to let different applications communicate. At the
same time, it hides, as best and reasonable as possible, the differences in
hardware and operating systems from each application.

1.2 Goals

Just because it is possible to build distributed systems does not necessarily
mean that it is a good idea. After all, with current technology it is also
possible to put four floppy disk drives on a personal computer. It is just that
doing so would be pointless. In this section we discuss four important goals
that should be met to make building a distributed system worth the effort.
A distributed system should make resources easily accessible; it should
reasonably hide the fact that resources are distributed across a network; it
should be open; and it should be scalable.



20 CHAPTER 1. INTRODUCTION

1.2.1 Making resources accessible

The main goal of a distributed system is to make it easy for the users (and
applications) to access remote resources, and to share them in a controlled
and efficient way. Resources can be just about anything, but typical examples
include things like printers, computers, storage facilities, data, files, Web
pages, and networks, to name just a few. There are many reasons for
wanting to share resources. One obvious reason is that of economics. For
example, it is cheaper to let a printer be shared by several users in a
small office than having to buy and maintain a separate printer for each
user. Likewise, it makes economic sense to share costly resources such as
supercomputers, high-performance storage systems, imagesetters, and other
expensive peripherals.

Connecting users and resources also makes it easier to collaborate and
exchange information, as is clearly illustrated by the success of the Internet
with its simple protocols for exchanging files, mail, documents, audio, and
video. The connectivity of the Internet is now leading to numerous virtual
organizations in which geographically widely-dispersed groups of people
work together by means of groupware, that is, software for collaborative
editing, teleconferencing, and so on. Likewise, the Internet connectivity has
enabled electronic commerce allowing us to buy and sell all kinds of goods
without actually having to go to a store or even leave home.

However, as connectivity and sharing increase, security is becoming
increasingly important. In current practice, systems provide little protection
against eavesdropping or intrusion on communication. Passwords and other
sensitive information are often sent as cleartext (i.e., unencrypted) through
the network, or stored at servers that we can only hope are trustworthy. In
this sense, there is much room for improvement. For example, it is currently
possible to order goods by merely supplying a credit card number. Rarely
is proof required that the customer owns the card. In the future, placing
orders this way may be possible only if you can actually prove that you
physically possess the card by inserting it into a card reader.

Another security problem is that of tracking communication to build
up a preference profile of a specific user [Wang et al., 1998]. Such tracking
explicitly violates privacy, especially if it is done without notifying the user.
A related problem is that increased connectivity can also lead to unwanted
communication, such as electronic junk mail, often called spam. In such
cases, what we may need is to protect ourselves using special information
filters that select incoming messages based on their content.



1.2. GOALS 21

1.2.2 Distribution transparency

An important goal of a distributed system is to hide the fact that its processes
and resources are physically distributed across multiple computers. A
distributed system that is able to present itself to users and applications as
if it were only a single computer system is said to be transparent. Let us
first take a look at what kinds of transparency exist in distributed systems.
After that we will address the more general question whether transparency
is always required.

Types of transparency

The concept of transparency can be applied to several aspects of a distributed
system, the most important ones shown in Figure 1.2.

Transparency Description
Access Hide differences in data representation and how a resource is

accessed
Location Hide where a resource is located
Migration Hide that a resource may move to another location
Relocation Hide that a resource may be moved to another location while in use
Replication Hide that a resource is replicated
Concurrency Hide that a resource may be shared by several competitive users
Failure Hide the failure and recovery of a resource

Figure 1.2: Different forms of transparency in a distributed system [ISO,
1995].

Access transparency deals with hiding differences in data representation
and the way that resources can be accessed by users. At a basic level, we
wish to hide differences in machine architectures, but more important is
that we reach agreement on how data is to be represented by different
machines and operating systems. For example, a distributed system may
have computer systems that run different operating systems, each having
their own file-naming conventions. Differences in naming conventions, as
well as how files can be manipulated, should all be hidden from users and
applications.

An important group of transparency types has to do with the location
of a resource. Location transparency refers to the fact that users cannot
tell where a resource is physically located in the system. Naming plays an
important role in achieving location transparency. In particular, location
transparency can be achieved by assigning only logical names to resources,



22 CHAPTER 1. INTRODUCTION

that is, names in which the location of a resource is not secretly encoded.
An example of a such a name is the URL http://www.prenhall.com/index.html,
which gives no clue about the location of Prentice Hall’s main Web server.
The URL also gives no clue as to whether index.html has always been at
its current location or was recently moved there. Distributed systems in
which resources can be moved without affecting how those resources can
be accessed are said to provide migration transparency. Even stronger
is the situation in which resources can be relocated while they are being
accessed without the user or application noticing anything. In such cases,
the system is said to support relocation transparency. An example of
relocation transparency is when mobile users can continue to use their
wireless laptops while moving from place to place without ever being
(temporarily) disconnected.

As we shall see, replication plays a very important role in distributed
systems. For example, resources may be replicated to increase availability
or to improve performance by placing a copy close to the place where it is
accessed. Replication transparency deals with hiding the fact that several
copies of a resource exist. To hide replication from users, it is necessary
that all replicas have the same name. Consequently, a system that supports
replication transparency should generally support location transparency
as well, because it would otherwise be impossible to refer to replicas at
different locations.

We already mentioned that an important goal of distributed systems is
to allow sharing of resources. In many cases, sharing resources is done in
a cooperative way, as in the case of communication. However, there are
also many examples of competitive sharing of resources. For example, two
independent users may each have stored their files on the same file server
or may be accessing the same tables in a shared database. In such cases, it
is important that each user does not notice that the other is making use of
the same resource. This phenomenon is called concurrency transparency.
An important issue is that concurrent access to a shared resource leaves
that resource in a consistent state. Consistency can be achieved through
locking mechanisms, by which users are, in turn, given exclusive access
to the desired resource. A more refined mechanism is to make use of
transactions, but as we shall see in later chapters, transactions are quite
difficult to implement in distributed systems.

A popular alternative definition of a distributed system, due to Leslie
Lamport, is “You know you have one when the crash of a computer you’ve
never heard of stops you from getting any work done.” This description puts
the finger on another important issue of distributed systems design: dealing
with failures. Making a distributed system failure transparent means that a



1.2. GOALS 23

user does not notice that a resource (he has possibly never heard of) fails to
work properly, and that the system subsequently recovers from that failure.
Masking failures is one of the hardest issues in distributed systems and is
even impossible when certain apparently realistic assumptions are made, as
we will discuss in Chapter 8. The main difficulty in masking failures lies in
the inability to distinguish between a dead resource and a painfully slow
resource. For example, when contacting a busy Web server, a browser will
eventually time out and report that the Web page is unavailable. At that
point, the user cannot conclude that the server is really down.

Degree of transparency

Although distribution transparency is generally considered preferable for
any distributed system, there are situations in which attempting to com-
pletely hide all distribution aspects from users is not a good idea. An
example is requesting your electronic newspaper to appear in your mailbox
before 7 AM local time, as usual, while you are currently at the other end of
the world living in a different time zone. Your morning paper will not be
the morning paper you are used to.

Likewise, a wide-area distributed system that connects a process in San
Francisco to a process in Amsterdam cannot be expected to hide the fact
that Mother Nature will not allow it to send a message from one process
to the other in less than about 35 milliseconds. In practice it takes several
hundreds of milliseconds using a computer network. Signal transmission
is not only limited by the speed of light, but also by limited processing
capacities of the intermediate switches.

There is also a trade-off between a high degree of transparency and
the performance of a system. For example, many Internet applications
repeatedly try to contact a server before finally giving up. Consequently,
attempting to mask a transient server failure before trying another one may
slow down the system as a whole. In such a case, it may have been better to
give up earlier, or at least let the user cancel the attempts to make contact.

Another example is where we need to guarantee that several replicas,
located on different continents, need to be consistent all the time. In other
words, if one copy is changed, that change should be propagated to all
copies before allowing any other operation. It is clear that a single update
operation may now even take seconds to complete, something that cannot
be hidden from users.

Finally, there are situations in which it is not at all obvious that hiding
distribution is a good idea. As distributed systems are expanding to devices
that people carry around, and where the very notion of location and context
awareness is becoming increasingly important, it may be best to actually



24 CHAPTER 1. INTRODUCTION

expose distribution rather than trying to hide it. This distribution exposure
will become more evident when we discuss embedded and ubiquitous
distributed systems later in this chapter. As a simple example, consider an
office worker who wants to print a file from her notebook computer. It is
better to send the print job to a busy nearby printer, rather than to an idle
one at corporate headquarters in a different country.

There are also other arguments against distribution transparency. Recog-
nizing that full distribution transparency is simply impossible, we should
ask ourselves whether it is even wise to pretend that we can achieve it. It
may be much better to make distribution explicit so that the user and appli-
cation developer are never tricked into believing that there is such a thing
as transparency. The result will be that users will much better understand
the (sometimes unexpected) behavior of a distributed system, and are thus
much better prepared to deal with this behavior.

The conclusion is that aiming for distribution transparency may be a
nice goal when designing and implementing distributed systems, but that it
should be considered together with other issues such as performance and
comprehensibility. The price for not being able to achieve full transparency
may be surprisingly high.

1.2.3 Openness

Another important goal of distributed systems is openness. An open dis-
tributed system is a system that offers services according to standard rules
that describe the syntax and semantics of those services. For example,
in computer networks, standard rules govern the format, contents, and
meaning of messages sent and received. Such rules are formalized in pro-
tocols. In distributed systems, services are generally specified through
interfaces, which are often described in an Interface Definition Language
(IDL). Interface definitions written in an IDL nearly always capture only
the syntax of services. In other words, they specify precisely the names
of the functions that are available together with types of the parameters,
return values, possible exceptions that can be raised, and so on. The hard
part is specifying precisely what those services do, that is, the semantics of
interfaces. In practice, such specifications are always given in an informal
way by means of natural language.

If properly specified, an interface definition allows an arbitrary process
that needs a certain interface to talk to another process that provides that
interface. It also allows two independent parties to build completely differ-
ent implementations of those interfaces, leading to two separate distributed
systems that operate in exactly the same way. Proper specifications are
complete and neutral. Complete means that everything that is necessary



1.2. GOALS 25

to make an implementation has indeed been specified. However, many
interface definitions are not at all complete, so that it is necessary for a
developer to add implementation-specific details. Just as important is the
fact that specifications do not prescribe what an implementation should look
like; they should be neutral. Completeness and neutrality are important
for interoperability and portability [Blair and Stefani, 1998]. Interoperabil-
ity characterizes the extent by which two implementations of systems or
components from different manufacturers can co-exist and work together
by merely relying on each other’s services as specified by a common stan-
dard. Portability characterizes to what extent an application developed for
a distributed system A can be executed, without modification, on a different
distributed system B that implements the same interfaces as A.

Another important goal for an open distributed system is that it should
be easy to configure the system out of different components (possibly from
different developers). Also, it should be easy to add new components or
replace existing ones without affecting those components that stay in place.
In other words, an open distributed system should also be extensible. For
example, in an extensible system, it should be relatively easy to add parts
that run on a different operating system, or even to replace an entire file
system. As many of us know from daily practice, attaining such flexibility
is easier said than done.

Separating policy from mechanism

To achieve flexibility in open distributed systems, it is crucial that the
system is organized as a collection of relatively small and easily replaceable
or adaptable components. This implies that we should provide definitions
not only for the highest-level interfaces, that is, those seen by users and
applications, but also definitions for interfaces to internal parts of the
system and describe how those parts interact. This approach is relatively
new. Many older and even contemporary systems are constructed using a
monolithic approach in which components are only logically separated but
implemented as one, huge program. This approach makes it hard to replace
or adapt a component without affecting the entire system. Monolithic
systems thus tend to be closed instead of open.

The need for changing a distributed system is often caused by a com-
ponent that does not provide the optimal policy for a specific user or
application. As an example, consider caching in the World Wide Web.
Browsers generally allow users to adapt their caching policy by specifying
the size of the cache, and whether a cached document should always be
checked for consistency, or perhaps only once per session. However, the user
cannot influence other caching parameters, such as how long a document



26 CHAPTER 1. INTRODUCTION

may remain in the cache, or which document should be removed when the
cache fills up. Also, it is impossible to make caching decisions based on
the content of a document. For instance, a user may want to cache railroad
timetables, knowing that these hardly change, but never information on
current traffic conditions on the highways.

What we need is a separation between policy and mechanism. In the
case of Web caching, for example, a browser should ideally provide facilities
for only storing documents, and at the same time allow users to decide
which documents are stored and for how long. In practice, this can be
implemented by offering a rich set of parameters that the user can set
(dynamically). Even better is that a user can implement his own policy in
the form of a component that can be plugged into the browser. Of course,
that component must have an interface that the browser can understand so
that it can call procedures of that interface.

1.2.4 Scalability

Worldwide connectivity through the Internet is rapidly becoming as com-
mon as being able to send a postcard to anyone anywhere around the world.
With this in mind, scalability is one of the most important design goals for
developers of distributed systems.

Scalability of a system can be measured along at least three different
dimensions [Neuman, 1994]. First, a system can be scalable with respect to
its size, meaning that we can easily add more users and resources to the
system. Second, a geographically scalable system is one in which the users
and resources may lie far apart. Third, a system can be administratively
scalable, meaning that it can still be easy to manage even if it spans many
independent administrative organizations. Unfortunately, a system that
is scalable in one or more of these dimensions often exhibits some loss of
performance as the system scales up.

Scalability problems

When a system needs to scale, very different types of problems need to be
solved. Let us first consider scaling with respect to size. If more users or
resources need to be supported, we are often confronted with the limitations
of centralized services, data, and algorithms (see Figure 1.3). For example,
many services are centralized in the sense that they are implemented by
means of only a single server running on a specific machine in the dis-
tributed system. The problem with this scheme is obvious: the server can
become a bottleneck as the number of users and applications grows. Even if



1.2. GOALS 27

we have virtually unlimited processing and storage capacity, communication
with that server will eventually prohibit further growth.

Unfortunately, using only a single server is sometimes unavoidable.
Imagine that we have a service for managing highly confidential information
such as medical records, bank accounts, and so on. In such cases, it may
be best to implement that service by means of a single server in a highly
secured separate room, and protected from other parts of the distributed
system through special network components. Copying the server to several
locations to enhance performance may be out of the question as it would
make the service less secure.

Concept Example
Centralized services A single server for all users
Centralized data A single on-line telephone book
Centralized algorithms Doing routing based on complete information

Figure 1.3: Examples of scalability limitations.

Just as bad as centralized services are centralized data. How should we
keep track of the telephone numbers and addresses of 50 million people?
Suppose that each data record could be fit into 50 characters. A single
2.5-gigabyte disk partition would provide enough storage. But here again,
having a single database would undoubtedly saturate all the communication
lines into and out of it. Likewise, imagine how the Internet would work
if its Domain Name System (DNS) was still implemented as a single table.
DNS maintains information on millions of computers worldwide and forms
an essential service for locating Web servers. If each request to resolve a
URL had to be forwarded to that one and only DNS server, it is clear that no
one would be using the Web (which, by the way, would solve the problem).

Finally, centralized algorithms are also a bad idea. In a large distributed
system, an enormous number of messages have to be routed over many
lines. From a theoretical point of view, the optimal way to do this is collect
complete information about the load on all machines and lines, and then
run an algorithm to compute all the optimal routes. This information can
then be spread around the system to improve the routing.

The trouble is that collecting and transporting all the input and output
information would again be a bad idea because these messages would
overload part of the network. In fact, any algorithm that operates by
collecting information from all the sites, sends it to a single machine for
processing, and then distributes the results should generally be avoided.
Only decentralized algorithms should be used. These algorithms generally



28 CHAPTER 1. INTRODUCTION

have the following characteristics, which distinguish them from centralized
algorithms:

1. No machine has complete information about the system state.
2. Machines make decisions based only on local information.
3. Failure of one machine does not ruin the algorithm.
4. There is no implicit assumption that a global clock exists.

The first three follow from what we have said so far. The last is perhaps
less obvious but also important. Any algorithm that starts out with: “At
precisely 12:00:00 all machines shall note the size of their output queue”
will fail because it is impossible to get all the clocks exactly synchronized.
Algorithms should take into account the lack of exact clock synchronization.
The larger the system, the larger the uncertainty. On a single LAN, with
considerable effort it may be possible to get all clocks synchronized down
to a few microseconds, but doing this nationally or internationally is tricky.

Geographical scalability has its own problems. One of the main reasons
why it is currently hard to scale existing distributed systems that were
designed for local-area networks is that they are based on synchronous
communication. In this form of communication, a party requesting service,
generally referred to as a client, blocks until a reply is sent back. This
approach generally works fine in LANs where communication between
two machines is generally at worst a few hundred microseconds. However,
in a wide-area system, we need to take into account that interprocess
communication may be hundreds of milliseconds, three orders of magnitude
slower. Building interactive applications using synchronous communication
in wide-area systems requires a great deal of care (and not a little patience).

Another problem that hinders geographical scalability is that communi-
cation in wide-area networks is inherently unreliable, and virtually always
point-to-point. In contrast, local-area networks generally provide highly
reliable communication facilities based on broadcasting, making it much
easier to develop distributed systems. For example, consider the problem of
locating a service. In a local-area system, a process can simply broadcast a
message to every machine, asking if it is running the service it needs. Only
those machines that have that service respond, each providing its network
address in the reply message. Such a location scheme is unthinkable in a
wide-area system: just imagine what would happen if we tried to locate a
service this way in the Internet. Instead, special location services need to be
designed, which may need to scale worldwide and be capable of servicing a
billion users. We return to such services in Chapter 5.

Geographical scalability is strongly related to the problems of centralized
solutions that hinder size scalability. If we have a system with many cen-



1.2. GOALS 29

tralized components, it is clear that geographical scalability will be limited
due to the performance and reliability problems resulting from wide-area
communication. In addition, centralized components now lead to a waste
of network resources. Imagine that a single mail server is used for an entire
country. This would mean that sending an e-mail to your neighbor would
first have to go to the central mail server, which may be hundreds of miles
away. Clearly, this is not the way to go.

Finally, a difficult, and in many cases open question is how to scale a
distributed system across multiple, independent administrative domains. A
major problem that needs to be solved is that of conflicting policies with
respect to resource usage (and payment), management, and security.

For example, many components of a distributed system that reside
within a single domain can often be trusted by users that operate within
that same domain. In such cases, system administration may have tested
and certified applications, and may have taken special measures to ensure
that such components cannot be tampered with. In essence, the users trust
their system administrators. However, this trust does not expand naturally
across domain boundaries.

If a distributed system expands into another domain, two types of
security measures need to be taken. First of all, the distributed system has
to protect itself against malicious attacks from the new domain. For example,
users from the new domain may have only read access to the file system in
its original domain. Likewise, facilities such as expensive image setters or
high-performance computers may not be made available to foreign users.
Second, the new domain has to protect itself against malicious attacks from
the distributed system. A typical example is that of downloading programs
such as applets in Web browsers. Basically, the new domain does not know
behavior what to expect from such foreign code, and may therefore decide
to severely limit the access rights for such code. The problem, as we shall
see in Chapter 9, is how to enforce those limitations.

Scaling techniques

Having discussed some of the scalability problems brings us to the question
of how those problems can generally be solved. In most cases, scalability
problems in distributed systems appear as performance problems caused
by limited capacity of servers and network. There are now basically only
three techniques for scaling: hiding communication latencies, distribution,
and replication (see also Neuman [1994]).

Hiding communication latencies is important to achieve geographical
scalability. The basic idea is simple: try to avoid waiting for responses to
remote (and potentially distant) service requests as much as possible. For



30 CHAPTER 1. INTRODUCTION

example, when a service has been requested at a remote machine, an alter-
native to waiting for a reply from the server is to do other useful work at the
requester’s side. Essentially, what this means is constructing the requesting
application in such a way that it uses only asynchronous communication.
When a reply comes in, the application is interrupted and a special han-
dler is called to complete the previously-issued request. Asynchronous
communication can often be used in batch-processing systems and parallel
applications, in which more or less independent tasks can be scheduled
for execution while another task is waiting for communication to complete.
Alternatively, a new thread of control can be started to perform the request.
Although it blocks waiting for the reply, other threads in the process can
continue.

However, there are many applications that cannot make effective use
of asynchronous communication. For example, in interactive applications
when a user sends a request he will generally have nothing better to do than
to wait for the answer. In such cases, a much better solution is to reduce the
overall communication, for example, by moving part of the computation
that is normally done at the server to the client process requesting the
service. A typical case where this approach works is accessing databases
using forms. Filling in forms can be done by sending a separate message for
each field, and waiting for an acknowledgment from the server, as shown
in Figure 1.4. For example, the server may check for syntactic errors before
accepting an entry. A much better solution is to ship the code for filling in
the form, and possibly checking the entries, to the client, and have the client
return a completed form, as shown in Figure 1.4. This approach of shipping
code is now widely supported by the Web in the form of Java applets and
Javascript.

Another important scaling technique is distribution. Distribution in-
volves taking a component, splitting it into smaller parts, and subsequently
spreading those parts across the system. An excellent example of distri-
bution is the Internet Domain Name System (DNS). The DNS name space
is hierarchically organized into a tree of domains, which are divided into
nonoverlapping zones, as shown in Figure 1.5. The names in each zone are
handled by a single name server. Without going into too many details, one
can think of each path name being the name of a host in the Internet, and
thus associated with a network address of that host. Basically, resolving a
name means returning the network address of the associated host. Consider,
for example, the name nl.vu.cs.flits. To resolve this name, it is first passed
to the server of zone Z1 (see Figure 1.5) which returns the address of the
server for zone Z2, to which the rest of name, vu.cs.flits, can be handed. The
server for Z2 will return the address of the server for zone Z3, which is



1.2. GOALS 31

Figure 1.4: The difference between letting (a) a server or (b) a client check
forms as they are being filled.

capable of handling the last part of the name and will return the address of
the associated host.

Figure 1.5: An example of dividing the DNS name space into zones.

This example illustrates how the naming service, as provided by DNS, is
distributed across several machines, thus avoiding that a single server has
to deal with all requests for name resolution.

As another example, consider the World Wide Web. To most users,



32 CHAPTER 1. INTRODUCTION

the Web appears to be an enormous document-based information system
in which each document has its own unique name in the form of a URL.
Conceptually, it may even appear as if there is only a single server. However,
the Web is physically distributed across a large number of servers, each
handling a number of Web documents. The name of the server handling a
document is encoded into that document’s URL. It is only because of this
distribution of documents that the Web has been capable of scaling to its
current size.

Considering that scalability problems often appear in the form of per-
formance degradation, it is generally a good idea to actually replicate
components across a distributed system. Replication not only increases
availability, but also helps to balance the load between components leading
to better performance. Also, in geographically widely-dispersed systems,
having a copy nearby can hide much of the communication latency problems
mentioned before.

Caching is a special form of replication, although the distinction between
the two is often hard to make or even artificial. As in the case of replication,
caching results in making a copy of a resource, generally in the proximity
of the client accessing that resource. However, in contrast to replication,
caching is a decision made by the client of a resource, and not by the owner
of a resource. Also, caching happens on demand whereas replication is
often planned in advance.

There is one serious drawback to caching and replication that may
adversely affect scalability. Because we now have multiple copies of a
resource, modifying one copy makes that copy different from the others.
Consequently, caching and replication leads to consistency problems.

To what extent inconsistencies can be tolerated depends highly on the
usage of a resource. For example, many Web users find it acceptable that
their browser returns a cached document of which the validity has not
been checked for the last few minutes. However, there are also many
cases in which strong consistency guarantees need to be met, such as in
the case of electronic stock exchanges and auctions. The problem with
strong consistency is that an update must be immediately propagated to
all other copies. Moreover, if two updates happen concurrently, it is often
also required that each copy is updated in the same order. Situations
such as these generally require some global synchronization mechanism.
Unfortunately, such mechanisms are extremely hard or even impossible to
implement in a scalable way, as she insists that photons and electrical signals
obey a speed limit of 187 miles/msec (the speed of light). Consequently,
scaling by replication may introduce other, inherently nonscalable solutions.
We return to replication and consistency in Chapter 7.



1.2. GOALS 33

When considering these scaling techniques, one could argue that size
scalability is the least problematic from a technical point of view. In many
cases, simply increasing the capacity of a machine will the save the day (at
least temporarily and perhaps at significant costs). Geographical scalability
is a much tougher problem as Mother Nature is getting in our way. Never-
theless, practice shows that combining distribution, replication, and caching
techniques with different forms of consistency will often prove sufficient in
many cases. Finally, administrative scalability seems to be the most diffi-
cult one, partly also because we need to solve nontechnical problems (e.g.,
politics of organizations and human collaboration). Nevertheless, progress
has been made in this area, by simply ignoring administrative domains. The
introduction and now widespread use of peer-to-peer technology demon-
strates what can be achieved if end users simply take over control [Aberer
and Hauswirth, 2005], [Lua et al., 2005], [Oram, 2001]. However, let it be
clear that peer-to-peer technology can at best be only a partial solution to
solving administrative scalability. Eventually, it will have to be dealt with.

1.2.5 Pitfalls

It should be clear by now that developing distributed systems can be a
formidable task. As we will see many times throughout this book, there
are so many issues to consider at the same time that it seems that only
complexity can be the result. Nevertheless, by following a number of design
principles, distributed systems can be developed that strongly adhere to the
goals we set out in this chapter. Many principles follow the basic rules of
decent software engineering and will not be repeated here.

However, distributed systems differ from traditional software because
components are dispersed across a network. Not taking this dispersion
into account during design time is what makes so many systems needlessly
complex and results in mistakes that need to be patched later on. Peter
Deutsch, then at Sun Microsystems, formulated these mistakes as the follow-
ing false assumptions that everyone makes when developing a distributed
application for the first time:

1. The network is reliable.
2. The network is secure.
3. The network is homogeneous.
4. The topology does not change.
5. Latency is zero.
6. Bandwidth is infinite.
7. Transport cost is zero.
8. There is one administrator.



34 CHAPTER 1. INTRODUCTION

Note how these assumptions relate to properties that are unique to
distributed systems: reliability, security, heterogeneity, and topology of the
network; latency and bandwidth; transport costs; and finally administrative
domains. When developing nondistributed applications, many of these
issues will most likely not show up.

Most of the principles we discuss in this book relate immediately to
these assumptions. In all cases, we will be discussing solutions to problems
that are caused by the fact that one or more assumptions are false. For
example, reliable networks simply do not exist, leading to the impossibility
of achieving failure transparency. We devote an entire chapter to deal with
the fact that networked communication is inherently insecure. We have
already argued that distributed systems need to take heterogeneity into
account. In a similar vein, when discussing replication for solving scalability
problems, we are essentially tackling latency and bandwidth problems. We
will also touch upon management issues at various points throughout this
book, dealing with the false assumptions of zero-cost transportation and a
single administrative domain.

1.3 Types of distributed systems

Before starting to discuss the principles of distributed systems, let us first
take a closer look at the various types of distributed systems. In the fol-
lowing we make a distinction between distributed computing systems,
distributed information systems, and distributed embedded systems.

1.3.1 Distributed computing systems

An important class of distributed systems is the one for high-performance
computing tasks. Roughly speaking, one can make a distinction between
two subgroups. In cluster computing the underlying hardware consists
of a collection of similar workstations or PCs, closely connected by means
of a high-speed local-area network. In addition, each node runs the same
operating system.

The situation becomes quite different in the case of grid computing.
This subgroup consists of distributed systems that are often constructed
as a federation of computer systems, where each system may fall under a
different administrative domain, and may be very different when it comes
to hardware, software, and deployed network technology.



1.3. TYPES OF DISTRIBUTED SYSTEMS 35

Cluster computing systems

Cluster computing systems became popular when the price/performance
ratio of personal computers and workstations improved. At a certain point,
it became financially and technically attractive to build a supercomputer
using off-the-shelf technology by simply hooking up a collection of relatively
simple computers in a high-speed network. In virtually all cases, cluster
computing is used for parallel programming in which a single (compute
intensive) program is run in parallel on multiple machines.

Figure 1.6: An example of a cluster computing system.

One well-known example of a cluster computer is formed by Linux-
based Beowulf clusters, of which the general configuration is shown in
Figure 1.6. Each cluster consists of a collection of compute nodes that are
controlled and accessed by means of a single master node. The master
typically handles the allocation of nodes to a particular parallel program,
maintains a batch queue of submitted jobs, and provides an interface for
the users of the system. As such, the master actually runs the middleware
needed for the execution of programs and management of the cluster, while
the compute nodes often need nothing else but a standard operating system.

An important part of this middleware is formed by the libraries for
executing parallel programs. As we will discuss in Chapter 4, many of these
libraries effectively provide only advanced message-based communication
facilities, but are not capable of handling faulty processes, security, etc.

As an alternative to this hierarchical organization, a symmetric approach
is followed in the MOSIX system [Amar et al., 2004]. MOSIX attempts to
provide a single-system image of a cluster, meaning that to a process a
cluster computer offers the ultimate distribution transparency by appearing
to be a single computer. As we mentioned, providing such an image under
all circumstances is impossible. In the case of MOSIX, the high degree



36 CHAPTER 1. INTRODUCTION

of transparency is provided by allowing processes to dynamically and
preemptively migrate between the nodes that make up the cluster. Process
migration allows a user to start an application on any node (referred to
as the home node), after which it can transparently move to other nodes,
for example, to make efficient use of resources. We will return to process
migration in Chapter 3.

Grid computing systems

A characteristic feature of cluster computing is its homogeneity. In most
cases, the computers in a cluster are largely the same, they all have the
same operating system, and are all connected through the same network. In
contrast, grid computing systems have a high degree of heterogeneity: no
assumptions are made concerning hardware, operating systems, networks,
administrative domains, security policies, etc.

A key issue in a grid computing system is that resources from different
organizations are brought together to allow the collaboration of a group
of people or institutions. Such a collaboration is realized in the form of a
virtual organization. The people belonging to the same virtual organization
have access rights to the resources that are provided to that organization.
Typically, resources consist of compute servers (including supercomputers,
possibly implemented as cluster computers), storage facilities, and databases.
In addition, special networked devices such as telescopes, sensors, etc., can
be provided as well.

Given its nature, much of the software for realizing grid computing
evolves around providing access to resources from different administrative
domains, and to only those users and applications that belong to a specific
virtual organization. For this reason, focus is often on architectural issues.
An architecture proposed by Foster et al. [2001] is shown in Figure 1.7.

Figure 1.7: A layered architecture for grid computing systems.



1.3. TYPES OF DISTRIBUTED SYSTEMS 37

The architecture consists of four layers. The lowest fabric layer provides
interfaces to local resources at a specific site. Note that these interfaces
are tailored to allow sharing of resources within a virtual organization.
Typically, they will provide functions for querying the state and capabilities
of a resource, along with functions for actual resource management (e.g.,
locking resources).

The connectivity layer consists of communication protocols for supporting
grid transactions that span the usage of multiple resources. For example,
protocols are needed to transfer data between resources, or to simply access
a resource from a remote location. In addition, the connectivity layer will
contain security protocols to authenticate users and resources. Note that in
many cases human users are not authenticated; instead, programs acting on
behalf of the users are authenticated. In this sense, delegating rights from
a user to programs is an important function that needs to be supported in
the connectivity layer. We return extensively to delegation when discussing
security in distributed systems.

The resource layer is responsible for managing a single resource. It
uses the functions provided by the connectivity layer and calls directly
the interfaces made available by the fabric layer. For example, this layer
will offer functions for obtaining configuration information on a specific
resource, or, in general, to perform specific operations such as creating a
process or reading data. The resource layer is thus seen to be responsible
for access control, and hence will rely on the authentication performed as
part of the connectivity layer.

The next layer in the hierarchy is the collective layer. It deals with han-
dling access to multiple resources and typically consists of services for
resource discovery, allocation and scheduling of tasks onto multiple re-
sources, data replication, and so on. Unlike the connectivity and resource
layer, which consist of a relatively small, standard collection of protocols, the
collective layer may consist of many different protocols for many different
purposes, reflecting the broad spectrum of services it may offer to a virtual
organization.

Finally, the application layer consists of the applications that operate
within a virtual organization and which make use of the grid computing
environment.

Typically the collective, connectivity, and resource layer form the heart of
what could be called a grid middleware layer. These layers jointly provide
access to and management of resources that are potentially dispersed across
multiple sites. An important observation from a middleware perspective
is that with grid computing the notion of a site (or administrative unit)
is common. This prevalence is emphasized by the gradual shift toward



38 CHAPTER 1. INTRODUCTION

a service-oriented architecture in which sites offer access to the various
layers through a collection of Web services [Joseph et al., 2004]. This, by now,
has led to the definition of an alternative architecture known as the Open
Grid Services Architecture (OGSA). This architecture consists of various
layers and many components, making it rather complex. Complexity seems
to be the fate of any standardization process. Details on OGSA can be found
in Foster et al. [2006].

1.3.2 Distributed information systems

Another important class of distributed systems is found in organizations
that were confronted with a wealth of networked applications, but for which
interoperability turned out to be a painful experience. Many of the exist-
ing middleware solutions are the result of working with an infrastructure
in which it was easier to integrate applications into an enterprise-wide
information system [Alonso et al., 2004], [Bernstein, 1996].

We can distinguish several levels at which integration took place. In
many cases, a networked application simply consisted of a server running
that application (often including a database) and making it available to
remote programs, called clients. Such clients could send a request to the
server for executing a specific operation, after which a response would
be sent back. Integration at the lowest level would allow clients to wrap
a number of requests, possibly for different servers, into a single larger
request and have it executed as a distributed transaction. The key idea was
that all, or none of the requests would be executed.

As applications became more sophisticated and were gradually separated
into independent components (notably distinguishing database components
from processing components), it became clear that integration should also
take place by letting applications communicate directly with each other. This
has now led to a huge industry that concentrates on enterprise application
integration (EAI). In the following, we concentrate on these two forms of
distributed systems.

Transaction processing systems

To clarify our discussion, let us concentrate on database applications. In
practice, operations on a database are usually carried out in the form of
transactions. Programming using transactions requires special primitives
that must either be supplied by the underlying distributed system or by the
language runtime system. Typical examples of transaction primitives are
shown in Figure 1.8. The exact list of primitives depends on what kinds
of objects are being used in the transaction [Gray and Reuter, 1993]. In a



1.3. TYPES OF DISTRIBUTED SYSTEMS 39

mail system, there might be primitives to send, receive, and forward mail.
In an accounting system, they might be quite different. READ and WRITE
are typical examples, however. Ordinary statements, procedure calls, and
so on, are also allowed inside a transaction. In particular, we mention that
remote procedure calls (RPCs), that is, procedure calls to remote servers,
are often also encapsulated in a transaction, leading to what is known as a
transactional RPC. We discuss RPCs extensively in Chapter 4.

Primitive Description
BEGIN_TRANSACTION Mark the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Figure 1.8: Example primitives for transactions.

BEGIN_TRANSACTION and END_TRANSACTION are used to delimit
the scope of a transaction. The operations between them form the body of
the transaction. The characteristic feature of a transaction is either all of
these operations are executed or none are executed. These may be system
calls, library procedures, or bracketing statements in a language, depending
on the implementation.

This all-or-nothing property of transactions is one of the four charac-
teristic properties that transactions have. More specifically, transactions
are:

1. Atomic: To the outside world, the transaction happens indivisibly.
2. Consistent: The transaction does not violate system invariants.
3. Isolated: Concurrent transactions do not interfere with each other.
4. Durable: Once a transaction commits, the changes are permanent.

These properties are often referred to by their initial letters: ACID.
The first key property exhibited by all transactions is that they are atomic.

This property ensures that each transaction either happens completely, or
not at all, and if it happens, it happens in a single indivisible, instantaneous
action. While a transaction is in progress, other processes (whether or
not they are themselves involved in transactions) cannot see any of the
intermediate states.

The second property says that they are consistent. What this means
is that if the system has certain invariants that must always hold, if they
held before the transaction, they will hold afterward too. For example, in a



40 CHAPTER 1. INTRODUCTION

banking system, a key invariant is the law of conservation of money. After
every internal transfer, the amount of money in the bank must be the same
as it was before the transfer, but for a brief moment during the transaction,
this invariant may be violated. The violation is not visible outside the
transaction, however.

The third property says that transactions are isolated or serializable.
What it means is that if two or more transactions are running at the same
time, to each of them and to other processes, the final result looks as though
all transactions ran sequentially in some (system dependent) order.

The fourth property says that transactions are durable. It refers to
the fact that once a transaction commits, no matter what happens, the
transaction goes forward and the results become permanent. No failure
after the commit can undo the results or cause them to be lost. (Durability
is discussed extensively in Chapter 8.)

So far, transactions have been defined on a single database. A nested
transaction is constructed from a number of subtransactions, as shown
in Figure 1.9. The top-level transaction may fork off children that run in
parallel with one another, on different machines, to gain performance or
simplify programming. Each of these children may also execute one or more
subtransactions, or fork off its own children.

Figure 1.9: A nested transaction.

Subtransactions give rise to a subtle, but important, problem. Imagine
that a transaction starts several subtransactions in parallel, and one of these
commits, making its results visible to the parent transaction. After further
computation, the parent aborts, restoring the entire system to the state it
had before the top-level transaction started. Consequently, the results of
the subtransaction that committed must nevertheless be undone. Thus the
permanence referred to above applies only to top-level transactions.

Since transactions can be nested arbitrarily deeply, considerable admin-
istration is needed to get everything right. The semantics are clear, however.



1.3. TYPES OF DISTRIBUTED SYSTEMS 41

When any transaction or subtransaction starts, it is conceptually given a
private copy of all data in the entire system for it to manipulate as it wishes.
If it aborts, its private universe just vanishes, as if it had never existed.
If it commits, its private universe replaces the parent’s universe. Thus if
a subtransaction commits and then later a new subtransaction is started,
the second one sees the results produced by the first one. Likewise, if an
enclosing (higher-level) transaction aborts, all its underlying subtransactions
have to be aborted as well.

Nested transactions are important in distributed systems, for they pro-
vide a natural way of distributing a transaction across multiple machines.
They follow a logical division of the work of the original transaction. For
example, a transaction for planning a trip by which three different flights
need to be reserved can be logically split up into three subtransactions. Each
of these subtransactions can be managed separately and independent of the
other two.

In the early days of enterprise middleware systems, the component that
handled distributed (or nested) transactions formed the core for integrating
applications at the server or database level. This component was called a
transaction processing monitor or TP monitor for short. Its main task was
to allow an application to access multiple server/databases by offering it a
transactional programming model, as shown in Figure 1.10.

Figure 1.10: The role of a TP monitor in distributed systems.

Enterprise application integration

As mentioned, the more applications became decoupled from the databases
they were built upon, the more evident it became that facilities were needed



42 CHAPTER 1. INTRODUCTION

to integrate applications independent from their databases. In particular,
application components should be able to communicate directly with each
other and not merely by means of the request/reply behavior that was
supported by transaction processing systems.

This need for interapplication communication led to many different
communication models, which we will discuss in detail in this book (and for
which reason we shall keep it brief for now). The main idea was that existing
applications could directly exchange information, as shown in Figure 1.11.

Figure 1.11: Middleware as a communication facilitator in enterprise appli-
cation integration.

Several types of communication middleware exist. With remote proce-
dure calls (RPC), an application component can effectively send a request
to another application component by doing a local procedure call, which
results in the request being packaged as a message and sent to the callee.
Likewise, the result will be sent back and returned to the application as the
result of the procedure call.

As the popularity of object technology increased, techniques were devel-
oped to allow calls to remote objects, leading to what is known as remote
method invocations (RMI). An RMI is essentially the same as an RPC,
except that it operates on objects instead of applications.

RPC and RMI have the disadvantage that the caller and callee both need
to be up and running at the time of communication. In addition, they
need to know exactly how to refer to each other. This tight coupling is
often experienced as a serious drawback, and has led to what is known as
message-oriented middleware, or simply MOM. In this case, applications
simply send messages to logical contact points, often described by means
of a subject. Likewise, applications can indicate their interest for a specific
type of message, after which the communication middleware will take



1.3. TYPES OF DISTRIBUTED SYSTEMS 43

care that those messages are delivered to those applications. These so-
called publish/subscribe systems form an important and expanding class
of distributed systems. We will discuss them at length in Chapter 13.

1.3.3 Distributed pervasive systems

The distributed systems we have been discussing so far are largely charac-
terized by their stability: nodes are fixed and have a more or less permanent
and high-quality connection to a network. To a certain extent, this stability
has been realized through the various techniques that are discussed in this
book and which aim at achieving distribution transparency. For example,
the wealth of techniques for masking failures and recovery will give the
impression that only occasionally things may go wrong. Likewise, we have
been able to hide aspects related to the actual network location of a node,
effectively allowing users and applications to believe that nodes stay put.

However, matters have become very different with the introduction of
mobile and embedded computing devices. We are now confronted with
distributed systems in which instability is the default behavior. The devices
in these, what we refer to as distributed pervasive systems, are often
characterized by being small, battery-powered, mobile, and having only
a wireless connection, although not all these characteristics apply to all
devices. Moreover, these characteristics need not necessarily be interpreted
as restrictive, as is illustrated by the possibilities of modern smart phones
[Roussos et al., 2005].

As its name suggests, a distributed pervasive system is part of our sur-
roundings (and as such, is generally inherently distributed). An important
feature is the general lack of human administrative control. At best, devices
can be configured by their owners, but otherwise they need to automatically
discover their environment and “nestle in” as best as possible. This nestling
in has been made more precise by Grimm et al. [2004]. by formulating the
following three requirements for pervasive applications:

1. Embrace contextual changes.
2. Encourage ad hoc composition.
3. Recognize sharing as the default.

Embracing contextual changes means that a device must be continuously
be aware of the fact that its environment may change all the time. One of
the simplest changes is discovering that a network is no longer available, for
example, because a user is moving between base stations. In such a case, the
application should react, possibly by automatically connecting to another
network, or taking other appropriate actions.



44 CHAPTER 1. INTRODUCTION

Encouraging ad hoc composition refers to the fact that many devices
in pervasive systems will be used in very different ways by different users.
As a result, it should be easy to configure the suite of applications running
on a device, either by the user or through automated (but controlled)
interposition.

One very important aspect of pervasive systems is that devices generally
join the system in order to access (and possibly provide) information. This
calls for means to easily read, store, manage, and share information. In light
of the intermittent and changing connectivity of devices, the space where
accessible information resides will most likely change all the time.

Mascolo et al. [2004] as well as Niemela and Latvakoski [2004] came to
similar conclusions: in the presence of mobility, devices should support
easy and application-dependent adaptation to their local environment. They
should be able to efficiently discover services and react accordingly. It
should be clear from these requirements that distribution transparency
is not really in place in pervasive systems. In fact, distribution of data,
processes, and control is inherent to these systems, for which reason it may
be better just to simply expose it rather than trying to hide it. Let us now
take a look at some concrete examples of pervasive systems.

Home systems

An increasingly popular type of pervasive system, but which may perhaps
be the least constrained, are systems built around home networks. These
systems generally consist of one or more personal computers, but more
importantly integrate typical consumer electronics such as TVs, audio and
video equipment, gaming devices, (smart) phones, PDAs, and other personal
wearables into a single system. In addition, we can expect that all kinds of
devices such as kitchen appliances, surveillance cameras, clocks, controllers
for lighting, and so on, will all be hooked up into a single distributed
system.

From a system’s perspective there are several challenges that need to be
addressed before pervasive home systems become reality. An important
one is that such a system should be completely self-configuring and self-
managing. It cannot be expected that end users are willing and able to keep
a distributed home system up and running if its components are prone to
errors (as is the case with many of today’s devices.) Much has already been
accomplished through the Universal Plug and Play (UPnP) standards by
which devices automatically obtain IP addresses, can discover each other,
etc. [UPnP Forum, 2003]. However, more is needed. For example, it is
unclear how software and firmware in devices can be easily updated without



1.3. TYPES OF DISTRIBUTED SYSTEMS 45

manual intervention, or when updates do take place, that compatibility with
other devices is not violated.

Another pressing issue is managing what is known as a “personal space.”
Recognizing that a home system consists of many shared as well as personal
devices, and that the data in a home system is also subject to sharing
restrictions, much attention is paid to realizing such personal spaces. For
example, part of Alice’s personal space may consist of her agenda, family
photo’s, a diary, music and videos that she bought, etc. These personal
assets should be stored in such a way that Alice has access to them whenever
appropriate. Moreover, parts of this personal space should be (temporarily)
accessible to others, for example, when she needs to make a business
appointment.

Fortunately, things may become simpler. It has long been thought that
the personal spaces related to home systems were inherently distributed
across the various devices. Obviously, such a dispersion can easily lead to
significant synchronization problems. However, problems may be alleviated
due to the rapid increase in the capacity of hard disks, along with a decrease
in their size. Configuring a multi-terabyte storage unit for a personal
computer is not really a problem. At the same time, portable hard disks
having a capacity of hundreds of gigabytes are being placed inside relatively
small portable media players. With these continuously increasing capacities,
we may see pervasive home systems adopt an architecture in which a single
machine acts as a master (and is hidden away somewhere in the basement
next to the central heating), and all other fixed devices simply provide a
convenient interface for humans. Personal devices will then be crammed
with daily needed information, but will never run out of storage.

However, having enough storage does not solve the problem of managing
personal spaces. Being able to store huge amounts of data shifts the problem
to storing relevant data and being able to find it later. Increasingly we will
see pervasive systems, like home networks, equipped with what are called
recommenders, programs that consult what other users have stored in order
to identify similar taste, and from that subsequently derive which content to
place in one’s personal space. An interesting observation is that the amount
of information that recommender programs need to do their work is often
small enough to allow them to be run on PDAs [Miller et al., 2004].

Electronic health care systems

Another important and upcoming class of pervasive systems are those
related to (personal) electronic health care. With the increasing cost of
medical treatment, new devices are being developed to monitor the well-
being of individuals and to automatically contact physicians when needed.



46 CHAPTER 1. INTRODUCTION

In many of these systems, a major goal is to prevent people from being
hospitalized.

Personal health care systems are often equipped with various sensors
organized in a (preferably wireless) body-area network (BAN). An important
issue is that such a network should at worst only minimally hinder a person.
To this end, the network should be able to operate while a person is moving,
with no strings (i.e., wires) attached to immobile devices.

This requirement leads to two obvious organizations, as shown in Fig-
ure 1.12. In the first one, a central hub is part of the BAN and collects data
as needed. From time to time, this data is then offloaded to a larger storage
device. The advantage of this scheme is that the hub can also manage the
BAN. In the second scenario, the BAN is continuously hooked up to an
external network, again through a wireless connection, to which it sends
monitored data. Separate techniques will need to be deployed for managing
the BAN. Of course, further connections to a physician or other people may
exist as well.

Figure 1.12: Monitoring a person in a pervasive electronic health care
system, using (a) a local hub or (b) a continuous wireless connection.

From a distributed system’s perspective we are immediately confronted
with questions such as:

1. Where and how should monitored data be stored?
2. How can we prevent loss of crucial data?
3. What infrastructure is needed to generate and propagate alerts?
4. How can physicians provide online feedback?
5. How can extreme robustness of the monitoring system be realized?
6. What are the security issues and how can the proper policies be .br

enforced?



1.3. TYPES OF DISTRIBUTED SYSTEMS 47

Unlike home systems, we cannot expect the architecture of pervasive
health care systems to move toward single-server systems and have the
monitoring devices operate with minimal functionality. On the contrary:
for reasons of efficiency, devices and body-area networks will be required
to support in-network data processing, meaning that monitoring data will,
for example, have to be aggregated before permanently storing it or sending
it to a physician. Unlike the case for distributed information systems, there
is yet no clear answer to these questions.

Sensor networks

Our last example of pervasive systems is sensor networks. These networks
in many cases form part of the enabling technology for pervasiveness and
we see that many solutions for sensor networks return in pervasive applica-
tions. What makes sensor networks interesting from a distributed system’s
perspective is that in virtually all cases they are used for processing in-
formation. In this sense, they do more than just provide communication
services, which is what traditional computer networks are all about. Aky-
ildiz et al. [2002] provide an overview from a networking perspective. A
more systems-oriented introduction to sensor networks is given by Zhao
and Guibas [2004]. Strongly related are mesh networks which essentially
form a collection of (fixed) nodes that communicate through wireless links.
These networks may form the basis for many medium-scale distributed
systems. An overview is provided in Akyildiz et al. [2005].

A sensor network typically consists of tens to hundreds or thousands of
relatively small nodes, each equipped with a sensing device. Most sensor
networks use wireless communication, and the nodes are often battery
powered. Their limited resources, restricted communication capabilities,
and constrained power consumption demand that efficiency be high on the
list of design criteria.

The relation with distributed systems can be made clear by considering
sensor networks as distributed databases. This view is quite common and
easy to understand when realizing that many sensor networks are deployed
for measurement and surveillance applications [Bonnet et al., 2002]. In
these cases, an operator would like to extract information from (a part of)
the network by simply issuing queries such as “What is the northbound
traffic load on Highway 1?” Such queries resemble those of traditional
databases. In this case, the answer will probably need to be provided
through collaboration of many sensors located around Highway 1, while
leaving other sensors untouched.

To organize a sensor network as a distributed database, there are essen-
tially two extremes, as shown in Figure 1.13. First, sensors do not cooperate



48 CHAPTER 1. INTRODUCTION

but simply send their data to a centralized database located at the operator’s
site. The other extreme is to forward queries to relevant sensors and to let
each compute an answer, requiring the operator to sensibly aggregate the
returned answers.

Figure 1.13: Organizing a sensor network database, while storing and
processing data (a) only at the operator’s site or (b) only at the sensors.

Neither of these solutions is very attractive. The first one requires that
sensors send all their measured data through the network, which may waste
network resources and energy. The second solution may also be wasteful
as it discards the aggregation capabilities of sensors which would allow
much less data to be returned to the operator. What is needed are facilities
for in-network data processing, as we also encountered in pervasive health
care systems.

In-network processing can be done in numerous ways. One obvious
one is to forward a query to all sensor nodes along a tree encompassing
all nodes and to subsequently aggregate the results as they are propagated
back to the root, where the initiator is located. Aggregation will take place
where two or more branches of the tree come to together. As simple as this
scheme may sound, it introduces difficult questions:



1.4. SUMMARY 49

1. How do we (dynamically) set up an efficient tree in a sensor network?
2. How does aggregation of results take place? Can it be controlled?
3. What happens when network links fail?

These questions have been partly addressed in TinyDB, which imple-
ments a declarative (database) interface to wireless sensor networks. In
essence, TinyDB can use any tree-based routing algorithm. An intermediate
node will collect and aggregate the results from its children, along with
its own findings, and send that toward the root. To make matters efficient,
queries span a period of time allowing for careful scheduling of operations
so that network resources and energy are optimally consumed. Details can
be found in Madden et al. [2005].

However, when queries can be initiated from different points in the
network, using single-rooted trees such as in TinyDB may not be efficient
enough. As an alternative, sensor networks may be equipped with special
nodes where results are forwarded to, as well as the queries related to those
results. To give a simple example, queries and results related temperature
readings are collected at a different location than those related to humid-
ity measurements. This approach corresponds directly to the notion of
publish/subscribe systems, which we will discuss extensively in Chapter 13.

1.4 Summary

Distributed systems consist of autonomous computers that work together to
give the appearance of a single coherent system. One important advantage
is that they make it easier to integrate different applications running on
different computers into a single system. Another advantage is that when
properly designed, distributed systems scale well with respect to the size
of the underlying network. These advantages often come at the cost of
more complex software, degradation of performance, and also often weaker
security. Nevertheless, there is considerable interest worldwide in building
and installing distributed systems.

Distributed systems often aim at hiding many of the intricacies related
to the distribution of processes, data, and control. However, this distribu-
tion transparency not only comes at a performance price, but in practical
situations it can never be fully achieved. The fact that trade-offs need to
be made between achieving various forms of distribution transparency is
inherent to the design of distributed systems, and can easily complicate
their understanding.

Matters are further complicated by the fact that many developers initially
make assumptions about the underlying network that are fundamentally
wrong. Later, when assumptions are dropped, it may turn out to be difficult



50 CHAPTER 1. INTRODUCTION

to mask unwanted behavior. A typical example is assuming that network
latency is not significant. Later, when porting an existing system to a
wide-area network, hiding latencies may deeply affect the system’s original
design. Other pitfalls include assuming that the network is reliable, static,
secure, and homogeneous.

Different types of distributed systems exist which can be classified as
being oriented toward supporting computations, information processing,
and pervasiveness. Distributed computing systems are typically deployed
for high-performance applications often originating from the field of parallel
computing. A huge class of distributed can be found in traditional office
environments where we see databases playing an important role. Typically,
transaction processing systems are deployed in these environments. Finally,
an emerging class of distributed systems is where components are small
and the system is composed in an ad hoc fashion, but most of all is no
longer managed through a system administrator. This last class is typically
represented by ubiquitous computing environments.













Bibliography

Abadi M. and Needham R. Prudent Engineering Practice for Cryptographic Pro-
tocols. IEEE Transactions on Software Engineering, 22(1):6–15, Jan. 1996. Cited on
436

Abdullahi S. and Ringwood G. Garbage Collecting the Internet: A Survey of
Distributed Garbage Collection. ACM Computing Surveys, 30(3):330–373, Sept.
1998. Cited on 212

Aberer K. and Hauswirth M. Peer-to-Peer Systems. In Singh M., editor, The Practical
Handbook of Internet Computing, chapter 35. CRC Press, Boca Raton, FL, 2005. Cited
on

Aberer K., Alima L. O., Ghodsi A., Girdzijauskas S., Hauswirth M., and Haridi
S. The Essence of P2P: A Reference Architecture for Overlay Networks. In 5th
International Conference on Peer-to-Peer Computing, pages 11–20, Los Alamitos, CA.,
Aug. 2005. IEEE, IEEE Computer Society Press. Cited on 63

Adar E. and Huberman B. A. Free Riding on Gnutella. Hewlett Packard, Information
Dynamics Lab, Jan. 2000. Cited on 72

Aiyer A., Alvisi L., Clement A., Dahlin M., and Martin J.-P. BAR Fault Tolerance
for Cooperative Services. In 20th Symposium on Operating System Principles, pages
45–58, New York, NY, Oct. 2005. ACM, ACM Press. Cited on 368

Akyildiz I. F., Su W., Sankarasubramaniam Y., and Cayirci E. A Survey on Sensor
Networks. IEEE Communications Magazine, 40(8):102–114, Aug. 2002. Cited on

Akyildiz I. F., Wang X., and Wang W. Wireless Mesh Networks: A Survey. Computer
Networks, 47(4):445–487, Mar. 2005. Cited on

Albitz P. and Liu C. DNS and BIND. O’Reilly & Associates, Sebastopol, CA., 4th
edition, 2001. Cited on 605

Allen R. and Lowe-Norris A. Windows 2000 Active Directory. O’Reilly & Associates,
Sebastopol, CA., 2nd edition, 2003. Cited on 250

Allman M. An Evaluation of XML-RPC. Performace Evaluation Review, 30(4):2–11,
Mar. 2003. Cited on 612

Alonso G., Casati F., Kuno H., and Machiraju V. Web Services: Concepts, Architectures
and Applications. Springer-Verlag, Berlin, 2004. Cited on 595, 599

Alvisi L. and Marzullo K. Message Logging: Pessimistic, Optimistic, Causal, and
Optimal. IEEE Transactions on Software Engineering, 24(2):149–159, Feb. 1998. Cited

671



672 BIBLIOGRAPHY

on 405, 406
Amar L., Barak A., and Shiloh A. The MOSIX Direct File System Access Method for

Supporting Scalable Cluster File Systems. Cluster Computing, 7(2):141–150, Apr.
2004. Cited on

Anderson O. T., Luan L., Everhart C., Pereira M., Sarkar R., and Xu J. Global
Namespace for Files. IBM Systems Journal, 43(4):702–722, Apr. 2004. Cited on 554

Anderson T., Bershad B., Lazowska E., and Levy H. Scheduler Activations: Efficient
Kernel Support for the User-Level Management of Parallelism. In 13th Symposium
on Operating System Principles, pages 95–109, New York, NY, Oct. 1991. ACM,
ACM Press. Cited on 95

Andrews G. Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley, Reading, MA., 2000. Cited on 259

Androutsellis-Theotokis S. and Spinellis D. A Survey of Peer-to-Peer Content
Distribution Technologies. ACM Computing Surveys, 36(4):335–371, Dec. 2004.
Cited on 63

Araujo F. and Rodrigues L. Survey on Position-Based Routing. Technical Report
MINEMA TR-01, University of Lisbon, Oct. 2005. Cited on 291

Arkills B. LDAP Directories Explained: An Introduction and Analysis. Addison-Wesley,
Reading, MA., 2003. Cited on 247

Aron M., Sanders D., Druschel P., and Zwaenepoel W. Scalable Content-aware
Request Distribution in Cluster-based Network Servers. In USENIX Annual
Technical Conference, pages 323–336, San Diego, CA, June 2000. USENIX. Cited on
604

Attiya H. and Welch J. Distributed Computing Fundamentals, Simulations, and Advanced
Topics. John Wiley, New York, 2nd edition, 2004. Cited on 259

Avizienis A., Laprie J.-C., Randell B., and Landwehr C. Basic Concepts and Taxonomy
of Dependable and Secure Computing. IEEE Transactions on Dependable and Secure
Computing, 1(1):11–33, Jan. 2004. Cited on 355

Awadallah A. and Rosenblum M. The vMatrix: A Network of Virtual Machine
Monitors for Dynamic Content Distribution. In 7th Web Caching Workshop, Aug.
2002. Cited on 101

Awadallah A. and Rosenblum M. The vMatrix: Server Switching. In 10th Workshop
on Future Trends in Distributed Computing Systems, pages 110–118, Los Alamitos,
CA., May 2004. IEEE, IEEE Computer Society Press. Cited on 116

Babaoglu O. and Toueg S. Non-Blocking Atomic Commitment. In Mullender S.,
editor, Distributed Systems, pages 147–168. Addison-Wesley, Wokingham, 2nd
edition, 1993. Cited on 395

Babaoglu O., Bartoli A., Maverick V., Patarin S., Vuc̆ković J., and Wu H. A Frame-
work for Prototyping J2EE Replication Algorithms. In International Symposium on
Distributed Objects and Applications (DOA), Lecture Notes in Computer Science,
Berlin, Oct. 2004. Springer-Verlag. Cited on 514

Babaoglu O., Jelasity M., Montresor A., Fetzer C., Leonardi S., Moorsel A.van , and
Steen M.van , editors. Self-star Properties in Complex Information Systems, volume
3460 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2005. Cited on
79



BIBLIOGRAPHY 673

Babcock B., Babu S., Datar M., Motwani R., and Widom J. Models and Issues in Data
Stream Systems. In 21st Symposium on Principles of Distributed Computing, pages
1–16, New York, NY, July 2002. ACM, ACM Press. Cited on 184

Bal H. The Shared Data-Object Model as a Paradigm for Programming Distributed Systems.
PhD., Vrije Universiteit, Amsterdam, 1989. Cited on 487

Balakrishnan H., Kaashoek M. F., Karger D., Morris R., and Stoica I. Looking up
Data in P2P Systems. Communications of the ACM, 46(2):43–48, Feb. 2003. Cited on
63, 214

Balazinska M., Balakrishnan H., and Karger D. INS/Twine: A Scalable Peer-to-Peer
Architecture for Intentional Resource Discovery. In 1st International Conference
on Pervasive Computing, volume 2414 of Lecture Notes in Computer Science, pages
195–210, Berlin, Aug. 2002. Springer-Verlag. Cited on 251, 252

Ballintijn G. Locating Objects in a Wide-area System. PhD thesis, Vrije Universiteit
Amsterdam, 2003. Cited on 218, 526

Baratto R. A., Nieh J., and Kim L. THINC: A Remote Display Architecture for
Thin-Client Computing. In 20th Symposium on Operating System Principles, pages
277–290, New York, NY, Oct. 2005. ACM, ACM Press. Cited on 107

Barborak M., Malek M., and Dahbura A. The Consensus Problem in Fault-Tolerant
Computing. ACM Computing Surveys, 25(2):171–220, June 1993. Cited on 367

Barham P., Dragovic B., Fraser K., Hand S., Harris T., Ho A., Neugebar R., Pratt
I., and Warfield A. Xen and the Art of Virtualization. In 19th Symposium on
Operating System Principles, pages 164–177, New York, NY, Oct. 2003. ACM, ACM
Press. Cited on 102

Barker W. Recommendation for the Triple Data Encryption Algorithm (TDEA) Block
Cipher. NIST Special Publication 800-67, May 2004. Cited on 428

Barron D. Pascal – The Language and its Implementation. John Wiley, New York, 1981.
Cited on 133

Barroso L., Deam J., and Holze U. Web Search for a Planet: The Google Cluster
Architecture. IEEE Micro, 23(2):21–28, Mar. 2003. Cited on 537

Baryshnikov Y., Coffman E. G., Pierre G., Rubenstein D., Squillante M., and Yimwad-
sana T. Predictability of Web-Server Traffic Congestion. In 10th Web Caching
Workshop, pages 97–103. IEEE, Sept. 2005. Cited on 623

Basile C., Whisnant K., Kalbarczyk Z., and Iyer R. K. Loose Synchronization of
Multithreaded Replicas. In 21st Symposium on Reliable Distributed Systems, pages
250–255, Los Alamitos, CA., 2002. IEEE, IEEE Computer Society Press. Cited on
514

Basile C., Kalbarczyk Z., and Iyer R. K. A Preemptive Deterministic Scheduling
Algorithm for Multithreaded Replicas. In International Conference on Dependable Sys-
tems and Networks, pages 149–158, Los Alamitos, CA., June 2003. IEEE Computer
Society Press. Cited on 514

Bass L., Clements P., and Kazman R. Software Architecture in Practice. Addison-Wesley,
Reading, MA., 2nd edition, 2003. Cited on 52, 53, 54

Bavier A., Bowman M., Chun B., Culler D., Karlin S., Muir S., Peterson L., Roscoe T.,
Spalink T., and Wawrzoniak M. Operating System Support for Planetary-Scale
Network Services. In 1st Symposium on Networked Systems Design and Implemen-



674 BIBLIOGRAPHY

tation, pages 245–266, Berkeley, CA, Mar. 2004. USENIX, USENIX. Cited on 121,
125

Berners-Lee T., Cailliau R., Nielson H. F., and Secret A. The World-Wide Web.
Communications of the ACM, 37(8):76–82, Aug. 1994. Cited on 589

Berners-Lee T., Fielding R., and Masinter L. Uniform Resource Identifiers (URI):
Generic Syntax. RFC 3986, Jan. 2005. Cited on 613

Bernstein P. Middleware: A Model for Distributed System Services. Communications
of the ACM, 39(2):87–98, Feb. 1996. Cited on

Bernstein P., Hadzilacos V., and Goodman N. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA., 1987. Cited on 390, 398

Bershad B., Zekauskas M., and Sawdon W. The Midway Distributed Shared Memory
System. In COMPCON, pages 528–537. IEEE, 1993. Cited on 317

Bertino E. and Ferrari E. Secure and Selective Dissemination of XML Documents.
ACM Transactions on Information and System Security, 5(3):290–331, 2002. Cited on
666

Bhagwan R., Tati K., Cheng Y., Savage S., and Voelker G. M. Total Recall: Sys-
tems Support for Automated Availability Management . In 1st Symposium on
Networked Systems Design and Implementation, pages 337–350, Berkeley, CA, Mar.
2004. USENIX, USENIX. Cited on 575

Bharambe A. R., Agrawal M., and Seshan S. Mercury: Supporting Scalable Multi-
Attribute Range Queries. In SIGCOMM, pages 353–366, New York, NY, Aug. 2004.
ACM Press. Cited on 254, 646

Birman K. Reliable Distributed Systems: Technologies, Web Services, and Applications.
Springer-Verlag, Berlin, 2005. Cited on 112, 368, 630

Birman K. A Response to Cheriton and Skeen’s Criticism of Causal and Totally
Ordered Communication. Operating Systems Review, 28(1):11–21, Jan. 1994. Cited
on 280

Birman K. and Joseph T. Reliable Communication in the Presence of Failures. ACM
Transactions on Computer Systems, 5(1):47–76, Feb. 1987. Cited on 384

Birman K. and Renesse R.van , editors. Reliable Distributed Computing with the Isis
Toolkit. IEEE Computer Society Press, Los Alamitos, CA., 1994. Cited on 280

Birman K., Schiper A., and Stephenson P. Lightweight Causal and Atomic Group
Multicast. ACM Transactions on Computer Systems, 9(3):272–314, Aug. 1991. Cited
on 387

Birrell A. and Nelson B. Implementing Remote Procedure Calls. ACM Transactions
on Computer Systems, 2(1):39–59, Feb. 1984. Cited on 148

Bishop M. Computer Security: Art and Science. Addison-Wesley, Reading, MA., 2003.
Cited on 420

Bjornson R. Linda on Distributed Memory Multicomputers. Ph.D., Yale University,
Department of Computer Science, 1993. Cited on 656

Black A. and Artsy Y. Implementing Location Independent Invocation. IEEE
Transactions on Parallel and Distributed Systems, 1(1):107–119, Jan. 1990. Cited on
212

Blair G. and Stefani J.-B. Open Distributed Processing and Multimedia. Addison-Wesley,
Reading, MA., 1998. Cited on 191



BIBLIOGRAPHY 675

Blair G., Coulson G., and Grace P. Research Directions in Reflective Middleware: the
Lancaster Experience. In 3rd Workshop on Reflective and Adaptive Middleware, pages
262–267, New York, NY, Oct. 2004. ACM, ACM Press. Cited on 78

Blake-Wilson S., Nystrom M., Hopwood D., Mikkelsen J., and Wright T. Transport
Layer Security (TLS) Extensions. RFC 3546, June 2003. Cited on 631

Blaze M. Caching in Large-Scale Distributed File Systems. PhD thesis, Department of
Computer Science, Princeton University, Jan. 1993. Cited on 333

Bonnet P., Gehrke J., and Seshadri P. Towards Sensor Database Systems. In 2nd
International Conference on Mobile Data Management, volume 1987 of Lecture Notes
in Computer Science, pages 3–14, Berlin, Jan. 2002. Springer-Verlag. Cited on

Booth D., Haas H., McCabe F., Newcomer E., Champion M., Ferris C., and Orchard
D. Web Services Architecture. W3C Working Group Note, Feb. 2004. Cited on 596

Bouchenak S., Boyer F., Hagimont D., Krakowiak S., Mos A., Palma3 N.de , Quema3
V., and Stefani J.-B. Architecture-Based Autonomous Repair Management: An
Application to J2EE Clusters. In 24th Symposium on Reliable Distributed Systems,
pages 13–24, Los Alamitos, CA., Oct. 2005. IEEE, IEEE Computer Society Press.
Cited on 86

Brewer E. Lessons from Giant-Scale Services. IEEE Internet Computing, 5(4):46–55,
July 2001. Cited on 121

Bruneton E., Coupaye T., Leclercq M., Quema V., and Stefani J.-B. An Open Compo-
nent Model and Its Support in Java. In 7th International Symposium on Component-
based Software Engineering, volume 3054 of Lecture Notes in Computer Science, pages
7–22, Berlin, 2004. Springer-Verlag. Cited on 86

Budhijara N., Marzullo K., Schneider F., and Toueg S. The Primary-Backup Approach.
In Mullender S., editor, Distributed Systems, pages 199–216. Addison-Wesley,
Wokingham, 2nd edition, 1993. Cited on 342

Budhiraja N. and Marzullo K. Tradeoffs in Implementing Primary-Backup Protocols.
Technical Report TR 92-1307, Department of Computer Science, Cornell University,
1992. Cited on 342

Burns R. C., Rees R. M., Stockmeyer L. J., and Long D. D. E. Scalable Session Locking
for a Distributed File System. Cluster Computing, 4(4):295–306, Oct. 2001. Cited on
560

Busi N., Montresor A., and Zavattaro G. Data-driven Coordination in Peer-to-Peer
Information Systems. International Journal on Cooperative Information Systems, 13(1):
63–89, Mar. 2004. Cited on 643

Butt A. R., Johnson T. A., Zheng Y., and Hu Y. C. Kosha: A Peer-to-Peer Enhancement
for the Network File System. In International Conference on Supercomputing, pages
51–61, Los Alamitos, CA., Nov. 2004. IEEE, IEEE Computer Society Press. Cited
on 541

Cabri G., Leonardi L., and Zambonelli F. Mobile-Agent Coordination Models for
Internet Applications. Computer, 33(2):82–89, Feb. 2000. Cited on 636

Cai M., Chervenak A., and Frank M. A Peer-to-Peer Replica Location Service Based
on A Distributed Hash Table. In High Performance Computing, Networking, and
Storage Conference, pages 56–67, New York, NY, Nov. 2004. ACM/IEEE, ACM
Press. Cited on 572



676 BIBLIOGRAPHY

Callaghan B. NFS Illustrated. Addison-Wesley, Reading, MA., 2000. Cited on 531, 552
Candea G., Brown A. B., Fox A., and Patterson D. Recovery-Oriented Computing:

Building Multitier Dependability. Computer, 37(11):60–67, Nov. 2004a. Cited on
408

Candea G., Kawamoto S., Fujiki Y., Friedman G., and Fox A. Microreboot: A
Technique for Cheap Recovery. In 6th Symposium on Operating System Design and
Implementation, pages 31–44, Berkeley, CA, Dec. 2004b. USENIX, USENIX. Cited
on 408

Candea G., Kiciman E., Kawamoto S., and Fox A. Autonomous Recovery in Compo-
nentized Internet Applications. Cluster Computing, 9(2):175–190, Feb. 2006. Cited
on 408

Cantin J., Lipasti M., and Smith J. The Complexity of Verifying Memory Coherence
and Consistency. IEEE Transactions on Parallel and Distributed Systems, 16(7):
663–671, July 2005. Cited on 319

Cao L. and Ozsu T. Evaluation of Strong Consistency Web Caching Techniques.
World Wide Web, 5(2):95–123, June 2002. Cited on 619

Cao P. and Liu C. Maintaining Strong Cache Consistency in the World Wide Web.
IEEE Transactions on Computers, 47(4):445–457, Apr. 1998. Cited on 619

Caporuscio M., Carzaniga A., and Wolf A. L. Design and Evaluation of a Support
Service for Mobile, Wireless Publish/Subscribe Applications. IEEE Transactions on
Software Engineering, 29(12):1059–1071, Dec. 2003. Cited on 646

Cardellini V., Casalicchio E., Colajanni M., and Yu P. The State of the Art in Locally
Distributed Web-Server Systems. ACM Computing Surveys, 34(2):263–311, June
2002. Cited on 605

Carriero N. and Gelernter D. The S/Net’s Linda Kernel. ACM Transactions on
Computer Systems, 32(2):110–129, May 1986. Cited on 657

Carzaniga A. and Wolf A. L. Forwarding in a Content-based Network. In SIGCOMM,
pages 163–174, New York, NY, Aug. 2003. ACM, ACM Press. Cited on 650

Carzaniga A., Rutherford M. J., and Wolf A. L. A Routing Scheme for Content-Based
Networking. In 23rd INFOCOM Conference, Los Alamitos, CA., Mar. 2004. IEEE,
IEEE Computer Society Press. Cited on 648

Castro M. and Liskov B. Practical Byzantine Fault Tolerance and Proactive Recovery.
ACM Transactions on Computer Systems, 20(4):398–461, Nov. 2002. Cited on 572,
574, 630

Castro M., Druschel P., Ganesh A., Rowstron A., and Wallach D. S. Secure Routing
for Structured Peer-to-Peer Overlay Networks. In 5th Symposium on Operating
System Design and Implementation, pages 299–314, New York, NY, Dec. 2002a.
USENIX, ACM Press. Cited on 583, 584

Castro M., Druschel P., Hu Y. C., and Rowstron A. Topology-aware Routing in
Structured Peer-to-Peer Overlay Networks. Technical Report MSR-TR-2002-82,
Microsoft Research, Cambridge, UK, June 2002b. Cited on 217

Castro M., Druschel P., Kermarrec A.-M., and Rowstron A. Scribe: A Large-Scale
and Decentralized Application-Level Multicast Infrastructure. IEEE Journal on
Selected Areas in Communication, 20(8):100–110, Oct. 2002c. Cited on 193, 194

Castro M., Rodrigues R., and Liskov B. BASE: Using Abstraction to Improve Fault



BIBLIOGRAPHY 677

Tolerance. ACM Transactions on Computer Systems, 21(3):236–269, Aug. 2003. Cited
on 574

Castro M., Costa M., and Rowstron A. Debunking Some Myths about Structured
and Unstructured Overlays. In 2nd Symposium on Networked Systems Design and
Implementation, Berkeley, CA, Mar. 2005. USENIX, USENIX. Cited on 68

Cheriton D. and Mann T. Decentralizing a Global Naming Service for Improved
Performance and Fault Tolerance. ACM Transactions on Computer Systems, 7(2):
147–183, May 1989. Cited on 230

Cheriton D. and Skeen D. Understanding the Limitations of Causally and Totally
Ordered Communication. In 14th Symposium on Operating System Principles, pages
44–57. ACM, Dec. 1993. Cited on 280

Chervenak A., Foster I., Kesselman C., Salisbury C., and Tuecke S. The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Datasets. J. Netw. Comp. App., 23(3):187–200, July 2000. Cited on 414

Chervenak A., Schuler R., Kesselman C., Koranda S., and Moe B. Wide Area Data
Replication for Scientific Collaborations. In 6th Int’l Workshop on Grid Computing,
New York, NY, Nov. 2005. IEEE/ACM, ACM Press. Cited on 572

Cheswick W. and Bellovin S. Firewalls and Internet Security. Addison-Wesley, Reading,
MA., 2nd edition, 2000. Cited on 456

Chow R. and Johnson T. Distributed Operating Systems and Algorithms. Addison-
Wesley, Reading, MA., 1997. Cited on 398, 401

Chun B. and Spalink T. Slice Creation and Management. Technical Report PDN-03-
013, PlanetLab Consortium, July 2003. Cited on 123

Ciancarini P., Tolksdorf R., Vitali F., and Knoche A. Coordinating Multiagent
Applications on the WWW: A Reference Architecture. IEEE Transactions on Software
Engineering, 24(5):362–375, May 1998. Cited on 658

Clark C., Fraser K., Hand S., Hansen J. G., Jul E., Limpach C., Pratt I., and Warfield
A. Live Migration of Virtual Machines. In 2nd Symposium on Networked Systems
Design and Implementation, Berkeley, CA, May 2005. USENIX, USENIX. Cited on
134, 135

Clark D. The Design Philosophy of the DARPA Internet Protocols. In SIGCOMM,
pages 106–114, New York, NY, Sept. 1989. ACM, ACM Press. Cited on 113

Clement L., Hately A., Riegen C.von , and Rogers T. Universal Description, Discovery
and Integration (UDDI). Technical report, OASIS UDDI, 2004. Cited on 251

Cohen B. Incentives Build Robustness in Bittorrent. In 1st Workshop on Economics of
Peer-to-Peer Systems, June 2003. Cited on 72

Cohen D. On Holy Wars and a Plea for Peace. Computer, 14(10):48–54, Oct. 1981.
Cited on 154

Cohen E. and Shenker S. Replication Strategies in Unstructured Peer-to-Peer Net-
works. In SIGCOMM, pages 177–190, New York, NY, Aug. 2002. ACM, ACM
Press. Cited on 569

Comer D. Internetworking with TCP/IP, Volume I: Principles, Protocols, and Architecture.
Prentice Hall, Upper Saddle River, N.J., 5th edition, 2006. Cited on 143

Conti M., Gregori E., and Lapenna W. Content Delivery Policies in ReplicatedWeb
Services: Client-Side vs. Server-Side. Cluster Computing, 8:47–60, Jan. 2005. Cited



678 BIBLIOGRAPHY

on 626
Coppersmith D. The Data Encryption Standard (DES) and its Strength Against

Attacks. IBM J. Research and Development, 38(3):243–250, May 1994. Cited on 428
Cox L. and Noble B. Samsara: Honor Among Thieves in Peer-to-Peer Storage. In

19th Symposium on Operating System Principles, pages 120–131, New York, NY, Oct.
2003. ACM, ACM Press. Cited on 584

Coyler A., Blair G., and Rashid A. Managing Complexity In Middleware. In 2nd
AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software,
Lancaster, UK, Mar. 2003. Cited on 78

Crespo A. and Garcia-Moilina H. Semantic Overlay Networks for P2P Systems.
Technical report, Stanford University, Department of Computer Science, 2003.
Cited on 254

Cristian F. Probabilistic Clock Synchronization. Distributed Computing, 3:146–158,
1989. Cited on 268

Cristian F. Understanding Fault-Tolerant Distributed Systems. Communications of the
ACM, 34(2):56–78, Feb. 1991. Cited on 356

Crowley C. Operating Systems, A Design-Oriented Approach. Irwin, Chicago, 1997.
Cited on 224

Dabek F., Kaashoek M. F., Karger D., Morris R., and Stoica I. Wide-area Cooperative
Storage with CFS. In 18th Symposium on Operating System Principles, Baniff, Canada,
Oct. 2001. ACM. Cited on 540

Dabek F., Cox R., Kaashoek F., and Morris R. Vivaldi: A Decentralized Network
Coordinate System. In SIGCOMM, New York, NY, Aug. 2004a. ACM, ACM Press.
Cited on 293

Dabek F., Li J., Sit E., Robertson J., Kaashoek M. F., and Morris R. Designing a dht for
low latency and high throughput. In 1st Symposium on Networked Systems Design
and Implementation, pages 85–98, Berkeley, CA, Mar. 2004b. USENIX, USENIX.
Cited on 218

Daemen J. and Rijmen V. Aes proposal: Rijndael. AES Algorithm Submission, Sept.
1999. http://www.nist.gov/aes. Cited on 428

Daigle L., Gulik D.van , Iannella R., and Faltstrom P. Uniform Resource Names
(URN) Namespace Definition Mechanisms. RFC 3406, Oct. 2002. Cited on 614

Davie B., Charny A., Bennet J., Benson K., Boudec J. L., Courtney W., S.Davari ,
Firoiu V., and Stiliadis D. An Expedited Forwarding PHB (Per-Hop Behavior).
RFC 3246, Mar. 2002. Cited on 187

Day J. and Zimmerman H. The OSI Reference Model. Proceedings of the IEEE, 71(12):
1334–1340, Dec. 1983. Cited on 139

Deering S. and Cheriton D. Multicast Routing in Datagram Internetworks and
Extended LANs. ACM Transactions on Computer Systems, 8(2):85–110, May 1990.
Cited on 210

Deering S., Estrin D., Farinacci D., Jacobson V., Liu C.-G., and Wei L. The PIM Archi-
tecture for Wide-Area Multicast Routing. IEEE/ACM Transactions on Networking, 4
(2):153–162, Apr. 1996. Cited on 210

Defago X., Shiper A., and Urban P. Total Order Broadcast and Multicast Algorithms:
Taxonomy and Survey. ACM Computing Surveys, 36(4):372–421, Dec. 2004. Cited

http://www.nist.gov/aes


BIBLIOGRAPHY 679

on 377
Demers A., Greene D., Hauser C., Irish W., Larson J., Shenker S., Sturgis H., Swine-

hart D., and Terry D. Epidemic Algorithms for Replicated Database Maintenance.
In 6th Symposium on Principles of Distributed Computing, pages 1–12. ACM, Aug.
1987. Cited on 197, 199, 200

Demers A., Gehrke J., Hong M., Riedewald M., and White W. Towards Expressive
Publish/Subscribe Systems. In 10th International Conference on Extended Database
Technology, Mar. 2006. Cited on 654

Deutsch P., Schoultz R., Faltstrom P., and Weider C. Architecture of the WHOIS++
Service. RFC 1835, Aug. 1995. Cited on 84

Diao Y., Hellerstein J., Parekh S., Griffith R., Kaiser G., and Phung D. A Control
Theory Foundation for Self-Managing Computing Systems. IEEE Journal on
Selected Areas in Communication, 23(12):2213–2222, Dec. 2005. Cited on 80

Dierks T. and Allen C. The Transport Layer Security Protocol. RFC 2246, Jan. 1996.
Cited on 631

Diffie W. and Hellman M. New Directions in Cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, Nov. 1976. Cited on 467

Dilley J., Maggs B., Parikh J., Prokop H., Sitaraman R., and Weihl B. Globally
Distributed Content Delivery. IEEE Internet Computing, 6(5):50–58, Sept. 2002.
Cited on 624

Diot C., Levine B., Lyles B., Kassem H., and Balensiefen D. Deployment Issues for
the IP Multicast Service and Architecture. IEEE Network, 14(1):78–88, Jan. 2000.
Cited on 193

Doorn J. H. and Rivero L. C., editors. Database Integrity: Challenges and Solutions.
Idea Group, Hershey, PA, 2002. Cited on 418

Douceur J. R. The Sybil Attack. In 1st International Workshop on Peer-to-Peer Systems,
volume 2429 of Lecture Notes in Computer Science, pages 251–260, Berlin, Mar. 2002.
Springer-Verlag. Cited on 583

Dubois M., Scheurich C., and Briggs F. Synchronization, Coherence, and Event
Ordering in Multiprocessors. Computer, 21(2):9–21, Feb. 1988. Cited on 313

Dunagan J., Harvey N. J. A., Jones M. B., Kostic D., Theimer M., and Wolman A.
FUSE: Lightweight Guaranteed Distributed Failure Notification. In 6th Symposium
on Operating System Design and Implementation, Berkeley, CA, Dec. 2004. USENIX,
USENIX. Cited on 369

Duvvuri V., Shenoy P., and Tewari R. Adaptive Leases: A Strong Consistency
Mechanism for the World Wide Web. IEEE Transactions on Knowledge and Data
Engineering, 15(5):1266–1276, Sept. 2003. Cited on 337

Eddon G. and Eddon H. Inside Distributed COM. Microsoft Press, Redmond, WA,
1998. Cited on 159

Eisler M. LIPKEY - A Low Infrastructure Public Key Mechanism Using SPKM. RFC
2847, June 2000. Cited on 578

Eisler M., Chiu A., and Ling L. RPCSEC_GSS Protocol Specification. RFC 2203, Sept.
1997. Cited on 577

El-Sayed A., Roca V., and Mathy L. A Survey of Proposals for an Alternative Group
Communication Service. IEEE Network, 17(1):46–51, Jan. 2003. Cited on 193



680 BIBLIOGRAPHY

Elnozahy E., Alvisi L., Wang Y.-M., and Johnson D. A Survey of Rollback-Recovery
Protocols in Message-Passing Systems. ACM Computing Surveys, 34(3):375–408,
Sept. 2002. Cited on 401, 408

Elnozahy E. N. and Plank J. S. Checkpointing for Peta-Scale Systems: A Look into
the Future of Practical Rollback-Recovery. IEEE Transactions on Dependable and
Secure Computing, 1(2):97–108, Apr. 2004. Cited on 404

Elson J., Girod L., and Estrin D. Fine-Grained Network Time Synchronization
using Reference Broadcasts. In 5th Symposium on Operating System Design and
Implementation, pages 147–163, New York, NY, Dec. 2002. USENIX, ACM Press.
Cited on 271, 272

Eugster P., Felber P., Guerraoui R., and Kermarrec A.-M. The Many Faces of
Publish/Subscribe. ACM Computing Surveys, 35(2):114–131, June 2003. Cited on
53, 637

Eugster P., Guerraoui R., Kermarrec A.-M., and Massoulié L. Epidemic Information
Dissemination in Distributed Systems. Computer, 37(5):60–67, May 2004. Cited on
197

Farmer W. M., Guttman J. D., and Swarup V. Security for Mobile Agents: Issues
and Requirements. In 19th National Information Systems Security Conference, pages
591–597, Baltimore, MD, Oct. 1996. Cited on 458

Felber P. and Narasimhan P. Experiences, Strategies, and Challenges in Building
Fault-Tolerant CORBA Systems. Computer, 53(5):497–511, May 2004. Cited on 520

Ferguson N. and Schneier B. Practical Cryptography. John Wiley, New York, 2003.
Cited on 426, 436

Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P., and Berners-Lee T.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, June 1999. Cited on 144, 606

Filman R. E., Elrad T., Clarke S., and Aksit M., editors. Aspect-Oriented Software
Development. Addison-Wesley, Reading, MA., 2005. Cited on 77

Fischer M., Lynch N., and Patterson M. Impossibility of Distributed Consensus with
one Faulty Processor. Journal of the ACM, 32(2):374–382, Apr. 1985. Cited on 367

Floyd S., Jacobson V., McCanne S., Liu C.-G., and Zhang L. A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing. IEEE/ACM
Transactions on Networking, 5(6):784–803, Dec. 1997. Cited on 379, 380

Foster I. and Kesselman C. The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufman, San Mateo, CA., 2nd edition, 2003. Cited on 414

Foster I., Kesselman C., Tsudik G., and Tuecke S. A Security Architecture for
Computational Grids. In 5th Conference on Computer and Communications Security,
pages 83–92, San Francisco, CA, Nov. 1998. ACM. Cited on 414, 416, 418

Foster I., Kesselman C., and Tuecke S. The Anatomy of the Grid, Enabling Scalable
Virtual Organizations. Journal of Supercomputer Applications, 15(3):200–222, Fall
2001. Cited on

Foster I. and others . The Open Grid Services Architecture, Version 1.5. GGF
Informational Document GFD-I.080, June 2006. Cited on

Fowler R. Decentralized Object Finding Using Forwarding Addresses. Ph.D., University
of Washington, Seattle, 1985. Cited on 210

Franklin M. J., Carey M. J., and Livny M. Transactional Client-Server Cache Consis-



BIBLIOGRAPHY 681

tency: Alternatives and Performance. ACM Transactions on Database Systems, 22(3):
315–363, Sept. 1997. Cited on 347, 348

Freeman E., Hupfer S., and Arnold K. JavaSpaces, Principles, Patterns and Practice.
Addison-Wesley, Reading, MA., 1999. Cited on 639, 640

Freund R. Web Services Coordination, Version 1.0, Feb. 2005. Cited on 598
Friedman R. and Kama A. Transparent Fault-Tolerant Java Virtual Machine. In 22nd

Symposium on Reliable Distributed Systems, pages 319–328, IEEE Computer Society
Press, Oct. 2003. IEEE, IEEE Computer Society Press. Cited on 520, 521

Fuggetta A., Picco G. P., and Vigna G. Understanding Code Mobility. IEEE Transac-
tions on Software Engineering, 24(5):342–361, May 1998. Cited on 128, 131

Gamma E., Helm R., Johnson R., and Vlissides J. Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA., 1994. Cited on 455, 484

Garbacki P., Epema D., and Steen M.van . A Two-Level Semantic Caching Scheme
for Super-Peer Networks. In 10th Web Caching Workshop. IEEE, Sept. 2005. Cited
on 71

Garcia-Molina H. Elections in a Distributed Computing System. IEEE Transactions
on Computers, 31(1):48–59, Jan. 1982. Cited on 294

Garman J. Kerberos: The Definitive Guide. O’Reilly & Associates, Sebastopol, CA.,
2003. Cited on 448

Gelernter D. Generative Communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985. Cited on 637

Gelernter D. and Carriero N. Coordination Languages and their Significance. Com-
munications of the ACM, 35(2):96–107, Feb. 1992. Cited on 636

Ghemawat S., Gobioff H., and Leung S.-T. The Google File System. In 19th Symposium
on Operating System Principles, pages 29–43, New York, NY, Oct. 2003. ACM, ACM
Press. Cited on 537

Gifford D. Weighted Voting for Replicated Data. In 7th Symposium on Operating
System Principles, pages 150–162. ACM, Dec. 1979. Cited on 345

GigaSpaces . GigaSpaces Cache 5.0 Documentation. New York, NY, 2005. Cited on 658
Gil T. M. and Poletto M. MULTOPS: a Data-Structure for Bandwidth Attack Detec-

tion. In 10th USENIX Security Symposium, pages 23–38, Berkeley, CA, Aug. 2001.
USENIX, USENIX. Cited on 466

Gladney H. Access Control for Large Collections. ACM Transactions on Information
Systems, 15(2):154–194, Apr. 1997. Cited on 455

Goland Y., Whitehead E., Faizi A., Carter S., and Jensen D. HTTP Extensions for
Distributed Authoring – WEBDAV. RFC 2518, Feb. 1999. Cited on 616

Gollmann D. Computer Security. John Wiley, New York, 2nd edition, 2006. Cited on
418

Gong L. and Schemers R. Implementing Protection Domains in the Java Development
Kit 1.2. In Symposium on Network and Distributed System Security, pages 125–134,
San Diego, CA, Mar. 1998. Internet Society. Cited on 464

Gopalakrishnan V., Silaghi B., Bhattacharjee B., and Keleher P. Adaptive Replication
in Peer-to-Peer Systems. In 24th International Conference on Distributed Computing
Systems, pages 360–369, Los Alamitos, CA., Mar. 2004. IEEE, IEEE Computer
Society Press. Cited on 570



682 BIBLIOGRAPHY

Gray C. and Cheriton D. Leases: An Efficient Fault-Tolerant Mechanism for Dis-
tributed File Cache Consistency. In 12th Symposium on Operating System Principles,
pages 202–210, New York, NY, Dec. 1989. ACM, ACM Press. Cited on 337

Gray J. Notes on Database Operating Systems. In Bayer R., Graham R., and
Seegmuller G., editors, Operating Systems: An Advanced Course, volume 60 of
Lecture Notes in Computer Science, pages 393–481. Springer-Verlag, Berlin, 1978.
Cited on 390

Gray J. and Reuter A. Transaction Processing: Concepts and Techniques. Morgan
Kaufman, San Mateo, CA., 1993. Cited on

Gray J., Helland P., O’Neil P., and Sashna D. The Dangers of Replication and
a Solution. In SIGMOD International Conference on Management Of Data, pages
173–182, Montreal, June 1996. ACM. Cited on 306

Grimm R., Davis J., Lemar E., Macbeth A., Swanson S., Anderson T., Bershad
B., Borriello G., Gribble S., and Wetherall D. System Support for Pervasive
Applications. ACM Transactions on Computer Systems, 22(4):421–486, Nov. 2004.
Cited on

Gropp W., Huss-Lederman S., Lumsdaine A., Lusk E., Nitzberg B., Saphir W., and
Snir M. MPI: The Complete Reference – The MPI-2 Extensions. MIT Press, Cambridge,
MA., 1998. Cited on 169

Gropp W., Lusk E., and Skjellum A. Using MPI-2, Portable Parallel Programming with
the Message-Passing Interface. MIT Press, Cambridge, MA., 2nd edition, 1999. Cited
on 169

Grosskurth A. and Godfrey M. W. A Reference Architecture for Web Browsers. In
21st Int’l Conf. Softw. Mainten., pages 661–664, Los Alamitos, CA., Sept. 2005. IEEE,
IEEE Computer Society Press. Cited on 599

Gudgin M., Hadley M., Mendelsohn N., Moreau J.-J., and Nielsen H. F. SOAP
Version 1.2. W3C Recommendation, June 2003. Cited on 611, 613

Guerraoui R. and Rodrigues L. Introduction to Reliable Distributed Programming.
Springer-Verlag, Berlin, 2006. Cited on 259

Guerraoui R. and Schiper A. Software-Based Replication for Fault Tolerance. Com-
puter, 30(4):68–74, Apr. 1997. Cited on 360

Guichard J., Faucheur F. L., and Vasseur J.-P. Definitive MPLS Network Designs. Cisco
Press, Indianapolis, IN, 2005. Cited on 621

Gulbrandsen A., Vixie P., and Esibov L. A dns rr for specifying the location of
services (dns srv). RFC 2782, Feb. 2000. Cited on 239

Gupta A., Sahin O. D., Agrawal D., and Abbadi A. E. Meghdoot: Content-Based
Publish/Subscribe over P2P Networks. In Middleware 2004, volume 3231 of Lecture
Notes in Computer Science, pages 254–273, Berlin, Oct. 2004. ACM/IFIP/USENIX,
Springer-Verlag. Cited on 646

Gusella R. and Zatti S. The Accuracy of the Clock Synchronization Achieved by
TEMPO in Berkeley UNIX 4.3BSD. IEEE Transactions on Software Engineering, 15
(7):847–853, July 1989. Cited on 270

Hadzilacos V. and Toueg S. Fault-Tolerant Broadcasts and Related Problems. In Mul-
lender S., editor, Distributed Systems, pages 97–145. Addison-Wesley, Wokingham,
2nd edition, 1993. Cited on 356, 387



BIBLIOGRAPHY 683

Halsall F. Multimedia Communications: Applications, Networks, Protocols and Standards.
Addison-Wesley, Reading, MA., 2001. Cited on 184, 186

Handurukande S., Kermarrec A.-M., Fessant F. L., and Massoulié L. Exploiting
Semantic Clustering in the eDonkey P2P network. In 11th SIGOPS European
Workshop, New York, NY, Sept. 2004. ACM, ACM Press. Cited on 255

Helder D. A. and Jamin S. End-Host Multicast Communication Using Switch-Trees
Protocols. In 2nd International Symposium on Cluster Computing and the Grid, pages
419–424, Los Alamitos, CA., May 2002. IEEE, IEEE Computer Society Press. Cited
on 196

Hellerstein J. L., Diao Y., Parekh S., and Tilbury D. M. Feedback Control of Computing
Systems. John Wiley, New York, 2004. Cited on 80

Henning M. A New Approach to Object-Oriented Middleware. IEEE Internet
Computing, 8(1):66–75, Jan. 2004. Cited on 493

Henning M. and Spruiell M. Distributed Programming with Ice. ZeroC Inc., Brisbane,
Australia, May 2005. Cited on 493, 510

Hochstetler S. and Beringer B. Linux Clustering with CSM and GPFS. Technical
Report SG24-6601-02, International Technical Support Organization, IBM, Austin,
TX, Jan. 2004. Cited on 120

Hohpe G. and Woolf B. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Reading, MA., 2004. Cited on 177

Horowitz M. and Lunt S. FTP Security Extensions. RFC 2228, Oct. 1997. Cited on
144

Howes T. The String Representation of LDAP Search Filters. RFC 2254, Dec. 1997.
Cited on 250

Chu Y.hua , Rao S. G., Seshan S., and Zhang H. A Case for End System Multicast.
IEEE Journal on Selected Areas in Communication, 20(8):1456–1471, Oct. 2002. Cited
on 195

Huffaker B., Fomenkov M., Plummer D. J., Moore D., and Claffy K. Distance Metrics
in the Internet. In International Telecommunications Symposium, Los Alamitos, CA.,
Sept. 2002. IEEE, IEEE Computer Society Press. Cited on 621

Hunt G., Nahum E., and Tracey J. Enabling Content-Based Load Distribution for
Scalable Services. Technical report, IBM T.J. Watson Research Center, May 1997.
Cited on 116

Hutto P. and Ahamad M. Slow Memory: Weakening Consistency to Enhance
Concurrency in Distributed Shared Memories. In 10th International Conference
on Distributed Computing Systems, pages 302–311, Paris, France, May 1990. IEEE.
Cited on 315

IBM. WebSphere MQ Publish/Subscribe User’s Guide. IBM Inc., May 2005a. Cited on
639

IBM. WebSphere MQ Intercommunication. IBM Inc., May 2005b. Cited on 177
IBM. WebSphere MQ System Administration. IBM Inc., May 2005c. Cited on 177
IBM. WebSphere MQ Application Programming Guide. IBM Inc., May 2005d. Cited on

178
ISO . Open Distributed Processing Reference Model. International Standard ISO/IEC

IS 10746, 1995. Cited on



684 BIBLIOGRAPHY

Jaeger T., Prakash A., Liedtke J., and Islam N. Flexible Control of Downloaded
Executable Content. ACM Transactions on Information and System Security, 2(2):
177–228, May 1999. Cited on 465

Jalote P. Fault Tolerance in Distributed Systems. Prentice Hall, Englewood Cliffs, N.J.,
1994. Cited on 346, 354

Janic M. Multicast in Network and Application Layer. Ph.d., Delft University of
Technology, The Netherlands, Oct. 2005. Cited on 193

Janiga M. J., Dibner G., and Governali F. J. Internet Infrastructure: Content Delivery.
Goldman Sachs Global Equity Research, Apr. 2001. Cited on 622

Jelasity M. and Kermarrec A.-M. Ordered Slicing of Very Large-Scale Overlay
Networks. In 6th International Conference on Peer-to-Peer Computing, pages 117–124,
Los Alamitos, CA., Sept. 2006. IEEE Computer Society Press. Cited on 68, 69

Jelasity M., Guerraoui R., Kermarrec A.-M., and Steen M.van . The Peer Sampling
Service: Experimental Evaluation of Unstructured Gossip-Based Implementations.
In Middleware 2004, volume 3231 of Lecture Notes in Computer Science, pages 79–98,
Berlin, Oct. 2004. ACM/IFIP/USENIX, Springer-Verlag. Cited on 66

Jelasity M., Montresor A., and Babaoglu O. Gossip-based Aggregation in Large
Dynamic Networks. ACM Transactions on Computer Systems, 23(3):219–252, Aug.
2005a. Cited on 201

Jelasity M., Voulgaris S., Guerraoui R., Kermarrec A.-M., and Steen M.van . Gossip-
based Peer Sampling. Technical report, Vrije Universiteit, Department of Computer
Science, Sept. 2005b. Cited on 66, 67, 68, 198, 255

Jin J. and Nahrstedt K. QoS Specification Languages for Distributed Multimedia
Applications: A Survey and Taxonomy. IEEE Multimedia, 11(3):74–87, July 2004.
Cited on 186

Jing J., Helal A., and Elmagarmid A. Client-Server Computing in Mobile Environ-
ments. ACM Computing Surveys, 31(2):117–157, June 1999. Cited on 60

Johnson B. An Introduction to the Design and Analysis of Fault-Tolerant Systems.
In Pradhan D., editor, Fault-Tolerant Computer System Design, pages 1–87. Prentice
Hall, Upper Saddle River, N.J., 1995. Cited on 358

Johnson D., Perkins C., and Arkko J. Mobility Support for IPv6. RFC 3775, June
2004. Cited on 213

Joseph J., Ernest M., and Fellenstein C. Evolution of grid computing architecture
and grid adoption models. IBM Systems Journal, 43(4):624–645, Apr. 2004. Cited
on

Jul E., Levy H., Hutchinson N., and Black A. Fine-Grained Mobility in the Emerald
System. ACM Transactions on Computer Systems, 6(1):109–133, Feb. 1988. Cited on
212

Jung J., Sit E., Balakrishnan H., and Morris R. DNS Performance and the Effectiveness
of Caching. IEEE/ACM Transactions on Networking, 10(5):589 – 603, Oct. 2002. Cited
on 245

Kahn D. The Codebreakers. Macmillan, New York, 1967. Cited on 426
Kaminsky M., Savvides G., MaziÃĺres D., and Kaashoek M. F. Decentralized User

Authentication in a Global File System. In 19th Symposium on Operating System
Principles, pages 60–73, New York, NY, Oct. 2003. ACM, ACM Press. Cited on 580,



BIBLIOGRAPHY 685

582
Kantarcioglu M. and Clifton C. Security Issues in Querying Encrypted Data. In

19th Conf. Data & Appl. Security, volume 3654 of Lecture Notes in Computer Science,
pages 325–337, Berlin, Aug. 2005. IFIP, Springer-Verlag. Cited on 667

Karnik N. and Tripathi A. Security in the Ajanta Mobile Agent System. Software –
Practice and Experience, 31(4):301–329, Apr. 2001. Cited on 458

Kasera S., Kurose J., and Towsley D. Scalable Reliable Multicast Using Multiple
Multicast Groups. In International Conference on Measurements and Modeling of
Computer Systems, pages 64–74, Seattle, WA, June 1997. ACM. Cited on 380

Katz E., Butler M., and McGrath R. A Scalable HTTP Server: The NCSA Prototype.
Computer Networks and ISDN Systems, 27(2):155–164, Sept. 1994. Cited on 97

Kaufman C., Perlman R., and Speciner M. Network Security: Private Communication in
a Public World. Prentice Hall, Englewood Cliffs, N.J., 2nd edition, 2003. Cited on
435, 443

Kent S. Internet Privacy Enhanced Mail. Communications of the ACM, 36(8):48–60,
Aug. 1993. Cited on 470

Kephart J. O. and Chess D. M. The Vision of Autonomic Computing. Computer, 36
(1):41–50, Jan. 2003. Cited on 79

Khoshafian S. and Buckiewicz M. Introduction to Groupware, Workflow, and Workgroup
Computing. John Wiley, New York, 1995. Cited on 177

Khurana H. and Koleva R. Scalable Security and Accounting Services for Content-
Based Publish Subscribe Systems. International Journal of E-Business Research, 2,
2006. Cited on 666, 667, 668

Kim S., Pan K., Sinderson E., and Whitehead J. Architecture and Data Model of a
WebDAV-based Collaborative System. In Collaborative Techn. Symp., pages 48–55,
Jan. 2004. Cited on 616

Kistler J. and Satyanaryanan M. Disconnected Operation in the Coda File System.
ACM Transactions on Computer Systems, 10(1):3–25, Feb. 1992. Cited on 544, 561

Kleiman S. Vnodes: an Architecture for Multiple File System Types in UNIX. In
Summer Technical Conference, pages 238–247, Atlanta, GA, June 1986. USENIX.
Cited on 532

Kohl J., Neuman B., and T’so T. The Evolution of the Kerberos Authentication
System. In Brazier F. and Johansen D., editors, Distributed Open Systems, pages
78–94. IEEE Computer Society Press, Los Alamitos, CA., 1994. Cited on 448

Kon F., Costa F., Campbell R., and Blair G. The Case for Reflective Middleware.
Communications of the ACM, 45(6):33–38, June 2002. Cited on 77

Kopetz H. and Verissimo P. Real Time and Dependability Concepts. In Mullender
S., editor, Distributed Systems, pages 411–446. Addison-Wesley, Wokingham, 2nd
edition, 1993. Cited on 354

Kostoulas M. G., Matsa M., Mendelsohn N., Perkins E., Heifets A., and Mercaldi
M. XML Screamer: An Integrated Approach to High Performance XML Parsing,
Validation and Deserialization. In 15th International World Wide Web Conference,
New York, NY, May 2006. ACM, ACM Press. Cited on 613

Kumar P. and Satyanarayanan M. Flexible and Safe Resolution of File Conflicts. In
Winter Technical Conference, pages 95–106, New Orleans, LA, Jan. 1995. USENIX.



686 BIBLIOGRAPHY

Cited on 568
Lai A. and Nieh J. Limits of Wide-Area Thin-Client Computing. In International

Conference on Measurements and Modeling of Computer Systems, pages 228–239, New
York, NY, June 2002. ACM, ACM Press. Cited on 105

LaMacchia B. and Odlyzko A. Computation of Discrete Logarithms in Prime Fields.
Designs, Codes, and Cryptography, 1(1):47–62, May 1991. Cited on 577

Lamport L. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558–565, July 1978. Cited on 273

Lamport L. How to Make a Multiprocessor Computer that Correctly Executes
Multiprocessor Programs. IEEE Transactions on Computers, C-29(9):690–691, Sept.
1979. Cited on 312

Lamport L., Shostak R., and Paese M. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, July 1982. Cited
on 358, 365, 367

Lampson B., Abadi M., Burrows M., and Wobber E. Authentication in Distributed
Systems: Theory and Practice. ACM Transactions on Computer Systems, 10(4):
265–310, Nov. 1992. Cited on 432

Laprie J.-C. Dependability – Its Attributes, Impairments and Means. In Randell
B., Laprie J.-C., Kopetz H., and Littlewood B., editors, Predictably Dependable
Computing Systems, pages 3–24. Springer-Verlag, Berlin, 1995. Cited on 412

Laurie B. and Laurie P. Apache: The Definitive Guide. O’Reilly & Associates, Sebastopol,
CA., 3rd edition, 2002. Cited on 603

Leff A. and Rayfield J. T. Alternative Edge-server Architectures for Enterprise
JavaBeans Applications. In Middleware 2004, volume 3231 of Lecture Notes in
Computer Science, pages 195–211, Berlin, Oct. 2004. ACM/IFIP/USENIX, Springer-
Verlag. Cited on 72

Leighton F. and Lewin D. Global Hosting System. United States Patent, Number
6,108,703, Aug. 2000. Cited on 624

Levien R., editor. Signposts in Cyberspace: The Domain Name System and Internet
Navigation. National Academic Research Council, Washington, DC, 2005. Cited
on 238

Levine B. and Garcia-Luna-Aceves J. A Comparison of Reliable Multicast Protocols.
ACM Multimedia Systems Journal, 6(5):334–348, 1998. Cited on 379

Lewis B. and Berg D. J. Multithreaded Programming with Pthreads. Prentice Hall,
Englewood Cliffs, N.J., 2nd edition, 1998. Cited on 90

Li G. and Jacobsen H.-A. Composite Subscriptions in Content-Based Publish/Sub-
scribe Systems. In Middleware 2005, volume 3790 of Lecture Notes in Computer
Science, pages 249–269, Berlin, Nov. 2005. ACM/IFIP/USENIX, Springer-Verlag.
Cited on 651

Li J., Lu C., and Shi W. An Efficient Scheme for Preserving Confidentiality in
Content-Based Publish-Subscribe Systems. Technical Report GIT-CC-04-01, Geor-
gia Institute of Technology, College of Computing, 2004a. Cited on 667

Li N., Mitchell J. C., and Tong D. Securing Java RMI-based Distributed Applications.
In 20th Annual Computer Security Applications Conference. ACSA, Dec. 2004b. Cited
on 527



BIBLIOGRAPHY 687

Lilja D. Cache Coherence in Large-Scale Shared-Memory Multiprocessors: Issues
and Comparisons. ACM Computing Surveys, 25(3):303–338, Sept. 1993. Cited on
347

Lin M.-J. and Marzullo K. Directional Gossip: Gossip in a Wide-Area Network. In
Proceedings 3rd European Dependable Computing Conf., volume 1667 of Lecture Notes
in Computer Science, pages 364–379. Springer-Verlag, Berlin, Sept. 1999. Cited on
199

Lin S.-D., Lian Q., Chen M., , and Zhang Z. A Practical Distributed Mutual Exclusion
Protocol in Dynamic Peer-to-Peer Systems. In 3rd International Workshop on Peer-to-
Peer Systems, volume 3279 of Lecture Notes in Computer Science, pages 11–21, Berlin,
Feb. 2004. Springer-Verlag. Cited on 283, 284

Ling B. C., Kiciman E., and Fox A. Session State: Beyond Soft State. In 1st Symposium
on Networked Systems Design and Implementation, pages 295–308, Berkeley, CA, Mar.
2004. USENIX, USENIX. Cited on 113

Linn J. Generic Security Service Application Program Interface, version 2. RFC 2078,
Jan. 1997. Cited on 578

Liu C. and Albitz P. DNS and BIND. O’Reilly & Associates, Sebastopol, CA., 5th
edition, 2006. Cited on 237

Liu C.-G., Estrin D., Shenker S., and Zhang L. Local Error Recovery in SRM:
Comparison of Two Approaches. IEEE/ACM Transactions on Networking, 6(6):
686–699, Dec. 1998. Cited on 380

Liu H. and Jacobsen H.-A. Modeling Uncertainties in Publish/Subscribe Systems.
In 20th International Conference on Data Engineering, pages 510–522, Los Alamitos,
CA., Mar. 2004. IEEE, IEEE Computer Society Press. Cited on 654

Lo V., Zhou D., Liu Y., GauthierDickey C., and Li J. Scalable Supernode Selection in
Peer-to-Peer Overlay Networks. In 2nd Hot Topics in Peer-to-Peer Systems, pages
18–27, Los Alamitos, CA., July 2005. IEEE Computer Society Press. Cited on 299

Lua E., Crowcroft J., Pias M., Sharma R., and Lim S. A Survey and Comparison of
Peer-to-Peer Overlay Network Schemes. IEEE Communications Surveys & Tutorials,
7(2):22–73, Apr. 2005. Cited on 63

Lui J., Misra V., and Rubenstein D. On the Robustness of Soft State Protocols. In
12th International Conference on Network Protocols, pages 50–60, Los Alamitos, CA.,
Oct. 2004. IEEE, IEEE Computer Society Press. Cited on 113

Luotonen A. and Altis K. World-Wide Web Proxies. Computer Networks and ISDN
Systems, 27(2):1845–1855, 1994. Cited on 600

Lynch N. Distributed Algorithms. Morgan Kaufman, San Mateo, CA., 1996. Cited on
259, 294

Maassen J., Kielmann T., and Bal H. E. Parallel Application Experience with Repli-
cated Method Invocation. Concurrency & Computation: Practice and Experience, 13
(8-9):681–712, 2001. Cited on 516

Macgregor R., Durbin D., Owlett J., and Yeomans A. Java Network Security. Prentice
Hall, Upper Saddle River, N.J., 1998. Cited on 460

Madden S. R., Franklin M. J., Hellerstein J. M., and Hong W. TinyDB: An Acqui-
sitional Query Processing System for Sensor Networks. ACM Transactions on
Database Systems, 30(1):122–173, 2005. Cited on



688 BIBLIOGRAPHY

Makpangou M., Gourhant Y., Narzul J.-P.le , and Shapiro M. Fragmented Objects
for Distributed Abstractions. In Casavant T. and Singhal M., editors, Readings in
Distributed Computing Systems, pages 170–186. IEEE Computer Society Press, Los
Alamitos, CA., 1994. Cited on 487

Malkhi D. and Reiter M. Secure Execution of Java Applets using a Remote Play-
ground. IEEE Transactions on Software Engineering, 26(12):1197–1209, Dec. 2000.
Cited on 462

Mamei M. and Zambonelli F. Programming Pervasive and Mobile Computing
Applications with the TOTA Middleware. In 2nd International Conference on
Pervasive Computing and Communications (PerCom), pages 263–273, Los Alamitos,
CA., Mar. 2004. IEEE, IEEE Computer Society Press. Cited on 648

Manola F. and Miller E. RDF Primer. W3C Recommendation, Feb. 2004. Cited on
247

Mascolo C., Capra L., and Emmerich W. Principles of Mobile Computing Middleware.
In Mahmoud Q. H., editor, Middleware for Communications, chapter 12. John Wiley,
New York, 2004. Cited on

Masinter L. The Data URL Scheme. RFC 2397, Aug. 1998. Cited on 615
Mazieres D., Kaminsky M., Kaashoek M., and Witchel E. Separating Key Manage-

ment from File System Security. In 17th Symposium on Operating System Principles,
pages 124–139, Kiawah Island, SC, Dec. 1999. ACM. Cited on 525, 580

Mazouni K., Garbinato B., and Guerraoui R. Building Reliable Client-Server Software
Using Actively Replicated Objects. In Graham I., Magnusson B., Meyer B., and
Nerson J.-M., editors, Technology of Object Oriented Languages and Systems, pages
37–53. Prentice Hall, Englewood Cliffs, N.J., 1995. Cited on 516

McKinley P., Sadjadi S., Kasten E., and Cheng B. Composing Adaptive Software.
Computer, 37(7):56–64, Jan. 2004. Cited on 77

Mehta N., Medvidovic N., and Phadke S. Towards A Taxonomy Of Software
Connectors. In 22nd International Conference on Software Engineering, pages 178–187,
New York, NY, June 2000. ACM, ACM Press. Cited on 52

Menezes A. J., Oorschot P. C.van , and Vanstone S. A. Handbook of Applied Cryptogra-
phy. CRC Press, Boca Raton, 3rd edition, 1996. Cited on 426, 469, 470

Merideth M. G., Iyengar A., Mikalsen T., Tai S., Rouvellou I., and Narasimhan P.
Thema: Byzantine-Fault-Tolerant Middleware for Web-Service Applications. In
24th Symposium on Reliable Distributed Systems, pages 131–142, Los Alamitos, CA.,
Oct. 2005. IEEE, IEEE Computer Society Press. Cited on 630, 631

Meyer B. Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs, N.J.,
2nd edition, 1997. Cited on 483

Miller B. N., Konstan J. A., and Riedl J. PocketLens: Toward a Personal Recommender
System. ACM Transactions on Information Systems, 22(3):437–476, July 2004. Cited
on

Mills D. Network Time Protocol (version 3): Specification, Implementation, and
Analysis. RFC 1305, July 1992. Cited on 270

Mills D. L. Computer Network Time Synchronization: The Network Time Protocol. CRC
Press, Boca Raton, FL, 2006. Cited on 270

Milojicic D., Douglis F., Paindaveine Y., Wheeler R., and Zhou S. Process Migration.



BIBLIOGRAPHY 689

ACM Computing Surveys, 32(3):241–299, Sept. 2000. Cited on 126
Min S. L. and Baer J.-L. Design and Analysis of a Scalable Cache Coherence Scheme

Based on Clocks and Timestamps. IEEE Transactions on Parallel and Distributed
Systems, 3(1):25–44, Jan. 1992. Cited on 347

Mirkovic J. and Reiher P. A Taxonomy of DDoS Attack and DDoS Defense Mecha-
nisms. ACM Computer Communications Review, 34(2):39–53, Apr. 2004. Cited on
466

Mirkovic J., Dietrich S., and Reiher D. D.andPeter . Internet Denial of Service: Attack
and Defense Mechanisms. Prentice Hall, Englewood Cliffs, N.J., 2005. Cited on 466

Mockapetris P. Domain Names - Concepts and Facilities. RFC 1034, Nov. 1987. Cited
on 231, 237

Monson-Haefel R., Burke B., and Labourey S. Enterprise Java Beans. O’Reilly &
Associates, Sebastopol, CA., 4th edition, 2004. Cited on 485

Moser L., Melliar-Smith P., Agarwal D., Budhia R., and Lingley-Papadopoulos C.
Totem: A Fault-Tolerant Multicast Group Communication System. Communications
of the ACM, 39(4):54–63, Apr. 1996. Cited on 519

Moser L., Mellior-Smith P., and Narasimhan P. Consistent Object Replication in the
Eternal System. Theory and Practice of Object Systems, 4(2):81–92, 1998. Cited on
519

Mullender S. and Tanenbaum A. Immediate Files. Software – Practice and Experience,
14(3):365–368, 1984. Cited on 615

Muntz D. and Honeyman P. Multi-level Caching in Distributed File Systems. In
Winter Technical Conference, pages 305–313, San Francisco, CA, Jan. 1992. USENIX.
Cited on 333

Murphy A., Picco G., and Roman G.-C. Lime: A Middleware for Physical and
Logical Mobility. In 21st International Conference on Distributed Computing Systems,
pages 524–533, Los Alamitos, CA., Apr. 2001. IEEE, IEEE Computer Society Press.
Cited on 646

Muthitacharoen A., Morris R., Gil T., and Chen B. Ivy: A Read/Write Peer-to-Peer
File System. In 5th Symposium on Operating System Design and Implementation,
pages 31–44, New York, NY, Dec. 2002. ACM, ACM Press. Cited on 539

Napper J., Alvisi L., and Vin H. M. A Fault-Tolerant Java Virtual Machine. In
International Conference on Dependable Systems and Networks, pages 425–434, Los
Alamitos, CA., June 2003. IEEE Computer Society Press. Cited on 520

Narasimhan P., Moser L., and Melliar-Smith P. The Eternal System. In Urban J.
and Dasgupta P., editors, Encyclopedia of Distributed Computing. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2000. Cited on 519

Nayate A., Dahlin M., and Iyengar A. Transparent Information Dissemination. In
Middleware 2004, volume 3231 of Lecture Notes in Computer Science, pages 212–231,
Berlin, Oct. 2004. ACM/IFIP/USENIX, Springer-Verlag. Cited on 72

Needham R. and Schroeder M. Using Encryption for Authentication in Large
Networks of Computers. Communications of the ACM, 21(12):993–999, Dec. 1978.
Cited on 437

Nelson B. Remote Procedure Call. Ph.D., Carnegie-Mellon University, 1981. Cited on
375



690 BIBLIOGRAPHY

Neuman B. Proxy-Based Authorization and Accounting for Distributed Systems.
In 13th International Conference on Distributed Computing Systems, pages 283–291,
Pittsburgh, May 1993. IEEE. Cited on 476

Neuman B. Scale in Distributed Systems. In Casavant T. and Singhal M., editors,
Readings in Distributed Computing Systems, pages 463–489. IEEE Computer Society
Press, Los Alamitos, CA., 1994. Cited on

Neuman C., Yu T., Hartman S., and Raeburn K. The Kerberos Network Authentica-
tion Service. RFC 4120, July 2005. Cited on 448

Neumann P. Architectures and Formal Representations for Secure Systems. Technical
report, Computer Science Laboratory, SRI International, Menlo Park, CA, Oct.
1995. Cited on 422

Ng E. and Zhang H. Predicting Internet Network Distance with Coordinates-Based
Approaches. In 21st INFOCOM Conference, Los Alamitos, CA., June 2002. IEEE,
IEEE Computer Society Press. Cited on 292

Niemela E. and Latvakoski J. Survey of Requirements and Solutions for Ubiquitous
Software. In 3rd International Conference on Mobile and Ubiquitous Multimedia, pages
71–78, 2004. Cited on

Noble B., Fleis B., and Kim M. A Case for Fluid Replication. In NetStore’99, Seattle,
WA, Oct. 1999. Cited on 334

Obraczka K. Multicast Transport Protocols: A Survey and Taxonomy. IEEE Commu-
nications Magazine, 36(1):94–102, Jan. 1998. Cited on 193

OMG . The Common Object Request Broker: Core Specification, revision 3.0.3. OMG
Document formal/04-03-12, Object Management Group, Framingham, MA, Mar.
2004a. Cited on 74, 492, 504, 518

OMG . UML 2.0 Superstructure Specification. OMG Document ptc/04-10-02, Object
Management Group, Framingham, MA, Oct. 2004b. Cited on 52

Oppenheimer D., Albrecht J., Patterson D., and Vahdat A. Design and Implementa-
tion Tradeoffs for Wide-Area Resource Discovery. In 14th International Symposium
on High Performance Distributed Computing, Los Alamitos, CA., July 2005. IEEE,
IEEE Computer Society Press. Cited on 253

Oram A., editor. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly
& Associates, Sebastopol, CA., 2001. Cited on

Özsu T. and Valduriez P. Principles of Distributed Database Systems. Springer-Verlag,
Berlin, 3rd edition, 2011. Cited on 330

Ozsu T. and Valduriez P. Principles of Distributed Database Systems. Prentice Hall,
Upper Saddle River, N.J., 2nd edition, 1999. Cited on 62

Pai V., Aron M., Banga G., Svendsen M., Druschel P., Zwaenepoel W., and Nahum
E. Locality-Aware Request Distribution in Cluster-Based Network Servers. In
8th International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 205–216, New York, NY, Oct. 1998. ACM, ACM Press.
Cited on 116

Panzieri F. and Shrivastava S. Rajdoot: A Remote Procedure Call Mechanism with
Orphan Detection and Killing. IEEE Transactions on Software Engineering, 14(1):
30–37, Jan. 1988. Cited on 376

Pease M., Shostak R., and Lamport L. Reaching Agreement in the Presence of Faults.



BIBLIOGRAPHY 691

Journal of the ACM, 27(2):228–234, Apr. 1980. Cited on 358
Perkins C., Hodson O., and Hardman V. A Survey of Packet Loss Recovery Tech-

niques for Streaming Audio. IEEE Network, 12(5):40–48, Sept. 1998. Cited on
188

Peterson L., Bavier A., Fiuczynski M., Muir S., and Roscoe T. Towards a Comprehen-
sive PlanetLab Architecture. Technical Report PDN-05-030, PlanetLab Consortium,
June 2005. Cited on 121, 124

Pfleeger C. Security in Computing. Prentice Hall, Upper Saddle River, N.J., 3rd
edition, 2003. Cited on 412, 428

Picco G., Balzarotti D., and Costa P. LighTS: A Lightweight, Customizable Tuple
Space Supporting Context-Aware Applications. In Symposium on Applied Com-
puting, pages 413–419, New York, NY, Mar. 2005. ACM, ACM Press. Cited on
641

Pierre G. and Steen M.van . Globule: A Collaborative Content Delivery Network.
IEEE Communications Magazine, 44(8):127–133, Aug. 2006. Cited on 73, 83

Pierre G., Steen M.van , and Tanenbaum A. Dynamically Selecting Optimal Distribu-
tion Strategies for Web Documents. IEEE Transactions on Computers, 51(6):637–651,
June 2002. Cited on 84

Pietzuch P. R., Shand B., and Bacon J. A Framework for Event Composition in
Distributed Systems. In Middleware 2003, volume 2672 of Lecture Notes in Computer
Science, pages 62–82, Berlin, June 2003. IFIP/ACM, Springer-Verlag. Cited on 651

Pike R., Presotto D., Dorward S., Flandrena B., Thompson K., Trickey H., and
Winterbottom P. Plan 9 from Bell Labs. Computing Systems, 8(3):221–254, Summer
1995. Cited on 224, 546

Pinzari G. NX X Protocol Compression. Technical Report D-309/3-NXP-DOC,
NoMachine, Rome, Italy, Sept. 2003. Cited on 106

Pitoura E. and Samaras G. Locating Objects in Mobile Computing. IEEE Transactions
on Knowledge and Data Engineering, 13(4):571–592, July 2001. Cited on 219

Plainfosse D. and Shapiro M. A Survey of Distributed Garbage Collection Techniques.
In Proceedings International Workshop on Memory Management, volume 986 of Lecture
Notes in Computer Science, pages 211–249. Springer-Verlag, Berlin, Sept. 1995. Cited
on 212

Plummer D. Ethernet Address Resolution Protocol. RFC 826, Nov. 1982. Cited on
209

Podling S. and Boszormenyi L. A Survey of Web Cache Replacement Strategies.
ACM Computing Surveys, 35(4):374–398, Dec. 2003. Cited on 620

Popescu B., Steen M.van , and Tanenbaum A. A Security Architecture for Object-
Based Distributed Systems. In 18th Annual Computer Security Applications Confer-
ence. ACSA, Dec. 2002. Cited on 522

Postel J. Simple Mail Transfer Protocol. RFC 821, Aug. 1982. Cited on 177
Postel J. and Reynolds J. File Transfer Protocol. RFC 995, Oct. 1985. Cited on 144
Potzl H., Anderson M., and Steinbrink B. Linux-VServer: Resource Efficient Context

Isolation. Free Software Magazine, (5), June 2005. Cited on 125
Pouwelse J., Garbacki P., Epema D., and Sips H. A Measurement Study of the

BitTorrent Peer-to-Peer File-Sharing System. Technical Report PDS-2004-003,



692 BIBLIOGRAPHY

Technical University Delft, Apr. 2004. Cited on 73
Pouwelse J. A., Garbacki P., Epema D. H. J., and Sips H. J. The Bittorrent P2P

File-Sharing System: Measurements and Analysis. In 4th International Workshop
on Peer-to-Peer Systems, volume 3640 of Lecture Notes in Computer Science, pages
205–216, Berlin, Feb. 2005. Springer-Verlag. Cited on 570

Qin F., Tucek J., Sundaresan J., and Zhou Y. Rx: Treating Bugs as Allergies - A
Safe Method to Survive Software Failures. In 20th Symposium on Operating System
Principles, pages 235–248, New York, NY, Oct. 2005. ACM, ACM Press. Cited on
408

Qiu L., Padmanabhan V., and Voelker G. On the Placement of Web Server Replicas.
In 20th INFOCOM Conference, pages 1587–1596, Los Alamitos, CA., Apr. 2001.
IEEE, IEEE Computer Society Press. Cited on 328, 329

Rabinovich M. and Spastscheck O. Web Caching and Replication. Addison-Wesley,
Reading, MA., 2002. Cited on 72, 617

Rabinovich M., Rabinovich I., Rajaraman R., and Aggarwal A. A Dynamic Object
Replication and Migration Protocol for an Internet Hosting Service. In 19th
International Conference on Distributed Computing Systems, pages 101–113, Austin,
TX, June 1999. IEEE. Cited on 331

Radia S. Names, Contexts, and Closure Mechanisms in Distributed Computing Environ-
ments. Ph.D., University of Waterloo, Ontario, 1989. Cited on 226

Radoslavov P., Govindan R., and Estrin D. Topology-Informed Internet Replica
Placement. In 6th Web Caching Workshop, Amsterdam, June 2001. North-Holland.
Cited on 328

Raiciu C. and Rosenblum D. Enabling Confidentiality in Content-Based Publish/-
Subscribe Infrastructures. Technical Report RN/05/30, Department of Computer
Science, University College London, 2005. Cited on 667

Ramanathan P., Shin K., and Butler R. Fault-Tolerant Clock Synchronization in
Distributed Systems. Computer, 23(10):33–42, Oct. 1990. Cited on 267

Ramasubramanian V. and Sirer E. G. Beehive: O(1) Lookup Performance for Power-
Law Query Distributions in Peer-to-Peer Overlays. In 1st Symposium on Net-
worked Systems Design and Implementation, pages 99–112, Berkeley, CA, Mar. 2004a.
USENIX, USENIX. Cited on 245, 570

Ramasubramanian V. and Sirer E. G. The Design and Implementation of a Next
Generation Name Service for the Internet. In SIGCOMM, New York, NY, Aug.
2004b. ACM, ACM Press. Cited on 244

Ratnasamy S., Francis P., Handley M., Karp R., and Schenker S. A Scalable Content-
Addressable Network. In SIGCOMM, pages 161–172, San Diego, CA, Aug. 2001.
ACM. Cited on 65

Raynal M. and Singhal M. Logical Time: Capturing Causality in Distributed Systems.
Computer, 29(2):49–56, Feb. 1996. Cited on 275

Reiter M. How to Securely Replicate Services. ACM Transactions on Programming
Languages and Systems, 16(3):986–1009, May 1994. Cited on 446, 447

Reiter M., Birman K., and Renesse R.van . A Security Architecture for Fault-Tolerant
Systems. ACM Transactions on Computer Systems, 12(4):340–371, Nov. 1994. Cited
on 472



BIBLIOGRAPHY 693

Rescorla E. and Schiffman A. The Secure HyperText Transfer Protocol. RFC 2660,
Aug. 1999. Cited on 611

Reynolds J. and Postel J. Assigned Numbers. RFC 1700, Oct. 1994. Cited on 110
Ricart G. and Agrawala A. An Optimal Algorithm for Mutual Exclusion in Computer

Networks. Communications of the ACM, 24(1):9–17, Jan. 1981. Cited on 285
Risson J. and Moors T. Survey of Research towards Robust Peer-to-Peer Networks:

Search Methods. Computer Networks, 50(17):3485–3521, 2006. Cited on 66, 256, 569
Rivest R. The MD5 Message Digest Algorithm. RFC 1321, Apr. 1992. Cited on 430
Rivest R., Shamir A., and Adleman L. A Method for Obtaining Digital Signatures

and Public-key Cryptosystems. Communications of the ACM, 21(2):120–126, Feb.
1978. Cited on 429

Rizzo L. Effective Erasure Codes for Reliable Computer Communication Protocols.
ACM Computer Communications Review, 27(2):24–36, Apr. 1997. Cited on 399

Rodrigues L. and others . A Transparent Light-Weight Group Service. In 15th
Symposium on Reliable Distributed Systems, pages 130–139, Niagara-on-the-Lake,
Canada, Oct. 1996. IEEE. Cited on 345

Rodrigues R. and Liskov B. High Availability in DHTs: Erasure Coding vs. Repli-
cation. In 4th International Workshop on Peer-to-Peer Systems, Feb. 2005. Cited on
575

Rodriguez P., Spanner C., and Biersack E. Analysis of Web Caching Architecture:
Hierarchical and Distributed Caching. IEEE/ACM Transactions on Networking, 21
(4):404–418, Aug. 2001. Cited on 618

Rosenblum M. and Garfinkel T. Virtual Machine Monitors: Current Technology and
Future Trends. Computer, 38(5):39–47, May 2005. Cited on 102

Roussos G., Marsh A. J., and Maglavera S. Enabling Pervasive Computing with
Smart Phones. IEEE Pervasive Computing, 4(2):20–26, Apr. 2005. Cited on

Rowstron A. Run-time Systems for Coordination. In Omicini A., Zambonelli F.,
Klusch M., and Tolksdorf R., editors, Coordination of Internet Agents: Models,
Technologies and Applications, pages 78–96. Springer-Verlag, Berlin, 2001. Cited on
655

Rowstron A. and Druschel P. Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-to-Peer Systems. In Middleware 2001, volume 2218 of
Lecture Notes in Computer Science, pages 329–350, Berlin, Nov. 2001. Springer-Verlag.
Cited on 193, 218, 244

Rowstron A. and Wray S. A Run-Time System for WCL. In Bal H., Belkhouche B.,
and Cardelli L., editors, Internet Programming Languages, volume 1686 of Lecture
Notes in Computer Science, pages 78–96. Springer-Verlag, Berlin, 1998. Cited on 658

Russello G., Chaudron M., and Steen M.van . Dynamic Adaptation of Data Dis-
tribution Policies in a Shared Data Space System. In International Symposium
on Distributed Objects and Applications (DOA), volume 3291 of Lecture Notes in
Computer Science, pages 1225–1242, Berlin, Oct. 2004. Springer-Verlag. Cited on
659, 660

Russello G., Chaudron M., Steen M.van , and Bokharouss I. An Experimental Eval-
uation of Self-managing Availability in Shared Data Spaces. Science of Computer
Programming, 64(2):246–262, Jan. 2007. Cited on 659, 664



694 BIBLIOGRAPHY

Sadjadi S. and McKinley P. A Survey of Adaptive Middleware. Technical Report
MSU-CSE-03-35, Michigan State University, Computer Science and Engineering,
Dec. 2003. Cited on 75

Saltzer J. and Schroeder M. The Protection of Information in Computer Systems.
Proceedings of the IEEE, 63(9):1278–1308, Sept. 1975. Cited on 453

Saltzer J., Reed D., and Clark D. End-to-End Arguments in System Design. ACM
Transactions on Computer Systems, 2(4):277–288, Nov. 1984. Cited on 281

Sandhu R. S., Coyne E. J., Feinstein H. L., and Youman C. E. Role-Based Access
Control Models. Computer, 29(2):38–47, Feb. 1996. Cited on 455

Saroiu S., Gummadi P. K., and Gribble S. D. Measuring and Analyzing the Charac-
teristics of Napster and Gnutella Hosts. ACM Multimedia Systems, 9(2):170–184,
Aug. 2003. Cited on 72

Satyanarayanan M. and Siegel E. Parallel Communication in a Large Distributed
System. IEEE Transactions on Computers, 39(3):328–348, Mar. 1990. Cited on 546

Saxena P. and Rai J. A Survey of Permission-based Distributed Mutual Exclusion
Algorithms. Computer Standards and Interfaces, 25(2):159–181, May 2003. Cited on
281

Schmidt D., Stal M., Rohnert H., and Buschmann F. Pattern-Oriented Software
Architecture – Patterns for Concurrent and Networked Objects. John Wiley, New York,
2000. Cited on 75

Schneider F. Implementing Fault-Tolerant Services Using the State Machine Ap-
proach: A Tutorial. ACM Computing Surveys, 22(4):299–320, Dec. 1990. Cited on
277, 335, 520

Schneier B. Secrets and Lies. John Wiley, New York, 2000. Cited on 426
Schneier B. Applied Cryptography. John Wiley, New York, 2nd edition, 1996. Cited on

426, 448
Schulzrinne H. The tel URI for Telephone Numbers. RFC 3966, Jan. 2005. Cited on

615
Schulzrinne H., Casner S., Frederick R., and Jacobson V. RTP: A Transport Protocol

for Real-Time Applications. RFC 3550, July 2003. Cited on 143
Sebesta R. Programming the World Wide Web. Addison-Wesley, Reading, MA., 3rd

edition, 2006. Cited on 591
Shapiro M., Dickman P., and Plainfosse D. SSP Chains: Robust, Distributed Ref-

erences Supporting Acyclic Garbage Collection. Technical Report 1799, INRIA,
Rocquencourt, France, Nov. 1992. Cited on 211

Shaw M. and Clements P. A Field Guide to Boxology: Preliminary Classification of
Architectural Styles for Software Systems. In 21st International Computer Software
and Applications Conference, pages 6–13, Aug. 1997. Cited on 52

Shepler S., Callaghan B., Robinson D., Thurlow R., Beame C., Eisler M., and Noveck
D. Network File System (NFS) Version 4 Protocol. RFC 3530, Apr. 2003. Cited on
229, 531

Sheth A. P. and Larson J. A. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys, 22(3):
183–236, Sept. 1990. Cited on 331

Shooman M. L. Reliability of Computer Systems and Networks: Fault Tolerance, Analysis,



BIBLIOGRAPHY 695

and Design. John Wiley, New York, 2002. Cited on 354
Silberschatz A., Galvin P., and Gagne G. Operating System Concepts. John Wiley, New

York, 7th edition, 2005. Cited on 224
Singh A., Castro M., Druschel P., and Rowstron A. Defending Against Eclipse

Attacks on Overlay Networks. In 11th SIGOPS European Workshop, pages 115–120,
New York, NY, Sept. 2004. ACM, ACM Press. Cited on 583

Singh A., Ngan T.-W., Druschel P., and Wallach D. S. Eclipse Attacks on Overlay
Networks: Threats and Defenses. In 25th INFOCOM Conference, pages 1–12, Los
Alamitos, CA., Apr. 2006. IEEE, IEEE Computer Society Press. Cited on 583

Singhal M. and Shivaratri N. Advanced Concepts in Operating Systems: Distributed,
Database, and Multiprocessor Operating Systems. McGraw-Hill, New York, 1994.
Cited on 399

Sivasubramanian S., Pierre G., and Steen M.van . Replicating Web Applications
On-Demand. In 1st International Conference on Services Computing, pages 227–236,
Los Alamitos, CA., Sept. 2004a. IEEE, IEEE Computer Society Press. Cited on 627

Sivasubramanian S., Szymaniak M., Pierre G., and Steen M.van . Replication for
Web Hosting Systems. ACM Computing Surveys, 36(3):1–44, Sept. 2004b. Cited on
331, 620

Sivasubramanian S., Alonso G., Pierre G., and Steen M.van . GlobeDB: Autonomic
Data Replication for Web Applications. In 14th International World Wide Web
Conference, pages 33–42, New York, NY, May 2005. ACM Press. Cited on 628

Sivasubramanian S., Pierre G., Steen M.van , and Alonso G. GlobeCBC: Content-
blind Result Caching for Dynamic Web Applications. Technical report, Vrije
Universiteit, Department of Computer Science, Jan. 2006. Cited on 629

Sivrikaya F. and Yener B. Time Synchronization in Sensor Networks: A Survey. IEEE
Network, 18(4):45–50, July 2004. Cited on 271

Skeen D. Nonblocking Commit Protocols. In SIGMOD International Conference on
Management Of Data, pages 133–142. ACM, 1981. Cited on 395

Skeen D. and Stonebraker M. A Formal Model of Crash Recovery in a Distributed
System. IEEE Transactions on Software Engineering, SE-9(3):219–228, Mar. 1983.
Cited on 396

Smith J. and Nair R. The Architecture of Virtual Machines. Computer, 38(5):32–38,
May 2005. Cited on 101, 102

Snir M., Otto S., Huss-Lederman S., Walker D., and Dongarra J. MPI: The Complete
Reference – The MPI Core. MIT Press, Cambridge, MA., 1998. Cited on 169

Speakman T., Crowcroft J., Gemmell J., Farinacci D., Lin S., Leshchiner D., Luby M.,
Montgomery T., Rizzo L., Tweedly A., Bhaskar N., Edmonstone R., Sumanasekera
R., and Vicisano L. PGM Reliable Transport Protocol Specification. RFC 3208, Dec.
2001. Cited on 662

Specht S. M. and Lee R. B. Distributed Denial of Service: Taxonomies of Attacks,
Tools, and Countermeasures. In Int’l Workshop on Security in Parallel and Distributed
Systems, pages 543–550, Sept. 2004. Cited on 465

Spector A. Performing Remote Operations Efficiently on a Local Computer Network.
Communications of the ACM, 25(4):246–260, Apr. 1982. Cited on 372

Srinivasan R. RPC: Remote Procedure Call Protocol Specification Version 2. RFC



696 BIBLIOGRAPHY

1831, Aug. 1995a. Cited on 543
Srinivasan R. XDR: External Data Representation Standard. RFC 1832, Aug. 1995b.

Cited on 543
Sripanidkulchai K., Maggs B., and Zhang H. Efficient Content Location Using

Interest-Based Locality in Peer-to-Peer Systems. In 22nd INFOCOM Conference,
Los Alamitos, CA., Mar. 2003. IEEE, IEEE Computer Society Press. Cited on 255

Stein L. Web Security, A Step-by-Step Reference Guide. Addison-Wesley, Reading, MA.,
1998. Cited on 471

Steinder M. and Sethi A. A Survey of Fault Localization Techniques in Computer
Networks. Science of Computer Programming, 53:165–194, May 2004. Cited on 408

Steiner J., Neuman C., and Schiller J. Kerberos: An Authentication Service for Open
Network Systems. In Winter Technical Conference, pages 191–202. USENIX, 1988.
Cited on 448

Steinmetz R. Human Perception of Jitter and Media Synchronization. IEEE Journal
on Selected Areas in Communication, 14(1):61–72, Jan. 1996. Cited on 190

Steinmetz R. and Nahrstedt K. Multimedia Systems. Springer-Verlag, Berlin, 2004.
Cited on 115, 184, 187

Stevens W. UNIX Network Programming – Networking APIs: Sockets and XTI. Prentice
Hall, Englewood Cliffs, N.J., 2nd edition, 1998. Cited on 97, 167

Stevens W. UNIX Network Programming – Interprocess Communication. Prentice Hall,
Englewood Cliffs, N.J., 2nd edition, 1999. Cited on 90, 159

Stevens W. and Rago S. Advanced Programming in the UNIX Environment. Addison-
Wesley, Reading, MA., 2nd edition, 2005. Cited on 92

Stoica I., Morris R., Liben-Nowell D., Karger D. R., Kaashoek M. F., Dabek F., and
Balakrishnan H. Chord: A Scalable Peer-to-peer Lookup Protocol for Internet
Applications. IEEE/ACM Transactions on Networking, 11(1):17–32, Feb. 2003. Cited
on 63, 214, 217

Stojmenovic I. Position-based Routing in Ad Hoc Networks. IEEE Communications
Magazine, 40(7):128–134, July 2002. Cited on 291

Strauss J., Katabi D., and Kaashoek F. A Measurement Study of Available Bandwidth
Estimation Tools. In 3rd Internet Measurement Conference, pages 39–44, New York,
NY, 2003. ACM Press. Cited on 621

Sugerman J., Venkitachalam G., and Lim B.-H. Virtualizing I/O Devices on VMware
Workstation s Hosted Virtual Machine Monitor. In USENIX Annual Technical
Conference, pages 1–14, Berkeley, CA, June 2001. USENIX, USENIX. Cited on 102

Sun Microsystems . EJB 3.0 Simplified API. Sun Microsystems, Mountain View, Calif.,
Aug. 2005. Cited on 485

Sun Microsystems . Java Message Service, version 1.1. Sun Microsystems, Mountain
View, Calif., Apr. 2004a. Cited on 506, 639

Sun Microsystems . Java Remote Method Invocation Specification, JDK 1.5. Sun Mi-
crosystems, Mountain View, Calif., 2004b. Cited on 145

Jini. Jini Technology Starter Kit, Version 2.1. Sun Microsystems, Palo Alto, CA, Oct.
2005. Cited on 527, 639

Sundararaman B., Buy U., and Kshemkalyani A. D. Clock Synchronization for
Wireless Sensor Networks: A Survey. Ad-Hoc Networks, 3(3):281–323, May 2005.



BIBLIOGRAPHY 697

Cited on 271
Szymaniak M., Pierre G., and Steen M.van . Scalable Cooperative Latency Estimation.

In 10th International Conference on Parallel and Distributed Systems, pages 367–376,
Los Alamitos, CA., July 2004. IEEE, IEEE Computer Society Press. Cited on 293

Szymaniak M., Pierre G., and Steen M.van . A Single-Homed Ad hoc Distributed
Server. Technical Report IR-CS-013, Vrije Universiteit, Department of Computer
Science, Mar. 2005. Cited on 118

Szymaniak M., Pierre G., and Steen M.van . Latency-driven replica placement. IPSJ
Digital Courier, 2:561–572, 2006. Cited on 328

Taiani F., Fabre J.-C., and Killijian M.-O. A Multi-Level Meta-Object Protocol for
Fault-Tolerance in Complex Architectures. In International Conference on Depend-
able Systems and Networks, pages 270–279, Los Alamitos, CA., June 2005. IEEE
Computer Society Press. Cited on 514

Tam D., Azimi R., and Jacobsen H.-A. Building Content-Based Publish/Subscribe
Systems with Distributed Hash Tables. In 1st Int’l Workshop on Databases, Informa-
tion Systems and Peer-to-Peer Computing, volume 2944 of Lecture Notes in Computer
Science, pages 138–152, Berlin, Sept. 2003. Springer-Verlag. Cited on 643

Tan S.-W., Waters G., and Crawford J. A Survey and Performance Evaluation of
Scalable Tree-based Application Layer Multicast Protocols. Technical Report 9-03,
University of Kent, UK, July 2003. Cited on 196

Tanenbaum A. Computer Networks. Prentice Hall, Upper Saddle River, N.J., 4th
edition, 2003. Cited on 139, 369

Tanenbaum A. and Woodhull A. Operating Systems, Design and Implementation.
Prentice Hall, Englewood Cliffs, N.J., 3rd edition, 2006. Cited on 224, 535

Tanenbaum A., Mullender S., and Renesse R.van . Using Sparse Capabilities in
a Distributed Operating System. In 6th International Conference on Distributed
Computing Systems, pages 558–563, Cambridge, MA, May 1986. IEEE. Cited on 474

Tanenbaum A., Renesse R.van , Staveren H.van , Sharp G., Mullender S., Jansen J.,
and Rossum G.van . Experiences with the Amoeba Distributed Operating System.
Communications of the ACM, 33(12):46–63, Dec. 1990. Cited on 452

Tanisch P. Atomic Commit in Concurrent Computing. IEEE Concurrency, 8(4):34–41,
Oct. 2000. Cited on 389

Tartalja I. and Milutinovic V. Classifying Software-Based Cache Coherence Solutions.
IEEE Software, 14(3):90–101, May 1997. Cited on 347

Tel G. Introduction to Distributed Algorithms. Cambridge University Press, Cambridge,
UK, 2nd edition, 2000. Cited on 259, 294

Terry D., Demers A., Petersen K., Spreitzer M., Theimer M., and Welsh B. Session
Guarantees for Weakly Consistent Replicated Data. In 3rd International Conference
on Parallel and Distributed Information Systems, pages 140–149, Los Alamitos, CA.,
Sept. 1994. IEEE, IEEE Computer Society Press. Cited on 322, 325, 327

Terry D., Petersen K., Spreitzer M., and Theimer M. The Case for Non-transparent
Replication: Examples from Bayou. IEEE Data Engineering, 21(4):12–20, Dec. 1998.
Cited on 322

Thomas R. A Majority Consensus Approach to Concurrency Control for Multiple
Copy Databases. ACM Transactions on Database Systems, 4(2):180–209, June 1979.



698 BIBLIOGRAPHY

Cited on 345
TIBCO . TIB/Rendezvous Concepts, Release 7.4. TIBCO Software Inc., Palo Alto, CA,

July 2005. Cited on 74, 642
Tolia N., Harkes J., Kozuch M., and Satyanarayan M. Integrating Portable and

Distributed Storage. In 3rd USENIX Conference on File and Storage Technologies,
Berkeley, CA, Mar. 2004. USENIX, USENIX. Cited on 566

Tolksdorf R. and Rowstron A. Evaluating Fault Tolerance Methods for Large-scale
Linda-like systems. In International Conference on Parallel and Distributed Processing
Techniques and Applications, volume 2, pages 793–800, June 2000. Cited on 664

Towsley D., Kurose J., and Pingali S. A Comparison of Sender-Initiated and Receiver-
Initiated Reliable Multicast Protocols. IEEE Journal on Selected Areas in Communica-
tion, 15(3):398–407, Apr. 1997. Cited on 378

Tripathi A., Karnik N., Vora M., Ahmed T., and Singh R. Mobile Agent Programming
in Ajanta. In 19th International Conference on Distributed Computing Systems, pages
190–197, Austin, TX, May 1999. IEEE. Cited on 459

Turek J. and Shasha S. The Many Faces of Consensus in Distributed Systems.
Computer, 25(6):8–17, June 1992. Cited on 364, 367

Umar A. Object-Oriented Client/Server Internet Environments. Prentice Hall, Upper
Saddle River, N.J., 1997. Cited on 60

UPnP Forum . UPnP Device Architecture Version 1.0.1, Dec. 2003. Cited on
Renesse R.van , Birman K., and Vogels W. Astrolabe: A Robust and Scalable

Technology for Distributed System Monitoring, Management, and Data Mining.
ACM Transactions on Computer Systems, 21(2):164–206, May 2003. Cited on 81

Steen M.van , Hauck F., Homburg P., and Tanenbaum A. Locating Objects in Wide-
Area Systems. IEEE Communications Magazine, 36(1):104–109, Jan. 1998. Cited on
218

Vasudevan S., Kurose J. F., and Towsley D. F. Design and Analysis of a Leader
Election Algorithm for Mobile Ad Hoc Networks. In 12th International Conference
on Network Protocols, pages 350–360, Los Alamitos, CA., Oct. 2004. IEEE, IEEE
Computer Society Press. Cited on 297, 299

Veiga L. and Ferreira P. Asynchronous Complete Distributed Garbage Collection. In
19th International Parallel & Distributed Processing Symposium, Los Alamitos, CA.,
Apr. 2005. IEEE, IEEE Computer Society Press. Cited on 212

Velazquez M. A Survey of Distributed Mutual Exclusion Algorithms. Technical
Report CS-93-116, University of Colorado at Boulder, Sept. 1993. Cited on 281

Vetter R., Spell C., and Ward C. Mosaic and the World-Wide Web. Computer, 27(10):
49–57, Oct. 1994. Cited on 589

Vitek J., Bryce C., and Oriol M. Coordinating Processes with Secure Spaces. Science
of Computer Programming, 46(1-2), 2003. Cited on 669

Vogels W. Tracking Service Availability in Long Running Business Activities. In 1st
International Conference on Service Oriented Computing, volume 2910 of Lecture Notes
in Computer Science, pages 395–408, Berlin, Dec. 2003. Springer-Verlag. Cited on
369

Voulgaris S. and Steen M.van . Epidemic-style Management of Semantic Overlays for
Content-Based Searching. In 11th International Conference on Parallel and Distributed



BIBLIOGRAPHY 699

Computing (Euro-Par), volume 3648 of Lecture Notes in Computer Science, pages
1143–1152, Berlin, Sept. 2005. Springer-Verlag. Cited on 255

Voulgaris S., Rivière E., Kermarrec A.-M., and Steen M.van . Sub-2-Sub: Self-
Organizing Content-Based Publish and Subscribe for Dynamic and Large Scale
Collaborative Networks. In 5th International Workshop on Peer-to-Peer Systems, Feb.
2006. Cited on 643, 646

Voydock V. and Kent S. Security Mechanisms in High-Level Network Protocols.
ACM Computing Surveys, 15(2):135–171, June 1983. Cited on 432

Wah B. W., Su X., and Lin D. A Survey of Error-Concealment Schemes for Real-Time
Audio and Video Transmissions over the Internet. In Int’l Symp. Multimedia Softw.
Eng., pages 17–24, Los Alamitos, CA., Dec. 2000. IEEE, IEEE Computer Society
Press. Cited on 188

Wahbe R., Lucco S., Anderson T., and Graham S. Efficient Software-based Fault Iso-
lation. In 14th Symposium on Operating System Principles, pages 203–216, Asheville,
North Carolina, Dec. 1993. ACM. Cited on 460

Waldo J. Remote Procedure Calls and Java Remote Method Invocation. IEEE
Concurrency, 6(3):5–7, July 1998. Cited on 502

Walfish M., Balakrishnan H., , and Shenker S. Untangling the Web from DNS. In
1st Symposium on Networked Systems Design and Implementation, pages 225–238,
Berkeley, CA, Mar. 2004. USENIX, USENIX. Cited on 243

Wallach D. A Survey of Peer-to-Peer Security Issues. In Int’l Symp. Softw. Security,
volume 2609 of Lecture Notes in Computer Science, pages 42–57, Berlin, Nov. 2002.
Springer-Verlag. Cited on 583

Wallach D., Balfanz D., Dean D., and Felten E. Extensible Security Architectures for
Java. In 16th Symposium on Operating System Principles, pages 116–128, St. Malo,
France, Oct. 1997. ACM. Cited on 462, 465

Wang C., Carzaniga A., Evans D., and Wolf A. L. Security Issues and Requirements
for Internet-Scale Publish-Subscribe Systems. In 35th Hawaii International Conference
on System Sciences, volume 9, pages 303–310. IEEE, Jan. 2002. Cited on 666

Wang H., Lo M. K., and Wang C. Consumer Privacy Concerns about Internet
Marketing. Communications of the ACM, 41(3):63–70, Mar. 1998. Cited on

Watts D. Small Worlds, The Dynamics of Networks between Order and Randomness.
Princeton University Press, Princeton, NJ, 1999. Cited on 255

Wessels D. Squid: The Definitive Guide. O’Reilly & Associates, Sebastopol, CA., 2004.
Cited on 601, 619

Wieringa R. and Jonge W.de . Object Identifiers, Keys, and Surrogates–Object
Identifiers Revisited. Theory and Practice of Object Systems, 1(2):101–114, 1995. Cited
on 207

Wiesmann M., Pedone F., Schiper A., Kemme B., and Alonso G. Understanding
Replication in Databases and Distributed Systems. In 20th International Conference
on Distributed Computing Systems, pages 264–274, Taipei, Taiwan, Apr. 2000. IEEE.
Cited on 306

Wollrath A., Riggs R., and Waldo J. A Distributed Object Model for the Java System.
Computing Systems, 9(4):265–290, Fall 1996. Cited on 499, 512

Wolman A., Voelker G., Sharma N., Cardwell N., Karlin A., and Levy H. On the



700 BIBLIOGRAPHY

Scale and Performance of Cooperative Web Proxy Caching. In 17th Symposium
on Operating System Principles, pages 16–31, Kiawah Island, SC, Dec. 1999. ACM.
Cited on 618

Wu D., Hou Y., Zhu W., Zhang Y., and Peha J. Streaming Video over the Internet:
Approaches and Directions. IEEE Trans. Circuits & Syst. Video Techn., 11(1):1–20,
Feb. 2001. Cited on 186

Yang B. and Garcia-Molina H. Designing a Super-Peer Network. In 19th International
Conference on Data Engineering, pages 49–60, Los Alamitos, CA., Mar. 2003. IEEE,
IEEE Computer Society Press. Cited on 70

Yang M., Zhang Z., Li X., and Dai Y. An Empirical Study of Free-Riding Behavior in
the Maze P2P File-Sharing System. In 4th International Workshop on Peer-to-Peer
Systems, Lecture Notes in Computer Science, Berlin, Feb. 2005. Springer-Verlag.
Cited on 72

Yellin D. Competitive Algorithms for the Dynamic Selection of Component Imple-
mentations. IBM Systems Journal, 42(1):85–97, Jan. 2003. Cited on 78

Yu H. and Vahdat A. Efficient Numerical Error Bounding for Replicated Network
Services. In Abbadi A. E., Brodie M. L., Chakravarthy S., Dayal U., Kamel N.,
Schlageter G., and Whang K.-Y., editors, 26th International Conference on Very Large
Data Bases, pages 123–133, San Mateo, CA., Sept. 2000. Morgan Kaufman. Cited
on 339

Yu H. and Vahdat A. Design and Evaluation of a Conit-Based Continuous Consis-
tency Model for Replicated Services. ACM Transactions on Computer Systems, 20(3):
239–282, 2002. Cited on 308, 309, 622

Zhang C. and Jacobsen H.-A. Resolving Feature Convolution in Middleware Sys-
tems. In 19th Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 188–205, New York, NY, Oct. 2004. ACM, ACM Press. Cited on
78

Zhao B., Huang L., Stribling J., Rhea S., Joseph A., and Kubiatowicz J. Tapestry: A
Resilient Global-Scale Overlay for Service Deployment. IEEE Journal on Selected
Areas in Communication, 22(1):41–53, Jan. 2004. Cited on 244

Zhao F. and Guibas L. Wireless Sensor Networks. Morgan Kaufman, San Mateo, CA.,
2004. Cited on

Zhuang S. Q., Geels D., Stoica I., and Katz R. H. On Failure Detection Algorithms in
Overlay Networks. In 24th INFOCOM Conference, Los Alamitos, CA., Mar. 2005.
IEEE, IEEE Computer Society Press. Cited on 368

Zogg J.-M. GPS Basics. Technical Report GPS-X-02007, UBlox, Mar. 2002. Cited on
265, 267

Zwicky E., Cooper S., Chapman D., and Russell D. Building Internet Firewalls. O’Reilly
& Associates, Sebastopol, CA., 2nd edition, 2000. Cited on 456


	Introduction
	Definition of a distributed system
	Goals
	Making resources accessible
	Distribution transparency
	Types of transparency
	Degree of transparency

	Openness
	Separating policy from mechanism

	Scalability
	Scalability problems
	Scaling techniques

	Pitfalls

	Types of distributed systems
	Distributed computing systems
	Cluster computing systems
	Grid computing systems

	Distributed information systems
	Transaction processing systems
	Enterprise application integration

	Distributed pervasive systems
	Home systems
	Electronic health care systems
	Sensor networks


	Summary

	Bibliography

