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1.1. Introduction

Throughout this chapter, E denotes the collection of all functions f : [−π, π] → C which are
piecewise continuous on the interval [−π, π]. This means that any function f ∈ E has at most a
finite number of points of discontinuity, at each of which f need not be defined but must have one
sided limits which are finite. We further adopt the convention that any two functions f, g ∈ E are
considered equal, denoted by f = g, if f(x) = g(x) for every x ∈ [−π, π] with at most a finite number
of exceptions.

Suppose now that f ∈ E. The purpose of our study is to represent such a function f in the form

(1.1) f(x) ∼ a0

2
+
∞∑

n=1

(an cos nx + bn sinnx),

where the coefficients a0, a1, a2, . . . and b1, b2, b3, . . . depend only on the function f . We also wish to
represent f in the form

(1.2) f(x) ∼
∞∑

n=−∞
cneinx,

where again the coefficients . . . , c−2, c−1, c0, c1, c2, . . . depend only on the function f .
A few questions arise immediately. The function f is piecewise continuous on [−π, π], while each of

the summands in the series in (1.1) and (1.2) is continuous on [−π, π]. Can the series, if convergent,
represent the function f in a satisfactory way? Under what conditions are the series convergent? Do
we need more terms in the series? How are the coefficients an, bn and cn calculated in terms of the
given function f? How do we interpret such coefficients?

1.2. Some Examples of Real Fourier Series

Let us investigate Fourier series of the type (1.1), where the coefficients an and bn are real.

Example 1.2.1. Consider the function f : [−π, π] → C, given by f(x) = |x| for every x ∈ [−π, π].
We shall show in Example 3.1.2 that this function has Fourier series

|x| ∼ π

2
−

∞∑

n=1
n odd

4
πn2

cos nx,

with partial sums

Sm(x) =
π

2
−

m∑

n=1
n odd

4
πn2

cos nx.
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Clearly the Fourier series and all the partial sums are periodic functions with period 2π, so we extend
the definition of f to the real line R by writing f(x + 2π) = f(x) for every x ∈ R. The following
graphs represent the partial sums Sm(x) for m = 3, 7, 11, 15:
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the definition of f to the real line R by writing f(x + 2π) = f(x) for every x ∈ R. The following graphs
represent the partial sums Sm(x) for m = 3, 7, 11, 15:
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We see that as m increases, the graph for the partial sum sm(x) gets closer and closer to the graph for
the 2π-periodic function f on R. Note that this function f is continuous on R, as are all the partial
sums. In some sense, this example is not very interesting. We expect Sm(x)→ |x| for every x ∈ [−π, π].
The Fourier series converges absolutely for every x ∈ [−π, π], and uniformly in any subset of this.
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partial sums. In some sense, this example is not very interesting. We expect Sm(x) → |x| for every
x ∈ [−π, π]. The Fourier series converges absolutely for every x ∈ [−π, π], and uniformly in any
subset of this.

Example 1.2.2. Consider the function f : [−π, π] → C, given by f(x) = x2 for every x ∈ [−π, π].
We shall show in Example 3.1.4 that this function has Fourier series

x2 ∼ π2

3
+
∞∑

n=1

4(−1)n

n2
cos nx,

with partial sums

Sm(x) =
π2

3
+

m∑

n=1

4(−1)n

n2
cos nx.

Again the Fourier series and all the partial sums are periodic functions with period 2π. As in the
previous example, we extend the definition of f to the real line R by writing f(x + 2π) = f(x) for
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every x ∈ R. The following graphs represent the partial sums Sm(x) for m = 1, 2, 3, 4, 5, 6:
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Notice the effect of the sign change (−1)n in the partial sum. The partial sum s1(x) is negative for some
values of x, and this is over-corrected by the contribution from the term corresponding to n = 2. Then
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the term corresponding to n = 3 over-corrects this over-correction again, and so on. Continuing, the
following graphs represent the partial sums Sm(x) for m = 5, 6, 7, 8:

m = 5

m = 6

m = 7

m = 8

As m increases, the graph for the partial sum sm(x) gets closer and closer to the graph for the 2π-periodic
function f on R. Note that this function f is continuous on R, as are all the partial sums. We expect
Sm(x) → x2 for every x ∈ [−π, π]. The Fourier series converges absolutely for every x ∈ [−π, π], and
uniformly in any subset of this.
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Notice the effect of the sign change (−1)n in the partial sum. The partial sum s1(x) is negative
for some values of x, and this is over-corrected by the contribution from the term corresponding to
n = 2. Then the term corresponding to n = 3 over-corrects this over-correction again, and so on. As
m increases, the graph for the partial sum sm(x) gets closer and closer to the graph for the 2π-periodic
function f on R. Note that this function f is continuous on R, as are all the partial sums. We expect
Sm(x)→ x2 for every x ∈ [−π, π]. The Fourier series converges absolutely for every x ∈ [−π, π], and
uniformly in any subset of this.

Example 1.2.3. Consider the function f : [−π, π] → C, given by f(x) = x for every x ∈ [−π, π].
We shall show in Example 3.1.1 that this function has Fourier series

x ∼
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n=1

2(−1)n+1

n
sinnx,

with partial sums

Sm(x) =
m∑

n=1

2(−1)n+1

n
sinnx.

Again the Fourier series and all the partial sums are periodic functions with period 2π. By altering
our definition of f at one or both of the points x = ±π, we may extend f to a periodic function
with period 2π on the real line R by writing f(x + 2π) = f(x) for every x ∈ R. The following graph
represents the partial sums Sm(x) for m = 10, 20:
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Again the Fourier series and all the partial sums are periodic functions with period 2π. By altering our
definition of f at one or both of the points x = ±π, we may extend f to a periodic function with period
2π on the real line R by writing f(x + 2π) = f(x) for every x ∈ R. The following graphs represent the
partial sums Sm(x) for m = 10, 20, 30:

m = 10

m = 20

m = 30

Observe that f(x)→ π as x→ π− 0 and f(x)→ −π as x→ −π + 0. Observe also that Sm(±π) = 0
for every m ∈ N, and so the Fourier series has value 0 at these points. Let us look at two more graph,
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representing the partial sums Sm(x) for m = 30, 40:
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Observe that f(x) → π as x → π − 0 and f(x) → −π as x → −π + 0. Observe also that Sm(±π) = 0
for every m ∈ N, and so the Fourier series has value 0 at these points. Let us look at one more graph,
representing the partial sum Sm(x) for m = 40:

m = 40

We may still expect Sm(x)→ x for every x ∈ (−π, π). However, it is also clear that there is some erratic
behaviour of the sequence of partial sums near the points of discontinuity x = ±π of the function f .

Example 1.2.4. Consider the function f : [−π, π]→ C, given for every x ∈ [−π, π] by

f(x) = sgn(x) =

{+1 if 0 < x ≤ π,
0 if x = 0,
−1 if −π ≤ x < 0.

We shall show in Example 3.1.3 that this function has Fourier series

sgn(x) ∼
∞∑

n=1
n odd

4
πn

sinnx with partial sums Sm(x) =
m∑

n=1
n odd

4
πn

sinnx.

Again the Fourier series and all the partial sums are periodic functions with period 2π. As in the last
example, by altering our definition of f at one or both of the points x = ±π, we may extend f to a
periodic function with period 2π on the real line R by writing f(x + 2π) = f(x) for every x ∈ R. The
following graphs represent the partial sums Sm(x) for m = 9, 19:

m = 9

m = 19

We may still expect Sm(x) → x for every x ∈ (−π, π). However, it is also clear that there is some
erratic behaviour of the sequence of partial sums near the points of discontinuity x = ±π of the
function f .

Example 1.2.4. Consider the function f : [−π, π]→ C, given for every x ∈ [−π, π] by

f(x) = sgn(x) =






+1, if 0 < x ! π,
0, if x = 0,
−1, if −π ! x < 0.

We shall show in Example 3.1.3 that this function has Fourier series

sgn(x) =
∞∑

n=1
n odd

4
πn

sin nx,

with partial sums

Sm(x) =
m∑

n=1
n odd

4
πn

sinnx.

Again the Fourier series and all the partial sums are periodic functions with period 2π. As in the
last example, by altering our definition of f at one or both of the points x = ±π, we may extend f
to a periodic function with period 2π on the real line R by writing f(x + 2π) = f(x) for every x ∈ R.
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The following graphs represent the partial sums Sm(x) for m = 9, 19, 29, 39:
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Note that the erratic behaviour of the partial sums near the points of discontinuity x = ±π of the
function f is better illustrated than in the last example. Continuing, the following graphs represent the
partial sums Sm(x) for m = 29, 39:

m = 29

m = 39

We may still expect Sm(x)→ sgn(x) for every x ∈ (−π, π). However, these last two graphs suggest that
the erratic behaviour of the sequence of partial sums near the points of discontinuity x = ±π of the
function f may not go away, but simply shifts closer to the points of discontinuity x = ±π. This erratic
behaviour is known as the Gibbs phenomenon.
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