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Solutions to Exercises

The combinations give (a) alineRR® (b) aplaneinR® (c) all of R3.

v+ w = (2,3) andv — w = (6, —1) will be the diagonals of the parallelogram with

v andw as two sides going out froif, 0).

This problem gives the diagonats+ w andv — w of the parallelogram and asks for

the sides: The opposite of Problem 2. In this exampie (3, 3) andw = (2, —2).
3v+ w = (7,5) andcv + dw = (2¢ + d, c + 2d).

u+v = (-2,3,1) andu+v+w = (0,0,0) and2u+2v+w = ( add first answeps=
(—2,3,1). The vectorsu, v, w are in the same plane because a combination gives

(0,0,0). Stated another ways = —v — w is in the plane ob andw.

The components of everyw + dw add to zero because the components ahd ofw
addto zeroc = 3 andd = 9 give(3, 3, —6). There is no solution tev+dw = (3, 3, 6)
because& + 3 + 6 is not zero.

The nine combination&(2, 1) + d(0, 1) with ¢ = 0,1,2 andd = (0,1, 2) will lie on a

lattice. If we took all whole numbeksandd, the lattice would lie over the whole plane.
The other diagonal is — w (or elsew — v). Adding diagonals give2v (or 2w).
The fourth corner can bl, 4) or (4,0) or (-2, 2). Three possible parallelograms!

i —j = (1,1,0) is in the basex-y plane).: + 7 + k = (1,1, 1) is the opposite corner

from (0,0,0). Points inthe cube hawe< 2 < 1,0 <y <1,0< 2z < 1.

Four more corner$l,1,0), (1,0,1),(0,1,1),(1,1,1). The center point i§
7%7 (

1),(1,4,3) and(3,0,3),

Centers of faces arg, £,0), (3, ,1) and(0 , %

’ 5
The combinations of = (1,0,0) andi + j = (1, 1, 0) fill the xy plane inzyz space.
Sum= zero vector. Sum= —2:00 vector= 8:00 vector. 2:00 is 30° from horizontal

= (cos Z,sin Z) = (v/3/2,1/2).

Moving the origin to6:00 addsj = (0, 1) to every vector. So the sum of twelve vectors

changes fron® to 125 = (0, 12).
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The pothv + i is three-fourths of the way te starting fromw. The vector

4
parallelogram).

1 1 . 1 1 .
—v+ i is halfway tou = 7Y + W The vectow + w is 2u (the far corner of the

All combinations withc + d = 1 are on the line that passes throughand w.

The pointV = —wv + 2w is on that line but it is beyoneb.

Al vectors cv + cw are on the line passing through, 0) andu = v + 1w. That
line continues out beyond + w and back beyon¢D, 0). With ¢ > 0, half of this line

is removed, leaving ey that starts af0, 0).

The combinationsv + dw with 0 < ¢ < 1 and0 < d < 1 fill the parallelogramwith
sidesv andw. For example, ifv = (1,0) andw = (0, 1) thencv + dw fills the unit
square. But whem = (a,0) andw = (b, 0) these combinations only fill a segment of

aline.

With ¢ > 0 andd > 0 we get the infinite “cone” or “wedge” betweanandw. For
example, ifv = (1,0) andw = (0, 1), then the cone is the whole quadrant 0, y >

0. Question What if w = —v? The cone opens to a half-space. But the combinations
of v = (1,0) andw = (—1,0) only fill aline.

(@) u + 1v + 1w is the center of the triangle betweanv andw; u + 1w lies
betweernu andw (b) Tofillthe triangle keep>0,d>0,e>0,andc+d+e = 1.
The sum ifv —u) + (w —v) + (u —w) = zero vector. Those three sides of a triangle
are in the same plane!

The vector} (u + v + w) is outsidethe pyramid because+ d+e =1+ 1 + 1 > 1.

All vectors are combinations ef, v, w as drawn (not in the same plane). Start by
seeing thatu + du fills a plane, then addinguw fills all of R3.

The combinations ofs andw fill one plane. The combinations efandw fill another

plane. Those planes meet itirge: only the vectorgv are in both planes.

() For aline, choose = v = w = any nonzero vector (b) For a plane, choose

u andw in different directions. A combination likes = u + v is in the same plane.
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Solutions to Exercises

Two equations come from the two components+ 3d = 14 and2c¢ + d = 8. The

solutionisc = 2 andd = 4. Then2(1,2) + 4(3,1) = (14, 8).

A four-dimensional cube ha&* = 16 corners an® - 4 = 8 three-dimensional faces

and24 two-dimensional faces arg® edges in Worked Examplz4 A.

There ares unknown numbers,, vo, v3, w1, wo, w3. The Six equations come from the
components ob + w = (4,5,6) andv — w = (2,5,8). Add to find2v = (6, 10, 14)
sov = (3,5,7) andw = (1,0, —1).

Two combinations out of infinitely many that prodube= (0,1) are —2u + v and
1w — fv. No, three vectoras, v, w in the z-y plane could fail to producé if all
three lie on a line that does not contéinYes if one combination producdsthen two
(and infinitely many) combinations will produde This is true even ifu = 0; the

combinations can have differesi:.

The combinations of andw fill the planeunlessy andw lie on the same line through
(0,0). Four vectors whose combinations fildimensional space: one example is the

“standard basis(1, 0, 0, 0), (0,1, 0,0), (0,0, 1,0), and(0, 0,0, 1).

The equationsu + dv + ew = b are

2¢ —d =1 Sod = 2e c=3/4

—c+2d —e=0 thenc = 3e d=2/4

—d+2e=0 thende =1 e=1/4
u-v=-24424=0uv-w=—-6+16=1Lu-(v+w)=u-v+u-w=

0+l,w-v=4—-6=-2=v-w.

|u|| = 1 and||v| = 5 and|jw]|| = V5. Then|u - v| = 0 < (1)(5) and|v - w| = 10 <
5v/5, confirming the Schwarz inequality.
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Unit vectorsv/|lv|| = (2,2) = (0.8,0.6). The vectorsw, (2,—1), and—w make
0°,90°,180° angles withw andw/||w|| = (1/v/5,2/+/5). The cosine of is . -
w o _

oy = 10/5V5.

@uv-(—v)=-1 b v+w)-v-—w)=v-v+wVv—Vv-W-—W-W=

1+( )—( )—1=0s060=90° (noticev-w = w-v) (©) (v—2w)-(v+2w) =
vev—4dw-w=1—-—4=-3.

uy; = v/|jv|| = (1,3)/V10 anduy = w/|w| = (2,1,2)/3. U, = (3,-1)//10 is
perpendicular tas; (and so is(—3,1)/4/10). U, could be(1, —2,0)/v/5: There is a
whole plane of vectors perpendiculardg, and a whole circle of unit vectors in that
plane.

All vectorsw = (¢, 2¢) are perpendicular te. They lie on a line. All vectorsz, y, z)
with  + y + z = 0 lie on aplane All vectors perpendicular t61,1,1) and(1, 2, 3)
lie on aline in 3-dimensional space.

(@) cosf = v - w/||v|||lw| = 1/(2)(1) sof = 60° or 7/3 radians  (b)cosf =
0sof = 90° or w/2 radians (C)cos® = 2/(2)(2) = 1/2s06 = 60° or /3
(d) cos = —1/+/2 506 = 135° or 37 /4.

() False:v andw are any vectors in the plane perpendiculauto (b) True: u -
(v+2w)=u-v+2u-w=0 (c) True,|u—v|? = (u—v)-(u—v)splitsinto
u-u+v-v=2whenu-v=v-u=0.

If vows /v1w; = —1thenvaws = —vywy Orvywy +vewe = v-w = 0: perpendicular!
The vectorg1, 4) and(1, —1) are perpendicular.

Slopes2/1 and—1/2 multiply to give —1: thenwv - w = 0 and the vectors (the direc-

tions) are perpendicular.

v - w < 0 means angle- 90°; thesew'’s fill half of 3-dimensional space.

(1,1) perpendicular t@1,5) — c¢(1,1) if (1,1)-(1,5) —¢(1,1)-(1,1) =6 —2c=0o0r
c=3;v-(w—cv)=0if c=v-w/v-v. Subtractingv is the key to constructing

a perpendicular vector.
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Solutions to Exercises

The plane perpendicular 1@, 0, 1) contains all vectorsc, d, —c). In that planepy =
(1,0,—1) andw = (0,1, 0) are perpendicular.

One possibility among manwyt = (1, -1,0,0),v = (0,0,1,—1),w = (1,1,-1,—-1)
and(1,1,1,1) are perpendicular to each other. “We can rotate thase w in their
3D hyperplane and they will stay perpendicular.”

Lz +y)=(2+8)/2=>5and5 > 4; cos§ = 2¢/16/1/10v/10 = 8/10.
[v|?=1+1+---+1=9s0|lv| =3;u=v/3=(3,...,1)isaunitvectorirdD;
w = (1,—1,0,...,0)//2is a unit vector in th&D hyperplane perpendicular o
cosa = 1/v/2, cosp = 0, cosy = —1/4/2. For any vectow = (vy,vs,vs) the
cosines with{1, 0, 0) and(0, 0, 1) arecos? a+cos? B+cos? y= (vi+v3+v3)/||v[?= 1.
|v||* = 4% + 22 = 20 and |w||?> = (—1)? + 22 = 5. Pythagoras i§(3,4)||? = 25 =
20 + 5 for the length of the hypotenuse+ w = (3,4).

Start from the rule$1), (2), (3) forv - w = w - v andu - (v + w) and(cv) - w. Use
rule (2) for (v + w) - (v+w) = (v +w) - v+ (v + w) - w. Byrule(1) thisis
v.(v+w)+w-(v+w). Rule(2) againgivex -v+v-w+w-v+w- -w =
v.v+2v-w+ w-w. Noticev - w = w - v! The main point is to feel free to open

up parentheses.

We know thatv — w) « (v —w) = v-v—2v-w+w - w. The Law of Cosines writes
|v|l|lw]| cos @ for v - w. Hered is the angle between andw. Whenf < 90° this

v - w is positive, so in this case - v + w - w is larger thar|v — w||?.

Pythagoras changes from equalifys-b? = ¢? toinequalitywhend < 90° or6 > 90 °.
2v-w < 2||v||||w|| leads t|v +w|]? = v-v+2v-w+w-w < ||v]|? +2|v|||Jw] +
|lwl||?. Thisis(||v|| + ||w]|)?. Taking square roots givél® + w| < ||v| + ||w]|.
viw? + 2uiwivws + vaws < viw? + viw3 + viw? + vaws is true (cancel terms)
because the differenceigw? + vaw? — 2v;w;vawy Which is (vywy — vawy)? > 0.
cos B = w1 /||w] andsin 8 = wy/||w||. Thencos(f—a) = cos § cos a+sin fsina =

viwy /||v]|[|w] + vews/||v]|||Jw] = v - w/||v]||||w]|. Thisiscos # becaused — a = 6.
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Example 6 givesu,||U;| < 3(u} + U?) and|us||Us| < §(u3 + UZ). The whole line

1
2
becomes96 < (.6)(.8) + (.8)(.6) < 3(.6% +.8%) + +(.8% +.6%) = 1. True:.96 < 1.
The cosine ofl is z/+/x2 + y2, near side over hypotenuse. ThHens 0|2 is not greater
than 1:2% /(2% + y?) < 1.

The vectoraw = (z,y) with (1,2) - w = x + 2y = 5 lie on aline in thery plane. The
shortestw on that line is(1, 2). (The Schwarz inequalitifw|| > v - w/||v|| = V5 is
an equality wheros § = 0 andw = (1,2) and||w|| = v/5.)

The length||v — w|| is betweerR and8 (triangle inequality whetfjv|| = 5 and||w|| =

3). The dot producw - w is between-15 and15 by the Schwarz inequality.

Three vectors in the plane could make angles greater 9hanwith each other: for
example(1,0),(—1,4),(—1,—4). Four vectors couldhot do this §60° total angle).
How many can do this ilR? or R"? Ben Harris and Greg Marks showed me that the
answer isn 4+ 1. The vectors from the center of a regular simpleXifi to itsn + 1
vertices all have negative dot productsn 2 vectors inR™ had negative dot products,
project them onto the plane orthogonal to the last one. Nawhaven + 1 vectors in

R"~! with negative dot products. Keep going to 4 vectorRih: no way!

For a specific example, pick = (1,2, —3) and therw = (-3, 1, 2). In this example
cosh = v - w/|v|||w|]| = =7/V14V/14 = —1/2 andf = 120° . This always
happens whem + y + z = 0:

1 1
v.w:xz+xy—|—yz:§(x+y+z)2_§(x2+y2+22)

L 1 1
This is the sameas- w =0 — 3 [lv|l||w]]. Then cos = 7

Wikipedia gives this proof of geometric mead = @zyz < arithmetic mean
A = (x 4+ y + 2)/3. First there is equality in case = y = z. OtherwiseA is

somewhere between the three positive numbers, say for dgamp A < y.

Use the known inequality < « for thetwo positive numbers andy + z — A. Their

meana = i(z +y+ 2z — A)is 1(34 — A) = same asd! Soa > g says that
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A3 > g?A=a2(y+z2—A)A But(y+z—A)A = (y— A)(A—2) +yz > yz.
Substitute to findd?® > xyz = G as we wanted to prove. Not easy!
There are many proofs & = (zyz5 - - ~xn)1/” <A=(r14+z24+ - +x,)/n In
calculus you are maximizing on the plane:; + x5 + - - - + z,, = n. The maximum
occurs when alk’s are equal.

31 The columns of the 4 by 4 “Hadamard matrix” (time$ are perpendicular unit

vectors:

1 -1 -1 1

32 The command¥ = randn (3,30); D = sqrt (diag (V' % V)); U = V\D; will give
30 random unit vectors in the columns@f Thenu’ x U is a row matrix of 30 dot

products whose average absolute value may be clasérto

1 281 + 382 + 4s3 = (2,5,9). The same vectds comes fromS timesz = (2, 3,4):

1 0 0f |2 (rowl) -z 2
1 1 0f([3]=|(row2)-xz| = |5
1 1 1| |4 (row2) -« 9

2 The solutions arg; = 1, y» = 0, y3 = 0 (right side= columnl) andy; = 1, y» = 3,
y3 = 5. That second example illustrates that the firstdd numbers add to?.

Bl ]. 0 0 B1

1 = B Y1
3yt = B, QiVes vy, = —B; +B, =|-1 1 0| |Bs
y1+y2+ys = Bs ys = —By +Bs 0 —1 1| |Bs
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100 1 00
Theinverseof=|1 1 0|isA=|-1 1 0/:independentcolumnsind ands!

111 0-1 1

4 The combinatiordw, + 0wy + 0wz always gives the zero vector, but this problem
looks for otherzerocombinations (then the vectors atependentthey lie in a plane):

wsy = (w; + w3)/2 so one combination that gives zerogwl —wy + %’LUg =0.

5 The rows of the3 by 3 matrix in Problem 4 must also lependentr, = 1 (ry + r3).
The column and row combinations that prodcare the same: this is unusual. Two

solutions tay; 71 + yare +y3r3 =0 are(Yl, Yo, Yg) = (1, -2, 1) and(2, —4, 2)

1 1 0
6 c=3 3 2 1| hascolumr8 = columnl — column2

7 4 3
(1 0-1

c=-—1 1 1 0] hascolum8 = — columnl + column2
0 1 1
0 0 O

c=0 2 1 5| hascolummB =3 (columnl) — column2
3 3 6

7 All three rows are perpendicular to the solutwr{the three equations; - x = 0 and
ro-x = 0 andrs-x = 0 tell us this). Then the whole plane of the rows is perpendicul

to x (the plane is also perpendicular to all multiptas.

©1—0 =b  a =0 10 0 o] [or]
To—T1 = b To = b1 +b 1 1 0 Of |b
g 271 2 2 1+bo _ 21 _ 41p
T3 — Ty = b3 3 = by + by + b3 1 1 1 0 bs
Ty — 23 = by Ty = b1+ by + b3+ by _1 1 1 1_ _b4_
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9 The cyclic difference matriX’' has a line of solutions (it dimensions) t@C'x = 0:

1 0 0 —1] [x] o] ]
-1 1 0 0 To 0 c
= whenx = = any constant vector.

0 -1 1 0 T3 0 c
i 0 0 -1 1_ | Z4 | _O_ L ¢

zZ9 — 21 = bl z1 = —b1 — b2 — bg -1 -1 -1 b1

10 23— 29 = by 29 = —by—bg = 0 -1 -1 by | = A~1b
0— zZ3 = bg zZ3 = - bg 0 0 —1 b3

11 The forward differences of the squares ére- 1)? — 2 =t + 2t + 1 — t2 = 2t + 1.
Differences of theith power argt + 1) — t" = " —t" + nt"~! +.... The leading

term is the derivative:t" 1. The binomial theorem gives all the terms(of+ 1)".

12 Centered difference matrices@fen sizeseem to be invertible. Look at egrisand4:
[ 0 1 0 0_ _xl_ _bl_ First -xl | _—bQ — b4_
-1 0 1 0 X9 by solve X9 by
0 -1 0 1 I3 b3 T = b1 T3 —b4
L 0 0 -1 0_ _x4_ _b4_ —T3 = b4 _$4 ] b1 + b3_

13 Odd size The five centered difference equations leathtg- b3 + b5 = 0.

2 =b
Add equationd, 3,5

r3 —T1 = b2

The left side of the sum is zero
Ty — T = b3

The right side i$, + bs + bs
Ty — T3 = b4

There cannot be a solution unlégs+ b3 + b5 = 0.

— Ty = b5

14 An example iSa,b) = (3,6) and(c, d) = (1,2). We are given that the ratieg/c and
b/d are equal. Themad = bc. Then (when you divide byd) the ratiosa/b andc¢/d

must also be equal!
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1 The row picture forA = I has3 perpendicular planes = 2 andy = 3 andz = 4.
Those are perpendicular to theandy and z axes: z = 4 is a horizontal plane at

height4.

The column vectors are = (1,0,0) andj = (0,1,0) andk = (0,0,1). Thenb =
(2,3,4) is the linear combinatioi + 35 + 4k.

2 The planes in a row picture are the same: = 4isx = 2,3y = 9isy = 3, and
4z = 16 is z = 4. The solution is the same poiX = x. The three column vectors

are changed; but the same combination (coefficiengsoduced = 34), (4, 9, 16).

3 The solution is not changed! The second plane and row 2 of the matrix and all columns
of the matrix (vectors in the column picture) are changed.
4 If z =2thenx +y = 0 andx — y = 2 give the poinf(x,y, z) = (1,—1,2). If 2 =0
thenz + y = 6 andx — y = 4 produce(5, 1, 0). Halfway between those (8,0, 1).
5 If z,y, z satisfy the first two equations they also satisfy the third equatigum of
the first two. The lineL of solutions contain® = (1,1,0) andw = (3,1,1) and
u = %’u + %w and all combinationsv + dw with ¢+ d = 1. (Notice that requirement

c+d = 1. If you allow all c andd, you get a plane.)

6 Equationl + equatior2 — equation3 is now0 = —4. The intersection liné of planes

1 and2 misses plan8: no solution

7 Column3 = Column 1 makes the matrix singular. Roe= (2, 3, 5) the solutions are
(z,y,2) = (1,1,0) or (0,1, 1) and you can add any multiple 61,0, 1). b = (4,6, ¢)
needsc = 10 for solvability (thenb lies in the plane of the columns and the three

equations add t6 = 0).

8 Four planes in 4-dimensional space normally meet pbiat The solution toAx =
(3,3,3,2) isx = (0,0,1,2) if A has columng(1,0,0,0),(1,1,0,0),(1,1,1,0),
(1,1,1,1). The equations are+y+z2+t =3, y+2+t=3,2+t = 3,t = 2. Solve

them in reverse order!
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9 (a) A=z = (18,5,0) and (b) Az = (3,4,5,5).

10 Multiplying as linear combinations of the columns gives the satwe= (18, 5,0) and

(3,4,5,5). By rows or by columns9 separate multiplications whefis 3 by 3.
11 Az equals(14,22) and(0,0) and O, 7).
12 Az equaly(z,y,x) and(0,0,0) and 8, 3, 6).

13 (a) x hasn components andix hasm components (b) Planes from each equation

in Az = b are inn-dimensional space. The columnsafre inm-dimensional space.

14 22+3y+2z+5t = 8is Ax = bwiththel by4 matrixA =[2 3 1 5]: onerow. The

solutions(z, y, z, t) fill a 3D “plane” in 4 dimensions. It could be callechgperplane.

10 i ) 0 1 .
15 (a) I = =“identity” (b) P = = “permutation”
0 1 10

16 90° rotation fromR = 01 , 180° rotation fromR? = -0 =1
-1 0 0 —1
01 0 y 0 0 1 z
17 P = |0 0 1| produces|.| and@ = |1 0 0| recovers|y|. Q isthe
1 0 0 T 0 1 0 z
inverseof P. Later we writeQP = [ andQ = P~ .
- 1 0 0
18 £ = Lo andE = [-1 1 0] subtractthe first component from the second.
_— 00 1
10 0 100 3 3
19 E=|0 1 olandE'=]| 0 1 0|,Ev=|4| andE~'Ev recovers| 4 |.
_1 0 1 -1 0 1 8 )
20 P, = (1) 2 projects onto the:-axis andP, = 2 (1) projects onto they-axis.

5 5
The vectorw = projects toPyv = andP,Piv =
7 0 0
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1vV2 —V2

R=- rotates all vectors by 45 The columns ofR are the results
2lv2 V2

from rotating(1, 0) and(0, 1)!

xr
The dot productdz = [1 4 5] |y | = (1 by 3)(3 by 1) is zero for pointgz, y, 2)

z
on a plane in three dimensions. Theolumns ofA are one-dimensional vectors.
A=1[12; 3 4]ande =[5 —2] or[5 ; —2]andb=[1 7] or[1 ; 7].
r =b— Axxprints as two zeros.
Axv=[3 4 5]"andv’ * v = 50. Butw % A gives an error message from 3 by 1
times 3 by 3.
ones(4,4) x ones(4,1) = columnvectof4 4 4 4]; Bxw =[10 10 10 10]’.
The row picture has two lines meeting at the soluti¢/2]. The column picture will
have4(1,1) + 2(—2,1) = 4(column 1)+ 2(column 2)= right side(0, 6).
The row picture show& planesin 3-dimensional space. The column picture is in
2-dimensional space. The solutions normally fillizne in 3-dimensional space.

The row picture shows fouiines in the 2D plane. The column picture is four-

dimensional space. No solution unless the right side is a combinatiba tfo columns

.65 | The components add fio They are always positive.

Uy = . andu3 =
3 .35| Their components still add th
_ 8 3| |6
u7 andv; have components addingtothey are close te = (.6, .4). =
2 .7 4
o 8 .3
= steady state. No change when multiplied by .
4 200
8 3 4 5+u SH—u+v H—w
M=115 9|=|5-u—-v 5 5+u+tol|;Ms(l,1,1)=(151515),
6 7 2 5+v Sb4+u—v H—u

My(1,1,1,1) = (34,34, 34,34) becausd + 2 + - - - + 16 = 136 which is4(34).
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Solutions to Exercises

A is singular when its third columm is a combinatiortu + dv of the first columns.
A typical column picture hab outside the plane af, v, w. A typical row picture has

the intersection line of two planes parallel to the third plafiteen no solution

w = (5,7) is 5u + 7v. Then Aw equals5 times Au plus 7 times Av. Linearity
means: Whemw is a combination of: andv, thenAw is the same combination cfu

andAv.

2 -1 0 o] [o] [1] o] [4]
-1 2 =1 0] |2 2 ) 7
= has the solution = .
0 -1 2 —1 X3 3 X3 8
L 0 0 -1 2_ _1'4_ _4_ _1'4_ _6_
x=(1,...,1)givesSz = sum of each row= 1+---+9 = 45 for Sudoku matrices.

6 row orders(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1) are in Section 2.7.
The sames permutations oblocksof rows produce Sudoku matrices, b = 1296

orders of the) rows all stay Sudoku. (And alsi296 permutations of th@ columns.)

Multiply equationl by /5, = 12—0 = 5 and subtract from equatianto find2x + 3y = 1
(unchanged) and 6y = 6. The pivots to circle are 2 and6.

—6y = 6 givesy = —1. Then2z + 3y = 1 givesz = 2. Multiplying the right side
(1,11) by 4 will multiply the solution by 4 to give the new solutidm, y) = (8, —4).

Subtract—% (or add%) times equation 1. The new second equatiofiys=3. Then

y=1andxz =5. If the right side changes sign, so does the solutieny) = (-5, —1).

Subtract! = < times equatiori from equatior2. The new second pivot multiplying
isd — (¢b/a) or (ad — bc)/a. Theny = (ag — cf)/(ad — be). Notice the “determinant

of A” = ad — be. It must be nonzero for this division.
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10

11

12

13

6x + 4y is 2 times3x + 2y. There is no solution unless the right sideis10 = 20.
Then all the points on the lirkx + 2y = 10 are solutions, includin), 5) and(4, —1).

The two lines in the row picture are the same line, containing all solutions.

Singular system ib = 4, becausdzx + 8y is 2 times2z + 4y. Theng = 32 makes the
lines2z + 4y = 16 and4x + 8y = 32 become thesame: infinitely many solutions like
(8,0) and(0,4).

If @ = 2 elimination must fail (two parallel lines in the row picture). The equations
have no solution. Witl, = 0, elimination will stop for a row exchange. Thégp = —3
givesy = —1 and4x + 6y = 6 givesx = 3.

If & = 3 elimination must fail: no solution. Ik = —3, elimination gives) = 0 in
equation 2: infinitely many solutions. #f = 0 a row exchange is needed: one solution.

On the left sidegx — 4y is 2 times(3x — 2y). Therefore we neeb, = 2b, on the right
side. Then there will be infinitely many solutions (two parallel lines become one single
line in the row picture). The column picture has both columns along the same line.
The equatiory = 1 comes from elimination (subtract+ y = 5 from z + 2y = 6).
Thenz = 4 andbx — 4y =20 — 4 = ¢ = 16.

(a) Another solution i% (x+X,y+Y, 2+ 7). (b) If 25 planes meet at two points,
they meet along the whole line through those two points.

Elimination leads to this upper triangular system; then comes back substitution.

2v +3y + 2z=38 T =2
y+3z=4 gives y =1 Ifazerois at the start of row 2 or row 3,

82=38 z =1 that avoids a row operation.

2z — 3y =3 20 =3y =3 20 —3y=3 x=3
dr —by+ z=7 gives y+ z=1 and y+ z=1 and y=1

20— y—3z2=5 2y+32=2 —52=0 z2=0
Here are steps, 2, 3 : Subtract 2< row 1 from row 2, subtract X row 1 from row 3,

subtract 2x row 2 from row 3
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14

15

16

17

18

19

20

21

22

Solutions to Exercises

Subtrac® times row 1 from row 2 to reacfil— 10)y — z = 2. Equation (3) igj—z = 3.
If d = 10 exchange rows 2 and 3. df= 11 the system becomes singular.

The second pivot position will contair2 — b. If b = —2 we exchange with row 3.
If b = —1 (singular case) the second equatior-ig — z = 0. But equation(3) is the

same so there islae of solutiongx, y, z) = (1,1, —1).

Oz + 0y +2z=4 Exchange 0Oz + 3y +4z=14
Example of
r+2y+2z2=5 but then r+2y+22=5
(&) 2 exchanges (b)
Oz +3y+42=6 breakdown 0z +3y+4z=6
(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

Ifrow 1 =row 2, then row?2 is zero after the first step; exchange the zero row with row

3 and row3 has no pivot. If columr2 = columnl, then columr2 has no pivot.

Exampler + 2y + 3z = 0,4z + 8y + 12z = 0, 5z + 10y + 15z = 0 has 9 different
coefficients but rows 2 and 3 becorie= 0: infinitely many solutions todxz = 0 but

almost surely no solution tdx = b for a randomb.

Row 2 become8y — 4z = 5, then row 3 becomeg; + 4)z =t — 5. If ¢ = —4 the
system is singular—no third pivot. Thentif= 5 the third equation i$ = 0 which
allows infinitely many solutions. Choosing= 1 the equatio8y —4z = 5 givesy = 3
and equation 1 gives = —9.

Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes
form a triangle. This happens if rovis-2 =row 3 on the left side but not the right side:
z4+y+2=0,x—2y—z=1, 2c—y=4. No parallel planes but still no solution. The

three planes in the row picture form a triangular tunnel.

(a) Pivots2, %, %,% in the equationgz + y = 0, %y 4+ 2z =0, %z +t=0, %t =5
after elimination. Back substitution givés= 4,z = -3,y = 2,z = —1. (b) If
the off-diagonal entries change frofl to —1, the pivots are the same. The solution is
(1,2,3,4) instead of(—1, 2, —3, 4).

The fifth pivot isg for both matrices (1's or1's off the diagonal). Theuth pivot is

n+1
e
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23

24

25

26

27

28

29

30

31

32

If ordinary elimination leads ta: + y = 1 and2y = 3, the original second equation
could be2y + ¢(z +y) = 3+ £ for any?. Then? will be the multiplier to reacl2y = 3,
by subtracting times equatiorl from equatior®.

a 2
Elimination fails on if a =2 ora = 0. (You could notice that the determinant
a a

a® — 2a is zero fora = 2 anda = 0.)
a = 2 (equal columns); = 4 (equal rows)a = 0 (zero column).

Solvable fors = 10 (add the two pairs of equations to get b+ ¢+ d on the left sides,
12 and2 + s on the right sides). S©2 must agree witl2 + s, which makess = 10.

1 3 0 4
The four equations fad, b, ¢, d aresingular! Two solutions are and ,
17 2 6
(11 0 0] (1 1 0 0]
1 010 0 -1 1 0
A= andU =
0 0 1 1 0 0 1 1
_0 1 0 1_ _0 0 0 0_

Elimination leaves the diagonal matrix di@g2,1) in 3x = 3,2y = 2,z = 2. Then
r=1y=12=2.
A(2,:) = A(2,:) — 3% A(1,:) subtracts3 times row1 from row 2.

The average pivots for rand(@)thoutrow exchanges werg, 5, 10 in one experiment—
but pivots 2 and 3 can be arbitrarily large. Their averages are actually infiiifih
row exchangesn MATLAB's lu code, the average§5 and.50 and.365 are much
more stable (and should be predictable, alsodmdn with normal instead of uniform

probability distribution for the numbers iA).
If A(5,5)is7notll, then the last pivot will b&® not4.

Row j of U is a combination of rows, . . ., j of A (when there are no row exchanges).
If Az = 0thenUx = 0 (nottrue ifb replace®). U just keeps the diagonal ¢f when

Ais lower triangular.

The question deals with 100 equatiofigs = 0 whenA is singular.
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(&) Some linear combination of the 100 rowsthie row of 100 zeros
(b) Some linear combination of the 186lumnsis the column of zeros

(c) A very singular matrix has all onesA = ones(100). A better example has 99

random rows (or the numbets, . .., 100¢ in those rows). The 100th row could

be the sum of the first 99 rows (or any other combination of those rows with no

zeros).

(d) The row picture has 100 plane®eting along a common line through0. The

column picture has 100 vectors all in the same 99-dimensional hyperplane.

100 100 100](010O0 010
Exn=|-510|,E2=]010|,P=1]001 100[{=1]001
001 071 010|001 100

E33F51b = (1,—5,-35) but Ea; E32b = (1,-5,0). When E32 comes first, row 3

feels no effect from row 1.

1 00 1 00 1 0
-4 1 0|,]/0 1 0],]|0 1
0 0 1 2 01 0 —2
ThoseE's are in the right order to givé/ A = U.

o

1 0 0
M=E32E31E21 = [—4 1 0

— o
—_
o
|
[\
=

1 1 1 1
Elimination on column 4:b = | E—2>1 —4 Eil —4 E$2 —4 The
0 0 2 10

original Az = b has becom&x = ¢ = (1,—4,10). Then back substitution gives

z= -5,y =1,z = 4. This solvesdx = (1,0,0).

Changinguss from 7 to11 will change the third pivot from 5 to 9. Changings from

7 to 2 will change the pivot from 5 too pivot
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2 3 7 1 4
6 Example:|2 3 7 3| = |4|. Ifall columns are multiples of columh there
2 3 7| |-1 4

is no second pivot.

7 To reverseFs;, add 7 times row1 to row 3. The inverse of the elimination matrix

1 0 0 1 00
E=| 0 1 0|isE-'=|0 1 o0].MultiplicationconfirmsEE~! = 1.
-7 0 1 7 0 1
a b a b
8 M = and M* = . det M* = a(d — ¢b) — b(c — fa)
c d c—40a d—10b

reduces tad — be! Subtracting rowl from row 2 doesn’t changéet M.

100

9 M=| 0 0 1]|.Afterthe exchange, we nedty; (not F»;) to act on the new row 3.
-1 10
1 0 1 1 0 1 2 01

10 Bi13=|0 1 0|;|0 1 Of;Es1F13=|0 1 0/ .Testontheidentity matrix!

0 0 1 1 0 1 1 0 1
1 2 2
11 An example with two negative pivotsid = |1 1 2|. The diagonal entries can
1 2 1

change sign during elimination.

9 8 7| rowsand 1 2 3

12 Thefirstproducti§ 6 5 4| alsocolumns Thesecondproductisp 1 —2

3 2 1 reversed. 0o 2 -3
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13 (a) F times the third column of3 is the third column ofE B. A column that starts
at zero will stay at zero. (b} could add row2 to row 3 to change a zero row to a

nonzero row.

14 Es has—{y =3, E3; has—{3=2, E43 has—{43=2. Otherwise the&’s matchl.

-1 -4 -7 -1 -4 -7
15a,;=2i—-3j:A=| 1 -2 -5| = | 0 -6 —12|. The zero became12,
3 0 -3 0 —-12 —-24

1 0 0

an example ofill-in. To remove that-12, chooseFso = [0 1 0
0 -2 1
Every3 by 3 matrix with entriesu;; = ci + dj is singular!
16 (a) The ages oK andY arex andy: x — 2y = 0 andz +y = 33; x = 22 andy = 11
(b) The liney = ma + ccontainst = 2,y =5andz =3,y = 7when2m +c¢=5

and3m + ¢ = 7. Thenm = 2 is the slope.
at+ b+ c= 4

17 The parabolg = a+ bz + cz? goes through thg given points wheng+ 2+ 4¢ = 8 .
a+ 3b+9c =14
Thena = 2,b = 1, andc = 1. This matrix with columng1,1,1), (1,2,3), (1,4,9) is

a “Vandermonde matrix.”

1 0 0 1 0 0 1 0 0 1 0 0
18 EF=|a 1 0, FE=| a 1 0|, E*=|2¢ 1 0|, F*=|0 1 0
b ¢ 1 b+ac ¢ 1 26 0 1 0 3¢ 1
0 1 0 0 0 1
19 PQ= 1|0 0 1]|.Intheoppositeorder,tworowexchangesgd8= |1 0 0],
1 00 0 1 0

P? = I. If M exchanges row8 and3 thenM?2 = I (also(—M)? = I). There are

a b
many square roots df. Any matrix M = hasM? = I if a® + bc = 1.
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1 0 1 2 4
20 (a) Each column o B is F times a column ofB  (b) =
1 1 2 4
1 2 , .
. All rows of EB aremultiplesof |1 2 4.
2 4 8 -
1 0 1 1] . 1 1 2 1
21 No. FE = andF' = give EF = but FE =
11 0 1 1 2 11

22 (a) Zagjl‘j (b) as1 — a1 (C) as1 — 2a11 (d) (EAac)1 = (A$)1 = Zale?j.
23 E(FEA) subtractst times row1 from row 2 (EEA does the row operation twice).

AFE subtract2 times columre of A from columnl (multiplication by E on the right

side acts orolumnsinstead of rows).

15

2 3 1 2 3 1 _ 2%1 4 3zy =
24 [A b} = — . The triangular system is
4 1 17 0 —5 15 —bxy =
Back substitution gives; = 5 andxz, = —3.
25 The last equation becomés= 3. If the original 6 is 3, then row 4 row 2 = row 3.
Then the last equation 5= 0 and the system has infinitely many solutions.
26 (a) Add two columnd andb™ to get[A b b*]. The example has
1 4 1 0 1 4 1 0 -7 4
- —Sx= andz™* =
2 7 01 0 -1 -2 1 2 -1
27 (a) No solution ifd=0andc#0 (b) Many solutions if{=0=c. No effect froma, b.
28 A=Al = A(BC) = (AB)C = IC = C. That middle equation is crucial.
(1 0 0 0] (1 0 0 0]
-1 1 00 0 1 00
29 E= subtracts each row from the next row. The result
0 -1 1 0 01 10
[0 0 =1 1] 0 1 2 1]

still has multipliers= 1 in a 3 by 3 Pascal matrix. The produdt/ of all elimination
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1 0 0 0
=11 00 : L .
matrices is . This “alternating sign Pascal matrix” is on pagje
1 -2 1 0
-1 3 -3 1]
1 0 _
30 @QE=A"1= will reduce row2 of EM to [2 3.
-1 1

(b) ThenF = B~! = will reduce rowl of FEM to [1 1].

0o 1
(c) ThenE = A~ twice will reduce ron2 of EEFEM to [0 1]

(d) Now EEFEM = B. Move E’s andF's to getM = ABAAB. This question
focuses on positive integer matricg$ with ad — bc = 1. The same steps make the

entries smaller and smaller unfif is a product ofd’s andB'’s.

_1 _ _1 _
a 1 0
31E21: ,E32 1E43
0 0 1 0 b 1 0 0 1
| 00 0 1 | | 00 0 1 | 10 0 ¢ 1|
_1 -
a 1
Ey3 E39 Eoy =
ab b 1
i abe be ¢ 1 )

1 If all entries ofA, B,C, D arel, thenBA = 3 oneg5) is5 by 5; AB = 5 oneg3) is
3by3; ABD =150neg3,1)is3 by 1. DC andA(B + C) are not defined.

2 (a) A (column2 of B) (b) (Rowl of A) B

(d) (Row1 of C)D(columnl of E).

(c) (Row3 of A)(column5 of B)
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10

11

12

AB+ ACisthe same ad(B + C) =

8
] . (Distributive law).
9

0 0
Column1 of AB and row2 of C are zero (then multiply columns times rows).

0 0
A(BC) = (AB)C by theassociative law. In this example both answers pre ] .

1 2b 1 nb 4 4 _2” 2™
(@) A% = andA” = . (b) A% = andA” = .
0 1 0 1 0 0 0 0
10 4 -16 2
(A+B)? = = A+ AB+ BA+ B% ButA%? + 2AB + B? = .
6 6 3 0
(@) True  (b) False (c) True (d) False: usudlyB)?> = ABAB # A2B2.

The rows ofD A are3 (row 1 of A) and5 (row 2 of A). Both rows ofE A are row2 of A.
The columns ofAD are3 (column1 of A) and5 (column2 of A). The first column of

AFE is zero, the second is columrof A + column?2 of A.

a a+b
AF = and E(AF) equals(EA)F because matrix multiplication is
c c+d
associative.
a+c b+d a+c b+d
FA = and thenE(FA) = . E(FA) is not
c d a+2c b+2d

the same a#'(F A) because multiplication is not commutatiie¥’ # FE.

Supposer A does the row operation and théR A) F' does the column operation (be-
causer’ is multiplying from the right). The associative law says thal) F' = E(AF)

so the column operation can be done first!

0 0 1
(@ B=4 (b)) B=0 (c) B=|0 1 0| (d)EveryrowofBisl,O0,0.
100
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a 0 a b
13 AB = = BA = givesb = ¢ = 0. ThenAC = CA gives
c 0 0 0

a = d. The only matrices that commute wifB andC (and all other matrices) are

multiples ofI: A = al.

14 (A-B?=(B-A)?=AA-B)-BA-B)=A?>-AB—-BA+B% Ina
typical case (wheml B # BA) the matrix4? — 2AB + B? is different from(A — B)2.

15 (a) True (2 is only defined whem is square).
(b) False (ifA ism by n andB isn by m, thenAB ism by m andBA isn by n).
(c) True by part (b).
(d) False (takeB = 0).

16 (a) mn (use every entry oft)  (b) mnp = pxpart (@) (c)n® (n? dot products).

17 (a) Useonly column2oB (b) Useonlyrow 2 ofd (c)—(d) Use row 2 of first.

Row20fAB:[1 0 0] Row20fA2:[o 1}

0
Column2of AB = [
0

Row?2 of A3 = [ 3 -2 }

1 11 1 -1 1

18 A=| 1 2 2 |hasa; =min(i,j). A=| -1 1 -1 | hasa; = (-1)" =
1 2 3 1 -1 1

/1 1/2 1/3

“alternating sign matrix”A = | 2/1 2/2 2/3 | hasa;; = i/j. This will be an

3/1 3/2 3/3

T

exampleofaankonematrix1co|umn[ 1 2 3 _ multiplies1 row[ 1 % %}

19 Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four.

20 (a) a1: (b) €31 = azi/an (c) az2 — <&> a2 (d) a2 — <%> a12.

a11 a11
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25

(0040 | (0008 |
00014 0000
21 A% = , A3 = , A* = zero matrix forstrictly triangular A.
0000 0000
10000 | 0000 |
_x_ -Qy_ _42_ _875_
Y 2z 4t , 0
ThenAdv = A = , A%v = , Adv = , Alv = 0.
z 2t 0 0
|t ] | 0 | | 0 | | 0 |
1 -1 1 1 0 0
22 A= hasA? = —I; BC = = :
-1 0 1 -1 1 1 0 0
0 1 ~1 _
DE = = = —FED. You can find more examples.
1 0] |-1 0 0 1
0 1
23 A = hasA? = 0. Note: Any matrixA = column times row= uv™ will
0 0
0 10 0 0 1
haveAd? = yvTuv? =0if vTu=0.A=|0 0 1 [hasd?2= |0 0 0

0 0 O 0 0 0

but A% = 0; strictly triangular as in Problem 21.

271
0

a b ¢
25 |d e f

g h i

m—1 11 a® a"'b
, (Ag)n =271 , (Ag)" = )

1 11 0 0
100a[100]d{010}0{001}
01 0[=|d +le +|f
00 1| |g h i
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1 0 33 0 0 0 O
Columns of 4
2[330]4—4[121]26604—484:
times rows of B
2 1 6 6 0 1 2 1
3 30
10 14 4| =AB.
7 8 1

27 (a) (row 3 ofA) - (column 1 or 2 ofB) and (row 3 ofA) - (column 2 ofB) are all zero.

T 0 = «x T 0 0 =«
) |z [0 z z]=|0 2 =z|and|z|[0 0 z]=|0 0 =«|:bothupper.
0 0 0 O T 0 0 =«
AtimesB
*vens L {12 | — [ L)
with cuts
4 cols 2 rows 2 rows —4 cols 3 cols -3 rows
1 0 0 1 0 0
29 Foy =11 1 o|andEs;=| 0 1 0| produce zerosinth 1 and3, 1 entries.
0 0 1 -4 0 1
1 0 0 2 1 0
Multiply E's to getkE = FE31Fy = 1 1 0|. ThenEA= |0 1 1] isthe
-4 0 1 0 1 3

result of bothE’s since(E3; Fa1)A = E31(E21 A).

— 0 1 1 1
30 In29 ¢c= , D= , D—cb/a= in the lower corner oF A.
8 5 3 1 3
a1 A —-Bl| | Ax — By | real part Complex matrix times complex vector
B Al ly Bax + Ay | imaginary part. needst real times real multiplications.

32 AtimesX =[x, x2 3] will be the identity matrixl = [Axy Axzy Axs].
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3 3 1 0 0
33b=|5|givese =3z, +5my+8x3 = | 8|; A= |-1 1 0] willhave
8 16 0 -1 1

thosex; = (1,1,1),z2 = (0,1,1),z3 = (0,0, 1) as columns of its “inverseA !,

a+b a+b

34 Ax ones= [ ] agrees wittonesxA =

a-+c b—l—b] whenb = ¢

c+d c+d at+c b+d| anda=d

b 1 1
ThenA = . These are the matrices that commute with .
b a 1 1
_0 1 0 1_ _2 0 2 0_ aba, ada cba, cda These show
1 01 0 0 2 0 2 bab, bcb dab,dcb 16 2-step
35 § = 5 52 - )
01 01 2 0 2 0 abc, adc chc, cdc pathsin

|1 0 1 0] |0 2 0 2| bad bcd dad, dcd the graph

36 Multiplying AB =(m by n)(n by p) needsmnp multiplications. Then(AB)C needs
mpq more. Multiply BC' = (n by p)(p by q) needsipg and thend(BC') needsnnyg.

(@) Ifm,n,p,qare2,4,7,10 we comparg2)(4)(7) + (2)(7)(10) = 196 with the
larger number2)(4)(10) + (4)(7)(10) = 360. S0 AB first is better, we want to

multiply that7 by 10 matrix by as few rows as possible.

(b) If u,v,w areN by 1, then(uTv)w™ needs2N multiplications butu™ (vw™)
needsN? to findvw™ and N2 more to multiply by the row vectas ™. Apologies

to use the transpose symbol so early.

(c) We are comparinganp + mpq with mng + npq. Divide all terms bymnpg:
Now we are comparing=! + n~! with p~! + m~1. This yields a simple im-
portant rule. If matriceslt and B are multiplyingv for ABwv, don’t multiply the

matrices first. Better to multiplyBv and thenA(Bwv).
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37 The proof of(AB)c = A(Bec) used the column rule for matrix multiplication—this
rule is clearly linear, column by column.

Even for nonlinear transformationd,( B(c)) would be the‘composition” of A with

B (applying B then A). This composition o B is just AB for matrices.

One of many uses for the associative law: The left-invé?se right-inverseC' from

B = B(AC) = (BA)C = C.

38 (a) Multiply the columnsa, ..., a,, by the rowsa?, ..., a} and add the resulting

matrices.

(b) ATCA = ciaial + -+ + cpa,,al,. DiagonalC makes it neat.

—4

N[=

and C~! =
-5 3

1 A= and B~1 =

(e N

W=
D=

2 For the first, a simple row exchange h&$ = I so P~! = P. For the second,

0 0 1
P'=11 0 o].AlwaysP~!="“transpose” ofP, coming in Sectiorz.7.

0 1 0
T 5 t -2 1 5 =2 i .
3 = and = soA™! = — . This question
y —2 2 1 101 9 1

solvedAA~! = I column by column, the main idea of Gauss-Jordan elimination. For
1

1
a different matrix4A = , you could find a first column fod~—! but not a
0 0

second column—sd would be singularr{o inverse).

4 The equations are + 2y = 1 and3x + 6y = 0. No solution becaus&times equation

1 gives3z + 6y = 3.
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5 An upper triangulat/ with U? = TisU =

a
] for anya. And also—U.
0 -1

6 (a) Multiply AB = AC by A~! to find B = C (sinceA is invertible) (b) Aslongas

—x

1 1
B — C hasthe form[ y] ,we havedB = AC for A = [ ] .
1 1

-y
7 (@) In Az = (1,0,0), equation 1+ equation 2— equation 3 i9) = 1 (b) Right

sides must satisfi; + by = b3 (c) Row 3 becomes a row of zeros—no third pivot.

8 (a) The vectoer = (1,1,—1) solvesAxz = 0 (b) After elimination, columns 1

and 2 end in zeros. Then so does coludna column1 + 2: no third pivot.

9 Yes, B isinvertible (A was just multiplied by a permutation matt®. If you exchange
rows1 and2 of A to reachB, you exchangeolumns1 and2 of A~! to reachB~!. In

matrix notationB = PAhasB~! = A—1p—1 = A—1P for this P.

[0 0 0 1/5 [ 3 2 0 o]
0 0 1/4 0 -4 3 0 0] (inverteach
10 At = andB~! =
0 1/3 0 0 0O 0 6 —5| blockofB)
/20 0 0 | 0 0 =7 6]
11 (a) If B = —Athen certainlyAd + B = zero matrix is not invertible.

12

13

14

15

(b) A= andB = are both singular butt + B = [ is invertible.

0 1

Multiply C = AB on the left byA—! and on the right by’ —!. ThenA~! = BC 1.

M~1 = C71B~1A~! so multiply on the left byC' and the right byd : B~ =
CM~TA.

—1
1 0 1 0
B l=4"1 [ ] = A1 [ ] : subtracttolumn2 of A—! from columnl.
1 1 -1 1

If A has a column of zeros, so daBsi. ThenBA = I isimpossible. There is nd—!.
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16 a b d —b ad — be 0 The inverse of each matrix is
¢ d| |- a 0 ad—be| the other divided byd — be
1 1 1 1
17 E3pE51E0 = 1 1 -1 1 =|-1 1 =F
-1 1 1 1 1 0 -1 1
1
Reverse the order and changéto +1 to getinverse®, ' E5'Ex,' = |1 1 =
1 1 1

L = E~'. Notice thel’s unchanged by multiplying inverses in this order.
18 A2B = I can also be written ad(AB) = I. ThereforeA~! is AB.

19 The(1,1) entry requirega — 3b = 1; the(1, 2) entry require2b — a = 0. Thenb =
2
5

U=

anda = £. For theb by 5 caseba — 4b = 1 and2b = a giveb = % anda = %.
20 A xones(4,1) = A (column of1’s) is the zero vector sd cannot be invertible.

21 Six of the sixteer) — 1 matrices are invertiblef and P and all four with three 1's.

1 3 10 1 3 1 0 1 0 7 -3

22 - - =[I A™'];
2 7 0 1 0 1 -2 1 0 1 -2 1
1410 1 4 10 1 0 -3 4/3
- - =[I A7'].
390 1 0 -3 -3 1 0o 1 1 -1/3
2 1 0[1 0 0 2 1 0 10 0]
23[AI=[12 1]0 1 0|—=1]0 32 1|-1/2 1 0| =
01 20 0 1 0 1 2 00 1
2 1 0 1 00 2 1 0 1 0 0

0 3/2 1]-1/2 o = [0 3/2 0|-3/4 3/2 -3/4|—
0 0 4/3| 1/3 —-2/3 1 0 0 4/3] 1/3 —2/3 1

—_
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2 0 0] 3/2 -1 1/2 10 0| 3/4 —1/2 1/4

0 3/2 0|-3/4 3/2 —3/4|—=1]0 1 0|-1/2 1 —1/2|=

0 0 4/3| 1/3 -2/3 1 00 1| 1/4 —1/2 3/4

I A1,

(1 a b 100 1 a010-b] [1 001 —a a—b
2410 1 ¢ 01 0/—=]|01001¢|=l0100 1 —cl-

oo1001] [oo1o00 1] [0010 0 1

] 1

2 1 1 3 -1 -1 1 2 —1 —1|[1 0
25121=i—1 3 —1|; Bl1|=]-1 2 —1||1|=1o

11 2 1 -1 3 1 1 -1 2| |1 0

so B~ ! does not exist.

1 0] (1 2 1 2
-2 1 2 6 0 2

1
Multiply by D = [
0

10
-2 1

26 EQlA: . E12E21A:

1 -1 10
A= .
0 1] [0 2]

0
] toreachDE s Ey A = 1. ThenA~! = DFE5FE5 =

1/2
o6 -2
2[—2 1
1 0 0 2 -1 0
27 A~'=|_2 1 —3| (noticethesignchanges}'= -1 2 —1
0 0 1 0 -1 1

0 210 2 2 01 2 0 -1 1 10 —-1/2 1/2
8 — — — .
2 2 01 0 210 02 10 0 1 1/2 0

This is {] A—l} : row exchanges are certainly allowed in Gauss-Jordan.
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29 (a) True (If A has a row of zeros, then eveAB has too, andd B = I is impossible).
(b) False (the matrix of all ones is singular even with diagonal 1's.

(c) True (the inverse ofi—! is A and the inverse afi? is (A71)32).

a 0-b
30 Elimination produces the pivotsanda —banda—b. A~! = a(al_ ) —a a 0
0—a a
The matrixC' is not invertible ifc = 0 orc=7orc = 2.
11 0 0]
31 A~ = oo . When the triangulad has1,—1,1,—1,... on successive
0 0 11
00 0 1)

diagonals A~ is bidiagonalwith 1's on the diagonal and first superdiagonal.

32 x=(1,1,...,1) hase = Px = Qx so(P — Q)x = 0. Permutations do not change
this all-ones vector.
I 0 AL 0 -D I
33 and and .
-C 1 -D-'cA~! D! I 0
34 A can be invertible with diagonal zeros (example to fin8)is singular because each

row adds to zero. The all-ones vectohasBx = 0.

35 The equation.DLD = I says that.D = pascal (4, 1) is its own inverse.

36 hilb(6) is not the exact Hilbert matrix because fractions are rounded offivgdlb(6))
is not the exact inverse either.

37 The three Pascal matrices haVe= LU = LL"™ and thennv(P) = inv(LT)xinv(L).

38 Az = b has many solutions wheA = ones (4,4) = singularandb = ones (4,1).
A\b in MATLAB will pick the shortest solutionz = (1,1,1,1)/4. This is the only
solution that is a combination of the rows 4f(later it comes from the “pseudoinverse”
AT = pinv(A) which replacesi—! whenA is singular). Any vector that solvesr = 0

could be added to this particular solutisn
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_1 —a 0 O_ -1 a ab abc_
. 0 1 =6 0f. 0 1 b b .
39 Theinverse ofd = isA™! = . (This would
0 0 1 —c 0 0 1 c
0 0 0 1 00 0 1]

be a good example for the cofactor formula! = C"/ det A in Section 5.3)

1 1 1 1
a 1 0 1 1 a 1
40 =
b 0 1 0 d 1 1 b d 1
lc 00 1] (0 e 0 1]]| fo1] lc e [ 1)

In this order the multipliers, b, ¢, d, e, f are unchanged in the produanfortant for
A = LU in Section 2.9.

41 4 by 4 still with 73, = 1 has pivotsl, 1, 1, 1; reversing tal"™ = UL makesTI}, = 1.

1 -1 0 o] [4 3 2 1]
1 2 -1 0 33 2 1

T= and 7! =
0 -1 2 -1 2 2 2 1
0 0 -1 2] 1111

42 Add the equation€’x = b to find0 = by + by + bs + by. SoC' is singular. Same for
Fx =0b.

43 The block pivots areA and S = D — CA='B (and d—cb/a is the correct
second pivot of an ordinary 2 by 2 matrix). The example problem has

10 411 -5 —6
Schur complemert = - - [ 3 3 } =
—6 =5

01 4 | 2

44 Inverting the identityA(I + BA) = (I + AB)A gives(I + BA)~'A=! = A=Y(I +
AB)~1. Sol+BA andl+ AB are both invertible or both singular wheis invertible.
(This remains true also whedis singular : Chapter 6 will show thatB and B A have

the same nonzero eigenvalues, and we are looking here at the eigenvdlue
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o 1 0f . 1 0| |z 5 .
¢91 = 1 multiplied row 1;L = times = =cisAx = b:
11 1 1 |y 2
1 1 T - .
= . L multipliesUx = cto give Az = b.
1 2| |y
i 1 0 C1 5) ) L. .
Le=0bis = , solved bye = as elimination goes forward.
1 1 Co 7 2
11 T ) 3 . o
Uz =cis = , solved byx = in back substitution.
0 1| |y 2 2

l3;1 = 1 and/ls; = 2 (and/s3 = 1): reverse steps to getu = b from Uz = ¢:

1times(z+y+z = 5)+2times(y+2z = 2)+1times(z = 2) givesz+3y+6z = 11.

1 5 5 1 1 1 5 5
Le=1|1 1 21 = 71, Ux = 1 2 x| =12, = [=-2
1 2 1 2 11 1 2 2
1 2 1 0 2 1 0
EA=] 0 1 0 4 2|=10 4 2|="U.
-3 0 1 6 3 5 0 0 5
1 2 1 0 2 1 0
With E-tasL, A=LU= |0 1 0 4 2/=10 4 2|.
301 0 0 5 6 3 5
1 1 1 1 1 1 0 O
0 1 -2 1 A= 10 2 3| =U. ThenA = |2 1 0| Uis
0-2 1 0 01 0 0-6 0 2 1

the same a&,,' E5,'U = LU. The multipliersly; = /3, = 2 fall into place inL.
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1 1 1 1 00
7 E3bE31FE A = 1 1 -2 1 2 2 2. Thisis
-2 1 -3 1 1 _3 4 5_
10 1 (1 0 0]
0 2 0] =U.Putthose multipliers, 3,2intoL.ThenA= |2 1 0| U= LU
0 0 2 13 2 1)
1 1
8 B =FEspFEnkEy=| —a 1 ismixedbutLis E5,' E5' Fyy' = |a 1
ac—b —c 1 b ¢ 1
110 1 de g| d=1e=1,thent=1
9 2by2:d =0notallowed;|1 1 2({=|¢ 1 f h| f=0isnotallowed
121 mmn 1 i | nopivotinrow 2

10 ¢ = 2 leads to zero in the second pivot position: exchange rows and not singular.

¢ = 1 leads to zero in the third pivot position. In this case the matrsirigular.

2 4 8 2
11 A= |0 3 9| hasL = I (Ais already upper triangular) and = 3 ;
0 0 7 7
(12 4
A=LUhasU=A; A=LDUhasU = D"'A=|o 1 3| with1'son the diagonal.
_0 0 1
12 A— 2 4 _ 1 0 2 4 _ 1 0 _2 0 1 2 _ DU UisL"
4 11 2 1 0 3 2 1 0 3 0 1
1 1 4 0 1 1 1 4 0
=4 1 —4 0 1 —1|=LDL".

4 1 0 -4 4
0 -1 110 0 4
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(aaaal |1 11a a a a | a # 0 All of the
abbbd 11 b—a b—a b—a b # a multipliers
13 = . Need
abcec 111 c—b c—b c#barel;; =1
labecd|l |1111]]| d—c]| d # cforthis A
_a ror r_ -1 ] _a r r r ] a#0
a b s s 11 b—r s—r s—r b#r
14 — . Need
a b c t 1 1 1 c—s t—s c#s
la b ¢ d] 111 1] d—1| d#t
10 2| . 2 2 4 2 -5
15 c= givesc = . Then T = givesx = .
4 1 11 3 0 1 3 3
) 2 4 2 o 2 4 2
Ax =b is LUx = T = . Eliminate to T = =c
8 17 11 0 1 3
1 0 0 4 4 1 1 1 4 3

16 {1 1 0|lec=|5|0gvesc=|1|.Then|o 1 1|x=|1]|givesz= |0].
1 11 6 1 0 01 1 1
1 1 1 4

Those are forward elimination and back substitutionffar 2 2| x = |5

1 2 3 6
17 (@)L goestal (b)Igoestol~! (c)LU goestalU. Elimination multiplies by —!!
18 (a) Multiply LDU = L, D,U, by inverses to gek; ' LD = D,U,U~"'. The left side

is lower triangular, the right side is upper triangutarboth sides are diagonal.

(b) L,U, L1,U; have diagonal’s soD = D;. ThenL;lL andU;U~! are both/.

1 1 1 0 a a 0 a
19 |1 1 1 1 = LIU;|a a+b b = L b U.
0 1 1 1 0 b b+c c

A tridiagonal matrixA hasbidiagonal factors L andU.
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20 A tridiagonalT has 2 nonzeros in the pivot row and only one nonzero below the pivot

(one operation to find and then one for the new pivot!). OnBn operations for

elimination on a tridiagonal matrix’ =bidiagonalL times bidiagonal/.

21 For the first matrix4, L keeps the 3 zeros at the start of rows. Buiay not have the
upper zero wherely; = 0. For the second matriB, L keeps the bottom left zero at
the start of row 41U keeps the upper right zero at the start of column 4. One zefb in

and two zeros irB are filled in.

5 3 1 4 2 0 2 0 0
22 Eliminatingupwards (3 3 1| — [2 2 0] — |2 2 0| = L. Wereach

1 1 1 1 1 1 1 1 1
alower triangular L, and the multipliers are in amppertriangularU. A = U L with
1 1 1
U=10 11
0 0 1

23 The 2 by 2 upper submatrit, has the first two pivot§, 9. Reason: Elimination orl

starts in the upper left corner with elimination dn.

24 The upper left blocks all factor at the same time&sAy, is LyUi. SOA = LU is

possible only if all those blockd,. are invertible.

25 Thei,j entry of L= isj/ifori > j. And L;;_1 is (1 — i) /i below the diagonal

26 (K1) =j(n—i+1)/(n+1)fori> j (and symmetric): MultiplykX —! by n + 1

(the determinant o) to see all whole numbers.



38 Solutions to Exercises

~3 1/3
1 -3|
0o 1/3|
1 110
A=|" | hasAT = AandA~! = — | =@
c 0 “le -1
1
2 (AB)T = { = BTAT. This answer is different fromi™T BT (except when
37

AB = BA and transposing giveBT AT = ATBT),
3@ (AB)™HT = (B 1A HT = AHT (B HT. This is also(A™)~1(BT)~ L.

(b) If U is upper triangular, so &~1: then(U~1)" is lower triangular.

4 A= hasA? = 0. But the diagonal ofA™ A has dot products of columns df

0 0
with themselvesf AT A = 0, zero dot products> zero columns= A = zero matrix.

0
1 2 3
5 (a) wTAy={O 1] L ; 6] 1| =5
0

(b) This is the rowzT A = [4 5 6] timesy.

2
(c) This is also the rowt™ times Ay = [ ] .
5

' MT = M needsAT = AandBT = C and DT = D.

AT cT
6 MT =
BT DU

A

0
7 (a) False
A 0

} is symmetric only ifA = AT,

(b) False: The transpose dfB is BT AT = BA. So(AB)T = AB needsBA = AB.
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(c) True: Invertible symmetric matrices have symmetric inverses! Easiest proof is to

transposedA~! = 1.
(d) True:(ABC)T is CT BT AT (= C' BA for symmetric matricest, B, andC).

8 Thelinrow 1 hasn choices; then thé in row 2 hasn — 1 choices .. .%! overall).

0 1 0f|1 0 O 0 0 1 010
9P = |00 1||0 0 1| = |0 1 0| butRP, = |1 0 0f-
1 0 00 1 O 1 00 0 0 1

If P; and P, exchangalifferentpairs of rows,P; Py = Py P; = both exchanges.

10 (3,1,2,4) and(2,3,1,4) keep4 in place;6 more evenP’s keep 1 or 2 or 3 in place;
(2,1,4,3) and(3,4,1,2) and(4, 3, 2, 1) exchange 2 pairg1, 2, 3, 4) makesl 2.

0 1 0[]0 O 6 1 2 3
11 PA=1{0 0 1|11 2 3| =10 4 5| isupper triangular. Multiplyingd
1 0 0|0 4 5 0 0 6

on the rightby a permutation matrix, exchanges theolumnsof A. To make this4d
lower triangular, we also ne€fg, to exchange rows 2 and 3:
1 1 6 0 0
PAP, = 1| A 1 =15 4 0]
1 1 3 2 1
12 (Pz)" (Py)=zTPTPy=a"ysincePTP=1I. IngeneralPx-y=x-P'y # x- Py:
01 0 1 1 1 0 1 0 1
Non-equalitywhere? # PT: |0 o 1| [2|-[1|# |2]-|0 0 1] |1
1 0 0 3 2 3 1 0 0 2

0 1 0
13 Acyclic P = |0 0 1| oritstranspose will havé®? =TI :(1,2,3) — (2,3,1) —
1 00

—~ 1 0 ~ ~
(3,1,2) — (1,2,3). The permutatio® = for the same” hasP* = P # I.
0 P
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14 The “reverse identity’P takes(1, ..., n) into (n, ..., 1). When rows and also columns
are reversed, the 1 andn, n entries ofA change places i AP. So do thel,n and

n, 1 entries. In generdlPAP);; iS (A)n—i+1,n—j+1-

15 (a) If P sends rowl to row4, thenPT sends rowt torow1 (b) P =

0 E

PT with E =
1 0

1
] moves all rows1 and2 are exchanged,and4 are exchanged.

16 A? — B? (but not(A + B)(A — B), this is different) and alsel BA are symmetric if

A andB are symmetric.

1 1

[1
17 (@) S =
11

1 0 1
]_ ST is not invertible (b)S = { ] needs row exchange

1

11
(c) S= has pivotsD =
10 0 -1

] : noreal square root.

18 (@) 5+4+3+2+1 = 15independententries § = ST (b) L has 10 and has 5;
total 15inLDLT (c) Zero diagonal ifAT = — A, leaving4+3+2+1 = 10 choices.

19 (a) The transpose AT SA is ATSTATT = ATSA = n byn whenST = S (anym
by n matrix 4) (b) (AT A);; = (columnj of A)- (columnj of A) = (length squared

of columny) > 0.

20_13 tol |1 ol |t 3] [1ow 1 oll1 o 1 b
3 2 3 1010 =7l o 1| |b ¢ b 1] |0 c—p2| |0 1
2 21 0 1 2 1 -1 0

_ |1 1 3 21 T
12 -1 =|-1 1 3 1 ~2| =LDL
2 4
0 -1 2 0 -2 1 4 1

21 Elimination on a symmetric 3 by 3 matrix leaves a symmetric lower right 2 by 2 matrix.

(24 8 1b e
-5 -7 d—b?
lead to and
-7 =32 e — be

e —be

f=e

4 3 9|land|p d e

] : symmetric!
_8 90 cef
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1 1 1 0 1 1 1 1 2 0
22 |1 A=10 1 1 1] 1|lA=1]1 1 -1 1
1 2 3 1 -1 1 2 01 1
0 0 0 1]
03 A— 1 0 00 — PandL—U = I. This cyclic P exchanges rows-2 then
01 00 rows2-3 then rows3-4.
00 1 0]
1 0 1 2 1 2 1 1
24 PA = LU is 1 0 3 8/ =10 1 3 8. If we
1 2 1 1 0 1/3 1 —2/3
1 1 2 1 1
wait to exchange ang» isthe pivot,A = L AU, = |3 1 11 [0 1 2
1 1 0 0 2

25 One way to decide even vs. odd is to count all pairs thaas in the wrong order. Then
P is even or odd when that count is even or odd. Hard step: Show that an exchange
always switches that count! Then 3 or 5 exchanges will leave that count odd.
1 1 0 0
26 (a) Fo1=1|-3 1 puts 0inthe, 1 entry of E5; A. ThenEy AES = |0 2 4

1 0 4 9
1
is still symmetric, with zero alsoinits 1, 2 entry.  (b) Now uSg, = 1
-4 1

to make the 3, 2 entry zero aIEiy,QEmAEleE3T2 = D also has zero in its 2, 3 entry.

Key point: Elimination from both sides gives the symmeftiD L™ directly.

01 2 3

1 2 3 0
27 A = = AT has0, 1,2, 3 in every row. | don’'t know any rules for a

2 3 01

3 01 2
symmetric construction like this “Hankel matrix” with constant antidiagonals.
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28 Reordering the rows and/or the columns|@f% | will move the entrya. So the result

cannot be the transpose (which doesn’'t maje

I 0 1] |ysc YBc + YBs
29 (a) Total currents ared™y = -1 1 0| |yes| = |-ysc+yes
0 -1 —1| |yss —Ycs — YBs

(b) Either way(Az)'y = =" (ATy) = zpysc + TBYBS — TcYBC + Teycs —

TsYcs — Tsyps. Six terms.

1 50 700
T o 1 40 2 6820 1 truck
30 |40 1000 =Ax; Aty = 3 | =
To 50 1000 50 188000 | 1 plane
2 50 3000

31 Ax -y is thecost of inputsvhile = - ATy is thevalue of outputs

32 P3 = I so three rotations fa¥60°; P rotates every around the1, 1, 1) line by 120°.

1 2 1 0 1 2
33 = = EH = (elementary matrix) times (symmetric ma-
4 9 2 1 2 5
trix).

34 L(UT)~!islower triangular times lower triangular, kmwer triangular. The transpose
of UTDU isUTDTUTT = UT DU again, sd/T DU is symmetric. The factorization

multiplies lower triangular by symmetric to gétOU which is A.

35 These are groups: Lower triangular with diagohia) diagonal invertibleD, permuta-

tions P, orthogonal matrices wit)™ = Q.

36 CertainlyB" is northwest.B2 is a full matrix! B~ is southeast{1 3] ™" = [9 _1].
The rows of B are in reverse order from a lower triangulay so B = PL. Then
B~! = L=1P~! has thecolumnsin reverse order fronl.~!. So B! is southeast

NorthwestB = PL times southeadPU is (PLP)U = upper triangular.

37 There aren! permutation matrices of order. Eventuallytwo powers ofP must be
the same permutatiol\nd if P" = P*® thenP" ~— % = [. Certainlyr — s < n!
0 1 0

Py . . 0 1
P = is5 by 5 with P, = andP;= |0 o 1| andP®=1.
Ps 1 0
1 0 O
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38 To split the matrixM into (symmetricS) + (anti-symmetricA), the only choice is
S=4M+MT)andA = (M — M7).

T

@ 1 0
39 StartfromQTQ = I, asin {ql QQ} -
a3 01

(@) The diagonal entries givgl q; = 1 andqa q, = 1: unit vectors
(b) The off-diagonal entry isy{ g, = 0 (and in generag; q; = 0)

cosf) —sinf
(c) The leading example fdp is the rotation matrix

sin 6 cosf
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Note An interesting “max-plus” vector space comes from the reahbersR combined
with —oo. Change addition to give + y = max(«x, y) and change multiplication to

xy = usualx + y. Whichy is the zero vector that gives+ 0 = max(z, 0) = x for every

z?

lxt+y#y+axande+ (y+2) # (x+y)+ zand(c; + c2)x # c1x + cox.
2 Whenc(zy,x2) = (cz1,0), the only broken rule is 1 times equalsz. Rules (1)-(4)

for additionz + y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Als®@rand no—x
(b) ¢(x + y) is the usualxy)®, while cx + cy is the usualz©)(y°). Those are equal.

With ¢ = 3,z = 2,y = 1 thisis3(2 + 1) = 8. The zero vector is the number 1.

_ _ 1o o 1 -2 2
4 The zero vector in matrix spadd is 1A= and—A = .
0 0 1 -1 -2 2

The smallest subspace B containing the matrix4 consists of all matricesA.

5 (a) One possibility: The matricesi form a subspace not containiigy (b) Yes: the
subspace must contaith— B = I (c) Matrices whose main diagonal is all zero.

6 When f(x) = 2% andg(z) = 5z, the combinatior8f — 4g in function space is
h(z) = 3f(z) — 4g(z) = 322 — 20x.

7 Rule 8 is broken: Ifcf(z) is defined to be the usudi(cz) then(c; + co)f =
f((c1 + c2)z) is not generally the same asf + co f = f(c1z) + f(cam).

8 If (f + g)(z) is the usualf(g(x)) then(g + f)x is g(f(x)) which is different. In
Rule 2 both sides arg(g(h(z))). Rule 4 is broken because there might be no inverse
function £ ~*(z) such thatf (f ! (x)) = z. If the inverse function exists it will be the
vector— f.

9 (a) The vectors with integer components allow addition rmttmultiplication by
(b) Remove the: axis from thexy plane (but leave the origin). Multiplication by any

cis allowed but not all vector additiong1,1) + (—1,1) = (0, 2) is removed.
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10

11

12

13

14

15

16

17

18

19

The only subspaces are (a) the plane with= b, (d) the linear combinations af

andw (e) the plane witth; + b5 + b3 = 0.

a b a a

(&) All matrices (b) All matrices (c) All diagonal matri-
0 0 0

ces.

For the plane: + y — 2z = 4, the sum o4, 0,0) and(0, 4, 0) is not on the plane. (The

key is that this plane does not go througho, 0).)

The parallel plan@® has the equatiom + y — 2z = 0. Pick two points, for example

(2,0,1) and(0, 2, 1), and their suni2,2,2) is in Py.

(@) The subspaces Bf? areR? itself, lines through0, 0), and(0, 0) by itself (b) The
subspaces dR* areR* itself, three-dimensional planes- v = 0, two-dimensional
subspaceén; - v = 0 andn, - v = 0), one-dimensional lines throudh, 0, 0, 0), and

finally (0,0, 0,0) by itself, which is the zero subspage

(a) Two planes througfD, 0, 0) probably intersect in a line throudh, 0, 0)
(b) The plane and line probably intersect in the pdino, 0)

(c) If z andy are in bothS andT',  + y andcx are in both subspaces.

The smallest subspace containing a pl&hand a lineL is either P (when the linel,

is in the planeP) or R? (whenL is not inP).

(&) The invertible matrices do not include the zero matrixttey are not a subspace
i |10 0 0] . )
(b) The sum of singular matricels + is not singular: not a subspace.
0 0 0 1

() True The symmetric matrices do form a subspace Tbo)e The matrices with
AT = —A do form a subspace (dfalse The sum of two unsymmetric matrices

could be symmetric.

The column space of is thez-axis= all vectors(x, 0,0) : aline. The column space
of B is thexy plane= all vectors(z, y, 0). The column space @ is the line of vectors

(z,2z,0).
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20 (a) Elimination leads t® = by — 2b; and 0 = b; + b3 in equations 2 and 3:
Solution only ifby = 2b; andbs = —b; (b) Elimination leads td®) = by + b3

in equation 3: Solution only s = —b;.
21 A combination of the columns af' is also a combination of the columns 4f Then

1 3 1 2 1 2
C = andA = have the same column spacB. = has a
2 6 2 4 3 6

different column space. The key word is “space”.
22 (a) Solution for evenp (b) Solvable only ifbs =0 (c) Solvable only ifbs = b,.

23 The extra columib enlarges the column space unléss already inthe column space.

(A b] = {1 0 1] (larger column space) {1 0 1] (bisincolumn space)

0 0 1| (nosolutiontoAxz=1>b) |0 1 1| (Ax = b has a solution)

24 The column space ol B is contained in(possibly equal to) the column space 4f
The exampleB = zero matrix andAd # 0 is a case whemd B = zero matrix has a

smaller column space (it is just the zero spa¢¢han A.
25 The solutiontodz = b+ b"isz = x + y. If bandb™ are inC(A) so isb + b".

26 The column space of any invertible 5 by 5 matrixRS. The equatiordxz = b is
always solvable (byr = A~'b) so everyb is in the column space of that invertible

matrix.

27 (a) False Vectors that arenot in a column space don't form a subspace.
(b) True Only the zero matrix ha€'(A) = {0}. (c) True C(A) = C(24).

1 0
(d) False C(A—1)# C(A)whenA=TorA= (or other examples).
0 0

1 1 0 1 1 2 1 1 2 0
28 A=11 0 o|and|1 0 1| donothave|1|inC(A). A= |2 4 0| has

01 0 01 1 1 3 6 0
C(A) =lineinR?.
29 WhenAx = b is solvable for allb, everyb is in the column space oA. So that space
isC(A) = R°.
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30 (a) If w andv are both inS + T, thenu = s; + ¢t; andv = s3 + t3. Sou +v =
(s1+ 82)+(t; +t2)isalsoinS+T. And soiscu = csy +cty : S+T = subspace

(b) If S andT are different lines, thelS U T is just the two linesr{ot a subspadebut
S + T is the whole plane that they span.

31 If S=C(A)andT = C(B) thenS + T is the column space dff =[A B].
32 The columns ofA B are combinations of the columns 4f So all columnsof A AB]
0 1 00
are already irC'(A). ButA = has alarger column space thdh =

00 0 o
For square matrices, the column spacRisexactly whenA is invertible

1 2 2 4 6 2 4 2
Free variabless, x4, x5 Freezs
1@U=|0 01 2 3 (b) U=|0 4 4
PivotvariabIeScl,xg PiVOtxl,.Z'Q
0O 0 0 0 O 0 0 O

2 (a) Freevariables,, x4, 5 and solutiong—2, 1,0, 0, 0), (0,0, —2,1,0), (0,0, —3,0,1)
(b) Free variable:s: solution(1, —1, 1). Special solution for each free variable.
1 2 0 00 1 0 -1
3R=1|0 01 2 3|,R=10 1 1]|,Rhasthesame nullspaceldsandA.
0 00 0O 0 0 O
4 (a) Special solution§3,1,0) and(5,0,1) (b) (3,1,0). Total of pivot and free is.

5 (a) False Any singular square matrix would have free variables Tboye An in-
vertible square matrix has free variables. (c)True(only n columns to hold pivots)

(d) True(only m rows to hold pivots)

01111 1 1]t 11111 1]fooo111 1]
o001 rafjoor o000 011
0000711 1/lo0oo00011[{0000000
00000 00/[000000T1//000000 0]
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(11011100 f0o110011 1]
00111100/ 000107111 , o
, . Notice the identity
00000O0T1TO0O[|0o000T1T1T1]1
000000O0T1| /00000000

matrix in the pivot columns of theseducedrow echelon forms?.

If column 4 of a 3 by 5 matrix is all zero thew, is afreevariable. Its special solution

isxz = (0,0,0,1,0), because 1 will multiply that zero column to giviec = 0.
If column 1= column 5 then; is a free variable. Its special solution(is1, 0, 0,0, 1).

If a matrix hasn columns and- pivots, there are — r special solutions. The nullspace
contains onlyx = 0 whenr = n. The column space is all & whenr = m. All

those statements are important!

The nullspace contains ony = 0 when A has 5 pivots. Also the column spaceRs,

because we can solvex = b and eveny is in the column space.

A=1]1 —3 —1]givesthe plane — 3y — z = 0; y andz are free variables. The

special solutions ar¢3,1,0) and(1,0, 1).

Fill in 12 then4 then1 to get the complete solution iR® to z — 3y — z = 12:
T 12 4 1

y| = 0|ty |1 +2]0] = Tparticulart ®nullspace
z 0 0 1

Column 5 is sure to have no pivot since it is a combination oliexacolumns. With
4 pivots in the other columns, the special solutios is (1,0,1,0,1). The nullspace

contains all multiples of this vecter (this nullspace is a line ilR>).

To produce special solution®,2,1,0) and (3,1,0,1) with free variablesxs, x4:

1 0 -2 -3
R= and A can be any invertible 2 by 2 matrix times this
01 -2 -1
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17

18
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22

23

24

25

26

_4_
1 0 0 —4
3
The nullspaceod = |0 1 0 —3| isthe line through the special solutign |.
2
00 1 -2
_1_
1 0 —1/2 1 0 1

A=|1 3 —2|has|1]|and|3|inC(A)and|1| in N(A). Which otherA’s?

5 1 -3 5) 1 2
This construction is impossible for 3 by 3! 2 pivot columnsl@ifree variables.

1 -1 0 0
A=11 0 -1 0] has(1,1,1)in C(A) and only the lin€c, ¢, ¢, c) in N(A).
1 0 0 -1

0 1 , 0l
A= ] hasN(A) = C(A). Notice thatref(A™) = ] isnotAT.
0 0 0 0

If nullépace: column space (with pivots) themn — r = r. If n = 3 then3 = 2ris

impossible.

If Atimes every column oB is zero, the column space Bfis contained in thaullspace

1 1
For B = 0,C(B) is smaller thariV (A).

1
of A. An example isA = {
-1 -1

andB = [ 1] . HereC'(B) equalsN (A).

For A = random 3 by 3 matrixR is almost sure to bé. For 4 by 3,R is most likely

to bel with a fourth row of zeros. What i& for a random 3 by 4 matrix?

0 1 _ 10
A= shows that (a)(b)(c) are all false. Notigef(A™T) = .
0 0 0 0
If N(A) = line throughx = (2,1,0, 1), A hasthree pivotg4 columns and 1 special

1 0 0 -2
solution). Its reduced echelonformcan®e= |0 1 0 —1| (addany zerorows).

001 O

1 00
010

R=[1 -2 -3], R=

] , R = 1. Any zero rows come after those rows.
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10 10 11 0 1 0 0 ,
27 (a) , , , , (b) All 8 matrices areR’s !
0 1 0 0 0 0 0 0 0 0
28 One reason thak is the same ford and—A: They have the same nullspace. (They
also have the same row space. They also have the same colac®) bpt that is not

required for two matrices to share the safeR tells us the nullspace and row space.)
29 The nullspace oB = [A A] contains all vectors = y for y in R%.
-y
30 If Cx = 0thenAz = 0 andBx = 0. SON(C) = N(A) N N(B) = intersection
31 (a) rankl (b) rank2 because every row is a combination(©f2, 3,4) and(1,1,1, 1)
(c) rankl because all columns are multiples(af1,1)
R ATy =0y —yt+ya=—yi+y++ys = Y2+ ys+ys = Y1 —ys — Y6 = 0.
These equations add o= 0. Free variablegs, ys, ys: watch for flows around loops.
The solutions tody = 0 are combinations af-1,0,0,1, —1,0) and(0,0, -1, —1,0, 1)

and(0,—1,0,0,1,—1). Those are flows around tl3esmall loops.

33 (a) and (c) are correct; (b) is completely false; (d) is fdlseause? might havel’s

in nonpivot columns.

1 20
Rqy O Zero rows go
34 Ry=|0 0 1| Re=[Ra Ra] Rc— —
0 Ra to the bottom
0 00

0 I
35 If all pivot variables come last theR = . The nullspace matrix i8/ =
0 0 0

36 |think Ry = Ay, Ry = A, istrue. ButR; — R, may have—1's in some pivots.
37 A andAT have the same rank= number of pivots. Bupivcol (the column number)

01 0
is 2 for this matrixA and 1 forAT: A= |0 0 0

0 0O
38 Special solutions itV =[—-2 —4 1 0; -3 —5 0 1] and[1 0 0;0 —2 1].
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1 2 4 2 6 -3
39 The new entries keep rank 14 = |2 4 8|, B = |1 3 -3/2|,
4 8 16 2 6 -3
a b
M = .
¢ be/a

40 If A has rank 1, the column space idirme in R™. The nullspace is alanein R"
(given by one equation). The nullspace mathixis n by n — 1 (with n — 1 special

solutions in its columns). The column spacedf is alinein R™.

3 6 6 3{122}
2 2 6 4 2[1132]
41 (1 2 9l=11 and =

-1 -1 -3 =2 -1
4 8 8 4

42 With rank1, the second row oR is a zero row.

Invertibler by r submatrices 1 3 10
43 S = andS =[1]andS =

Use pivot rows and columns 1 4 0 1

44 P hasrankr (the same agl) because elimination produces the same pivot columns.

45 The rank ofRT is alsor. The example matrixl hasrank 2 with invertible S:

1 3
1 2 2 1 2 1 3
P=12 6 PT = ST = S =
3 6 7 3 7 2 7
2 7

46 The product of rank one matrices has rank one or zero. Theteysar matrices have
rank AB) = 1; rank AM) = 1 exceptAM = 0if c = —1/2.

47 (uvT)(wzT) = u(vTw)z" has rank one unless the inner produettaw = 0.

48 (a) By matrix multiplication, each column ofB is A times the corresponding column
of B. So if columnj of B is a combination of earlier columns, then colughof AB

is the same combination of earlier columns4B. Then rank(AB) < rank(B). No

new pivot columns!  (b) The rank d8 is » = 1. Multiplying by A cannot increase
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this rank. The rank ofiB stays the same fot; = I andB = [} }]. It drops to zero
fordo =[_7 1]

49 If we know thatrank(BT AT) < rank(AT), then since rank stays the same for trans-
poses, (apologies that this fact is not yet proved), we hank(AB) < rank(A).

50 We are giverd B = I which has rank. Then rankAB) < rank(A) forces rankA) =
n. This means thatl is invertible. The right-invers® is also a left-inverseBA = I
andB = A1,

51 Certainly A and B have at mostank 2. Then their producd B has at mostank 2.
SinceBA is 3 by 3, it cannot bel evenifAB = I.

52 (a) A andB will both have the same nullspace and row space a&ttieey share.

(b) A equals annvertiblematrix timesB, when they share the sanie A key fact!

10 1 10
1 10
53 A = (pivot columng(nonzerorows o) = |1 4 =11 0|+
0 01
1 8 1 1 0
0 00
2 2111 0 columns 2 0 0 2
0 0 4|. B= = = +
2 310 1 times rows 2 0 0 3
0 0 8
1 1 2 2 1 0 2 2

54lfc=1,R=10 0 0 0| haszg,xz3,z4free. fc#A#1,R= 10 1 0 0

0O 0 0 O 0O 0 0 O
1 2 2]
. . . 1 0 0
haszs, x4 free. Special solutions iV = (forc = 1) and N =
0 1 0
i 0 0 1_
o]
0 0 0 1 i -2
(forc#£1). Ifc=1,R= andz; free;ifc=2,R =
1 0 00 0 0
L 0 1_.
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1

andxs free; R = I if ¢ # 1,2. Special solutions inV = (c=1)orN =
0
2 .
(¢ =2) or N = 2 by 0 empty matrix.
1
1 I I
55 A:[[ [} hasN = :B = hasthesamef;(;’:{[ I [} has
—I 0 0
I -1
N = 1 0
0 1
1 1 11 1
56 |1 1 1 1| = (pivotcolumn) (first row)= |1 {1 1 1 1]
1 1 11 1

57 Them by n matrix Z hasr ones to start its main diagonal. Otherwisés all zeros.

I F rbyr rbyn—r I0
58 R= = Y Y ;rref (RY) = ; rref (RTR) =same
00 m—rbyr m—rbyn—r 00
1 2 0 1 2 0
1 2
59 R= hasRTR = |2 4 (| andthis matrix row reduces 0o 1| =
0 0 1
0 0 1 0 0 O

. Always R™ R has the same nullspace Asso its row reduced form must
Zero row

be R with n — m extra zero rowsR is determined by its nullspace and shape!

I 0
60 Therow-column reduced echelon foimalways ;Tisrhbyr.
0 0
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2 46 4 by 2 4 6 4 by 2 46 4 by
112 5 7 6 ba|—=|0 1 1 2 ba—by|—=|0 1 1 2 by—by

2 3 5 2 bs 0-1-1-2 bs—Db; 0 0O 0 0 bg+by—2b;
Ax = b has a solution wheby + b, — 2b; = 0; the column space contains all combi-

nations of(2, 2,2) and(4, 5, 3). This is the planeb; + by — 2b; = 0 (!). The nullspace
contains all combinations af, = (—1,—1,1,0) andsy = (2,—-2,0,1); Tcomplete =

Tp + 181 + Cc289;

1 01 -2 4

[R d]: 0 1 1 2 —1| gives the particular solution, = (4, —1,0,0).
0 0 O 0 0
2 1 3 by 2 1 3 by 1 1/2 3/2 5

216 3 9 byl —=>|0 0 0 by—3b;| Then[R d]=]0 0 0 O
4 2 6 bs 0 0 0 bs—2b; 00 0 o0
Az = b has a solution wheh, — 3b; = 0 andbs — 2b; = 0; C(A) = line through
(2,6,4) which is the intersection of the planés — 3b; = 0 andbz — 2b; = 0;
the nullspace contains all combinationssaf= (—1/2,1,0) andsy = (—3/2,0,1);

particular solutiore,, = d = (5,0,0) and complete solutio®,, + c¢1s; + c252.

-2 -3
3x = 0| + 22| 1|. The matrix is singular but the equations are
complete
1 0

still solvable;b is in the column space. Our particular solution has freeabdeiy = 0.

1,1
2 omplete — Tp T Tn = (3,0,35,0) +22(=3,1,0,0) + 24(0,0, -2,1).

1 2 -2 b 1 2 -2 b
5102 5 —4 by|—[0 1 0 by—2h solvable ifbg — 2b; — by = 0.

4 9 -8 b3 0 0 0 b3 —2b; — b
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Back-substitution gives the particular solution4a = b and the special solution to
5b1 — 2bs 2
Ar =0z = | by —2b; | +23|0]|.
0 1

. 5b1 — 2b3
6 (a) Solvable ifby = 2b; and3b; — 3b3 + by = 0. Thenx = =z,
bz — 2by

5b1 — 2bs -1
(b) Solvable ifb, = 2b; and3b; —3b3 +bs =0. € = | by —2by | + 23 [—1
0 1

1 3 1 b 1 3 1 by One more step givg®) 0 0 0] =
713 8 2 by|—™|0 —1 —1 by—3b;| row3—2(row2)+ 4(row 1)
2 4 0 bs 0 —2 —2 bg—2by| provided b3—2bs+4b;=0.
8 (a) Everybisin C(A): independent rowonly the zero combination gives
(b) We needs = 2by, becausérow 3) — 2(row 2) = 0.
1 0 0 1 2 3 5 b 1 2 3 5 b
9L[U Ci|: 2 1 0 0 0 2 2 by—2h =2 4 8 12 by
3 =1 1{]{0 0 0 0 b3+by—>5bh 3 6 7 13 b3
= [A b]; particularz, = (—9,0,3,0) means—9(1,2,3) + 3(3,8,7) = (0,6, —6).
ThisisAx, = b.

0 1 -1
11 A 1 by 3 system has at leasto free variables. Buk, | in Problem 10 only hasne.

1 0 -1 2
10 { ] x = [ ] hasz, = (2,4,0) andx | = (c, ¢, ¢). Many possibled !
4

12 (@) If Axzy = bandAx,; = bthenx; — x5 and alsar = 0 solveAx = 0
(b) A(Z:Z?l — 2:132) = 0,14(2:131 — 1132) =b
13 (a) The particular solutiom, is always multiplied by 1  (b) Any solution can bg
3 3| |z 6
(©) =
3 3| |y 6

(d) The only “homogeneous” solution in the nullspace js= 0 whenA is invertible.

1. 2
. Then [ ] is shorter (length/2) than [ ] (length 2)
1 0
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14 If column 5 has no pivoty; is afreevariable. The zero vectas notthe only solution

to Az = 0. If this systemAx = b has a solution, it hasfinitely manysolutions.

15 If row 3 of U has no pivot, that is @aero row Uxz = c is only solvable provided
c3 = 0. Az = b might not be solvablébecausé/ may have other zero rows needing

morec; = 0.

16 The largest rank is 3. Then there is a pivot in evenyw. The solutionalways exists

The column space B®. An exampleisd = [I F]for any3 by 2 matrix F.

17 The largest rank of a 6 by 4 matrix is 4. Then there is a pivowiergcolumn The
solution isunique(if there is a solution). The nullspace contains only zbke vector

An exampleisA = R =[I F]forany 4 by 2 matrixt'.
18 Rank= 2; rank= 3 unlesg; = 2 (then rank= 2). Transpose has the same rank!

19 Both matrices4 have rank 2. Alwaysi™T A andAAT havethe same rankasA.

1 00|t o 1

0
1 0 3 4 1 0
20 A=LU = i A=LU=1(2 1 0 0 2 -2 3
2 1110 =3 0 1
0 3 1[0 0 11 -5
T 4 -1 -1 T 4 -—1
21 @) |y|=1|o|+y| 1|+=2| o] () |y|=1|0|+2z| 0].Thesecond
z 0 0 1 z 0 1

equation in part (b) removed one special solution from tHespace.

22 If Ax; = band alscAxz, = bthenA(x; — ;) = 0 and we can add; — x5 to any
solution of Az = B: the solutionz is not unique. But there will beo solution to

Ax = B if Bis notinthe column space.
23 For A, ¢ = 3 gives rank 1, every othergives rank 2. FoB, ¢ = 6 gives rank 1, every
otherq gives rank 2. These matrices cannot have rank 3.

1 b1 . . |:1 1] I
24 (a) . [z] = , has 0 or 1 solutions, depending bn (b) =
2 T2

[b] has infinitely many solutions for evety (c) There are 0 osc solutions wherd
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has rankr < m andr < n: the simplest example is a zero matrix.  (djesolution
for all b when A is square and invertible (likd = I).
25 (@) r <m,alwaysr <n () r=m,r<n() r<m,r=n() r=m=n.
2 4 4 1 0 -2 2 4 4
26 |0 3 6| >R=10 1 2land|o 3 6| - R=1.

0 0 O 0 0 0 0 0 5
27 R = I whenA is square and invertible—so for a triangular matrix, allgdinal entries

must be nonzero.

-2
1230 1200 1235 120 -1
28 — v =1 11, —
0040 0010 0048 001 2
0
Freez, = 0 givesz, = (—1, 0, 2) because the pivot columns contdin
1 000 0 1 00 -1
29[Rd] = 1|0 0 1 0] leads toxz,, = |1|; [Rd] = |0 0 1 2
0 00O 0 000 5

this has no solution because of the 3rd equation

- —4 —2
1023 2 102 3 2 1020 —4
3 0
30 {1320 5/—]030-33|—]0100 3}, 1 Tp = T3
0 1
204910 000 36 0001 2
- | 2] | 0]
1 1] 1
0
31 ForA= [0 2],theonlysolutiontdde = |2 isz = . B cannot exist since
1
0 3] 3
2 equations in 3 unknowns cannot have a unigue solution.
13 1] 1 17t 3 1]
1 2 3 , 11 0 -1 2 ,
32 A= factors intoLU = and the rank is
2 4 6 2 21 0 0 0
|1 1 5] |1 20 1[0 0 0]
r = 2. The special solution tolx = 0 andUx = 0iss = (—7,2,1). Since
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b = (1,3,6,5) is also the last column ofl, a particular solution tcdxz = b is
(0,0,1) and the complete solutionis = (0,0, 1) 4 c¢s. (Or use the particular solution

x, = (7,—2,0) with free variablers = 0.)

Forb = (1,0,0,0) elimination leads td/x = (1,—1,0, 1) and the fourth equa-

tionis0 = 1. No solution for thish.

1 1 0
If the complete solution tolz = isx = + thenA =
3 0 c 30

(@) If s =(2,3,1,0) is the only special solution tdx = 0, the complete solution is

x = cs (aline of solutions). The rank of must bet — 1 = 3.

1 0 -2 0

(b) The fourth variable:, is not freein s, andR mustbe|o 1 -3 0

0 0 0 1

(c) Az = b can be solved for ab, becaused and R havefull row rankr = 3.

For the—1,2, —1 matrix K(9 by 9) and constant right side = (10,--- ,10), the
solutionz = Kb = (45,80,105, 120,125,120, 105, 80, 45) rises and falls along

the parabola:; = 50i — 5i2. (A formula for K ! is later in the text.)

If Az = b andCx = b have the same solutiond, andC have the same shape and
the same nullspace (take= 0). If b = column1 of A, x = (1,0,...,0) solves

Ax=bsoitsolvex=>b. ThenA andC share column. Other columns tood =C'

The column space ak (m by n with rankr) spanned by it pivot columns (the first

r columns of ann by m identity matrix).
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1 11 c1
1 (0 1 1| |e| = 0givescs = ¢ = ¢ = 0. So those 3 column vectors are
0 0 1 c3
1 1 1 2 0
independent. Bufo 1 1 3| |c| = |0] issolved bye = (1,1,—4,1). Then
0 0 1 4 0

v1 + vy — 4vz + v4 = 0 (dependent).

2 vy, v2,v3 are independent (the1’s are in different positions). All six vectors iR*

are on the planél, 1,1, 1) - v = 0 so no four of these six vectors can be independent.

3 If a = 0 then columnl = 0; if d = 0 thenb(columnl) — a(column2) = 0;if f =0

then all columns end in zero (they are all in thgplane, they must be dependent).

a b c T 0
4Ux = |0 d el| |y| = |0]| givesz = 0theny = 0thenxz = 0 (by back
00 f|]z 0

substitution). A square triangular matrix has independeiumns (invertible matrix)

when its diagonal has no zeros

1 2 3 1 2 3 1 2 3
: invertible= independent
5@ (|3 1 2|—=|0 -5 —-7|—=1]0 -5 -7
columns
2 31 0 -1 -5 0 0 -18/5
1 2 -3 1 2 -3 1 2 -3 1 0
columns
G |-3 1 2|—=1l0 7 —-71|—=10 7 =7];A|1]=]0
add toO0.
2 =3 1 0 -7 7 0 0 0 1 0

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 andsthet not 1, 2, 3).
Same column numbers (not same columns!) AorThis is becaus&' A = U for the
matrix £’ that subtractg times row1 from row4. SoA andU have the same nullspace

(same dependencies of columns).
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7 The sumw; —vs +v3 = 0 becauséws, —w3) — (w1 —w3) + (w; —wsy) = 0. So the
0 1 -1
difference arelependenand the difference matrix is singulad: = | 1 0 —1
1 -1 0
8 If ¢1(wa +ws3) + co(wy +ws) +c3(wi +ws) = 0then(cg + c3)wi + (1 +c3)wa +
(c1 + c2)ws = 0. Since thew’s are independenty + c3 = ¢; +¢3 = ¢1 + ¢2 = 0.

The only solution is; = ¢, = ¢3 = 0. Only this combination ob 1, v2, v3 givesO.
(changing—1's to 1's for the matrixA in solution7 above makes! invertible.)

9 (a) The four vectors iR? are the columns of a 3 by 4 matrik. There is a nonzero
solution toAxz = 0 because there is at least one free variable (b) Two vecters ar
dependent if v; vy ] has rank 0 or 1. (OK to say “they are on the same line” or “one
is a multiple of the other” buhot “v, is a multiple ofv,” —since v, might be0.)

(c) A nontrivial combination ob; and0 gives0: 0v; + 3(0,0,0) = 0.

10 The planeisthe nullspacedf=[1 2 —3 —1]. Three free variables give three inde-
pendent solutions(z,y,z,t) = (2,-1,0,0) and (3,0,1,0) and (1,0,0,1).

Combinations of those special solutions give more solst{afi solutions).
11 (a) Line inR? (b) PlaneinR®>  (c) Allof R*  (d) Allof R®.

12 b is in the column space wheAxz = b has a solutiong is in the row space when

ATy = c has a solutionFalse The zero vector is always in the row space.

13 The column space and row spacedoandU all have the same dimensior2=The row
spaces ofd and U are the samgbecause the rows @f are combinations of the rows

of A (and vice versa!).

14 v=1(v+w)+ i(v—w)andw = (v +w) — 1 (v — w). The two pairspanthe

same space. They are a basis wheandw areindependent

15 Then independent vectors span a space of dimensidrhey are dasisfor that space.

If they are the columns aft thenm is not lessthann (m > n). Invertibleif m = n.
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17

18

19

20

21

22

23

24

These bases are not unique! @ 1,1,1) for the space of all constant vectors
(¢c,c,c,0) (b) (1,-1,0,0),(1,0,-1,0),(1,0,0,—1) for the space of vectors with
sum of components & (¢ (1,-1,-1,0),(1,-1,0,—1) for the space perpendic-
ularto(1,1,0,0) and(1,0,1,1) (d) The columns of are a basis for its column

space, the empty set is a basis (by convention)Nd/ ) = Z = {zero vector}.

1 01 0 1],
The column space df = is R? so take any bases f@®?; (row 1

01 010
and row2) or (row 1 and row1 + row 2) or (row 1 and— row 2) are bases for the row

space of.

(a) The 6 vectorsnight notspanR* (b) The 6 vectoraire notindependent

(c) Any four might bea basis.

n independent columns- rankn. Columns spaR™ =- rankm. Columns are basis

for R™ = rank= m = n. The rank counts the numberiotlependentolumns.

One basis i92,1,0), (—3,0,1). A basis for the intersection with they plane is

(2,1,0). The normal vectofl, —2, 3) is a basis for the line perpendicular to the plane.

(&) The only solution tadx = 0 is * = 0 becausdhe columns are independent
(b) Az = b is solvable becausthe columns spalR®. Key point: A basis gives

exactly one solution for every.
(@) True (b) False because the basis vector®fdomight not be inS.

Columnsl and2 are bases for thalifferent) column spaces ofi andU; rows1 and
2 are bases for theequal) row spaces ofA andU; (1, —1, 1) is a basis for theqgual)

nullspaces.

(a) FalseA = [1 1] has dependent columns, independentrow  KalseColumn
0

space# row space forA = (c) True Both dimensions= 2 if Ais

invertible, dimensions:- 0if A = 0, otherwise dimensions 1 (d) False columns

may be dependent, in that case not a basi€fod).
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c d
25 Ahasrank if c = 0andd = 2; B = [ ] has rank2 except wherc = d or
d c

0 00 0 0 0
» {01 0], (0 O O
0

c= —d.
1 0 0
26 (a) Basis for all diagonal matrices|:0 0 0
0 0

0 0 0 0 0 0 1
o1 0] [oo 1] foo
() Add|1 0 of|, |0 0 0],|0 0 1| =basisforsymmetric matrices.
0 0 0 1 00 010
01 0 o o 1] [o o o
¢ |-1 0 0l,|0 0 0],]0 0 1
0 0 O -1 0 0 0 -1 0

These are simple bases (among many others) for (a) diagatates (b) symmetric

matrices (c) skew-symmetric matrices. The dimensions g ¢3.
1 0 0 1 00 1 10 1 01 1 0 0
271,10 1 0f,|0 2 0,0 1 Of,|0 1 0],]|0 1 1};
0 0 2 0 0 1 0 0 1 0 0 1 0 0 1
echelon matrices doot form a subspace; theypan the upper triangular matrices (not
everyU is an echelon matrix).
28{1 0 0]’{0 1 0]’{0 0 1];{1—1 0] and|:1 0—1].
-1 0 0 0 -1 0 0 0 -1 -1 1 0 -1 0 1
29 (a) The invertible matrices span the space of3dlly 3 matrices (b) The rank one

matrices also span the space ofably 3 matrices (c)I by itself spans the space of

all multiplesci.

o |12 o [0 00 0 00 0
o000l ] 000/ |=12o0|[=10 2

31 (@) y(z)= constanC (b) y(xz)=3z. (c) y(z)=3z+C=y,+y, solvesy’ = 3.

. Dimension= 4.

32 y(0) = 0 requiresA + B + C = 0. One basis isos z — cos 2z andcos z — cos 3.
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33

34

35

36

37

38

39

40

41

(@) y(z) = €2 is a basis for all solutions t9’ = 2y (b) y = = is a basis for all
solutions tody/dx = y/x (First-order linear equatios> 1 basis function in solution

space).

y1(2), y2(), y3(x) can ber, 2z, 3z (dim1) or z, 2z, 2 (dim2) or z, 2, 2% (dim3).
Basisl, z, 2, 3, for cubic polynomials; basig — 1, z? — 1, 23 — 1 for the subspace
with p(1) = 0.

Basis forS: (1,0,-1,0),(0,1,0,0), (1,0,0, —1); basis forT: (1, —1,0,0) and(0, 0, 2, 1);

SN T = multiples of(3, —3,2,1) = nullspace foi equations ilR* has dimension 1.

The subspace of matrices that ha¥§ = SA has dimensiothree The 3 numbers

a, b, c can be chosen independentlyAn

(@) No,2 vectors don’'t spaiR? (b) No,4 vectors inR? are dependent (c) Yes, a

basis (d) No, these three vectors are dependent

If the 5 by 5 matrix [ A b] is invertible,b is not a combination of the columns df:
no solution toAz = b. If [A b] is singular, and thé columns ofA are independent

(rank4), b is a combination of those columns. In this cake = b has a solution.

(&) The functiong) = sinz, y = cosz, y = e*, y = e~ are a basis for solutions to
d*y/dz* = y(z).

(b) Aparticular solutiontal*y/dz* = y(z)+1isy(x) = —1. The complete solution
isy(x) = —1 4 ¢y sinx + co cosx + cze® + c4e~* (Or use another basis for the
nullspace of theth derivative).

1 1 1 1 1
I=11 - 11+ 1 |+ 11— 11

The sixP’s

are dependerﬁ
1 1 1 1 1

Those five are independent: Thih hasP;; = 1 and cannot be a combination of the
others. Then thénd cannot be (fronP;; = 1) and alsdsth (P32 = 1). Continuing,
a nonzero combination of all five could not be zero. Furthelehge: How many

independent by 4 permutation matrices?
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42 The dimension ofS spanned by all rearrangementsanfs (a) zero whene = 0
(b) one whene = (1,1,1,1) (c) three wherx = (1,1, —1, —1) because all rear-
rangements of this are perpendicular tol, 1,1, 1) (d) four when ther’s are not
equal and don’t add to zer®No x givesdim S = 2. | owe this nice problem to Mike

Artin—the answers are the same in higher dimensions;n — 1, n.

43 The problem is to show that the's, v's, w’s together are independent. We know the
u’s andv’s together are a basis f&f, and theu’s andw'’s together are a basis 6% .

Suppose a combination afs, v's, w’s gives0. To be proved All coefficients= zero.

Key idea In that combination givin@, the parte from thew’s andv’sis in V.. So the
part from thew'’s is —a. This partis now iV and also inW. Butif —zisinV NnW
it is a combination ofu’s only. Now the combination givin@ uses onlyu’s andv’s
(independent iV!) so all coefficients ofu’s andv’s must be zero. Them = 0 and

the coefficients of thev’s are also zero.

44 The inputs to multiplication by am by n matrix fill R™: dimensionn. The outputs
(column space!) have dimensien The nullspace has — r special solutions. The

formula becomes + (n — r) = n.

45 |If the left side ofdim(V) 4+ dim(W) = dim(V N'W) +dim(V + W) is greater than

n, thendim(V N ' W) must be greater than zero. 301 W contains nonzero vectors.

Oh here is a more basic approach: Put a basi®/fand then a basis fa/V in the
columns of a matrixAd. Then A has more columns than rows and there is a nonzero
solution toAx = 0. Thatx gives a combination of th&¢ columns= a combination of

theW columns.

46 If A% = zero matrix, this says that each columnifs in the nullspace ofd. If the
column space has dimensionthe nullspace has dimensitéf — r. So we must have

r < 10 — r and this leads to < 5.
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1 (a) Row and column space dimensieass, nullspace dimensios 4, dim(IN(A™1))

=2 sumb+5+44+2=16=m+n
(b) Column space iR?; left nullspace contains ong.

2 A: Row space basis- row 1 = (1,2, 4); nullspace(—2,1,0) and(—4,0, 1); column
space basis= columnl = (1,2); left nullspace(—2,1). B: Row space basis=
both rows= (1,2,4) and(2, 5, 8); column space basis two columns= (1,2) and
(2,5); nullspace(—4,0,1); left nullspace basis is empty because the space contains

onlyy = 0: the rows ofB are independent.

3 Row space basis first two rows ofU; column space basis pivot columns (ofA notU)
= (1,1,0) and(3,4, 1); nullspace basiél, 0,0, 0,0), (0,2,—1,0,0), (0,2,0,—2,1);
left nullspace(1, —1,1) = last row of E~! = L.

1 0
4@ [1 0 (b) Impossibler+(n—r)mustbe3  (c)[1 1] (d)

-3

-1
0 1

(e) ImpossibleRow space=column space requiress = n. Thenm —r = n —
r; nullspaces have the same dimension. Section 4.1 will pf§yel) and N (AT)

orthogonal to the row and column spaces respectively—hesetare the same space.

1 1 1
5 A= has those rows spanning its row spaée—= [1 -9 1] has the

2 1 0
same rows spanning its nullspace ah8™ = 0.

6 A: dim 2,2,2,1: Rows(0,3,3,3) and(0,1,0,1); columns(3,0,1) and (3,0,0);
nullspace(1,0,0,0) and(0, —1,0,1); N(A™)(0,1,0). B: dim 1,1, 0,2 Row space
(1), column spacél, 4, 5), nullspace: empty basigy (AT) (—4,1,0) and(-5,0,1).

7 Invertible3 by 3 matrix A: row space basis- column space basis (1,0, 0), (0, 1,0),
(0,0,1); nullspace basis and left nullspace basiseampty Matrix B = {A A} : row
space basi¢l1,0,0,1,0,0), (0,1,0,0,1,0) and (0,0,1,0,0,1); column space basis
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(1,0,0), (0,1,0), (0,0, 1); nullspace basis-1, 0,0, 1,0,0) and(0,—1,0,0,1,0) and
(0,0,-1,0,0,1); left nullspace basis is empty.

8 [[ 0] and [[ I; 0 o] and[o} = 3 by 2 haverow space dimensions 3,3,0 =
column space dimensionmslispace dimensioris 3, 2; left nullspace dimensiorts 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of raee¥ps the same

(b) Same column space and left nullspace. Same rank (dioreakcolumn space).

10 Forrand (3), almost surely rank 3, nullspace and left nullspace contain ofily0, 0).

Forrand (3, 5) the rank is almost surely and the dimension of the nullspaceis

11 (a) No solution means that < m. Alwaysr < n. Can’'t comparen andn here.

(b) Sincem — r > 0, the left nullspace must contain a nonzero vector.

1 1 2 21
o 1 0 1
12 A neat choiceis|(Q 2 =12 4 0|; r+(n—r)=n=3does
1 2 0
1 0 1 0 1

not match2 + 2 = 4. Onlyv = 0 is in both N (A) andC(A™).
13 (a) False Usually row spacet column space (they do not have the same dimension!)
(b) True A and— A have the same four subspaces

(c) False (chooseA and B same size and invertible: then they have the same four

subspaces)

14 Row space basis can be the nonzero row#of(1,2,3,4), (0,1,2,3), (0,0,1,2);
nullspace basi§0, 1,—2, 1) as forU; column space basi4, 0,0), (0,1,0), (0,0,1)
(happen to hav€(A) = C(U) = R?3); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the;¢am, 3, 4) is in the
new left nullspace after the row exchange.

16 If Av = 0andwv is arow ofA thenv v = 0. Sov = 0.

17 Row space= yz plane; column space zy plane; nullspace- z axis; left nullspace
= z axis. Forl + A: Row space= column space= R?, both nullspaces contain only

the zero vector.
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18

19

20

21

22

23

24

25

26

27

Row 3 —2row 2+ row 1 = zero row so the vectorg1, —2, 1) are in the left nullspace.
The same vectors happen to be in the nullspace (an accidghidonatrix).

(@) Elimination onAxz = 0 leads to0 = b3 — by — by so(—1,—1,1) is in the left
nullspace. (b)4 by 3: Elimination leads tds — 2b; = 0 andby + by — 4b; = 0, SO
(—2,0,1,0) and(—4,1,0,1) are in the left nullspaceWhy? Those vectors multiply
the matrix to givezero rowsin vA. Section 4.1 will show another approachz = b

is solvable § is in C'(A)) exactly wherb is orthogonal to the left nullspace.

(a) Special solution§—1,2,0,0) and(—i, 0,—3,1) are perpendicular to the rows of
R (and rows ofER). (b) ATy = 0 hasl independent solutios last row of 1.
(E~'A = R has a zero row, which is just the transposeidfy = 0).

() v andw (b) vandz (c) rank< 2 if uw andw are dependent or #f andz

are dependent (d) The rankab™ 4+ wzT is 2.

1 2 3 2
vT 1 0 u, w span column space;
A= |lu w =12 2 =14 2
2T 11 v, z Span row space
4 1 5 1

As in Problem 22: Row space basi3, 0,3), (1,1,2); column space basid, 4, 2),
(2,5,7); the rank of (3 by 2) times (2 by 3) cannot be larger than th& @freither
factor, so rank< 2 and the 3 by 3 product is not invertible.

ATy = d putsd in therow spaceof A; unique solution if théeft nullspacenullspace
of AT) contains onlyy = 0.

(@) True(A andA™ have the same rank) (WalseA = [1 0] andAT have very
different left nullspaces (cJalse (A can be invertible and unsymmetric even if
C(A)=C (A1) (d) True(The subspaces fot and— A are always the same. If
AT = Aor AT = — A they are also the same fdr")

Choosel = be/a to make[2 2] arank-1 matrix. Then the row space has bési$)
and the nullspace has basisb, a). Those two vectors are perpendicular !

B andC (checkers and chess) both have rank2# 0. Row 1 and 2 are a basis for the

row space of”, BTy = 0 has 6 special solutions with1 and 1 separated by a zero;
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N(C"%) has(-1,0,0,0,0,0,0,1) and(0,—1,0,0,0,0, 1,0) and columns3, 4, 5, 6 of
I; N(C)is a challenge : one vector iV (C) is (1,0, ...,0,—1).

28 a11 = 1l,a12 = 0,a13 = 1,a90 = 0,a32 = 1,a31 = 0,a23 = 1,a33 = 0,a21 = 1.
(Need to specify the five moves).

29 The subspaces fad = uvT are pairs of orthogonal linex(andv*, v andu™t).
If B has those same four subspaces tBes cA with ¢ # 0.

30 (a) AX = 0 if each column ofX is a multiple of(1,1,1); dim(nullspacgé = 3.
(b) If AX = B then all columns ofB add to zero; dimension of th&'s = 6.
(€) 3+ 6 = dim(M3*3) = 9 entries in & by 3 matrix.

31 The key is equal row spaces. First row 4f= combination of the rows oB: only

possible combination (noticB is 1 (row 1 of B). Same for each row sb = G.
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1 Both nullspace vectors will be orthogonal to the row spaagorein R3. The column

space ofd and the nullspace od™ are perpendicular lines iR? because rank 1.

2 The nullspace of a 3 by 2 matrix with rank 24s(only the zero vector because the
columns are independent). $g = 0, and row space- R?. Column space- plane

perpendicular to left nullspace line in R? (because the rank &.

1 2 -3
3 (a) One way is to use these two columns directly= | 2 -3 1
-3 5 -2

1

Impossible becaus® (A4) andC (A1) _
b) —3| is not orthogonal tg 1

are orthogonal subspaces:
5 1

1 1
(©) |1]| and|o| inC(A)andN(A™) is impossible: not perpendicular
1 0
(d) Rows orthogonal to columns makégimes A = zero matrixp. An example isdA =
1-1
[171]
(e) (1,1,1) in the nullspace (columns add to the zero vector) and @lsb, 1) is in

the row space: no such matrix.

4 If AB = 0, the columns ofB are in thenullspaceof A and the rows ofd are in thdeft
nullspaceof B. If rank = 2, all those four subspaces have dimension at [2agtich

is impossible fo by 3.

5 (a) If Az = b has a solution andiTy = 0, theny is perpendicular td. b'y =
(Az)Ty = xT(AYy) = 0. This says again thaf’'(A) is orthogonal toN (A™T).
(b) If ATy = (1,1,1) has a solution(1, 1, 1) is a combination of the rows of. It is

in therow spaceand is orthogonal to every in thenullspace
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11

12

13

14

Solutions to Exercises

Multiply the equations by, y2,y3 = 1,1,—1. Now the equations add ® = 1 so
there is no solution. In subspace language= (1,1, —1) is in the left nullspace.
Az = bwould need) = (yTA)x = yTb = 1 but herey™d = 1.

Multiply the 3 equations by = (1,1, —1). Thenz; — 25 = 1 pluszy — z3 = 1 minus
x1 —x3 = 1is0 = 1. Key point: Thisy in IN(A™) is not orthogonal t& = (1,1, 1)

sob is not in the column space antle = b hasno solution

Figure4.3 hasx = x, + x,,, wherexz,. is in the row space and,, is in the nullspace.
ThenAz, = 0 andAx = Az, + Az, = Ax,. The example has = (1,0) and row
space= line through(1, 1) so the splitting isc = @, + @, = (3,1) + (3,-3). Al
Az areinC(4).

Ax is always in thecolumn spacef A. If AT Ax = 0 thenAx is also in thenullspace
of AT. Those subspaces are perpendicular.ASds perpendicular to itself. Conclu-

sion: Az = 0 if ATAx = 0.

(@) With AT = A, the column and row spaces are sane The nullspace is always
perpendicular to the row space. () is in the nullspace and is in the column

space = row space: so these “eigenvectershdz havez'z = 0.

For A: The nullspace is spanned 0y2, 1), the row space is spanned by, 2). The
column space is the line through, 3) and N (A1) is the perpendicular line through
(3,—1). For B: The nullspace oB is spanned by0, 1), the row space is spanned by

(1,0). The column space and left nullspace are the same a&. for
x = (2,0) splits intoz, + =, = (1,—1) + (1,1). Notice N (A™) is they — z plane.

VTW = zero matrix makes each columnéforthogonal to each column &F. This
means: each basis vector fbT is orthogonal to each basis vector idf. Thenevery

v in V' (combinations of the basis vectors) is orthogonaeryw in W.

€
Axz = Bz means thatA B] = 0. Three homogeneous equations (zero right
-
hand sides) in four unknowns always have a nonzero solutitsrexz = (3,1) and
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z = (1,0) andAz = Bz = (5,6, 5) is in both column spaces. Two planesRri must

share a line.

15 A p-dimensional and g-dimensional subspace Rf* share at leastalinegf + g > n.
(Thep + ¢ basis vectors oV andW cannot be independent, so same combination of

the basis vectors d¥ is also a combination of the basis vectordat)
16 ATy = 0leads to(Az)Ty = 2T ATy = 0. Theny L Az andN(AT) L C(A).
17 If S is the subspace dR® containing only the zero vector, thest" is all of R3.

If S is spanned by1,1,1), thenS~ is the plane spanned i§y, —1,0) and(1,0, —1).
If S is spanned by2,0,0) and(0, 0,3), thenS™ is the line spanned b{p, 1,0).

18 S+ contains all vectors perpendicular to those two given wsct®oS is the nullspace

1
of A = . ThereforeS+ is asubspac@ven if S is not.
2 2 2

19 L' is the2-dimensional subspada plang in R? perpendicular td.. Then(Lt)~* is

a 1dimensional subspada line) perpendicular td.*. In fact(L*)" is L.

20 If V is the whole spac®?, thenV* contains only theero vector Then(V+)+ =

all vectors perpendicular to the zero vectoR* = V.

1 2 2 3
21 Forexamplé—5,0,1,1)and(0,1, —1,0) spanS+ =nullspace ofd =
1 3 3 2

22 (1,1,1,1) is a basis for the ling>" orthogonal taP. A = [1 1 1 1] hasP as its

nullspace andP* as its row space.

23 zin V' is perpendicular to every vector WM. SinceV contains all the vectors i,

x is perpendicular to every vector 8. So everyz in V- is also inS™.

24 AA~!' = I: Column1 of A~! is orthogonal to rowg, 3, ..., n and therefore to the

space spanned by those rows.

25 If the columns of A are unit vectors, all mutually perpendiécuthenA™ A = 1. Simple

but important! We write) for such a matrix.
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Solutions to Exercises

2 2 —1| This example shows a matrix with perpendicular columns.

A=1-1 2 2|, ATA=09lisdiagonal (AT A);; = (columni of A) - (columnj of A).

2 —1 2| When the columns anenit vectorsthenAT A = I.

The lines3xz + y = b; and6z + 2y = by areparallel. They are the same line if
bs = 2b1. In that caséb,, b,) is perpendicular t§—2, 1). The nullspace of the 2 by 2

matrix is the line3z + y = 0. One particular vector in the nullspaceg(is 1, 3).

(@) (1,—1,0) is in both planes. Normal vectors are perpendicular, butgdastill in-
tersect! Two planes ilR? can't be orthogonal. (b) Neetireeorthogonal vectors to
span the whole orthogonal complemenRA. (c) Lines inR? can meet at the zero
vector without being orthogonal.

1 2 3 1 1 —-1| Ahasv=(1,2,3)inrow and column spaces
A=12 1 0|, B=|2 -1 0]: Bhasvinits column space and nullspace.

3 01 3 0 —1| wvcannotbe inthe nullspace and row space,
or in the left nullspace and column space. These spacestamgonal anch™ v # 0.
When AB = 0, every column ofB is multiplied by A to give zero. So the column
space ofB is contained in the nullspace of. Therefore the dimension &'(B) <

dimension of N (A). This means rani3) < 4 — rank(A).
null( N”) produces a basis for thew spaceof A (perpendicular tiN(A)).

We needrn = 0 andc™™2 = 0. All possible examples have the foraer™ with

a # 0.

Both r’s must be orthogonal to both’s, bothe’s must be orthogonal to bottis, each
pair (r's, n's, ¢'s, and£'s) must be independent. Fact: All's with these subspaces

have the formc; o] M[ry ro]T for a2 by 2 invertible M.

You must takdey, o] times[ry, 7o) .

(@ a'w/aTa =5/3;p=>5a/3=(5/3,5/3,5/3);e = (-2,1,1)/3
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(b) aTv/a*a=—-1;p=a; e=0.

2 (a) The projection ofb = (cosf,sinf) ontoa = (1,0) is p = (cosb,0)
(b) The projection ob = (1,1) ontoa = (1, —1) isp = (0,0) sincea™d = 0.
The picture for part (a) has the vectoat an anglé with the horizontak. The picture

for part (b) has vectora andb at a90° angle.

1 1 1 5 1 3 1 1
1 1 1
3P1=§ 1 1 1 andP1b=§ 5 .PQZH 3 9 3| andPb= |3
1 1 1 5 1 3 1 1
- Py projects ontd1, 0), P, projects ontq1, —1)
1 0 aa 111 —
4 P = Pr=——=7 . PP, # 0 andP; + P, is not a projection matrix.
0 0 a*a 2 _
(P, + P,)? is different fromP; + P.
1 -2 -2 4 4 -2
1 1
5P1=§ -2 4 4 and P2:§ 4 4 -2
-2 4 4 -2 =2 1

P, and P, are the projection matrices onto the lines through= (-1,2,2) and

as; = (2,2,—1). P, P, = zero matrix because; L a,.

6 p1:(%7 —%7 —%) andpgi(é %7 —%) andp; = (%7 —%7 %)- Sop, +py, +p3 =b.

1 -2 =2 4 4 =2 4 -2 4
1 1 1
7P1+P2+P3=§ -2 4 4 +§ 4 4 =2 +§ -2 1 =2| =1
-2 4 4 -2 -2 1 4 -2 4

We canadd projections ontorthogonal vectorgo get the projection matrix onto the
larger space. This is important.

8 The projections of1,1) onto(1,0) and(1,2) arep, = (1,0) andp, = 2(1,2). Then
p; + p, # b. The sum of projections is not a projection beca(is®) and(2,1) are
not orthogonal

9 SinceA is invertible,P = A(ATA)~1 AT separates intal A= (AT)"1 AT = I. And

I is the projection matrix onto all dR?2.
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T 0.2 04 0.2 T 1 0
10 P, = arzr% = yPay = b= alTal = ,PrPra; =
as az 0.4 0.8 0.4 aa 00

0.2| Thisisnota; = (1,0)
0 . NO,P1P275(P1P2)2.
11 (@) p=A(ATA)"1ATb=(2,3,0),e=(0,0,4), ATe=0

(b) p = (4,4,6) ande=0 becausé is in the column space of.

1 0 0
12 P, = |0 1 0| = projection matrix onto the column spacefthezy plane)
00 0
(0.5 0.5 0 o .
Projection matrix4A(ATA)~t AT onto the second column space.
P,=105 05 0= . o _
Certainly(P,)? = P,. Atrue projection matrix.
0 0
(1 0 0] (1 0 0 0] 1] [1]
0 1 0 , 01 00 2 2
13 A= , P = square matrix= ,p=P =
0 0 1 0 010 3 3
0 0 0] |00 0 0 [ 4] 10]

14 The projection of thi$ = column1 of A onto the column space df is b itself because

b is in that column space. But is not necessarily.

0 1 5 8 —4 0
. 1
A= |1 2| givesP = S| 8 17 2 andb=Pb=p= [2]| =2 (column

2 0 —4 2 20 4
1 of A).

15 2A has the same column spaceAsThenP is the same ford and2Am butz for 24

is half of z for A.
16 1(1,2,—1)+ 2(1,0,1) = (2,1,1). Sob s in the plane. Projection show2h = b.

17 If P2 = Pthen(I — P)2=(I—-P)(I—P)=I1—PI—IP+P?>=1 — P. When

P projects onto the column spade;- P projects onto théeft nullspace
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18 (a) I — P is the projection matrix ontél, —1) in the perpendicular direction {d, 1)
(b) I — P projects onto the plane+ y + z = 0 perpendicular t@1, 1, 1).
5/6 1/6  1/3
1/6 5/6 —1/3].
1/3 -1/3  1/3

For any basis vectors in the plane- y — 2z = 0,

say(1,1,0) and(2,0, 1), the matrixP = A(ATA)~1AT is

1 1/6 —1/6 —1/3 5/6 16 1/3
0e=|-1],Q=%=|-1/6 1/6 1/3|,1-Q=|1/6 5/6 —1/3].
9 13 1/3 2/3 1/3 ~1/3  1/3

21 (A(ATA)"1AT)? = A(ATA)"1(ATA)(ATA)~TAT = A(ATA)~1AT. SoP? = P.
Pbis in the column space (where projects). Then its projectioR( Pb) is alsoPb.

22 PT = (A(ATA)"TAT)T = A((ATA)~"1)TAT = A(ATA)1AT = P. (ATAis sym-
metric!)

23 If Aisinvertible then its column space is allB*. SoP = I ande = 0.

24 The nullspace ofiT is orthogonalto the column spac€'(A). Soif ATb = 0, the pro-
jection ofb ontoC(A) should bep = 0. CheckPb = A(ATA)"1ATb = A(ATA)~10.

25 The column space ofP is the space thatP projects onto. The column space ol

always contains all outputdz and here the outputBz fill the subspace. Then rank

of P = dimension ofS = n.

26 A~! exists since the rank is= m. Multiply A2 = Aby A~ to getA = I.

27 If ATAxz = 0 then Az is in thenullspace of AT. But Ax is always in thecolumn
space ofA. To be in both of those perpendicular spacés, must be zero. Sal and
AT A have thesame nullspaceAT Az = 0 exactly whendx = 0.

28 P2 = P = PT give PTP = P. Then the(2,2) entry of P equals the2, 2) entry of
PTP . Butthe(2,2) entry of PT P is the length squared of column 2.

29 A = BT has independent columns, 43 A (which is BBT) must be invertible.

T 119 12
SOP)C:ﬂ |: ]

aTa ~ 25 |19 95

3
30 (a) The column space is the line through= {
4
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The formulaP = A(AT A)~1 AT needs independent columns—thishas dependent
columns. The update formula is correct.
(b) The row space is the line through= (1,2,2) and P = vvT/vTv. Always
Pc A = A (columns ofA project to themselves) andlPr = A. ThenPc APr = A.
31 Test The errore = b — p must be perpendicular to all thes.
32 SinceP;bis in C(A) and P, projects onto that column spacB; (P, b) equalsP; b.
S0P, P, = P, = aa™ /aTa wherea = (1,2,0).

33 Eachb to by is multiplied by 5i5 — 1055 (565) = 10655955 = Togg - T e last pages of

the book discuss least squares and the Kalman filter.

10 0
11 81 . 4 8 36
1A= andb = give ATA = andATh =
1 3 8 8 26 112
_1 4_ _20_
o ]
R R 1 R ) 3
AT Az = A%b givesz = andp = Az = ande=b—p =
4 13 -5
17 E=|e|*=44 |3
(1 0] o] [ 1]
11 C 8| This Az = bis unsolvablg 5
2 = . ; Whenp replaced,
1 3| (D 8| Projectbtop = Pb= 13
_1 4_ _20_ _17_

1
= exactly solvesdz = p.
4

3 InProblem 2p = A(ATA)"1ATb = (1,5,13,17) ande = b — p = (—1,3, -5, 3).
This e is perpendicular to both columns df This shortest distandge|| is v/44.
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4 E=(C+0D)?+(C+1D —28)*+ (C +3D —28)2+ (C +4D — 20)%. Then
OE/0C = 2C +2(C + D —8) +2(C + 3D — 8) + 2(C + 4D — 20) = 0 and
OE/OD = 1-2(C + D —8) +3-2(C + 3D —8) +4-2(C +4D — 20) = 0.

. 4 8 C 36
These two normal equations are again = .
8 26 D 112

5 E=(C—0)?+(C—8)2+(C—-8)*+(C—20)2. AT=[1 1 1 1]and4ATA = [4].
ATh = [36] and (ATA)"tATs = 9 = best heightC for the horizontal line.
Errorse=b—p = (-9, —1,—1,11) still add to zero.

6 a=(1,1,1,1) andb = (0,8,8,20) givezZ = aTb/a>a = 9 and the projection is
Ta=p=(9,9,9,9). Theneta = (—9,-1,—1,11)T(1,1,1,1) = 0 and the shortest
distance fromb to the line throughu is || e]| = v/204.

7 Now the4 by 1 matrix in Az = bis A = [0 1 3 4]". Then ATA = [26] and
ATb = [112]. BestD = 112/26 = 56/13.

8 2 = a"b/aTa = 56/13 andp = (56/13)(0,1,3,4). (C,D) = (9,56/13) don't
match(C, D) = (1,4) from Problemsl-4. Columns ofA were not perpendicular so

we can't project separately to fird and D.

1 0 0 0
Parabola C 4 8 26 C 36
11 1 81 s
9 Projectb D|= ATAz=1 8 26 92| |D|=|112
1 3 9 8
4D to 3D E 26 92 338 FE 400
1 4 16 20

Figure4.9 (a) is fitting4 points andt.9 (b) is a projection irR*: same problem!

10 0 o0o]f|C 0 C 0| Exactcubicsop =b,e=0.
1 1 1 1||D 8 D 1| 47| This Vandermonde matrix
10 = . Then = .
1 3 9 27| |F 8 E| 3 |-28 gives exact interpolation
|1 4 16 64) | F| [20] | ] | 5] by a cubic ab), 1, 3,4

11 (a) The best lina: = 1 + 4t gives the center poirft = 9 at center timet = 2.
(b) The first equatio©m + DS t; = 3° b; divided bym givesC + Dt = b. This

shows: The best line goes throufglat timet.
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12 (@) a = (1,...,1) hasa™a = m, a™b = by + - -+ + b,,,. Thereforer = aTb/m is

themeanof theb’s (their average value)
(b) e = b — Za and|e||> = (b — mean)? + --- + (b,, — mean)? = variance
(denoted byr?).
111
(©) p=(3,3,3) ande = (-2, -1, 3) pTe = 0. Projection matrixP = % 111
111

13 (ATA)71AT(b — Azx) = T — x. This tells us: When the components4f — b add
to zero, so do the components®f- x : Unbiased.

14 The matrix(z — z)(z — x)T is (ATA) AT (b — Az)(b — Az)TA(ATA)~t. When
the average ofb — Ax)(b— Az)" is 021, the average ofz — =) (z — )" will be the
output covariance matrikgA™ A) "1 ATo2 A(AT A)~! which simplifies tar?(AT A) 1.
That gives the average of the squared output etéorsx.

15 When A has1 column of4 ones, Probleni4 gives the expected errqic — z)? as
o?(ATA)~! = ¢%/4. By takingm measurements, the variance drops frofto

o2 /m. This leads to thé/lonte Carlo method in Section12.1.

1 9 1 R . . ,
16 Ebm + El’g = E(bl + -+ 4 b1g). Knowingzy avoids adding all teh’s.
1 -1 7
C o 9 3 2 C
17 |1 1 = | 7|. The solutionz = comes from =
D 4 2 6 D
1 2 21
35
42

18 p = Az = (5,13,17) gives the heights of the closest line. The vertical erroes ar

b—p=(2,-6,4). This errore hasPe = Pb— Pp=p —p = 0.
19 If b = errore thenb is perpendicular to the column spacefProjectionp = 0.

20 The matrixA has columng, 1,1and—1,1,2. If b= Az = (5,13,17) thenz = (9,4)

ande = 0 sinceb = 9 (columnl) + 4 (column2) is in the column space ofl.
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21

22

23

24

25

26

27

28

29

eisinN(AT); pisinC(A); zisinC(AT); N(A) = {0} = zero vector only.
.15 0 C 5 .
The least squares equationl|is = . Solution:C' =1, D = —1.
0 10 D —10

The bestline i$ = 1 — t. Symmetrict’s = diagonalAT A = easy solution.
e is orthogonal tg in R™; then||e||> = ¢T(b—p) = eTb=b"b—b"p.

The derivatives of Az — b||? = T AT Ax — 2b" Ax + b" b (this last term is constant)

are zero wher AT Az = 2A"b, orx = (ATA)"1ATb.

3 points on a linewill giveequal slopes(bs — b1)/(ta — t1) = (b3 — b2)/(t3 — t2).
Linear algebra: Orthogonal to the columts1, 1) and(¢q, to, t3) ISy = (t2 —t3,t3 —
t1,t; — t3) in the left nullspace ofd. b is in the column space! Thep'b = 0 is the

same equal slopes condition written(as — b1)(t3 — t2) = (bs — ba)(t2 — 7).

The unsolvable 1 1 0 0
C 4 0 0
equations for 1 0 1 1
Dl = .ThenATA= |0 2 0
C+Dx+FEy=(0,1,3,4) |1 -1 0 3
E 0 0 2
at the4 corners are _1 0 —1_ _4_
8 C 2
andATb = | 2| and | p|=| —1|.Atz,y=0,0the bestplane —z — 3y
-3 E —3/2

has height” = 2 = average o), 1, 3, 4.
The shortest link connecting two lines in spacpéspendicular to those lines

If A has dependent columns, thdr A is not invertable and the usual formufa =
A(ATA)~L AT will fail. ReplaceA in that formula by the matrix3 that keep®nly the

pivot columns ofA.

Only 1 plane contain®, a1, as unlessaq, a, aredependentSame testfotiy,...,a,_1.
If they are dependent, there is a vectgperpendicular to all tha's. Then they all lie

on the planeTz = 0 going throughe = (0,0, .. .,0).
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30 When A has orthogonal columnél,...,1) and (11, ...,T,,), the matrix AT A is
diagonalwith entriesm andT? + - - - + T. Also A%b has entrie$; + - - - + b, and

Tiby + - - -+ Tp,b,,,. The solution with that diagonal™ A is just the givert = (C, D).

1 (a) Independentb) Independentind orthogonal(c) Independenand orthonormal

For orthonormal vectors, (a) becom@s0), (0, 1) and (b) is(.6, .8), (.8, —.6).

5/9 2/9 —4/9
Divide by length 3 to get T 10 T

2 . , .. @@= butQQ" = | 2/9 8/9 2/9]|.
Q1:(§7§7_§)'QQ:(_37§7§)' 0 1 _4/9 2/9 5/9

3 (a) AT A willbe 161 (b) A™ A will be diagonal with entrie$?, 22,32 = 1,4,9.

1 0 1 0 O
4@Q=10 1/,QQ" =10 1 0| # 1. Any Q withn < m hasQQ™ # I.
0 0 0 0 O

(b) (1,0) and(0, 0) areorthogona) notindependentNonzero orthogonal vectoese
independent. (c) From, = (1,1,1)/v/3 my favorite isq, = (1,—1,0)/v/2 and
g; = (1,1,-2)/ V6.

5 Orthogonalvectors arg1,—1,0) and(1, 1, —1). Orthonormalafter dividing by their
Iengths:(%,—%,o) and(%, %,—%).

6 Q1Q: is orthogonal becaug®: Q)" Q1Q> = Q3 QT Q1Q2 = Q3 Q2 = 1.

7 When Gram-Schmidt give® with orthonormal columnsQTQz = Q*b becomes
Z = Q"b. No cost to solve the normal equations!

8 If ¢, andq, areorthonormalvectors inR® thenp = (qT'b)q,+(q4 b)q, is closest ta.

The errore = b — p is orthogonal taz, andgqs.

o0

—.6 1 00

9 (a) Q= 8| hasP = QQT = |0 1 0| = projection on thery plane.

o o

0 0 0 0
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(b) (RQQM(QRQT) =Q(QRTR)QT =QQ™.
10 (a) If ¢4, g4, g5 areorthonormailthen the dot product af; with c¢;q; +c2qs+c3qs =

0 givesc; = 0. Similarly c; = ¢35 = 0. This proves independeng’s

(b) Qz = 0 leads toQTQz = 0 which sayse = 0.
11 (a) Twoorthonormalvectors areg; = 11—0(1,3,4,5,7) andq, = 15(—7,3,4,-5,1)

(b) Closest projection in the plareprojectionQQ*(1,0,0,0,0) = (0.5, —0.18, —0.24,0.4, 0).
12 (a) Orthonormak’s: aib = af (z1a; + z2a2 + x3a3) = z1(ata;) = 71

(b) Orthogonala’s: alb = af(zia; + r2as + w3a3) = x1(aiay). Therefore

r1 =aib/ala,

(c) z; is the first component ol —! timesb (A is 3 by 3 and invertible).

T T 4 1
13 The multiple to subtract i%. ThenB = b — 204 — [ ] -2 [ ] =

ata
0
2
-2 .

14 lal afo| _[1/v2 | [VE 2v2
14 =141 42 =

10 0 |B| 1/vV2 —1/v2 0 2v2
15 (a) Gram-Schmidt chooseg = a/||a|| = %(1,2,—2) andg, = 1(2,1,2). Then

qs = %(27 _27 _1)

(b) The nullspace ofi™ containsg,

= QR.

(€) @ = (ATA)"1AT(1,2,7) = (1,2).

16 p = (aTb/a%a)a = 14a/49 = 2a/7 is the projection ob ontoa. q, = a/|al =
a/7is(4,5,2,2)/7. B=b—p = (-1,4,-4,—4)/7has||B| = 1 soq, = B.

17 p = (aTb/ava)a = (3,3,3) ande = (—2,0,2). Then Gram-Schmidt will choose
a, = (1,1,1)/v3 andg, = (~1,0,1)/V2.

18 A=a=(1,-1,0,0;B=b-p=(3,3,-1,0:C=c—p,—ps = (1,1,
Notice the pattern in those orthogondl B, C. In R, D would be(4,1 1 1 1)

4747 4 4

Gram-Schmidtwould go on to normalige = A/||A||, q, = B/||B||, a5 = C/||C||.



82

19

20

21

22

23

24

25

Solutions to Exercises

If A=QRthenA™ A = RTQTQR = RT R = lowertriangular timesippertriangular

(this Cholesky factorization od™ A uses the sam@& as Gram-Schmidt!). The example

-1 1 -1 2
1 3 3 .
hasA = 2 1| = 3 2 -1 = @R and the sameRk appears in
0 3
2 4 2 2
9 9 30 3 3
ATA = = = RTR.

9 18 3 3 0 3

(a) Truebecaus&®)™Q = I leads to(Q 1) (Q~!) = I.

(b) True Qx = z1q; + 72q5. ||Qz||?> = 2% + 2% becausey; - g, = 0. Also

|Qz[]* =2'Q"Qx = z" .

The orthonormal vectors arg = (1,1,1,1)/2 andg, = (—5,—1,1,5)/+/52. Then
b = (—4,-3,3,0) projects top = (qi b)q; + (g2 b)g, = (=7,-3,~1,3)/2. And
b—p=(-1,-3,7,—3)/2is orthogonal to botlyg, andq,.

A=(,1,2), B=(1,-1,0), C =(-1,—1,1). These are not yet unit vectors. As in
Problem18, Gram-Schmidt will divide by| A|| and||B|| and||C]|.

1 0 0 1 0 0 1 2 4
Youcanseewhy, = |0|,g;=|0|.g35=|1]-A= |0 0 1 0 3 6| =
0 1 0 0 1 0 0 0 5
QR. This(Q is just a permutation matrix—certainly orthogonal.
(8) One basis for the subspaSef solutions tar, + x5 + 23 — x4 = 0 is the3 special
solutionsv; = (—1,1,0,0), vy = (—1,0,1,0), v3 = (1,0,0,1)
(b) SinceS contains solutions t6l, 1,1, —1)Tx = 0, a basis forlS* is (1,1,1, —1)
(c) Split(1,1,1,1) into by + by by projection onS* andsS: b, = (1,1, 1 —1)and
b = (%a %a %7 %)
This question showg by 2 formulas forQR; breakdownR,, = 0 for singular A.
1 1 (2 -1 1 (5 3

2
Nonsingular exampl =

1 1] Y51 2| vBlo 1
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Si | | 1 1 1 |1 —1 1 |2 2
ingular  example = — —
11 V21 1 V210 o
The Gram-Schmidt process breaks down whén- bc = 0.
26 ( TC* _ BTC _ B H *
q;C")q, = BTBB because, = Bl and the extra, in C” is orthogonal tay,.

27 Whena andb are not orthogonal, the projections onto these la@aot addo the pro-
jection onto the plane af andb. We must use the orthogondland B (or orthonormal

g, andgq,) to be allowed to add projections on those lines.
28 There are;m?n multiplications to find the numbers,; and the same for;;.

29 4, = §(2.2,-1) 4> = §(2,-1,2), a3 = 5(1,-2,-2)

30 The columns of the wavelet matri¥ areorthonormal ThenW -1 =WT. Thisis a

useful orthonormal basis with many zeros.

31 () c = % normalizes all the orthogonal columns to have unit length ) The pro-
jection(a™b/a"a)a of b = (1,1,1,1) onto the first column ip, = 3(-1,1,1,1).

(Checke = 0.) To project onto the plane, agg, = %(1, —1,1,1) to get(0,0,1,1).

1 0 0
1 0
32 Q1= reflects across axis,Q2 = [0 0 —1| across plang+ z = 0.
0 -1
0 -1 0

33 Orthogonal and lower triangulas +1 on the main diagonal and zeros elsewhere.

34 (@) Qu = (I — 2uu®)u = u — 2uutu. This is—u, provided thatuTu equalsl

(b) Qv = (I —2uuT)v = u — 2uuv = u, provided thatsTv = 0.

35 Starting fromA = (1,—1,0,0), the orthogonal (not orthonormal) vectoB =
(1,1,-2,0)andC=(1,1,1,-3)andD=(1,1, 1, 1) are in the directions af,, q5, q,-
The4 by 4 and5 by 5 matrices withinteger orthogonal column@ot orthogonal rows,

since not orthonorma)!) are
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- 1 1 1 1 11

1 1 1 1
-1 1 1 11
-1 1 1 1
A B C D|= and| 0 -2 1 1 1
0 -2 1 1
0 0 -3 1 1
0 0 -3 1

B - 0 0 0 —4 1

36 [Q, R] = qr(A) produces from! (m by n of rankn) a “full-siz€ squareQ =[ Q1 Q2]

R
and . The columns of), are the orthonormal basis from Gram-Schmidt of the
0

column spacef A. Them — n columns of@Q, are an orthonormal basis for theft
nullspaceof A. Together the columns a) = [Q; Q2] are an orthonormal basis

for R™.

37 This question describes the next, ; in Gram-Schmidt using the matrig with the
columnsg, ..., q, (instead of using thosg's separately). Start from, subtract its
projectionp = QT a onto the earlieg’s, divide by the lengtiof e = a — Q" a to get

dnt1 = e/lle].
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1 det(24)=2*det A = 8; det(—A) = (—1)*det A = 1; det(A4?) = §; det(A™!)=2.

2 det(3A4) = (3)%det A = —% anddet(—A4) = (—1)*det A = 1; det(4?) = 1;
det(A™1) = —1.

3 (a) False:det(I 4+ I)isnotl + 1 (except whem = 1) (b) True: The product rule
extends tad BC (use ittwice) (c)False:det(4A) is 4™ det A

0 0 0 1 0 -1 .
(d) False: A = , B = ,AB — BA = is invertible.
0 1 1 0 1 0
4 Exchange rows 1 and 3 to shgws| = —1. Exchange rows 1 and 4, then rows 2 and 3
to show|J,| = 1.
5 |J5| = 1 by exchanging rowd with 5 and row2 with 4. |Js| = -1, |J7|] = —1.

Determinantd, 1, —1, —1 repeat in cycles of lengthso the determinant of;o; is +1.

6 To prove Rule 6, multiply the zero row by= 2. The determinant is multiplied by

(Rule 3) but the matrix is the same. 3det(A) = det(A) anddet(A) = 0.
7 det(Q) = 1 for rotation andlet(Q) = 1 — 2sin? § — 2 cos? # = —1 for reflection.

8Q'Q =1 = |Q"|Q| = Q> =1 = |Q| = £1; Q" stays orthogonal so its

determinant can't blow up as — oco.

9 det A = 1 from two row exchangesdet B = 2 (subtract rows 1 and 2 from row 3, then

columns 1 and 2 from column 3Jet C' = 0 (equal rows) even thoughi = A + B!

10 If the entries in every row add to zero, théh1,...,1) is in the nullspace: singular
A hasdet = 0. (The columns add to the zero column so they are linearly dependent.)

If every row adds to one, then rows df— I add to zero (not necessariliygt A = 1).

11 CD = —DC = det CD = (—1)"det DC andnotjust — det DC. If n is even then
det CD = det DC and we can have an invertibleD.

12 det(A~1) divides twice byad — bc (once for each row). This givedet A~ =
ad — be 1

(ad —bc)2  ad — bc’
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13 Pivotsl, 1,1 give determinant 1; pivots1, —2, —3/2 give determinant 3.
14 det(A) = 36 and thed by 4 second difference matrix has det5.
15 The first determinant i@, the second ig — 2t + t* = (1 — 2)2.

16 A singular rank one matrix has determinaat0. The skew-symmetrid{ also has

det K = 0 (see#17): a skew-symmetric matriX of odd order3.

17 Any 3 by 3 skew-symmetrid has detK’) = det{—K) = (—1)3det K). This is
—det K). Butalways detK ') = det K). So we must have dgk’) = 0 for 3 by 3.

1 a a? 1 a a®
b—a b*>—a?
181 b V2| =]0 b—a b?>—a®| = (to reach2 by 2,
c—a 02 — CL2
1 ¢ ¢ 0 c—a —a?
eliminate ¢ and a? in row 1 by column operations)—subtraet and a? times

column1 from columns2 and 3. Factor outb — a andc — a from the2 by 2:
1 b+a
(b—a)(c—a) =({b—a)(c—a)(c-0D).
1 c+a
19 For triangular matrices, just multiply the diagonal entriést(U) = 6, det(U ) = %
anddet(U?) = 36. 2 by 2 matrix: det(U) = ad,det(U?) = a?d?. If ad # 0 then
det(U~1) = 1/ad.
a—Lc b—Ld . .
20 det reduces tdad — be) (1 — L¢). The determinant changes if you
c—fla d-—1¥b
do two row operations at once.
21 We can exchange rows using the three elimination steps in the problem, followed by
multiplying row 1 by —1. So Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5,

they also give Rule 2.)

22 det(A) = 3,det(A!) = 1 det(4 — AI) = A2 — 4\ + 3. The numbers\ = 1 and
A =3 givedet(A — AI) = 0. The (singular!) matrices are

A-T= andA — 31 =
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Note to instructor You could explain that this is the reason determinants come before

eigenvalues. Identify = 1 and\ = 3 as the eigenvalues of.

4 1 18 7
23 A = has detd) = 10, A? = , defA?) = 100, A~! =
2 3 14 11
1 3 - 1
5 has dets. de{ A — A\J) = A\* — 7A + 10 = 0 whenX = 2 or 5; those
-2 4
are eigenvalues.
24 Here A = LU with det(L) = 1 anddet(U) = —6 = product of pivots, so also

det(A) = —6. det(U1L71) = —% = 1/ det(A) anddet(U~1 L=t A) isdet I = 1.

%
25 When thei, j entry isij, row 2 = 2 times row 1 salet A = 0.

26 When theij entry isi + j, row 3 — row 2 = row2 — row 1 soA is singular:det A = 0.
27 det A = abe, det B = —abed, det C' = a(b — a)(c — b) by doing elimination.

28 (a) True:det(AB) = det(A)det(B) =0 (b) False: Arow exchange givesdet =
product of pivots. (c)False: A = 27 andB = I haveA— B = I but the determinants
have2™ — 1 #1 (d) True:det(AB) = det(A) det(B) = det(BA).

29 Ais rectangular sdet(AT A) # (det AT)(det A): these determinants are not defined.

In fact if A is tall and thin (o > n), thendet(AT A) adds up| det B|? where theB’s

are all then by n submatrices ofd.

30 Derivatives off = In(ad — be):
d —b
9f/0a 0f/0c| N Gd—be ad—be| 1 d —b

of/0b  of/od —¢ a —c a
1/ 1 ad —bc ad— be

31 The Hilbert determinants arg, 8 x 1072, 4.6 x 1074, 1.6 x 1077, 3.7 x 1072,
5.4 x10718,4.8 x 10725, 2.7 x 10733, 9.7 x 10~%3, 2.2 x 10753, Pivots are ratios of
determinants so thidth pivot is near0~1°. The Hilbert matrix is numerically difficult

(ill-conditioned. Please see the Figurel and Sectiors.3.



88 Solutions to Exercises

32 Typical determinants afand(n) are10%,10%°, 107, 10%!® for n = 50, 100, 200, 400.
randn(n) with normal distribution giveg03!, 1078, 10186, Inf which means> 21024,

MATLAB allows 1.999999999999999 x 21023 ~ 1.8 x 103°® but one more 9 givelnf!

33 | now know that maximizing the determinant for—1 matrices iHadamard’s prob-
lem (1893): see Brenner in American Math. Monthly volume 79 (1972) 626-630. Neil
Sloane’s wonderful On-Line Encyclopedia of Integer Sequenesgérch.att.comi
njas) includes the solution for smalt (and more references) when the problem is
changed td, 1 matrices. That sequence A003432 starts frors 0 with 1, 1, 1, 2,
3,5, 9. Then thel, —1 maximum for sizen is 2"~! times the0, 1 maximum for size

n—1(s0(32)(5) = 160 for n = 6 in sequenc&003433.

To reduce the, —1 problem from6 by 6 to the0, 1 problem for5 by 5, multiply the
Six rows by=+1 to put+1 in column1. Then subtract row from rows2 to 6 to get a5

by 5 submatrixS with entries—2 and0. Then divideS by —2.

Here is an advanced MATLAB code that find$,a-1 matrix with largesdet A = 48

forn =5:

n=>5;p=(n—1)"2; A0 =ones(n); maxdet= 0;

fork=0:2"p—1

Asub = rem(floor(k. «2." (—=p+1:0)),2); A= A0; A(2:n,2:n) =1 — 2%
reshape(Asub, n — 1,n — 1);

if abs(det(A)) > maxdet, maxdet = abs(det(A)); maxA = A4;

end

end

Output:maxA= 4 1 1 —1 —1 Mmaxdet=48.
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34

ReduceB by row operations térow 3, row 2, row 1]. Thendet B = —6 (odd per-

mutation from the order of the rows ).

detA = 14+ 18 +12—-9—-4 -6 = 12, the rows of A are independent;

detB = 0, rowl + row2 = row3 so the rows ofB are linearly dependent;
det C = —1, soC has independent rowsl¢t C' has one term, an odd permutation).
det A = —2, independentdet B = 0, dependentdet C = —1, independent but

det D = 0 because its submatri¥ has dependent rows.

The problem suggestsways to see thalet A = 0: All cofactors of row1 are zero.

A has rank< 2. Each of the 6 terms idet A is zero. Notice also that column 2 has no
pivot.

ai1as3assayy Qives —1, because the termsyzass have column® and 3 in reverse
order. a14a93a32a41 Which has2 row exchanges gives1,det A =1 — 1 = 0. Using
the same entries but now taken frdgn det B = 2-4:4:2—1-4-4-1 = 64— 16 = 48.
Four zeros in the same row guarandee = 0 (and also four zeros in the same column).
A = I has12 zeros (this is the maximum witdet £ 0).

(@) If a;1 = ase = azz = 0 then 4 terms will be zeros  (b) 15 terms must be zero.
Effectively we are counting the permutations that make everyone nigdej] and
3,1,2 for n = 3 mean that the other permutations take a term from the diagonal of
A; so those terms afewhen the diagonal is all zeros.

5!/2 = 60 permutation matrices (half df! = 120 permutations) havédet = +1.
Move row 5 of I to the top; then starting frortb, 1, 2, 3, 4) elimination will do four
row exchanges o.

If det A # 0, then certainly some termm ,ass - - - ane in the big formula is not zero!
Move rowsl, 2, .. .,n into rowsa, 3, . . .,w. Then all these nonzerds will be on the

main diagonal.
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9 The big formula has six terms alt1: sayq are—1 and6 — q arel. Thendet A =
—q+ 6 — g =even (salet A = 5 is impossible). Alsalet A = 6 is impossible. All3
even permutations like,as2a33 would have to giver1 (so an even number 6fl’s
in the matrix). But alB odd permutations like;; as3a32 would have to give-1 (so an
odd number of-1's in the matrix). We can’t have it both ways, det A = 4 is best
possible and not hard to arrange : ptit's on the main diagonal.
10 The4!/2 = 12 even permutations afe, 2,3, 4), (2,1,4, 3),(3,1,4,2), (4, 3,2,1),and
8 P’'s with one number in place and even permutation of the other three numbers:

examples aré, 3,4,2 and1,4, 2, 3.

det(I + Peven is alwaysl16 or 4 or 0 (16 comes fronh + I).
- 0 42 -35 det B = 1(0) + 2(42) + 3(—35) = —21.

d —b
11 C = D=1 0 —-21 14|. Puzzle:det D = 441 = (—21)2. Whyis
—C a
- -3 6 —3| det(cofactor matriy = (det matrix)"~* ?
3 2 1 400

12C=|2 4 2| andACT = |0 4 o0]. ThereforeA™' = ;CT = C"/det A.

1 2 3 0 0 4
13@)C;=0Co=-1,C3=0,Cs=1 (b) C,, = —C,,_5 by cofactors of row

1 then cofactors of column 1. Therefatgy = —Cs = Cg = —Cy = Cy = —1.

14 For the matrices in Problet8 to produce nonzeros in the big formula, we must choose
1's from column 2 then column 1, column 4 then column 3,and so on. Therefore
must be even to hawéet # 0. The number of row exchangesng2 so the overall
determinant is”,, = (—1)"/2.

15 The1, 1 cofactor of then by n matrix is F,,_;. Thel, 2 cofactor has a single 1 in its
first column, with cofacto,, _,: sign gives—FE, 5. SOE, = E, 1 — E,_5. Then

Eyt0 Egis 1,0, —1, —1, 0, 1 and this cycle of six will repeattog = F; = —1.

16 Thel,1 cofactor of then by n matrix is F;,_;. Thel,2 cofactor has a 1 in column
1, with cofactorF,,_,. Multiply by (—1)1*2 and also(—1) from the1, 2 entry to find

F, = F,_1+ F,,_5. So these determinants are Fibonacci numbers.
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17 Use cofactors along row4 instead of row 1 (last row instead of first).

1 -1 1 -1
|By|=2det | -1 2 —1|-+det|-1 2 = 2|B;| — det -
-1 2

-1 2 -1 -1

So|B4| = 2|Bs| — | Ba|.

18 Rule 3 (linearity in row 1) give$B,,| = |An| — |An_1|=(n+1) —n=1.

19 Sincez, z2, z® are all in the same row, they never multiply each otherlén V.
The determinant is zero at = a or b or ¢ because of equal rows! SttV has
factors(z — a)(x — b)(z — ¢). Multiply by the cofactorl;. The Vandermonde matrix
Vii = (xz;)7~1 is for fitting a polynomialp(xz) = b at the points;. It hasdetV =
product of allzy, — z,,, for k > m.

20 Gy = —1,G3 =2,G4 = —3,andG,, = (—1)""!(n — 1). One way to reach that,,
is to multiply then eigenvalues-1,—1,...,—1,n — 1 of the matrix. Is there a good
choice of row operations to produce this determirGipt?

21 S1 = 3,5, = 8,53 = 21. The rule looks like every second number in Fibonacci’s
sequence..3,5,8,13,21,34,55,...so the guess i§; = 55. Following the solution
to Problem 30 with 3's instead of 2's on the diagonal confiffips= 81+1-9—-9—-9 =
55. Problem 32 directly proveS,, = F5,, 2.

22 Changing 3 to 2 in the corner reduces the determifapt o by 1 times the cofactor
of that corner entry. This cofactor is the determinanfpf ; (one size smaller) which
is F»,. Therefore changing 3 to 2 changes the determinafibfo, — Fb5, which is

Fibonacci'sFy,, 1.

23 (a) If we choose an entry from® we must choose an entry from the zero block; re-

sult zero. This leaves entries fromtimes entries fronD leading to(det A)(det D)
10 0 0 0 1 0 0

(b) and (c) Taked = , B = , C = , D = . See
0 0 10 00 0 1

#25.

24 (a) All the lower triangular blockg,;, havel’s on the diagonal andet = 1. Then use

A, = LU, tofinddet U, =det A, =2,6, —6fork=1,2,3
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26

27

28

29

30

31

32
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(b) Equation 8) in this section gives th&th pivot asdet Ay / det A;_1. Sodet A =
5,6, 7 gives pivotd, = 5/1,6/5,7/6.

0 A B
Problem 23 giveslet = 1 anddet = |A| times|D —
—CA™Y T C D

C A~!B|. By the product rule this isAD — ACA'B|. If AC = C A thisis|AD —
CAA~'B| =det(AD — CB).

If Aisarow andB is a column therlet M = det AB = dot product ofA and B. If
A'is a column andB is a row thenAB has rank 1 andet M = det AB = 0 (unless
m = n = 1). This block matrixM is invertible whenA B is invertible which certainly
requiresm < n.

(@) det A = a1:C11 + - - - + a1,C1,,. Derivative with respect ta,; = cofactorCi;.

Row 1 — 2 row 2 + row 3 = 0 so this matrix is singular andkt A is zero.

There are five nonzero products, all 1's with a plus or minus sign. Here are the (row,

column) numbers and the signs:(1,1)(2,2)(3,3)(4,4) + (1,2)(2,1)(3,4)(4,3) —
(1,2)(2,1)(3,3)(4,4) — (1,1)(2,2)(3,4)(4,3) — (1,1)(2,3)(3,2)(4,4). Total—1.

The 5 products in solution 29 changel®+ 1 — 4 — 4 — 4 sinceA has2’s and—1’s:

2)2)2)2) + (=D(=D(=1)(=1) = (=D(=1)(2)(2) - 2)2)(=D(-1)~-
@)=DEDE)=5=n+1.

det P = —1 because the cofactor d?, = 1 in row one has sigr{—1)'™*. The
big formula fordet P has only one terngl - 1 - 1 - 1) with minus sign because three

exchanges také 1,2,3into 1,2, 3, 4; det(P?) = (det P)(det P) = +1 s0

0 I
det = det
I 0

The problem is to show thdf,,» = 3F%,, — Fa,—2. Keep using Fibonacci’s rule:

1
is not right
10

Fopnto=Fopy1+Fop="Fop+ Fop_1+ Fop=2F,+ (Fop,— Fop_2) =3F2, — Fop_o.
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33 The difference fron20 to 19 multiplies its3 by 3 cofactor= 1: thendet drops byl.

34 (a) The last three rows must be dependent becauseardjumns are nonzero

(b) Ineach ofthe 120 terms: Choices from the last 3 rows must use 3 different columns;

at least one of those choices will be zero.

35 Subtracting 1 from the, n entry subtracts its cofactar,,,, from the determinant. That

cofactor isC,,,, = 1 (smaller Pascal matrix). Subtracting 1 from 1 leaves 0.

2 5 1 5 2 1
1 (a) ‘A‘ = = 3, |Bl‘ = = 6, ‘B2| = =3s0x; =
1 4 2 4 1 2

—6/3 = —2andzy = 3/3 =1 (b) |A| = 4,|B1| = 3,|Bs| = 2,|Bs| = 1.
Thereforer; = 3/4 andzy = —1/2 andzs = 1/4.

2 @y = ’26’/’28‘ = ¢/(ad — be) (b) y = det By/det A = (fg — id)/D.
That is becaus®; with (1,0,0) in column2 hasdet B = fg — id.

3 (a) 1 = 3/0andxz, = —2/0: no solution (b) z1 = x5 = 0/0: undetermined
4 (a) z1 = det([b az as])/det A, if det A # 0. Thisis|B;|/|A].

(b) The determinant is linear in its first columngqa; + x2as + z3asazas| splits
into x1|ay as as| + z2|as as az| + r3las as as|. The last two determinants are zero

because of repeated columns, leavinfn, as a3| which isx; det A.

5 Ifthe first column inA is also the right sidé thendet A = det B;. Both B, and B3 are

singular since a column is repeated. Therefore= |B;|/|A| = 1 andzy = z3 = 0.

1 -2 0 3.2 1
1 An invertible symmetric matrix
6@ |0 £ 0 b) ;|2 4 o
has a symmetric inverse.
0 -2 1 123
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If all cofactors= 0 thenA~! would be the zero matrix if it existed; cannot exist. (And

1 1
also, the cofactor formula givekt A = 0.) A = has no zero cofactors but it

1 1
is not invertible.
6 -3 0 3 0 0| Thisis(det A)I anddet A = 3.
C=| 3 1 —1|andACT=|0 3 0|. Thel, 3 cofactor ofA is 0.
-6 2 1 0 0 3 ThenCj3; = 4 or 100: no change.

If we know the cofactors andet A = 1, thenCT = A~! and alsodet A~1 = 1.

Now A4 is the inverse o7, so A can be found from the cofactor matrix for.

Take the determinant ofCT = (det A)I. The left side givedet ACT = (det A)(det O)
while the right side giveédet A)™. Divide bydet A to reachdet C' = (det A)" L.

The cofactors ofd are integers. Division bylet A = 41 gives integer entries id~!.

Both det A anddet A~! are integers since the matrices contain only integers. But

det A=t = 1/ det A sodet A must be 1 or-1.

01 3 -1 2 1
. 1
A= 1|1 0 1| hascofactormatri€'=| 3 -6 2| andA~!= 5CT'
210 1 3 -1

() Lower triangularL has cofactorg’s; = C31 = C32 = 0 (b) C12 = Coy,
C31 = C13,C3, = Oy makeS~! symmetric. (c) Orthogonal) has cofactor

matrixC' = (det Q)(Q~1)T = £(Q also orthogonal Notedet @ = 1 or —1.

Forn = 5, C contains25 cofactors and each 4 by 4 cofactor fealsterms. Each term

needs3 multiplications: totall800 multiplications vs125 for Gauss-Jordan.

(a) Area|? 2| =10 (b) and (c) Areal0/2 = 5, these triangles are half of the

parallelogram in (a).

311 Area of faces= ijk —21— 25 + 8k
Volume=|131|= =|311|=
113 length of cross product 113 1|  |ength=6+/2
il2z11| . 211| B
(@) Areaz|341) =5 (b) 5 + new triangle areg 051 =5+T7=12.
|2 3| =4 =2 2| because the transpose has the same determinant:2ee
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20

21

22

23

24

25

26

27

28

The edges of the hypercube have length+1+1+1 = 2. The volumedet H
is 2¢ = 16. (H/2 has orthonormal columns. Thekt(H/2) = 1 leads again to
det H = 16 in 4 dimensions.)

The maximum volume., L, L3 L, is reached when the edges are orthogonadRin
With entriesl and—1 all lengths are/4 = 2. The maximum determinant &' = 16,
achieved in Problem 20. For3aby 3 matrix,det A = (1/3)3 can’t be achieved by-1.
p?sin¢dpde do.

This question is still waiting for a solution! Atg8.06 student showed me how to trans-
form the parallelogram for to the parallelogram for™, without changing its area.

(Edges slide along themselves, so no change in baselength or height or area.)

aT ata 0 0 T ,
det = alll|bl||le
T T det A = z[all[[o]l]|]]
c 0 0 c'c
1 0 0

The box has height 4 and volumeedet |0 1 0| =4.ixj=kand(k -w)=4.
2 3 4

The n-dimensional cube hag" corners,n2"~! edges an®n (n — 1)-dimensional
faces. Coefficients fronf2 4+ x)™ in Worked Exampl&.4A. Cube from2I has volume
2n.

The pyramid has volumg. The 4-dimensional pyramid has volurge (and-l; in R™)

x = rcosf,y = rsinf give J = r. This is ther in polar arear dr df. The columns

are orthogonal and their lengths drandr.

sinpcosf pcospsinf —psinpsind
J=| singsinf pcospsing psingcosf | = p?sine. ThisJacobian is needed

cos —psine 0
for triple integrals inside spheres. Those integrals héwen ¢ dp de db.
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32

33

34

35

36

37
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Or/0x  Or/dy z/r y/r cos @ sin @
Fromz,y tor, 6: - _
00/0x 00/0y| |-y/r* w/r*| |(=sin0)/r (cosd)/r
! = ! i dz T
= JacobianimT The surprise was th&f and 42 are bothZ.

The triangle with cornerg0, 0), (6,0), (1,4) has area6)(4)/2 = 12. Rotated by

f = 60° the area isinchangedThe determinant of the rotation matrix is

cosf —sind 1/2 —/3/2

sinf  cosd V3/2 1/2

Base aredu x v|| = 10, height||w|| cos§ = 2, volume(10)(2) = 20.

2 4 0
The volume of the boxidet | -1 3 0| = 20, agreeing with Problerg1.

1 2 2
Uy U2 U3
Vg Vg V1 U3 U1 U2 ..
V1 Vg vz | = U1 — U2 “+us . Thisisu- (’U X w)
w2 W3 w; w3 w1 W2

w1y W W3
(wxu)-v=(vxw) u=(uxwv)- -w: Even permutationf (u, v, w) keeps the
same determinant. Odd permutations lfkex v) - v will reverse the sign.
S = (2,1,—-1), area||PQ x PS| = [(-2,-2,-1)|| = V22 +22+12 = 3. The
other four corners of the box can k& 0,0), (0,0, 2), (1,2,2), (1,1,0). The volume
of the tilted box with edges along, @, andR is | det | = 1.
TYZz

If (1,1,0), (1,2,1), (z,vy, 2) are in a plane the volume @t |1 10 | =z —y+z=0.
The “box” with those edges is flattened to zero height. 121

r Yy z
det |2 3 1| = T7x—>5y+ 2z willbe zerowhen(z,y, z) is a combination of2, 3, 1)

1 2 3
and (1,2, 3). The plane containing those two vectors has equation 5y + z = 0.

Volume = zero because thebox edges out fronf0, 0, 0) lie in a plane.
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38 Doubling each row multiplies the volume B$}. Then2 det A=det(2A) only if n=1.

39 ACT = (det A)I gives(det A)(det C') = (det A)". Thendet A = (detC)'/3 with
n = 4. Withdet A= = 1/det A, constructA~! using the cofactordnvert to find A.

40 The cofactor formula addsby 1 determinants (which are just entridspestheir co-
factors of sizex — 1. Jacobi discovered that this formula can be generalizedn Fob,
Jacobi multiplied each by 2 determinant from rows-2 (with columnsa < b) times a
3 by 3 determinant from row8-5 (using the remaining columns< d < e).

The key question is+ or — sign (as for cofactors). The product is giventa
signh whena, b, ¢, d, e is an even permutation df, 2, 3, 4, 5. This gives the correct
determinant-1 for that permutation matrix. More than that, all otliéthat permutex,
b and separately, d, e will come out with the correct signh when tRdy 2 determinant
for columns a, b multiplies the3 by 3 determinant for columng, d, e.

41 The Cauchy-Binet formula gives the determinant of a square matixand AA™ in
particular) when the factord, B are rectangular. Fo(by 3) times § by 2) there are

3 products o2 by 2 determinants fromd and B (printed in boldface):

g J g J 119 J
a b ¢ a b c a b ¢
h k h k k
d e f d e f d e f
i/ 1 £ )
1 1 .
1 2 3 14 30
Check A= B=1|2 4 AB =
1 4 7 30 66
3 7 -

Cauchy-Binet (4 —-2)(4—2)+ (7—3)(7T—3)+ (14 —12)(14 - 12) = 24
detofAB :  (14)(66) — (30)(30) = 24

42 A 5 by 5 tridiagonal matrix has cofactar;; = 4 by 4 tridiagonal matrix. Cofactor
C12 has only one nonzero at the top of columnThat nonzero multiplies it8 by 3
cofactor which is tridiagonal. Séet A = a11C11 +a12C12 = tridiagonal determinants
of sizes4 and3. The number;,, of nonzero terms irlet A follows Fibonacci’s rule
F,=F, 1 +F, .
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The eigenvalues areand0.5 for A, 1 and0.25 for A2, 1 and0 for A>°. Exchanging
the rows of A changes the eigenvalues taand —0.5 (the trace is now).2 + 0.3).

Singular matrices stay singular during eliminationse: 0 does not change.

A has\; = —1 and)\, = 5 with eigenvectorse; = (—2,1) andzy = (1,1). The
matrix A + I has the same eigenvectors, with eigenvalues increasédd@ and6.

That zero eigenvalue correctly indicates tHat- I is singular.

A hasA; = 2 and); = —1 (check trace and determinant) with = (1,1) and

@y = (2,—1). A~! has the same eigenvectors, with eigenvalyes= 1 and—1.

det(A—X) = A2+ X—6= (A+3)(A—2). Then4 has\; = —3 and), = 2 (check
trace= —1 and determinant —6) with z; = (3,—2) andz, = (1,1). A2 has the

same eigenvectoss A, with eigenvalues\? = 9 and\3 = 4.

A andB have eigenvaluesand3 (their diagonal entries : triangular matriced)+ B
has\? + 8\ + 15 = 0 and\; = 3, A\, = 5. Eigenvalues ofdA + B are not equako

eigenvalues ofl plus eigenvalues aB.

AandB have), = 1 and)\, = 1. AB andBA have)\? — 4\ + 1 and the quadratic
formula gives\ = 2 + /3. Eigenvalues ofi B are not equato eigenvalues ofl times
eigenvalues of3. Eigenvalues ofAB and BA are equal (this is proved at the end of
Section 6.2).

The eigenvalues df (on its diagonal) are thgivotsof A. The eigenvalues df (on its

diagonal) are all’s. The eigenvalues ol are notthe same as the pivots.

(&) Multiply Ax to see\x which reveals\ (b) Solve(A — AI)x = 0tofindx.
(a) Multiply by A: A(Az) = A(\x) = Mz givesA’x = N’z

(b) Multiplyby A=!: &z = A1 Ax = A~ \x = \A~'x givesA~la = im

(©) Add Iz = z: (A + Dz = (A + 1)z
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10 det(A — A\I) = d? — 1.4\ + 0.4 s0 A has)\; = 1 and\, = 0.4 with z; = (1,2) and
x2 = (1,—1). A~ has)\; = 1 and)\; = 0 (same eigenvectorsi'® has); = 1 and
Ao = (0.4)1°° which is near zero. Sa!% is very nearA>°: same eigenvectors and
close eigenvalues.

11 Columns ofA — ) I are in the nullspace o — Ao 7 becauséf = (A— X o1)(A—\1)
is the zero matrix[this is the Cayley-Hamilton Theorenin Problem 6.2.3D
Notice thatM haszero eigenvalue\; —As) (A1 —A1) = 0and(As—A2) (A2 —A1) = 0.
So those columns solel — \,1) = 0, they are eigenvectors.

12 The projection matrix has\ = 1,0, 1 with eigenvector$l, 2,0), (2, —1,0), (0,0, 1).
Add the first and last vectorg1, 2, 1) also has\ = 1. The whole column space ¢t
contains eigenvectors with= 1! Note P? = P leads toA> = A so\ = 0 or 1.

13 (@) Pu = (vul)u = u(utu) =usor=1 (b) Pv = (uul)v = u(uTv) =0
(€) 1 = (—1,1,0,0), 3 = (—3,0,1,0), x5 = (—5,0,0,1) all havePx: = 0x = 0.

14 det(Q — M) = A2 —2)\cosf+1 = 0when) = cosf £isind = ¢ ande~%. Check
that A1 Ao = 1 and)\; + Ay = 2cosf. Two eigenvectors of this rotation matrix are
x1 = (1,4) andxs = (1, —i) (more generallyx; anddxz, with cd # 0).

15 The other two eigenvalues ake= %(—1 + iv/3). The three eigenvalues arel, —1.

16 Seth=0indet(A — X)) = (A1 — A)...(Ap = A tofinddet A = (A1) (A2) - - (An)-

17 A1 = 3a+d++/(a—d)?+4bc) and Xy = L(a +d—V ) add toa + d.
If Ahas\; =3 and)\; = 4then de@A—/\I):(/\—3)(/\—4):/\2—7/\4—12

0 5 -1 6 -3 7

4 0 3 2
18 These3 matrices have. = 4 and5, trace9, det 20: , , ]
19 (a) rank=2  (b) det(BTB)=0  (d) eigenvalues ofB? + I)~'arel,1, 1.

0 1
20 A= has tracd 1 and determinarit8, soA = 4 and7. Moving to a3 by
—28 11

3 companion matrix, for eigenvaluds2, 3 we wantdet(C' — A\I) = (1 — \)(2 — \)
(3 — X\). Multiply out to get—\3 + 62 — 11\ + 6. To get those numbers —11,6

from a companion matrix you just put them into the last row:
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0 10
C=10 0 1| Noticethe tracé = 1 + 2 + 3 and determinarti = (1)(2)(3).

6 —11 6

21 (A — M) has the same determinant @ — \I)T because every square matrix has
det M = det M™. Pick M = A — M.

1 0 1 1| havedifferent
and

1 0 0 0| eigenvectors

22 The eigenvalues must be= 1 (because the matrix is Markow), (for singular),—%

(so sum of eigenvalues trace= %).

93 0 0 0 1 -1 1 Always A? is the zero matrix if\ = 0 ando,

10 0 0 11| by the Cayley-Hamilton Theorem in Problem 6.2.30.

24 )\ = 0,0, 6 (notice rankl and trace6). Two eigenvectors ofiv™ are perpendicular to

v and the third eigenvectoris: x;=(0,—-2,1), z2=(1,—-2,0), z3=(1,2,1).

25 When A and B have the same \'s andxz’s, look at any combinatiom = ¢z +
<o+ 4+ cpx,. Multiply by A andB: Av = ci Nz, + -+ + e\, €qQuals By =

ATy + -+ cp g, for all vectors v. SoA = B.

26 The block matrix has\ = 1, 2 from B and\ = 5, 7 from D. All entries of C' are
multiplied by zeros inlet(A — AI), soC' has no effect on the eigenvalues of the block

matrix.

27 A has rank 1 with eigenvalu@s0, 0, 4 (the 4 comes from the trace df). C' has rank
2 (ensuring two zero eigenvalues) afid1, 1, 1) is an eigenvector with = 2. With

trace 4, the other eigenvalue is alse= 2, and its eigenvector igl, —1,1, —1).

28 Subtract fromo0,0,0,4 in Problem27. B = A -1 hasA = -1, -1, -1, 3 and
C=1- Ahas) =1,1,1,—3. Both havedet = —3.

29 Aistriangular:\(A) = 1,4,6; A\(B) = 2,v/3, —V/3; C hasrank one A(C) = 0,0, 6.
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a b 1 a+b 1
30 = = (a+b) ; A2 = d — b to produce the correct trace

c df |1 c+d 1
(a+b)+(d—b)=a+d.
31 Eigenvector(1,3,4) for A with A = 11 and eigenvecto(3, 1,4) for PAPT with
A = 11. Eigenvectors with\ # 0 must be in the column space sinde: is always

in the column space, and= Ax/\.

32 (a) u is a basis for the nullspace (we knotw. = 0u); v andw give a basis for the
column space (we knowtv and Aw are in the column space).
(b) A(v/3 +w/5) =3v/3+5w/5 = v+ w. Sox = v/3 + w/5 is a particular
solution toAx = v + w. Add anycu from the nullspace
(c) If Az = u had a solutiom would be in the column space: wrong dimension 3.
33 Always (uv™)u = u(vTu) sowu is an eigenvector ofiv™ with A\ = vTu. (watch
numbersv™u, vectorsu, matricesuv™!!) If vTu = 0thenA? = u(vTu)v? is the
zero matrix and\? = 0,0 and\ = 0,0 and tracg 4) = 0. This zero trace also comes

from adding the diagonal entries df= uv™:

Uy Uiv1  U1v2
A= [vl vg} = has traceu; v + ugvs = v u =0
u9 U2V1 UV

34 det(P — AI) = 0 gives the equation® = 1. This reflects the fact thaP* = I.
The solutions of\* = 1 are\ = 1,i,—1, —i. The real eigenvectar; = (1,1,1,1)
is not changed by the permutatidh Three more eigenvectors afe, i, i%,i®) and
(1,-1,1,—1) and(1, —4, (—i)2, (—4)3).

35 The six3 by 3 permutation matrices includ® = I and three single row exchange
matricesP;», P;3, P»3 and two double exchange matrices liRg Py 5. SinceP™P = I
gives(det P)? = 1, the determinant oP is 1 or—1. The pivots are always 1 (but there
may be row exchanges). The tracefdtan be 3 (forP = I) or 1 (for row exchange)
or 0 (for double exchange). The possible eigenvalues ared1-drnande?™*/3 and

67271'7,/3_
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36 AB — BA = I can happen only for infinite matrices. A" = A andBT = —B then

aTz = 2T (AB — BA)z = 2" (ATB + BT A) z < ||Az|| || Bz|| + ||Bz|| || Az||.
Thereforel| Az|| || Bz|| > 3||z||*> and(||Az||/||=|]) (||Bz||/||=]|) > 3.

37 Ay = e¥™/3 and Xy = e 2™/3 give det \ Ay = 1 and traceh; + Ay = —1.

cosf —sinf ) 2 .
A= with 8 = 3 has this trace andet. So does every/ —t AM!

sin 6 cos 6
38 (a) Since the columns of add to 1, one eigenvalue ls= 1 and the other ig — 0.6

(to give the correct trace+ 0.4).

(b) If ¢ = 1.6 then both eigenvalues are 1, and all solutiong4o— ) x = 0 are

multiples ofx = (1, —1). In this cased has rankl.

(c) If ¢ = 0.8, the eigenvectors fak = 1 are multiples of (1, 3). Since all powers®

. 111 . .
also have column sums 1, A™ will approachZ = rank-1 matrix A with

3 3
eigenvalueg, 0 and correct eigenvector§l, 3) and(1, —1).

1 2 1 1 1
1 EigenvectorsinX and eigenvaluesin. Thend = XAXlis =
0 3 0 1| (0
The second matrix has = 0 (rank 1) and\ = 4 (trace= 4). Then4d = XAX!is
11 1 1] |o ofl |2 -3
— 1
3 3 L 3] |0 4L 1
Put the eigenvectors iX 1 1](2 0 (1 -1 2 3
and eigenvalue, 5 in A. 0 1{]0 5] 10 1 0 5

3 If A= XAX~! then the eigenvalue matrix fof + 21 is A + 27 and the eigenvector
matrix is still X. S0A + 27 = S(A+2)X ' = XAX '+ X(2)X ! = A+ 2I.
4 (a) False: We are not given thes  (b) True (c) True (d) False: For this we

would need the eigenvectors &f
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5 With X = I,A = XAX~! = A is a diagonal matrix. IfX is triangular, thenX —! is
triangular, saX AX ~! is also triangular.

6 The columns ofS are nonzero multiples of2,1) and (0,1): either order. The same

eigenvector matrices diagonalizeand A~ 1.

1] [a 11 MAd A —A
7 A=XAX"' = ! o= |7 TR e
1 -1 A 1 -1 A=A A1+ X
la b .
These are the matricgs , their eigenvectors are, 1) and(1, —1).
b a
1 1 A1A A0 1 =X
8 A=XAX"!= = R ?
1ol M=l 1o X||[-1 n
XAkal B 1 )\1 )\2 )\If 0 1 —)\2 1

M=X 1 1o Al |-t A o]

The second componeistF), = (A\Y — \5) /(A1 — o).

G G 55
9 (a) The equations ar¢ o4 MU with 4 = . This matrix
Gri1 Gy 1 0
has\; =1, Ay = —3 with @y = (1,1), = = (1,-2)
112 1 2 1
I 1|1 o0 3 3 3 3
(b) A" = XAnX ! = R Y/

1

3
10 TheruleFy o = Fj11 + Fy produces the pattern: even, odd, odd, even, odd,.odd,

1 =20 (=5 |1 _.

W[
N

11 (a) True(no zero eigenvalues) (bjalse(repeated\ = 2 may have only one line of

eigenvectors) (c)alse(repeated may have a full set of eigenvectors)

12 (a) False: don't know i\ = 0 or not.
(b) True: an eigenvector is missing, which can only happeai@peated eigenvalue.

(c) True: We know there is only one line of eigenvectors.

8 3 9 4 10 5 only eigenvectors
13 A= (or other), A = , A= ;
-3 2 —4 1 -5 0| arex=(c,—c).
14 The rank of A — 37 is r = 1. Changing any entry excepts = 1 makesA

diagonalizable (the new will have two different eigenvalues)
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15

16

17

18

19

20

21

Ak = X A* X~ approaches zeiiband only if every |A| < 1; A; is a Markov matrix

SOAmax = 1 andAY — A, A, has\ = .6 £ .3 s045 — 0.

_ _ 1 11 10
Ajis XAXtwithA = andX = (AR )
0 .2 1 -1 0 O
1 1
ThenA;k = XAFX—! — ? ? : steady state
2 2

. . 9 3 =3 3 3
Ay is XAX 1 with A = and X = ; AL = (.9)10 :
0 .3 1 1 1 1
3 3 6 3 3
A0 = (.3)10 . Then Al° = (.9)1° + (.3)10 because
-1 -1 0 1 -1
6| 3 3
is the sum of + .
0 1 -1

PV N e N R 11
201 1| ]o 3| |-1 1

143k 1—31

1-3F 143k

k
k £tk _ gk
v LR B N EE Y I LA
0 -1/ 0 4| |0 -1 0 4k

det A = (det X)(det A)(det X~!) = det A = A\; --- \,,. This proof (et = product

. . 1
Multiply those last three matrices to gat = 3 [

of \'s) works whenA is diagonalizable The formula is always true.

traceXY = (aq + bs) + (cr + dt) is equal to(ga + rc) + (sb + td) = traceY X.
Diagonalizable case: the trace B\ X ~! = trace of(AX 1) X = A: sum of the)’s.
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22

23

24

25

26

27

28

AB — BA = 1 is impossible since tracelB — trace BA = zero # tracel.

10
AB — BA = C is possible when trac&”) = 0. For exampleE = has

1 1
1 0 ,
EET - ETE = = C with trace zero.
0 1
A 0 X 0 A O X1 0
If A= XAX"1thenB = = . So
0 24 0 X 0 2A 0 X1

B has the originalh’s from A and the additional eigenvalua,, ..., 2\, from2A.

The A’s form a subspace sineed and A; + A, all have the sam&. WhenX = I
the A’s with those eigenvectors give the subspacdiafjonal matrices The dimension

of that matrix space i¢ since the matrices areby 4.

If Ahascolumngy,...,x, then column by column4? = A means everylx; = x;.
All vectors in the column space (combinations of those colsm) are eigenvectors
with A = 1. Always the nullspace has = 0 (4 might have dependent columns,
so there could be less thaneigenvectors withh = 1). Dimensions of those spaces
C (A) and N (A) add ton by the Fundamental Theorem, gbis diagonalizablgn

independent eigenvectors altogether).

Two problems: The nullspace and column space can overlap,@uld be in both.

There may not be independent eigenvectors in the column space.
1 1 3 1 1 2 1
R=XVAX"' = /2= hasR?= A.
1 -1 1 1 -1 1 2

VB needs\ = v/9 and+/—1, trace (their sum) is not real sgB cannot be real. Note

— 0
that hastwo imaginary eigenvalues’—1 = i and —i, real trace0, real
0 -1
1
square roo
-1 0

The factorizations ofA and B into XAX ! are the same. Sd = B. (This is

the same as Problem 6.1.25, expressed in matrix form.)
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29

30

31

A= XA X"'andB = XA, X~'. Diagonal matrices always give, Ay = AxA;.
ThenAB = BA from

XA X 'XA X = XAJA9X P = XAgA1 X1 = XA X' XA X! = BA.

a b b a—d b
(@ A= has\ = aand\ = d: (A—al)(A—dI) =
0 d 0 d—a 0 0
0 0 11 2 1 ,
= . (b)) A= hasA? = andA? — A — I = 0 is true,
0 0 1 0 1 1

matching\? — A\ — 1 = 0 as the Cayley-Hamilton Theorem predicts.

WhenA = XAX ! is diagonalizable, the matrid — \;7 = X (A — \; 1) X 1 will
have0 in the j, j diagonal entry of\ — X;I. In the producp(A) = (A—X\I)--- (A—
A1), each insideX ~! cancelsX. This leavesX times product of diagonal matrices
A—)\;I)timesX ~1. That product is the zero matrix because the factors proaueeo
in each diagonal position. ThefA) = zero matrix, which is the Cayley-Hamilton
Theorem. (IfA is not diagonalizable, one proof is to take a sequence obdig@igzable

matrices approaching.)
Comment | have also seen this Caley-Hamilton proof but | am not coreth

Apply the formulaAC™T = (det A)I from Section 5.3 tod — I with variable). Its

cofactor matrixC' will be a polynomial in\, since cofactors are determinants:
(A — XI) cof (A= XI)" = det(A — AT = p(\)I.

“For fixed A, this is an identity between two matrix polynomials.” Set A to find
the zero matrix on the left, a(A) = zero matrix on the right—which is the Cayley-

Hamilton Theorem.

| am not certain about the key step of substituting a matnix\folf other matricesB
are substituted foh, does the identity remain true? B # BA, even the order of

multiplication seems unclear.
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32 If AB = BA, then B has the same eigenvectdis 0) and (0,1) asA. So B is
also diagonab = ¢ = 0. The nullspace for the following equation is 2-dimensional
1 0 a b a b 1 0 0 —-b 00
AB — BA = - = = .
0 2 c d c d 0 2 c 0 00
Those4 equationg®) = 0, —b = 0,c = 0,0 = 0 have &4 by 4 coefficient matrix with
rank4 — 2 = 2.

33 Bhas\ =iand—i, soB* has\* =1 and 1 andB10%4 = J.

C has) = (14 v/3i)/2. This\ is exp(£mi/3) so\*> = —1 and—1. ThenC® = —T
which leads ta010%* = (—1)341C = —C.

i cosf —sinf , ,
34 The eigenvalues ol = are\ = ¢ ande=" (trace2cosf and

sin @ cos 6
determinant= 1). Their eigenvectors ard, —i) and(1,4):

1 1| [en? i —1
A" = XA"X L = _ /2i
—i emmo | i 1

(ema_'_efin(?)/g ] _ |:cosn9 —Sinn9]

(e — e=ind) /24 sinnf  cosnf

Geometricallyy rotations byg give one rotation by.6.

35 Columns ofX times rows ofA X ~! gives a sum of rank-1 matrices(r = rank of A).

36 Multiply ones(n) x ones(n) = n x ones(n). This leads ta® = —1/(n + 1).

AA~1 = (eye(n) + ones(n)) * (eye(n) + C * ones(n))

=eye(n) + (1 4+ C + Cn) x ones(n) = eye(n).
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1
1 Eigenvalued and1 with eigenvectorg1,0) and(1, —1) give solutionsu; = e*
0
1 ) 1 1 1
and uy = et Nf u(0) = =3 +2 , thenu(t) = 3e*t +
-1 -2 0 -1 0
1
2et
—1

2 z(t) = 2¢' solvesdz/dt = z with z(0) = 2. Thendy/dt = 4y — 6e* with y(0) = 5
givesy(t) = 3e* + 2¢f as in Problem 1.

3 (a) If every column ofA adds to zero, this means that the rows add to the zero row.

So the rows are dependent, aAds singular, and\ = 0 is an eigenvalue.

-2 3
(b) The eigenvalues ol = are)\; = 0 with eigenvectore; = (3,2) and
2 -3
Ao = —b (to give trace= —5)_With x5 = (1,—1). Then the usual 3 steps:
4 3 1
1. Writeu(0) = as + = x1 + x> = combination of eigenvectors
1 2 -1

2. The solutions follow those eigenvectoe8x,; ande 'z,

3. The solutionu(t) = x; + e~ 5z, has steady state; = (3,2) sincee > — 0.

4 dv +w)/dt = (w—v) + (v —w) = 0, so the totalv + w is constant.

-1 1 A =0 _ 1 1
A= has with ¢, = , Lo = .
1 -1 Ay = —2 1 -1
v(0 30 1 1 v(1) =20+ 10e72  v(o0) =20
©) = =20 +10 leads to @) (ce)
w(0) 10 1 -1 w(l) =20 —10e72  w(co) =20
d |v 1 -1
5 — = hasA = 0 and\ = +2: v(t) = 20 + 10e?* — —oo as
dt |y -1 1
t — oo.
a 1 . o
6 A= has real eigenvaluest1 anda — 1. These are both negativedf< —1.
1 a

In this case the solutions ef = Awu approach zero.
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10

11

b —1
B= has complex eigenvalués-i andb — i. These have negative real parts
1 b

if b < 0. In this case and all solutions of = Bwv approach zero.

A projection matrix has eigenvalues= 1 and\ = 0. EigenvectorPx = « fill the

subspace thaP projects onto: heraz = (1,1). Eigenvectors withPx = 0 fill the

perpendicular subspace: here= (1, —1). For the solution tas’ = — Pu,

3 2 1 2 0 1 1
u(0) = = 4+ u(t) = e +eY approaches

1 2 —1 2 -1 -1

2 1
has\; =5, 1 = Ao =2, ko = ; rabbitsr(t) = 20e5 +10e?,
2 1 1 2

w(t) = 10e> + 20e%. The ratio of rabbits to wolves approact®s10; > dominates.

4 1 1 1 ; 1 4cost
(@) =2 +2 . (b) Thenu(t) = 2¢% +2e7 = .
0 1 —1 1 —1 4sint
d ' 0 1 . ,
2V oY) = Y| This correctly giveg’ = v andy” = 4y+5y’.
dt y/ _y// 4 5 Y

hasdet(A — A\I) = A2 — 5\ — 4 = 0. Directly substitutingy = e** into

5y + 4y also gives\? = 5\ + 4 and the same two values &f Those values are

y"
5(5 + v/41) by the quadratic formula.

0 1 1 ¢
The series foet isedt =T 4+t + zeros=
0 0 0 1
t 1 t 0 0) + v/ (0)¢
Then | “ | = VOO VO sy = (o) + v/ O
y'(t) 0 1] |%(0) y'(0)

solves the equation—the factotells us thatd had only one eigenvector: not diago-

nalizable.
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12

13

14

15

16

17

18

19

20

21

0 1
A= has trace 6¢det 9, A = 3 and 3 withone independent eigenvector
-9 6

(1,3). Substitutey = te* to show that this gives the needed second solutjor ¢3¢

is the first solution).

(@) y(t) = cos 3t andsin 3t solvey” = —9y. Itis 3 cos 3t that starts withy(0) = 3 and

0 1
y'(0) = 0. (b) A = hasdet = 9: A = 3i and—3i with eigenvectors
0

1 1 ) 1 ) 1 3cos 3t
= and . Thenu(t) = %e?’” +%e*3“ = .

31 —31 31 —31 —9sin 3t
WhenA is skew-symmetric, the derivative pfi(t)||? is zera Then||u(t)| = |le**wu(0)||

stays af|u(0)||. Soe4* is matrixorthogonal

u, = 4andu(t) = ce’+4. For the matrix equation, the particular solutiop = A~'b
K 1 0 4
is andu(t) = ciet + coet + :

2 t 1 2

Substitutingu = e“*v givescev = Ae“'v —etbor (A —cl)v =borv = (A —

cI)~1b = particular solution. It is an eigenvalue theA — cI is not invertible.

1 0 1 0 1 1

(@) (b) (c) . These show the unstable cases
0 -1 0 1 -1 1

(@ A1 <0anddy; >0 (b) Ay >0andXy >0 (c) A=azxibwitha >0
Aty _ 1 1 — 1 1

d/dt(e?) = A+ A%t + A + g AYP - = A(T+ At + AP + 5 AP -+ ).

This is exactly4e4?, the derivative we expect.
. . 1 —4t L 0 —4
eBt = I + Bt (short series withB? = 0) = . Derivative= =
0 1 0 0

The solution at timé 4 7' is eA(+T)4(0). Thuse?? timese4” equalseA(+7),
1 4 1 4 1

0
= diagonalizesA = XAX !,
0 0 0 -1 0 0

1
Thenedt = XeM X1 = ; =
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et 4et —4
22 A? = Agivese = I+ At+ LAt + LA+ =T+ (" —1)A =
0 1
e 4(e—1) 1 —4 ] o
23 et = from21 ande? = from 19. By direct multiplication
0 1 0 1
eAeB 75 eBeA 75 eAtB — €
0 1
11 1 1] (1 of |1 -1 et L(eft—et
24 A= = 21, Then 4t = 3 )
0 3 0 2/(0o 3|0 1 0 et
Att =0, et = T andAe?? = A.
2 _
) 1 3 1 3
25 The matrix hasA? = = = A. ThenallA® = A. Soe?t =
0 0 0 0
et 3(e —1) _
T+ (t+t2)20 4+ )A=T+ (et —1)A = as in Problem 22.
0 0
26 (a) The inverse 04! is e~ 4 (b) If Az = \x thenetx = e Mz ande? # 0.

To seeea, write (I + At + A2 + - Yz = (1 + M+ N2 + -z = Ma.

27 (z,y) = (e, e*) is a growing solution. The correct matrix for the exchanged

2 =2
u = Y is . It doeshave the same eigenvalues as the original matrix.
T -4 0
1 0 1 0] |1 At 1 At
28 Invert to producd/,,+1 = U, = U,.
At 1 At 1] (0 1 —At 11— (At)?

1 1 . )
At At =1, has\ = ¢™/3 ande""/3. Both eigenvalues hav¥’ = 1 so
-1 0

AS = I. ThereforeUs = AU, comes exactly back t&/,.

First A has\ = +iandA* = I. 1—-2n —2n )
29 A" = (=1)" Linear growth.
Secondd has\ = -1, -1 and 2n 2n +1

i ) 1 1 —a? 2a
30 With a = At/2 the trapezoidal step 5,1 = U,.

L+a® | 9, 1_42

That matrix has orthonormal columas orthogonal matrixe || U 11| = ||U ||
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31 (a) If Az = Az then the infinite cosine series give®s A)x = (cos \)x
(b) AM(A) = 2w and0 socos A = 1 and1 which means thatos A = T
(€) u(t) = 3(cos2mt)(1,1)+1(cos 0t)(1,—1) [u’ = Au hasexp, u” = Au hascos]

32 For proof2, square the start of the series to $ée+ A + 1 4% + 143)2 = [ + 24 +
1(24)% + £ (24)% + - - -. The diagonalizing proof is easiest when it works (needing

diagonalizabled).

Note A way to complete the proof at the end of patfet, (perturbing the matrix to pro-
duce distinct eigenvalues) is now on the course webdRedfs of the Spectral Theorém

math.mit.edu/linearalgebra.

1 The firstisASAT: symmetric but eigenvalues are different frarand—1 for S.
The second istSA~!: same eigenvalues &sbut not symmetric.
The third isASAT = ASA~!: symmetric with the same eigenvalues aS.
This needed3 = AT = A~ to be anorthogonal matrix.

2 (a) ASB stays symmetric like§ whenB = A"
(b) ASB is similartoS whenB = A1

To have both (a) and (b) we ned&l= AT = A~! to be anorthogonal matrix
1 3 6 0 -1 -2

=1(A+ A7)+ 1(A- AT)
3A=13 3 3/+|1 0 -3

= symmetric 4+ skew-symmetric
6 3 5 2 3 0 y + 4

4 (ATCA)T = ATCT(AT)T = ATCA. WhenA is 6 by 3, C will be 6 by 6 and the
triple productATC A is 3 by 3.

5 A= 0,4, —2; unit vectors+(0, 1, —1)/v/2 and+(2,1,1)/v/6 and+(1, -1, —1)/v/3.
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10 0 1 2
6 A=10and-5in A = , T = and have to be normalized to
0 -5 2 -1
it vectors inQ) 1|1 2
unit vectors inQ = —
Vhl2 1
2 1 2
1 The columns of) are unit eigenvectors of
TR=3]2 -2 -1
Each unit eigenvector could be multiplied by
-1 -2 2
9 12 .
8 § = hasA = 0 and25 so the columns o) are the two eigenvectors:
12 16
8 .6 .
Q= or we can exchange columns or reverse the signs of any column.
-6 .8

1 2
9 (a) has\ = —1and3 (b) The pivotsl, 1 — b? have the same signs as this
2 1
(c) Thetrace is\; + A2 = 2, s0.S can't have two negative eigenvalues.

0 1
10 If A2 =0thenall\® =0soallA =0asind = . If A is symmetrichen
0 0

A3 = QA2QT = 0 requiresA = 0. The only symmetrici is Q 0 QT = zero matrix.

11 If X is complex then\ is also an eigenvalugdz = \z). Always \ + X is real. The

trace is real so the third eigenvalue of ay 3 real matrix must be real.

12 If zis notreal thel =z Az /=™ x is notalways real. Can’t assume real eigenvectors!

31 i -1 i 4 9 12 64 —.48 36 .48
13 =2 +4 ; =0 +25
1 1 1 1 _
_1 3 -2 3 5 3 12 16 48 .36 48 .64
_ 27
14 | &1 2 | isan@ matrix SOP; + P = z1x] + Taxa = | T1 T2 =1
T
L T

alsoP, P, = x1(x{ z2)x = zero matrix.

Second proofP, P, = P;(I — P;) = P, — P, = 0 sinceP? = P.
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15

16

17

18

19

20

21

0 A
A 0

0 b ] A 0
A= has)\ = b and—:b. The block matrice and are
-b 0 0 A

also skew-symmetric with = ib (twice) and\ = —ib (twice).

M is skew-symmetric andrthogonal; A’'s must bei, i, —i, —i to have trace zero.

i 1
A= [ ] hasA = 0,0 and only one independent eigenvecioe (i,1). The
1 —

good property for complex matrices is ndt’ = A (symmetric) butd = A (Her-
mitian with real eigenvalues and orthogonal eigenvecteses Problen22 and Sec-

tion9.2).

(@) If Az = \y andATy = Az thenBly; —z]| =[-Az; ATy]= -\y; —z].
So—)\is also an eigenvalue @8. (b) ATAz = AT(\y) = \?2. (c) A = —1, —1,
1,1, @ =(1,0,-1,0), @ = (0,1,0,—1), @3 = (1,0,1,0), =4 = (0,1,0,1).

0 0 1
The eigenvaluesof = [0 o 1| are0,v/2, —v/2 by Problemi6 with
1 1 0
1 1 1
Ty =|-1|, 2= 1 |,T3= 1
0 V2 —V2

1. yisinthe nullspace of andz is in the column space (that is also row space because
S = ST). The nullspace and row space are perpendiculaso = 0.

2. If S = Az andSy = Sy then shiftS by 51 to have a zero eigenvalue that matches
Stepl.(S — pI)x = (A — )z and(S — SI)y = 0 and agaire is perpendicular tg.

1 10 1 0 1 Perpendicular fod
ShasX = |1 —1 0|;BhasX= |0 1 0]. Notperpendicular fof
0 0 1 0 0 2d sinceBT #£ B
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22

23

24

25

26

27

28

29

30

31

1 3+47 . . . =T .
S = is aHermitian matrix(S~ = 5). Its eigenvalues and—4 are
3—4 1

real. Adjust equation$l)—(2) in the text to prove thak is always real whe§' = S:

Sx = \z leads toSE = A\z. Transpose t&'S = z7A usingS ' = S.

Thenz Sz =z \xz and alsae ' Sz = Z' \xz. S0\ = \is real

1 2| (b) TruefromAT = QAQT = A
(a) FalseA = (d) False!
0 1| (c) TruefromS—! =QA QT

0 1
A and AT have the sama’s but theorder of the z’s can changeA = has

-1 0
A1 = iand)\y = —i with & = (1,4) first for A butz; = (1, —4) is first for AT.

Alisinvertible, orthogonal, permutation, diagonalizablierkov; B is projection, diag-
onalizable, MarkovA allowsQR, XAX !, QAQ"; B allows XAX ! andQAQ™.

Symmetry giveQAQ" if b = 1; repeated\ and noX if b = —1; singular ifb = 0.

Orthogonal and symmetric requirg§ = 1 and real, soA = +1. ThenS = +7 or
cosf) —sinf 1 0 cosf sinf cos 20 sin 20

S =QAQT = = .
sin 6 cos 6 0 -1 —sinf cosf sin20 — cos 20

Eigenvectorg1,0) and(1, 1) give a45° angle even wit™ very close toA.

The roots ofA? + bX +c¢ = 0 are%(—b + b2 — 4dac). Then), — X, is Vb2 — 4c.

Fordet(A + tB — \I) we haveb = —3 — 8t andc = 2 + 16t — t2. The minimum of

b?> —4cis1/17att = 2/17. Thenl, — A\; = 1/4/17: close but not equal!

S = ooz = 5" has real eigenvalues = 5 and—1 with trace= 4 and
2—1 0

det = —5. The solution t®0 proves that is real wherS' = S is Hermitian.

@ A = QAQ ™ timesAT = QATQT equalsA T times A because) = Q' and

AAT = ATA (diagonal') (b) Ste®: Thel,1 entries of T T T andTT T are|a|?

and|a|? + |b|?. Equally make$ = 0 andT = A.
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T

32 an is |:q11 s q1ni| |:/\1611 cen /\naln} < /\max (|CI11\2 +- ‘q1n|2) = >\max-

33 (@) 2T (Ax) = (Ax)Tx = 2TATe = —xTAz. (b) 2T Az is pure imaginary, its
real part isxT Az + yTAy = 0+0 (c) detA = A;...\, > 0 : pairs of \'s
= ib, —ib.

34 SinceS$ is diagonalizable with eigenvalue matix= 21, the matrixS itself has to be
XAX~! = X(2I)X~! = 2I. (The unsymmetric matrif 1 ; 0 2] also has\ = 2,2.)

35 (a) ST = SandS'S = I leadtoS? = I.

(b) The only possible eigenvalues $farel and—1.

RE:

Q3

(c) A = Lo soS=|0Q1 Q2

0 —I

= Q1Q7 — Q2Q3 With QTQy =

36 (ATSA)T = ATSTATT = ATSA. This matrix ATSA may have different eigen-
values fromS, but the “inertia theorem” says that the two sets of eigare@have the
same signs. The inertia number of (positive, zero, negative) eigenvalues is theesam

for SandATSA.

37 Substitute\ = a to finddet(S — al) = a® — a® — ca + ac — b*> = —b? (negative). The

parabola crosses at the eigenvalidmcause they haviet(S — AT) = 0.

1 Suppose: > 0 andac > b? so that als@ > b%/a > 0.
(i) The eigenvalues have tisame sigrbecause\; \; = det = ac — b? > 0.

(ii) That sign ispositivebecause\; + Ay > 0 (it equals the trace + ¢ > 0).

1 10
2 Only Sy = has two positive eigenvalues sint@&l > 102.
10 101
' S1x = 522 + 122,20 + T3 is negative for example whery = 4 andx, = —3:

Ay is not positive definite as its determinant confirifig:has trace;; Ss hasdet = 0.
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Positive definite 1 0 1 b 1 0 1 0 1 0
for—3<b<3 b 1| |0 9—1022 b 1] |0 9= |0 1

LDLT i
Positive definite 1 0 2 4 1 0 2 0 1 2
= = LDLT.
forec > 8 2 1 0 ¢c—8 2 1 0 ¢c—8 0 1
. o 1 1 c 0
Positive definite forc > b L = D = S =
—b/c 0 0 c—b/ec
LDLT.
4 f(x,y) = 2% +4zy + 9y? = (v +2y)? + 5¢y%; 22 + 62y + 9y = (v + 3y)>.

10

11

2% +4xy+3y? = (z+2y)% —y? = difference of squards negative at = 2,y = —1,
where the first square is zero.

0 0 1| |z

A= producesf(x,y) = [;U y] = 2xy. Ahas)\ =1 and
0 1 0| |y

—1. ThenA is anindefinite matrixand f (x, y) = 2xy has asaddle point

2 3 3

andATA =
2 13 5 6

ATA = are positive definiteATA = (3 5 4] is

3 45
singular (and positive semidefinite). The first tw& have independent columns. The

2 by 3 A cannot have full column rank with only 2 rows; AT A is singular.

g 3 6 1 0 (3 0| |1 2| Pivots3,4 outside squareg,; inside.
6 16 2 1|0 4| |0 1| TSz =3(x+2y)? +4y?
(4 4 8]
has only one pivot 4, rankS = 1,
S=1|-4 4 -8
eigenvalues ar4, 0,0, det S = 0.
8 —8 16
[ 2 -1 0_ 2 -1 -1 1 0
has pivots o
S=1-1 2 -1 - =1|—-1 2 —1|issingular,T |1|=1|0]-
27_7_;
0 -1 2 273 -1 -1 2 1 0
Corner determinants; | = 2, |Se| = 6, |S3| = 30. The pivots ar&/1,6/2, 30/6.
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12

13 S

14

15

16

17

18

19

20

21

22

23

S is positive definite forc > 1; determinants;, ¢* — 1, and(c — 1)?(c + 2) > 0.
T is neverpositive definite (determinants— 4 and—4d + 12 are never both positive).
1

5
= is an example witlu + ¢ > 2b butac < b2, so not positive definite.
5 10

The eigenvalues of —! are positive because they drg\(S). Also the entries of !

pass the determinant tests. AndS 1z = (S~1z)TS(S~1x) > 0 forall = # 0.
Sincez™Sz > 0 andz™Tz > 0 we havex™ (S + T)x = 'Sz + =TTz > 0 for
allx # 0. ThenS + T is a positive definite matrix. The second proof uses the test

S = AT A (independent columns id): If S = ATA and7T = BT B pass this test,

T| A
thenS + T = {A B] also passes, and must be positive definite.

B
xSz is zero when(xy, x2, r3) = (0, 1,0) because of the zero on the diagonal. Actu-

ally T Sz goesnegativefor x = (1, —10,0) because the second pivotisgative
If a;; were smaller than al\'s, S — a;;I would have all eigenvalues 0 (positive
definite). ButS — a,; I has azeroin the(3, j) position; impossible by Problem 16.
If Sz = Az thenz® Sz = \xzTx. If Sis positive definite this leads to= = Sz /zTz >
0 (ratio of positive numbers). So positive energypositive eigenvalues.
All cross terms arec z; = 0 because symmetric matrices have orthogonal eigenvec-
tors. So positive eigenvalues positive energy.
(&) The determinant is positive; all > 0  (b) All projection matrices except are
singular  (c) The diagonal entries of are its eigenvalues (d¥ = —1 hasdet =
+1 whenn is even.
S is positive definite when > 8; T' is positive definite when > 5 by determinants.

1 -1 |9 1 1

A N IR PN ER I P
V2 V2 1 2 0 2 13
2?/a? +y?/b? iszT Sz whenS = diag(1/a?,1/b%). Then)\; = 1/a? and\, = 1/b?

soa = 1/y/\; andb = 1/y/),. The ellipse9z? + 16y* = 1 has axes with half-lengths

a = 1 andb = 1. The pointg(%,0) and(0, 1) are at the ends of the axes.
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24

25

26

27

28

29 §

30

31

32

33

The ellipser? + zy + y> = 1 has axes with half-lengthis/v/X = v/2 and/2/3.

9 3| [4 s 1 0|4 ol [1 2 9 4
S=CTC = : = andC =
3 5| |8 25 2 1|0 9] o 1 0 3
30 0] 11 1

T
The Cholesky factor§’ = (L\/ﬁ) =10 1 2landC = |0 1 1 | have

0 0 2] 00 V5
square rootof the pivots fromD. Note againrC'C = LDLT = S.

writing outz™ Sz = £ LDL"x givesaz? + 2bxy +cy? = a(z+ 2y)? + %yz. So
the LDLT from elimination is exactly the same esmpleting the squard’he example
222 +8zy+10y? = 2(z+2y)?+2y2 with pivots2, 2 outside the squares and multiplier

2 inside.

det S = (1)(10)(1) = 10; A = 2 and5; &1 = (cosf,sinf), o = (—sinb, cosd); the

A’s are positive. S& is positive definite.

[ is semidefinite;f; = (122 + y)* = 0 on the curvejz? + y = 0;
{ is indefinite at(0, 1) where first derivatives= 0. Then
1 0
=0,y = 1is a saddle point of the functiofy(z, y).

ax? + 2bzy + cy? has a saddle point ifc < 2. The matrix isindefinite(A < 0 and

A > 0) because the determinant — b? is negative

If ¢ > 9 the graph of: is a bowl, ifc < 9 the graph has a saddle point. Whesa 9 the
graph ofz = (2x + 3y)? is a “trough” staying at zero along the liRe + 3y = 0.

Orthogonal matrices, exponentiad?, matrices withdet = 1 are groups. Examples
of subgroups are orthogonal matrices wilit = 1, exponentials:A™ for integern.

Another subgroup: lower triangular elimination matridesvith diagonall’s.

A product ST of symmetric positive definite matrices comes into many iepfibns.

The “generalizedeigenvalue problenixz = AMx hasST = M ~! K. (Often we use
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34

35

36

37

1

2

eig(K, M) without actually invertingl/.) All eigenvalues\ are positive:

STx = \x gives(Tx)" STx = (Tx) " \z. Then\ = 2T STz /=" Tx > 0.

The five eigenvalues ok are2 — 2 cos 28 = 2 — /3,2 -1,2,2+ 1,2 + V3.

The product of those eigenvaluesis- det K.

Put parentheses int ATC Az = (Az)TC(Ax). SinceC is assumed positive definite,
this energy can drop to zero only whder = 0. SineA is assumed to have independent
columns,Az = 0 only happens whem = 0. ThusATC A has positive energy and is

positive definite.

My textbooksComputational Science and Engineeriagd Introduction to Ap-
plied Mathematicstart with many examples of ' C 4 in a wide range of applications.

| believe this is a unifying concept from linear algebra.

(&) The eigenvectors of; 1 — S areA; — A1, A1 — Ao, ..., A1 — \,. Those are> 0;
A1 — S is semidefinite.

(b) Semidefinite matrices have eneegly (A1 — S) x2 > 0. Then\;zTx > 2T Sx.
(c) Part (b) saye'Sz/xTx < \; for all . Equality at the eigenvector withz =
/\13’3.

Energyx® Sz = a (z1+x2+23)%+c(x2—23)% > 0if @ > 0 andec > 0: semidefinite.

The matrix has rankl 2 and determinant 0; cannot be positive definite for amyand

C.

B=GCG 1=GF1AFG—!soM =FG~!. C similartoA andB = A similar to B.

oy, .. 30 _ 0 1
A= is similar toB = = M~YAM with M =

0 3 0 1 1 0
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3

10

11

e[ =R e
-0 LA

A has no repeated so it can be diagonalized ' AS = A makesA similar toA.

1 1] {o o] [1 o] o 1 n |
, , , are similar (they all have eigenvaluesnd0).
11 1 0 0 1

0 1
is by itself and als is by itself with eigenvalues and—1.
0 1 10

éight familiesof similar matrices: six matrices have = 0, 1 (one family); three

matrices have. = 1, 1 and three hava = 0, 0 (two families each!); one has= 1, —1;
one has\ = 2, 0; two matrices have = %(1 + /5) (they are in one family).
@ (M*AM)(M~'z) = M~*(Az) = M~'0 = 0  (b) The nullspaces ofl

and of M~ AM have the samdimension Different vectors and different bases.

SameA 0 1 0 2| have the same line of eigenvectors
ButA = andB =
SameS 0 0 0 0] andthe same eigenvalugs= 0, 0.
1 2 13 1 k 10
A? = , A3 = , every AF = LAY = andA~! =
01 01 01 01

) v(0 Al
u(0) = = ) . The equationd—u = u has@ = Av + w and
2 w(0) dt 0 A dt
d : .
d_l;) = Aw. Thenw(t) = 2e* andwv(t) must include2te? (this comes from the
(

repeated\). To matchu(0) = 5, the solution is(t) = 2te* + 5e.
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M1 Mo Moz Moy 0 mi2 miz O
) 0 0 0 0 0 moy maoz O
12 f M~*JM =K thenJM= = MK=
Ma1 M4z M43 My 0 mz2 maz 0
0 0 0 0 0 mg2 myz 0]

That meansna; = mog = n:Lg;; =9y =0.Mis not_invertible,J_not similar toK.

13 The five4 by 4 Jordan forms withh = 0,0, 0,0 are.J; = zero matrix and

(0 1 0 0] [0 1 0 0]
000 0 0010
Jy = Js =
0000 0000
00 0 0] 00 0 0]
(0 1 0 0] (0 1 0 o]
0000 0010
J, = Js =
000 1 000 1
0 0 0 0] 00 0 0]

Problem12 showed that/s and.J, arenot similar, even with the same rank. Every
matrix with all A = 0 is “nilpotent’ (its nth power isA™ = zero matrix). You see
J* = 0 for these matrices. How many possible Jordan forms:.fer 5 and all\ = 0?

14 (1) ChooseM; = reverse diagonal matrix to gét/, ' J;M; = M in each block
(2) M, has those diagonal blocRg; to getM; ' JMy = JT. (3) AT = (M-HTJTMT
equals(M—Y)TM; ' TMM™T = (MMoMT)"* A(MMyMT™), andA™ is similar to
A.

15 det(M~TAM — A1) = det(M~YAM — M~'XIM). This isdet(M ' (A — XI)M).

By the product rule, the determinants &f and M ~! cancel to leavelet(A — \I).
b

a b d c al. . c d . -
16 is similar to ; is similar to . So two pairs of similar
c d b a d c a b

10 0 1
matrices but is not similar to : different eigenvalues!
0 1 10
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17

18

19

20

21

(a) False Diagonalize a nonsymmetrit = SAS~!. ThenA is symmetric and similar
0 1 0 -1
(b) True A singular matrix has\ = 0. (c) False and are simi-
-1 0 1 0

lar

(they have = +£1) (d) True Adding I increases all eigenvalues by 1

AB = B Y(BA)B so AB is similar to BA. If ABx = Az thenBA(Bz) = \(Bzx).

Diagonal blocks 6 by 6, 4 by 44 B has the same eigenvaluesid plus6 — 4 zeros.

@ A=M"'BM = A2 = (M~'BM)(M~*BM) = M~1B?M. SoA? is similar
to B2. (b) A% equals(—A)? but A may not be similar ta3 = —A (it could be!).

3 1 30
(c) is diagonalizablet becausa; # A\, sothesematrices are similar.

0 4 0 4
31 : . : o
(d) has only one eigenvector, so not diagonalizable Re)PT is similar
0 3

to A.

J? has thred’s down thesecondsuperdiagonal, anvo independent eigenvectors for
0 1 0

J:
A = 0. lts5 by 5 Jordan form is 8 withJs =10 0 1| andJy; =
Jo 0 0
0 0O

Note to professors An interesting questioniVhich matricesA have (complex) square

1

roots R? = A? If A is invertible, no problem. But any Jordan blocks for= 0 must
have sizesi; > ny > ... > ni > ngy1 = 0 that come in pairs like 3 and 2 in this

examplemn; = (ng or ng+1) andns = (n4 orng+1) and so on.
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a 0 0] [a 1 0]
A list of all 3 by 3 and4 by 4 Jordan forms could bd o » 0, |0 a« 0],
00 c| [0 0 b]
o :
(for any numbersa, b, c) a
with 3,2,1 eigenvectors; digg,b,c,d) and b ’
C

, with 4, 3, 2, 1 eigenvectors.

22 If all roots are\ = 0, this means thadlet(A — AI) must be just\. The Cayley-

Hamilton Theorem in Problem 6.2.32 immediately says tifat= zero matrix. The

key example is a single by n Jordan block (withn — 1 ones above the diagonal):

Check directly that/"™ = zero matrix.

23 CertainlyQ; R, is similar toR;Q; = Q7 (Q1R1)Q1. ThenA; = Q1 Ry — csI is

similarto Ay = R1Q; — c¢s?1.

24 A could have eigenvalues= 2 and\ = % (A could be diagonal). TheA~! has the

same two eigenvalues (and is similar4p

1 A=UxV"T=

U Uz

T13,/50012

01
V1 V2
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1 2
2 ThisA = is a2 by 2 matrix of rankl. Its row space has basis, its nullspace
3 6

has basi®s,, its column space has basis, its left nullspace has basis:

1|1 1 2
Row space — Nullspace —
2

V5 511
3
1|

3 If A has rankl then so doesiT A. The only nonzero eigenvalue df" A is its trace,

, N(AT)

S

V10

1 1
Column space —
3

which is the sum of ali?;. (Each diagonal entry o™ A is the sum ofz?; down one
column, so the trace is the sum down all columns.) Thgr- square root of this sum,
ando? = this sum of allaZ;.

3+v5 , 3-+/5 Butdis
, 05 = .
2 2

1 1 indefinite
o1 = (]. + \/5)/2 = /\1(A), g9 = (\/5— ].)/2 = —/\Q(A), U, = v but Uy = —Vo.

2 1
4 ATA = AAT = [ ] has eigenvalues? =

5 A proof thateigshow finds the SVD. WhelV'; = (1,0),V, = (0, 1) the demo finds
AV, and AV, at some anglé. A 90° turn by the mouse t& 5, —V; finds AV, and
— AV atthe angler — . Somewhere between, the constantly orthogenand v,

must producedv; andAv, at angler /2. Those orthogonal directions givg andus.

B 1/v/2 1/vV2
6 AAT = haso? = 3 withu; = / ando? = 1 withuy = / :
1 2 1/v/2 —1/vV2
(11 0 1/v6 1/v2
ATA =11 2 1|hasof=3withv; = |2/\6]|, 05 = 1withv, = 0 ;
0 11 1/v6 —1/V2
1/V3
1 0 V3 0 0 .
and’Ug = —]_/\/3 . Then = [u1 UQ} [’Ul V2 ’Ug} .
01 1 0 1 0

1/V3
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7 The matrixA in Problem6 hado; = /3 ando, = 1in X. The smallest change to

rank1 is to make o = 0. In the factorization
A= UEVT = ulal'urlr + ’UJQO'Q’Ug

this changer, — 0 will leave the closest rank-matrix asu;c,v]. See Problem4

for the general case of this problem.

8 The nuMber . (A1) omax (A) is the same a8,ax (A)/omin (4). This is certainly>
1. ltequalsl if all o’s are equal, andl = UX VT is a multiple of an orthogonal matrix.

The ratioomax /omin IS the importantondition number of A studied in Sectiof.2.
9 A=UVTsince allo; = 1, which means that = I.

10 A rank—1 matrix with Av = 12u would haveuw in its column space, sd = uw?T
for some vectorw. | intended (but didn't say) thab is a multiple of the unit vector

v =1(1,1,1,1) in the problem. Them = 12uv™ to getAv = 12u whenvTv = 1.

11 If A has orthogonal columna, ..., w, of lengthsoy,...,o,, then AT A will be
diagonal with entriesr?,...,02. So theo’s are definitely the singular values of

(as expected). The eigenvalues of that diagonal matfixd are the columns of, so

V = I inthe SVD. Then thes; are Av; /o; which is the unit vectow, /c;.

The SVD of thisA with orthogonal columns igl = USVT = (AX~1)(2)(1).

12 SinceAT = A we haves? = \? ando? = )\3. But ), is negative, sor; = 3 and
oo = 2. The unit eigenvectors ol are the same; = v, as forATA = AAT and

us = —ws (notice the sign change because= —\,, as in Problemt).

13 Suppose the SVD ok is R = UXV'. Then multiply byQ to getA = QR. So the
SVD of thisA is (QU)X V™. (Orthogonal) times orthogonal/ = orthogonalQU'.)

14 The smallest change iA is to set its smallest singular value to zero. See# 7.
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15 The singular values ofd + I are noto; + 1. They come from eigenvalues of
(A+DT(A+1T).

16 This simulates the random walk used Bpogleon billions of sites to solvelp = p.
It is like the power method of Sectigh3 except that it follows the links in one “walk”
where the vectop,, = A*p, averages over all walks.

17 A= USVT = [cosines includinge,] diag(sqrt(2 — v/2,2,2 + /2)) [sine matrix".

AV = UX says that differences of sineslihare cosines it/ timeso’s.

The SVD of thederivativeon [0, 7] with f(0) = 0 hasu = sinnz, 0 = n, v = cos na!



128 Solutions to Exercises

1 A = wvT has rankl with ut = T = [1 2 3 4]. Those vectors havigu||? =
||v]|> = 30 so the SVD has a division by'30 to reachu; andv;. Multiply by ¢, = 30

to recoverA.

T

A =o1uv] =30——=—= = UXV" (1 columninU andV).

V30 /30

B has rankr = 2. The first two columns oB are independent (the pivot columns).

Column3 is a combinatior2 (col 2) — (col 1). Column4 is 3 (col 2) — 2 (col 1) :

2 3 4 5 2 3 1 0 -1 -2
(col 1)(row 1)T
3 4 5 6 3 4 0 1 2 3
b= = +
4 5 6 7 4 5
(col2)(row 2)T
5 6 7 8 5 6

Those pivot columns come from the first half of the boalot orthogonal They don't
give thew’s andv’s of the SVD. For that we need eigenvalues and eigenvecfors o

BTB andBBT.

2 All the singular values of arec = 1. We cannot leave out any of the terms v}
without making an error of sizé. And the matrixA = I starts with sizel ! None of

the SVD pieces can be left out.

Notice that the SVD id = (U)(I)(U") so thatU = V. The natural choice for
the SVD is justUX V"' = II1. But we could actually choose any orthogonal matrix
U. (The eigenvectors af are very far from unigue—many choices! Any orthogonal

matrix U holds orthonormal eigenvectors bj

(1 01 0 0
0 00 1 1
One possible rank flag with a3 by 3 cross of zerosisl = [1 0 1 1 1
1 41 11

LRI




Solutions to Exercises 129

3 1 2 11 10 1 2 11
2 2 2 2 =0 1= 1|2 2 2 2
1 2 1 1 1 0
1 2 2 1 2|1 (1 0 O pivot rows
1 3 3 1 3]0 1 1 columns of R
1 2 2 1 1 9 13
4 BBT= |1 3 3 2 3| = |13 19| . Trace28, Determinan®.
2 3
11 1 2 2 2 5 5
BTB= |2 3 1 3 3| =[5 13 13]|.Trace28, DeterminanD.
2 3 5 13 13

With a small singular value, = \/Lﬂ, B is compressible. But we don't just keep the
first row and column of3. The good row, and columnu; are eigenvectors a8 B
andBB".

7T 10 7
5 My hand calculation produced™4 = |10 16 10| and det(AT™A — \I) =
7T 10 7
—\3 4+ 30A% — 24\
This gives\ = 0 as one eigenvalue of T A (correct). The others are :
A2 —30A+24=0 gives A=15++/152 — 24~ 15+ 14 =29 and 1.

Soo0; =~ V29 andoy = 1. Thesvd (A) command inMATLAB will give accurates’s
andU andV.

6 The matrixA has tracel and determinam. So its eigenvalues akeand(0—not used
in the SVD The matrix AT A has trace25 and determinan, so\; = 25 = o7 gives

0'1:5.

The eigenvectors;, v, of AT A (a symmetric matrix!) are orthogonal :
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Gl = L

Similarly AAT has orthogonal eigenvectaus, u. :

5 10 1 1 5 10 2
and
10 20 2 2 10 20 -1

7 Multiply both sides ofA = UX VT by the matrixV to getAV = UX. Column by

=25

column this says thalv; = o;u;. Notice that: goes on theight side of U when we

want to multiply everycolumnof U by its singular value;.

8 The text found\; =o?=1 (3++/5) and therr; =1 (1++/5). Theno; +1 equalss?.
Also A, =0% =3 (3—+5)ando, =% (V5—1)andoy —op =% + 5 = 1.
(Why don’t we chooses, = 1 (1 —/5) ?).

9 The20 by 40 random matrices ard = rand (20,40) and B = randn (20, 40). With
those random choices tR6 rows are independent with probability Notice for these

continuous probabilities, this does not mean that the rorgsabvays independenit A

random determinant might lieeven when the probability of nonzerolis
MATLAB again gives the singular values of a randdrand B.

By averagingl00 samples you would begin to see the expected distribution'syf

which is highly imortant in “random matrix theory”.

0 4

0
1A= has eigenvaluggand0; AT A = ] has eigenvalues = 16 and
0 0

0 16
0. Theno,(A) = v/16 = 4. The eigenvectors ™ A and AAT are the columns of

0 1] 10
V = andU = .
10 0 1
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0 4 0 0 1 0 4
ThenUsVT = = = A
0 1 0 O 1 0
0 4| 1
A= givesATA = with A\; = 16 and)\, = 1. Samel/ andV.
1 0 0
0 4 0 0 1 4
ThenUZVT = = A.
0 1 0 1 1 0 0
2 5 3 1 1 -1
2 A= leads toAT A = with eigenvectors iV = —
11 3 5 V211 1
A 1 4] 1 . 1]
07 =8 wu; = 20 — has unit vectow; = ando; = 2v/2
g1 \/5 0 01 0
A 1 0 1 . 0
03 =2 uy= A2 — has unit vectom, = andoy = V2
g9 \/§ 2 g9 1

The full SVDisA =UXVT = [1 0] [2\/5 ] [ ! 1] /V2.
0 1 V2| -1 1

8 0
3 Problem7.2.2 happens to havd AT = diagonal matrix{ ] . So its eigenvectors
0 2

(1,0) and(0,1) go inU = I. Its eigenvalues are? = 8 ando3 = 2. The rows ofA

are orthogonal but nairthonormal So A™ A is not diagonal and is not1.

2 1 1/v2 1/v2
4 AAT = haso? = 3 withu; = /v2 ando3 = 1 with us = /v2 .
1 2 1/V2 —1/V2
(11 0 1/v/6 1/v2
ATA =11 2 1|hasof=3withv; = |2//6]|, 05 = 1withvy = 0
0 11 1/v6 —1/V2

1/V3
andvz= | —1/4/3|. Then [1 ! 0] |:v1 vy ’U3] = |:u1 u2] [\/§ 0 0] —
011 0 10

1/V3
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V2 |1 VIO

column space. Those are unit vectors.

11 1 (1. . | I O I
5 @A = [ ] hasv, = —[ ] in its row space andi;, = —— { ] in its
3 3 3

10 10
SinceAT A = has\; = 20 and), = 0, A itself hass; = v/20 and has no

10 10
o2. (Remember that thesingular values have to be strictly positive!)

(b) If we want square matricd$ andV’, chooseu, andwv, orthogonal tou; andwv; :

I 1 1 3 d v 1 1 -1
= — an = — .
V10 |3 1 V2 11 1

6 If A=UXVTthenAT = VSTUT andATA = VETSVT. This is a diagonaliza-
tion VAVT with A = XT% (so eachv? = ;). Similarly AAT = USXTUT is a

diagonalization ofAA™T. We see that the eigenvaluesic™ are the same? = \;.

7 This small question is a key to everything. Itis based on fiseaiative laW AAT)A =
A(AT A). Here we are applying both sides to an eigenvectof AT A :
(AAT)Av = A(AT A)v = Adv = M.
So Av is an eigenvector ofA AT with the same eigenvalue

1 3| |v50 ol |1 2

T
01
_ _ _ 13 -1 0 0 2 -1
R T R S L=
0 10 V5

1 2
9 ThisA = is a2 by 2 matrix of rankl. Its row space has basis, its nullspace
3 6

has basi®s,, its column space has basis, its left nullspace has basis:

R Lt Null ! 2
ow space — ullspace —
P V5 |9 P NG

vio [ N L[ 3]'

1 1
Column space ——
3 -1
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10

11

12

13

14

15

16

17

18

If A has rankl then so doesi™ A. The only nonzero eigenvalue df' A is its trace,
which is the sum of alé?;. (Each diagonal entry o™ A is the sum of?; down one
column, so the trace is the sum down all columns.) T&gr- square root of this sum,

ando? = this sum of alla;.

3+v5 , 3-+5 Butdis

2 1 ,
ATA = AAT = has eigenvalues? = , 03 5

11 2 indefinite
o1=(14+V5)/2=M(A), o2 = (V5-1)/2= —X2(A); u; = v, but uy = —v,.
A proof thateigshow finds the SVD. WhelV'; = (1,0), V5 = (0, 1) the demo finds
AV andAV, at some anglé. A 90° turn by the mouse t&,, —V; finds AV, and
— AV at the angler — . Somewhere between, the constantly orthogenandwv,

must producedv; andAv, at angler /2. Those orthogonal directions givg andus.

The numbeb ., (A1) omax (A) is the same ady,., (A) /omin (A). This is certainly>
1. Itequalsl if all o’s are equal, andl = UX VT is a multiple of an orthogonal matrix.

The ratioomax /omin 1S the importantondition number of A studied in Sectiof.2.
A =UVT since allo; = 1, which means thaf = 1.

A rank-1 matrix with Av = 12u would haveu in its column space, sd = uw?’
for some vectorw. | intended (but didn't say) thab is a multiple of the unit vector
v =1(1,1,1,1) in the problem. Them = 12uv™ to getAv = 12u whenv™v = 1.
If A has orthogonal columna,, ..., w, of lengthsoy,...,o,, then AT A will be
diagonal with entriesr?,...,02. So theo’s are definitely the singular values of

(as expected). The eigenvalues of that diagonal matfixd are the columns of, so

V = I inthe SVD. Then thes; are Av; /o; which is the unit vectow, /c;.

The SVD of thisA with orthogonal columns igl = USVT = (AX~1)(2)(I).
SinceAT = A we haves? = \? ando? = )\3. But ), is negative, sor; = 3 and
oo = 2. The unit eigenvectors ol are the same; = v, as forATA = AA™T and
us = —wy (notice the sign change because= —\,, as in Problen 1).

Suppose the SVD oR is R = UXVT. Then multiply byQ to getA = QR. So the
SVD of thisA is (QU)X V™. (Orthogonal) times orthogonall = orthogonalQU'.)
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19 The smallest change iA is to set its smallest singular value to zero.

T 1 100 1 0 10001 100 . T )
20 ATA = = has eigenvalues(A* A) = 0%(A).
0 1 100 1 100 1

. 1
A2 — 10002\ + 1 = 0 givesA = 5001 + (5001)2 — 1 ~ 5001 + <5001 — m)
So\ = 10002 and1/10002 ando =~ 100.01 and1/100.01. Checksioo &= 1 = det A.

21 The singular values ol + I are noto; + 1. They come from eigenvalues of

0
(A+I)T(A +I). Test the diagonal matrix =

0 3
22 Since@,; andU are orthogonal, so i, U. (check:(Q.U)"(Q.U) = UTQTQ,U =
UTU = I.) Sothe SVD of the matrig); AQT is justQ, USVTQT = (Q,U)S(Q,V)T
andY. is the same as fad. The matricesd and@Q; AQ} and¥ are all ‘isometri¢ =

sharing the samg.

23 The singular values ap are the eigenvalues 6T Q = I (therefore alll’s).

3 1
24 (a) FromzT Sz = 322 + 27,75 + 323 you can see thaf = . Its eigenvalues
1 3

are4 and2. The maximum ofe™ Sz /z Tz is 4.
||z4$||2 . (371 + 41’2)2
=2 af+a3

value iso?(A). For this matrix4 = {1 4] that singular value squaredd$¢ = 17.

. The maximum

(b) Thel by 2 matrix A = {1 4} leads to

. 1 4
This is becausdl AT = [17] and alsaAT A = has\ = 17 and0.
4 16

TSz
25 The minimum value of%T is thesmallesteigenvalue ofS. The eigenvector is the
X
minimizing . That eigenvector gives' Sx = T A\yinz.
|[Az||?  xTATAx

lzl[? 2Tz
(and not usually an eigenvector 4.

Since

we see that the minimizing is aneigenvector ofAT A
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26

27

0 cos 6
From AV = U¥ we know that = first column of V' goes to2 = first
1 sin 6

1 sin 6
column ofUX. Similarly the second colum goesto . The two outputs

0 cos
. . V3
are orthogonal and they are the axes of an ellipse. With30° those axes ar
1
: 1] - . . .
going out from(0, 0) at30° and§ going out atl20°. Comparing to the picture

V3
in Section7.4, the first step would be a reflection (not a rotation), thenretch by

factors2 and1, then a30° rotation.

Start fromA = UXVT. The columns ot/ are a basis for the column spaceAfand

so are the columns @f, soU = CF for some invertible- by r matrix .

Similarly the columns ol are a basis for the row space .4fand so are the columns

of B, soV = BG for some invertible: by r matrix G.

ThenA = USVT = C(FEGT)BT = CMBT andM = FXGT isr by r and

invertible.

The row averages ol are3 and0. Therefore

21 0 -1 -2 AAT 1110 O
A= and S = = -
-1 10 1 -1 4 4]0 4
. 10 4 . |1
The eigenvalues of are\; = T and\; = i= 1. The top eigenvector &f is
0
| think this means that wertical line is closer to the five point&, —1), ..., (-2, —1)

in the columns ofd than any other line through the origif, 0).
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2 Now the row averages oA, are% and2. Therefore

0
4

1 1 T
22 and S = AdT 1
0 -1 5 5

1
2
1

o Nlw

-1 0

Again the rows ofA are accidentally orthogonal (because of the special pattef

0
those rows). This time the top eigenvectorsfs . So ahorizontal line is closer

1

to the six points(,-1),..., (-1, 1) from the columns of4 than any other line
through the center poirtd, 0).

1 2 3 -1 0 1

3 Ay = has row average® and soA = . ThenS =
5 2 2 2 -1 -1
2 -3

aar =1 .
2 213 6

Then tracg(S) = 1 (8) anddet(S) = (%)2 (3). The eigenvalues(S) are times the

roots of A2 — 8\ + 3 = 0. Those roots ard + /16 — 3. Then thes’s are/\; and

V. 2 0 0
. . . AAT 1
4 This matrix A with orthogonal rows ha8§ = 1=3 0 8 0.
n_
0 0 4

With X\'s in descending ordex; > A\; > )3, the eigenvectors aif@, 1,0) and (0,0, 1)
and(1,0,0). The first eigenvector shows thg direction. Combined with the second
eigenvectow,, the best plane is thg: plane.

These problems are examples where the saogitelation matrix (rescalingS so all
its diagonal entries arg) would be the identity matrix. If we think the original saadj

is not meaningful and the rows should have the same length,ttiere is no reason to

chooseu; = (0, 1,0) from thes8 in row 2.

5 The correlation matriXD.S D which hasl’s on the diagonal is

2 4 2 0| |3 1 3 0
DSD = 1 2 4 1 i =11 1 3
1[0 1 1 1 0 1 1
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6 Working with letters instead of numbers, the correlatiorinraC = DSD is

1 c2 c3

. S S S
c1a 1 co3| Withep = 12 andci3 = 13 andcgs = 2
0109 0103 0203
c13 c23 1
]./0'1
Then D = 1/o9 givesDSD = C.
1/03

7 From each row of4,, subtract the average of that row (the average grade for that
course) from tha 0 grades in that row. This produces the centered matriXhen the
sample covariance matrix s = %AAT. The leading eigenvector of tlieby 5 matrix
S tells the weights on thé courses to produce theijencoursé This is the course

whose grades have the most information (the greatest wajan

If a course gives everyone ah the variance is zero and that course is not included in

the eigencourse. We are looking for most information not gesde.

10 20 1 |1 1 2
1 ATA = has\ = 50 and0, v; = — , Vo

20 40 V5 |9 Vb |1

2 Orthonormal baseswy; for row spacew- for nullspaceu; for column spaceu, for

;012\/%-

N(AT). All matrices with those four subspaces are multiplds since the subspaces
are just lines. Normally many more matrices share the sesnbspaces. (For example,
all n by n invertible matrices sha&™ as their column space.)

1 7T -1 1 10 20

3A=QS = — —
V50 |1 7| V50 |20 40

. S is semidefinite becauséis singular.

1/v/50 0 1 3 2 4
4 At =V /Y50 Ut 1 ; ATA = , AAT =

0 0 50 o ¢ 4 8 39
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10

11

12

13

14

10 8 1 |1 1 1
ATA = haS/\:18and2,’U1:— , Vg = — ,Ulzm
8 10 V2 V2|
ando, = /2.
18 0 1 0 i
AAT = hasu; = U = . The sama/18 andv/2 go into X..
0 2 0 1
vy o
o1U; Tols =o1u1v1 +oougvd . Ingeneral thisis ui vl + - -+o,u,vr.
vy
o 1
A=UxVT splitsintoQK (polar):Q = UV?T = — andK = VxVT =
V21
V18 0
0 V3|
AT is A~1 becausel is invertible. Pseudoinverse equals inverse wHen exists!
9 12 0 .6 .8 0
ATA =112 16 0ol hash =25,0,0andv; = | 8|, va= |—6]|,v35=[0].
0 0 0 0 0 1
HereA =[3 4 0] hasrankl andAA™ = [25] ando; = 5 is the only singular value
inY =[50 0].
2 12 36 48 0
A=[1][5 0 0]VTandA*=V | 0| =|.16|; ATA=| 48 .64 0]|;AAT=[1]
0 0 0 0 0

The zero matrix has no pivots or singular values. Thes same2 by 3 zero matrix
and the pseudoinverse is thdy 2 zero matrix.
If det A = 0then rankA) < n; thus ranKA™) < n anddet A™ = 0.
This problem explains why the matrix transforms the circle of unit vectofs|| = 1
into anellipse of vectorsy = Ax. The reason is that = A~y and the vectors with
||A=1y|| = 1 do lie on an ellipse :

A7 yllP =1 is y" (A7) ATy =1 or y'(A4T)ly=1

That matrix(AA™)~! is symmetric positive definifel is assumed invertible).
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15

16

17

18

19

20

21

2 1 5 4 1 5 —4
A= gives AAT = and (AA")™! =~
1 2 45 Il -4 5

So the ellipse| A~ y||?> = 1 of outputsy = Az has equatioby? — 8y, 2 + 5y2 = 9.
The singular values of this positive definifieare its eigenvaluesand1.

The ellipse/|A~! y|| = 1 has semi-axes of lengthg3 and1/1.

(@) AT Aissingular (b) Thisc™ inthe row space does give" Az = ATb  (c) If
(1,—1) inthe nullspace ofl is added tac*, we get another solution td* Az = ATb.

Butthisz is longer thanc T because the added part is orthogonattoin the row space

and||z||? = ||z T||? + ||added part from nullspagé.

a1 in the row space ofd is perpendicular tac — =t in the nullspace ofATA =
nullspace ofAd. The right triangle hag® = a2 + b?.
AATp=p, AATe=0, AtAzx, = z,, AT Az, = 0.
. 36 .48
AT =VtUTisi[.6 8] =[.12 .16]andAT A = [1]andAAT = =
A48 .64
projection.

L is determined byy;. Each eigenvector itX is determined by one number. The
counts ard + 3 for LU, 1+ 2+ 1for LDU, 1+ 3 for QR (noticel rotation angle),
1+2+1forUSVT, 242+ 0for XAX 1

LDLT andQAQ" are determined by + 2 + 0 numbers becausé is symmetric

Note Problem20 should have referred to Probleirfi not 18.

Check the formula fod™ A usingA™ and A :

T T T T
viu,;
+A— i T)_ T, T T, _ S
ATA= ( E U—z>< g ojU;v; ) = g v,u; w;v; becauser; u;=0wheni # j
1

1 1

Then everyu] u; = 1 (unit vector) soA* A = ) " w;v] is correct.
1

r r T r
Similarly AAT = <Z oju; ’U;F> (Z M) = Z w;u) .
03
1 1

1
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A Av u u| . )
=0 . Thus is an eigenvector.
AT 0 ATy v v

The singular values ofl areeigenvaluesf this block matrix.

u
22 M =

v
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10

11

12

13

With w = 0 linearity givesT' (v + 0) = T'(v) + T'(0). ThusT'(0) = 0. Withc = —1
linearity givesT’(—0) = —7°(0). This is a second proof thét(0) = 0.

CombiningT(cv) = ¢T'(v) andT (dw) = dT (w) with addition givesl'(cv + dw) =
cT'(v) + dT(w). Then one more addition gived'(v) + dT'(w) + eT'(u).

(d) is not linear.

@) S(T'(v)) =v  (b) S(T(v1) +T(v2)) = S(T(v1)) + 5(T'(v2)).

Choosev = (1,1) andw = (—1,0). ThenT'(v) + T'(w) = (v +w) butT'(v + w) =
(0,0).

(@) T'(v) = v/||v]|| does not satisif’(v + w) = T'(v) + T'(w) or T'(cv) = T'(v)
(b) and (c) are linear (d) satisfiggcv) = cT'(v).

@T(T(v)=v (b) T(T(v)=0v+(2,2) (©) T(T(v))=—v (d) T(T(v))=T(v).

(@) The range of (v1,v2) = (v1 — v2,0) is the line of vectorge, 0). The nullspace
is the line of vectorge, ¢). (b) T(vy,v9,v3) = (v1,v2) has RangdR?, kernel
{(0,0,v3)}  (c) T(v) = 0hasRangg0}, kernelR? (d) T(vy,v2) = (v1,v1)
has Range = multiples @1, 1), kernel = multiples of 1, —1).

If T'(v1,ve,v3) = (v2,v3,v1) thenT(T(v)) = (v3,v1,v2); T3(v) = v; T (v) =
T(v).

(@ T(1,0)=0 (b) (0,0,1) is not in the range (c)r(o,1)=0.

For multiplicationT'(v) = Av: V = R", W = R™; the outputs fill the column
spacey is in the kernel ifAv = 0.

T(v) = (4,4);(2,2); (2,2); if v = (a,b) = b(1,1) + %52(2,0) thenT (v) = b(2,2) +
(0,0).

Thedistributive law(page 69) givesA(M; + M) = AM; + AM,. Thedistributive
law overc’s givesA(cM) = ¢(AM).
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14 This A is invertible. Multiply AM = 0 and AM = B by A~! to getM = 0 and
M = A~'B. The kernel contains only the zero matfix = 0.

2 2 00
15 This A is notinvertible. AM = I is impossible. A = . The

-1 -1 0 0
range contains only matricesM whose columns are multiples ¢f, 3).

0 0 0 1
16 No matrix A gives A = . To professors: Linear transformations on

10 0 0
matrix space come frort by 4 matrices. Those in Problems 13-15 were special.
17 ForT(M) = MT (a) T? = I is True (b) True (c) True (d) False.
0

0 b
18 T(I) =0butM = = T(M); theseM’s fill the range. EveryM =
0 0 c d

is in the kernel. Notice thatim (range)+ dim (kernel)= 3 + 1 = dim (input space

of 2 by 2 M’s).
19 T(T-Y(M)) = M soT (M) =A"tMB~.

20 (a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes

onto a line (c) Vertical lines stay vertical becadsg, 0) = (a11,0).

2 0 707
21 D = doubles the width of the housd. = projectsthe house (since
0 1 3.3

A? = A fromtrace= 1 and\ = 0, 1). The projection is onto the column spacebf=

11
line through(.7,.3). U = will shearthe house horizontally: The point at
0 1

(z,y) moves overtdzx + y, y).

a 0
22 (a) A= with d > 0 leaves the housd H sitting straight up (b)A =3I
0 d

cosf —sinf
expands the house BBy (c) A= rotates the house.
sin 6 cos 6
23 T'(v) = —v rotates the house B0° around the origin. Then the affine transformation

T(v) = —v + (1,0) shifts the rotated house one unit to the right.

24 A code to add a chimney will be gratefully received!
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25

26

27

28

29

30

1

2

3

This code needs a correction: add spaces betwd®nl0 —10 10

1 Db
compresses vertical distanceslioyo 1. projects onto thé5° line.
505

0 .1

rotates byl5° clockwise and contracts by a factorg® (the columns have

1 1
lengthl/+/2). has determinant 1 so the house is “flipped and sheared.” One
1 0

way to see this is to factor the matrix A LT:

11

= = (shear) (flip left-right) (shear)
10 11 —1] 10 1

Also 30 emphasizes that circles are transformed to ellipses (see figure in Section 6.7).

A code that adds two eyes and a smile will be included here with public credit given!

(@) ad —bc =0 (b) ad —bec > 0 (€) lad — bc| = 1. If vectors to two
corners transform to themselves then by linedrity I. (Fails if one corner i$0, 0).)
Linear transformations keep straight lines straight! And two parallel edges of a square

(edges differing by a fixe@) go to two parallel edges (edges differing Byv)). So

the output is a parallelogram.

0 0 2 0
For Sv = d?v/dx?
. . 0 0 0 6
V1, Vg, U3, 04 = 1, x, 22, 23 The matrix forS'is B =
0 0 0O
Sv1 = Sv2 = 0, Svz = 291, Sva = Gy2;
00 0 0]
Sv = d?v/dx* = 0 for linear functionsv(z) = a + bz. All (a,b,0,0) are in the

nullspace of the second derivative matBx

(Matrix A)? = B when (transformatiofi’)? = S and output basis = input basis.



144 Solutions to Exercises

4

8

10

11

12

13

The third derivative matrix ha in the (1,4) position; since the third derivative of
is 6. This matrix also comes from B. The fourth derivative of a cubic is zero, afd

is the zero matrix.
T(vq + vy + v3) = 2w; + way + 2ws; Atimes(1,1,1) gives(2, 1, 2).
v = c(vy —w3) givesT (v) = 0; nullspace iS0, ¢, —c); solutions(1, 0, 0) + (0, ¢, —c).

(1,0,0) is not in the column space of the matrix andw; is not in the range of
the linear transformatiofi’. Key point: Column spaceof matrix matchesange of

transformation.
We don’t knowT'(w) unless thav’s are the same as thes. In that case the matrix is
A2,

Rank of A = 2 = dimension of theangeof T'. The outputsdv (column space) match
the outputsT'(v) (the range of"). The “output spaceW is like R™: it contains all

outputs but may not be filled up.

1 00 1 1
The matrixforT'isA= |1 1 0. Fortheoutputl 0| chooseinpub = | —1 | =
1 1 1 0 0

A=1 1 0|. This means: For the output; choose the input; — v,.

0
1 000
Al =] 1 0] SoT Y wy) = v —ve, T Hws) = vy — v3, T Hw3) =
0 -1 1

V3. The columns ofA~! describeT~! from W back toV. The only solution to

T(v) =0isv =0.
(c) T~Y(T(w,)) = w, is wrong because; is not generally in the input space.

(@) T(vy) = vg,T(vy) = vy isits own inverse (b)T'(vy) = v1,T(v2) = 0 has

T? =T (c) If T? = I for part (a) and'? = T for part (b), theril” must bel.
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14

15

16

17

18

19

20

21

22

2 1 3 -1 . 2
€) (b) = inverse of (a) (c)A must be2 A
5 3 -5 2 6 3
r s 1 0 r S L.
@ M = transforms and to and ; this is the “easy”
t u 0 1 t U

-1

a b
direction. (b) N = transforms in the inverse direction, back to the stan-
c d

dard basis vectors. (@} = bc will make the forward matrix singular and the inverse

impossible.
-1
1 02 1 3 -1
1 2115 3 -7 3

Recording basis vectors is done biPermutation matrix. Changing lengths is done by

apositive diagonal matrix.

(a,b) = (cos #, —sin #). Minus sign fromQ~! = Q™.
M= b ; “l = ° = first column ofM ~! = coordinates o ! in basis
4 5 b —4 0
1 1
4115
wy(z) =1— 127 ws(z) = (2% — 2); y = 4w, + 5wy + 6ws.
0 1 0 1 11
w's tov’s:| 5 0 —.5|.v'stow’s: inverse matrix= |1 0 0. The key
b -1 D 1 -1 1
idea The matrix multiplies the coordinates in théasis to give the coordinates in the
w basis.
1 a a2| |4 4
The 3 equations to match, 5,6 atz = a,b,care |1 b b2 B| = |5]. This
1 ¢ 2| |c 6

Vandermonde determinant equéls— a)(c — a)(c — b). Soa, b, c must be distinct to

havedet # 0 and one solutiom, B, C.
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23 The matrixM with these nine entries must be invertible.

24 StartfromA = QR. Column2is as = r12q; +7229,. This givesas as a combination

of theq’s. So the change of basis matrixfis

25 StartfromA = LU. Row 2 of A is ¢51(row 1 of U) + 55 (row 2 of U). The change of

basis matrix is alwaymvertible, because basis goes to basis.
26 The matrix fOfT(’lJl) = \v;iSA = diag(/\l, Aa, /\3)

27 If T'is notinvertibleT'(v,), ..., T(v,) is nota basis. We couldn't choosg = T'(v;).
1

28 (a) [0 3] givesT(vy) = 0 andT'(vs) = 3v;. (b) { O] givesT'(vy) = v
0 0 00

andT (vy + va) = v; (Wwhich combine intdl'(vy) = 0 by linearity).
29 T(x,y) = (x, —y) is reflection across the-axis. Then reflect across thyeaxis to get
S(xz,—y) = (—x,—y). ThusST = —1.
30 Stakes(z,y)to(—=x,y). S(T(v))=(-1,2). S(v)=(-2,1)andT(S(v))=(1, —2).
cos2(0 — ) —sin2(f — a)

sin2(0 —a)  cos2(0 — «)
by 2(6 — «). In words: (1, 0) is reflected to have angley, and that is reflected again

31 Multiply the two reflections to ge{ ] which isrotation

to angle26 — 2a.

1 0 0 O
32 The matrix forT" inthisbasisisA= [0 1 0 0

0 00 O

o a b | 10 a 0 o
33 Multiplying by [ ] givesT(v;) = A [ ] = [ ] = av + cvs. Simi-
d

c 0 0 c 0
larly T'(vs) = avs + cvy @andT (v3) = bvy + dvs andT (vy) = bvy + dvy. The matrix
a 0 b O
. . 10 a 0 b
for T" in this basis is
c 0 d 0
0 ¢ O d_

34 False: We will not know!’(v) for energyv unless the: v’s are linearly independent.
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1 For this matrixJ, the rank ofJ — 3I is 3 so the dimension of the nullspace is only
1. There is onlyl independent eigenvector even though= 3 is a double rootof

det(J — AI) = 0: arepeated eigenvalue.

2
2
J =
3 1
L 3 -
o 1. . .
2 J= is similar to all otheR by 2 matricesA that have2 zero eigenvalues but
0 0
only 1 independent eigenvector. Then= B;lAlBl is the same a®,J = A1 B :

4 0 0 1 0 4 4 0
BiJ = = = A B,

0 1 0 o0 0 0 0 1

4 1 0 1 4 -8 4 1
ByJ = = = Ay By

2 0 0 0 2 —4 2 0

3 Every matrix is similar to its transpose (same eigenvalues, same multiplicity, more than

that the same Jordan form). In this example

1 210 2.0 0 1
BJ = 1 02 1|=1]120 1 =J'B.
1 00 2 01 2 1

4 HereJ andK aredifferentJordan forms (block sizeX 2 versus block size3, 1). Even
thoughJ and K have the sama’s (all zero) and same rankl, and K arenot similar.

If BK = JB thenB is not invertible:

01 00 0 b1 b2 O

0O 0 1 0 0 b b 0
BK — B _ 21 bao

0 00O 0 b3 b3 O

(000 0] [0 by b 0]
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01 00 ba1 bz baz boy

0O 0 0 O 0 0 0 0
JB = B =

0 0 0 1 bar baz baz baa

0 0 0 O 0 0 0 0 |

Those right hand sides agree onlyb#fy = 0,b41 = 0,b24 = 0,by4 = 0,b90 = 0,
bso = 0. But then alsdhi; = byy = 0 andbs; = bys = 0. So the first column has

b11 = by1 = b31 = by; = 0 andB is not invertible.

5 If A2 isthe zero matrix then every eigenvaluedfs A = 0 (becausedx = \x leads
to @ = A3x = \3x). The Jordan forny will also haveJ? = 0 because/ = B~'AB
hasJ3 = B~1A3B = 0. The blocks of/ must become zero blocks if*. So those

blocks of.J can be

0 1 0 01 0 O
0 1 0 010 third power
[ 0 } 0 0 1 but not _
0 0 0 0 0 1 IS not zero
000 0O 00O

The rank ofJ (and A) is largest if every block i8 by 3 of rank2. Then rank< %n
If A™ = zero matrix therd is not invertibleand rank(A4) < n.

6 This question substitutes = te anduy = e’ to show thatu;, u, Solve the system
u' =Ju:
] = A\up + U eM 4 theM = \(teM) + (eM)
uy = Ao e = Aer).
Certainlyu; = 0 andu, = 1 att = 0, so we have the solution and it involves' (the

factort appears becauseis a double eigenvalue of).

7 The equationu o — 2\uyyq + Auy is certainly solved by, = A*. But this is a
second order equation and there must be another solution. In analogy:Wifor the

differential equation ir8.3.6, that second solution ig, = k\*. Check:
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(k+ 2N —2X(k + DA + N2 (k)A" = [k +2 — 2(k + 1) + k] A" = 0.

8 A3 = 1 has3 roots\ = 1 ande?™/3 ande?™/3. Those arel, X, A2 if we take

A\ = ¢27/3_The Fourier matrix is

1 1 1 1 1 1
;= 1 A 22 — 1 eZTri/?) e4‘/1'7l/3
1 A2 )\ 1 e47ri/3 eS‘n’i/S

9 A 3 by 3 circulant matrix has the form on page5:

cp €1 C2 1 1

C=1|¢ ¢ o |WthC| 1 |=(co+c1+c2)]| 1

1 ¢ 1 1
1 1 1 1
Cl N | =(coFerd+eaX?) | A C | A2 | = (corer X4\t | A2
A2 A2 A b%

Co

Those3 eigenvalues of’ are exactly th& componentsof’'c = F | ¢ |,
C2
10 The Fourier cosine coefficient is in formula (7) with integrals from—= to . Because
f drops to zero at = L, the integral stops at :

J f(z)cos3zdx 1 /L 170, v=k 2sin3L
== — ]_ d = — - .
as Tlcos32) da - _L( )(cos 3zx) dz 3. | Sin 3z _ 3

Note that we should have defing¢r) = 0 for L < |z| < « (not2x!).



150

=

10

11

12

13

14

15

Solutions to Exercises

(a)(b)(c) have sums, —2 + 2i, 2 cos # and product$, —2i, 1. Note(e?)(e=%?) = 1.
=i \/5.

The absolute values are= 10, 100, 11—0, and100. The angles aré, 26, —0 and—26.

In polar form these arg/5e?, 5¢%7,

5

5

|z xw| =6, |2+ w| <5, |z/w| =2, |z —w| <5.

atib=L+Li, 5+ Bii, — +Fi; w2 =1,

1/z has absolute value/r and angle-6; (1/r)e~% timesre® equalsl.

a —bl||c ac — bd | real part 1 -3 1 10| | .
= is the matrix

b al||d| |bc+ad| imaginary part |3 111-3 0

form of (1 4 3¢)(1 — 3¢) = 10.

A —A T b, . . T
= gives complex matrix= vector multiplication(A4; +
A2 A1 o bg

7:142)(:171 + ZIBQ) = by +1bs.

240 +i)(1+0) =143i; ™2 = —i; e = —1; 17 = —i; (—i)'® =i

z 4+ Zisreal;z — Z is pure imaginary;z is positive;z/Z has absolute value 1.

0 1
includesal (which just adds: to the eigenvalues arid . So the
—-b a -1 0

eigenvectors are; = (1,4) andaxs = (1, —i). The eigenvalues ark, = a + bi and

\o = a — bi. We se€t; = x» and)\; = \, as expected for real matrices with complex

eigenvalues.

(@) Whena = b = d = 1 the square root becomeagic; \ is complex ifc < 0
(b) A =0and\ = a + d whenad = be (c) theX’s can be real and different.
Complex\’s when(a+d)? < 4(ad — bc); write (a+d)? — 4(ad — be) as(a — d)? + 4be
which is positive wherbc > 0.

The symmetric block matrix has real eigenvalues;)sis real and\ is pure imaginary.
(@) 2e'7/3,4e% /3 (b) €2, e () Te3T/2,49¢3™ (= —49) (d) v/50e T4,
50e~7/2,
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16 r = 1, angleZ — 6; multiply by e to gete’™/2 = i.

17 a+ib=1,i, -1, —i, i% + ﬁ The rootw = w=! = e 2"/%is1//2 —i/V/2.

18 1, 2™/3 ¢4mi/3 gre cube roots of. The cube roots of-1 are —1, e™/3, ¢=7i/3,

Altogether six roots o6 = 1.
19 cos 30 =R€(cos 0 +isin §)%] =cos® 6 — 3 cos § sin? §; sin 30 =3 cos? fsin § — sin® 6.
20 If the conjugates = 1/z then|z|? = 1 andz is any pointe?® on the unit circle.
21 ¢'is atangled = 1 on the unit circleji®| = 1¢; Infinitely manyi¢ = e*(7/2+2mn)e,

22 (a) Unitcircle (b) Spiralinte=2" (c) Circle continuing around to ange=2n2.

1 |lull = V9 =3, ||v|] = V3, utlv = 3i + 2, vH'u = —3i + 2 (this is the conjugate of
ulv).
2 0 1+

3 1
2 AHA =1 o 2 14| andAAf = are Hermitian matrices. They
1 3
1—4 1—1 2
share the eigenvaludsand?.
3 z=multiple of (143, 1+i, —2); Az=0givesz" A" = 0" s0z (notz!) is orthogonal

to all columns ofd! (using complex inner produet! times columns ofA™).
4 The four fundamental subspaces are 1@ ), N(A), C(A"), N(AH). A" andnot AT,
5 (@) (AHA)H = AHAMH — AH A ggain (b) IfAT Az = 0then(2HAH)(Az) = 0.
Thisis||Az||> = 0 s0 Az = 0. The nullspaces oft and A" A are always theame.

(a) False ) ]
6 A=Q= (b) True:—iis not an eigenvalue whefi= SH.

(c) False -1 0

7 ¢S is still Hermitianfor real ¢; (iS)H = —iSH = —iS is skew-Hermitian.
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8

10

11

12

13

14

15

16

17

18

0 0 -1 —1
This P is invertible and unitaryP?> = | -1 o of, P = i =
0 -1 0 —1
—il. ThenP!% = (—4)33P = —iP. The eigenvalues aP are the roots oA®> = —i,

which arei andie®™"/3 andie*™/3.

One unit eigenvector is certainty; = (1,1,1) with A\; = . The other eigenvectors
arex, = (1,w,w?) andxs = (1,w?, w*) with w = €27"/3. The eigenvector matrix
is the Fourier matrixfs. The eigenvectors of any unitary matrix lik¢are orthogonal
(using the correct complex form'y of the inner product).

(1,1,1), (1,e27/3 47i/3) (1,e47/3 ¢27i/3) are orthogonal (complex inner product!)
becauseP is an orthogonal matrix—and therefore its eigenvector matrix is unitary.
If QHQ = IthenQ QM) = Q1 (QHY = I soQ~! is also unitary. Also
(QUHH(QU) = URQHQU = UMU = I soQU is unitary.

Determinant= product of the eigenvaluéall real). And A = A" givesdet A =det A.

(zHA")(Az) = || Az|? is positive unlessiz = 0. WhenA has independent columns

this meang = 0; so A" A is positive definite.

g 1 1 -1+ 2 0 1 1 1—1
V3 l14i 1 0 —1| V3 |-1-i 1
_ 1|1 —1—d| |20 ol 1 1 1+
K =(iAT in Problem 14)= — — ;
V3 l1-i 1 0 —i| V3 |-14i 1
A’s are imaginary.
1 1 — cosf +isinf 0 1 -1 7
U=— — has|\| = 1.
V2 i 1 0 cosf—isind| V2 |i 1

1+v3 =144l |1 0 1++3 i
U= 1 1 with L2 = 6+2+/3.

Lloa4i 14380 -1 L —1-i 143
Unitary means)\| = 1. U = U™ gives real\. Then trace zero gives= 1 and—1.

—_

The v’s are columns of a unitary matri&, soU" is U~!. Thenz = UU%z =

(multiply by columns)= v, (vilz) +- - -+ v, (vl 2): atypical orthonormal expansion.
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19

20

21

22

23

24

25

26

27

28

z = (1,i, —2) completes an orthogonal basis 10¢. So does any’z.
S=A+iB=(A+iB)" = AT —iBT; Ais symmetric butB is skew-symmetric.

C" has dimensiom; the columns of any unitary matrix are a basis. For example use

the columns ofI: (,0,...,0),...,(0,...,0,%)

, a b+ic w ez | with|w|]? +[z]? =1
[1]and[—1]; any[e®]; ; , wir
b—ic d —z €“w| andanyangle

The eigenvalues o' arecomplex conjugatesf the eigenvalues of: det(A—\I)=0

givesdet (AT — XT) = 0.

(I —2uu™)® = I — 2uwuf and also I — 2uu')? = I — 4uu® + 4u(ufu)u! = 1.

The ranki matrix uu™ projects onto the line througta.
UnitaryURU = I meang AT —iBT)(A+iB) = (ATA+BTB)+i(ATB—-BTA)=1.
ATA + BTB = I andA™ B — BT A = 0 which makes the block matrix orthogonal.

We are gived +iB = (A +iB)! = AT —iBT. ThenA = AT andB = —B™. So

A . .
that is symmetric.
B A

SS~1 = I gives(S~HHSH = [. Therefore(S—1)" is (SH)~! = S~tandS!is

Hermitian.

If U has (complex) orthonormal columns, theh U = I andU is unitary. If those
columns are eigenvectors df thenA = UAU ! = UAU" is normal The direct test
for a normal matrix (which ist A" = A" A because diagonals could be real!) ard

surely commute;
AAV=(UAUN(UAR U =U(AANNUT =U (AR AU = (UARUR ) (UAUT) =AR A.

An easy way to construct a normal matrixlist- ¢ times a symmetric matrix. Or take
A = S + 4T where the real symmetri§ and7 commute (Themd®! = S — 4T and
AAR = AH Q).
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1 Equation (3) (the FFT) is correct usiri§= —1 in the last two rows and three columns.
1 1 [1 1 1 [ 1]
1 1|1 2 1 1 1 1
2 F‘f1 = — _ — —FH.
1 2 1 1]2]|1 ~1 4
I | L@ | i i |
| 171 1 1Tt 1]
1 1 2 1 1 _
3 F= permutation last.
1 1 1 1 -1
i 1| L@ —i i|
1 1 1
4 D= e2mi/6 (note6 not3) andFy |1 e27i/3  g4ni/3
e471'i/6 1 8471'1'/3 627T’i/3
5 F~lw = v andF~!'v = w/4. Delta vector- all-ones vector.
(4 0 0 0]
0 0 0 4 .
6 (Fy)? = and(F;)* = 161. Four transforms recover the signal!
0 0 4 0
0 4 0 0]
1] 1] 2] [2] o] [o] [o] [ 2
0 1 0 0 1 0 0 0
7 c= — — — =Fe. AlsoC= — — — =FC.
1 0 0 2 0 1 2 —2
_O_ _0_ _O_ _0_ _1_ _1_ _0_ i 0
Addingc + C gives(1,1,1,1) to (4,0,0,0) = 4 (delta vector).

¢ — (1,1,1,1,0,0,0,0) — (4,0,0,0,0,0,0,0) — (4,0,0,0,4,0,0,0) = Fxc.
C — (0,0,0,0,1,1,1,1) — (0,0,0,0,4,0,0,0) — (4,0,0,0,—4,0,0,0) = FsC.

If w%* = 1 thenw? is a 32nd root of 1 ang/w is a 128th root of 1: Key to FFT.
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16
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For every integen, thenth roots of 1 add to zero. For eventhey cancel in pairs. For
anyn, use the geometric series formuala- w + - -+ w" ! = (w™ —1)/(w—1) = 0.
In particular forn = 3,1+ (=1 +4v/3)/2 + (=1 — iv/3) /2 = 0.
The eigenvalues oP arel,i,i? = —1, andi® = —i. Problem 11 displays the eigen-
vectors. And alsalet(P — \I) = \* — 1.
0 1 0
A =diag1,i,i%,i3); P= |0 0 1| andPTleadto)3 —1=0.
1 0 0
e1 = co+c14co+ezandey = co+cii+cai? +c3i3; E contains the four eigenvalues

of C = FEF~! becausé" contains the eigenvectors.
Eigenvalueg; =2—1-1=0, ea=2—i—i3 =2, e3=2— (1) — (=1) = 4,
es =2 — i3 — i = 2. Just transform colum@ of C. Check trac® + 2 +4 + 2 = 8.

Diagonal E needs: multiplications, Fourier matri¥” and F—! need%nlog2 n multi-

plications each by thEFT. The total is much less than the ordinar¥y for C timesz.

The rowl,w", w?*, ...in F is the same as the roww™ —*, wN~2% . . in F because
wN—F = @mi/N)(N=k) jg g2mio—(2mi/N)k — 1 timesw”. SoF andF have thesame

rows in reversed order (except for row0 which is all ones).

0 000 reverses to000 =0

1 001 reverses tol00 =4

2 010 reverses to010 = 2 Now evens come before odds
3 011 reverses tol1l0 =6

4 100 reverses to001 =1

5 101 reversestol01 =5

6 110 reversesto011 =3

7 111 reversestolll =7
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-1 1 0 c 1
1 A= |-1 0 1]; nullspacecontainsc|; |0 | isnotorthogonalto that nullspace.
0 -1 1 c 0

2 ATy =0fory = (1,—1,1); current along edge 1, edge 3, back on edge 2 (full loop).

-1 1 0 b
3 Elimination on b»[A b] = -1 0 1 by| leads to [U c¢] =
0 —1 1 bg
-1 1 0 b
0 =1 1 by—0 . The nonzero rows of/ come from edges 1 and 3

0 0 0 b3—by+10b
in a tree. The zero row comes from the loop (all 3 edges).

4 For the matrix in Problem 34z = b is solvable forb = (1,1,0) and not solvable
for b = (1,0,0). For solvableb (in the column space} must be orthogonal tg =
(1, —1,1); that combination of rows is the zero row, alyd— b + b3 = 0 is the third

equation after elimination.

5 Kirchhoff's Current LawA™y = f is solvable forf = (1, —1,0) and not solvable for

f = (1,0,0); f mustbe orthogonal t61,1, 1) in the nullspacejf; + f> + f3 = 0.

2 -1 -1 3 1 c
6 ATAz = -1 92 —1|x= |-3| = fproducest = |—1| + |¢|; potentials
-1 -1 2 0 0 c

x =1,—1,0andcurrents-Axz = 2, 1, —1; f sends 3 units from node 2 into node 1.

1 3 -1 —2 1 5/4 ¢
7 AT 2 A= |-1 3 —2|; f=| o|yeldsz=| 1 |+ any |c|;
2 -2 -2 4 -1 7/8 ¢

i 5 7 1 31
potentialsz = 3, 1, g and currents-CAx = 7, 5, ;.
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10

11

12

13

14

1

-1

A= o
0

| 0
ATy = 0.

-1

= o o O

leads tox =

andy =

and

157
)
0
1| solving
—1
]'_

Elimination on Az = b always leads tgy'b = 0 in the zero rows ofU and R:

—by + by — b3 = 0 andbs — by + b5 = 0 (thosey’s are from Problem 8 in the left

nullspace). This is Kirchhoff's/oltageLaw around the twdoops

The echelonformoflisU =

2
-1
ATA =
-1

0

-1

3
-1
-1

-1
-1

3
-1

0
-1
-1

2

-1 1 0
0-1 1
0 0-1
0 0 0

0 0 0

0
0
1

0
0

The nonzero rows df/ keep

edges 1, 2, 4. Other spanning trees
from edges, 1, 2,5;1, 3,4; 1, 3,5;
1,4,5;2,3,4;2,3,5;2,4,5.

diagonal entry= number of edges into the node
the trace i times the number of nodes
off-diagonal entry= —1 if nodes are connected

AT A'is thegraph Laplacian, ATC A is weightedby C

(@) The nullspace and rank df' A and A are always the same (b)* A is always

positive semidefinite because® AT Az = || Az||? > 0. Not positive definite because

rank is only3 and(1, 1,

positive semidefinite.

ATCAx =

ATCAz =0forxz = c(1,1,1,1

4
-2
-2

0

-2

8
-3
-3

1,1)isinthe nullspace (c) Real eigenvaluesall) because

-2
-3

8
-3

0] [ 1
-3 0
€Tr =
-3 0
6 -1

gives four potentiale = (=%

11
12767670)

| groundedr, = 0 and solved fore

currentsy = —CAz = (2, 2,0, 3,

)

N [—=

) = (c,c,c,c). If ATC Az = f is solvable, therf in

the column space<{ row space by symmetry) must be orthogonattm the nullspace:

fi+ fot+ fa+ fa=0.
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15 The number of loops in this connected graptmis- m +1 = 7 -7+ 1 = 1.

What answer if the graph has two separate components (ns edgeeen)?

16 Start from (4 nodes)- (6 edgesH (3 loops)= 1. If a new node connects tbold
node,5 — 7 + 3 = 1. If the new node connects old nodes, a new loop is formed:

5—8+4=1

17 (a) 8 independent columns (kj must be orthogonal to the nullspace g8 add

tozero (c) Each edge goes into 2 nodes, 12 edges make diagudriab sum to 24.

18 A complete grapthass +4 + 3 + 2 + 1 = 15 edges. Withn nodes that count is
1+---+(n—1)=n(n—1)/2. Tree ha$ edges.

c1 + C2 —Co 0
1 DetAJCodo=| —cy ey+c3 —cy | isbydirectcalculation. Set; = 0 to
0 —c3 c3 + cC4

find det A?ClAl = c1CaC3.

1 0 0f |t 111
2 (AfCiA)™ =111 0 eyt 01 1| =
111 ezt 10 0 1
01_1 01_1 01_1
al dlte ottt

3 The rows of the free-free matrix in equation (9) add@o 0 0] so the right side needs
f1 +f2 + f3 =0. f = (—1,0, 1) giveSCQU1 —coug = —1,c3ug —cgug = —1,0 = 0.
Thenuparticular= (—¢3 ' —¢3 ', —¢5 ', 0). Add any multiple ofupyjispace= (1,1, 1)-

4 /—i <c(x)d—u> dr=— [c(x)d—u] 1=0 (bdry cond) so we need f(x) dx=0.

dz |,
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z 1
5 _j_i = f(z) givesy(z) = C —/ f(t)dt. Theny(1) = 0 givesC' = / f(t)dt and
0 0
1
y(z) = / f(t)dt. If the load isf(z) = 1 then the displacementigz) = 1 — =.

6 Multiply ATC;A; as columns ofAT timesc's times rows ofA;. The first3 by 3

“element matrikc; E; =[1 0 O}Tcl[l 0 0] hase; in the top left corner.

7 For 5 springs andt masses, thé by 4 A has two nonzero diagonals: all; = 1
anda;y1,; = —1. With C = diag(cy, c2, c3, ¢4, c5) we getK = ATC A, symmetric
tridiagonal with diagonal entrie&’;; = ¢; + ¢;+1 and off-diagonald<; 1 ; = —c¢;41.
With C' = T this K is the —1,2, —1 matrix andK(2,3,3,2) = (1,1,1,1) solves
Ku = ones(4,1). (K~ will solve Ku = ones(4).)

8 The solution to—u” =1 with u(0) =u(1) =0 is u(z) = 1 (v — 2?). Atz =12 3,

SIS

this givesu =2, 3, 3, 2 (discrete solution in Problem 7) timé¢Axz)? =1/25.

9 —u” = myg has complete solution(z) = A + Bz — imgz?. Fromu(0) = 0 we
getA = 0. Fromu/(1) = 0 we getB = mg. Thenu(z) = img(2z — 2?) at
x = %, 2, 3 equalsmg/6,4mg/9, mg/2. Thisu(x) is not proportional to the discrete

u = (3mg, 5mg, 6mg) at the meshpoints. This imperfection is because the descret

problem uses a-sided difference, less accurate at the free end. Perfecraxy is

recovered by a centered difference (discussed on pagémy CSE textbook).

10 (added in later printing, changirig-11 below into11-12). The solution in this fixed-

fixed case i§2.25,2.50, 1.75) so the second mass moves furthest.

11 The two graphs ofil00 points are “discrete parabolas” starting(8t0): symmetric

arounds0 in the fixed-fixed case, ending with slope zero in the fixee-frase.

12 Forward/backward/centered fdr./dz has a big effect because that term has the large
coefficient. MATLAB: E = diag(ones(6,1),1); K = 64 % (2 eye(7) — E — E');
D = 80 x (E— eye(7)); (K + D)\ones(7,1); % forward; (K — D')\ones(7,1);
% backward;(K + D/2 — D’/2)\ones(7,1); % centered is usually the best: more

accurate
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10

11

12

13

Eigenvalues\ = 1 and .75; 4 — I)xz = 0 gives the steady state = (.6, .4) with

Ax = x.
6 —1f(]1 1 1 6 —1(]1 0 1 1 .6 .6
A= TAX = = .
4 1 50 |—4 .6 4 —-1(]0 0]|—-4 .6 4 4

A=1land.8, = =(1,0);land—8, z =(2,32); 1,1, and, == (3,1, 1).

AT always has the eigenvectfr, 1,...,1) for A = 1, because each row of" adds
to 1. (Note again that many authors use row vectors multigli¥arkov matrices.

So they transpose our form df.)
The steady state eigenvector for= 1 is (0,0, 1) = everyone is dead.

Add the components olx = Az to find sums = As. If A # 1 the sum must be = 0.

, . 6+ .4a .6— .6a . a<l1
(.5)F — 0 givesA* — A><; anyA = with
4 —.4a 4+ 6a 4+ 6a>0
If P = cyclic permutation and, = (1,0,0,0) thenu; = (0,0,1,0); us = (0,1,0,0);
uz = (1,0,0,0); ug = ug. The eigenvalues, i, —1, —: are allon the unit circle This

Markov matrix contains zeros;@ositivematrix hasonelargest eigenvalug = 1.

M? is still nonnegative;[1 --- 1]M = [1 --- 1] so multiply on the right by\/
tofind[1 --- 1]M2?=[1 --- 1] = columns ofM? add to 1.

A =1landa+ d — 1 from the trace; steady state is a multipleaf= (b, 1 — a).

Lastrow.2,.3,.5makesd = AT;rowsalsoaddtol1sd,...,1)is also an eigenvector

of A.

Bhas\ = 0and—.5withz; = (.3, .2) andzy = (—1,1); AhasA = 1s0A — I has

A = 0. e~ approaches zero and the solution approache€$x, = cix;.

x = (1,1,1) is an eigenvector when the row sums are eqdal;= (.9, .9, .9)
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4 (I-A)(I+A+A%+- ) = (I+A+ A%+ )—(A+ A%+ A3+ .- ) = I. This says that

0 .5
I+A+A2+~¢su—A)1AMmm4_[ VA2 =11, A% = JA AT = 11

1 0
. 1+l+... l+l+... 2 1
and the series adds o~ > 2 = =(I—A)"
1+3+- 1+14 2 2
. 8
15 ThefirsttwoA’s havel .. < 1;p = and has no inverse.
6

16 X = 1 (Markov), 0 (singular),.2 (from trace). Steady sta(e3 .3,.4) and(30, 30, 40).

17 No, A has an eigenvaluk = 1 and(I — A)~! does not exist.

-\ B Fj
18 The Leslie matrixon page 435 hdst(A—AI) =det | P, A0 | =2+
0 P, =)

Fi)\? + F,P )\ + F3PP,. This is negative for large\. It is positive at\ = 1
provided thatFy + Fo P, + F3P P, > 1. Under this key conditiondet(A — A\I)
must be zero at somebetween 1 ando. That eigenvalue means that the population

grows (under this condition connectiigs and P’s reproduction and survival rates).
19 A timesX ~'AX has the same diagonal A5 ' AX timesA becausé\ is diagonal.
20 If B> A>0andAx=M\pax(A)x>0thenBx > Aax(A)x andAyax(B) > Amax(4).

of C' = four components of'c. Circulants are special!

1 Feasible set line segment6, 0) to (0, 3); minimum cost a6, 0), maximum a0, 3).
2 Feasible set has corndi 0), (6,0), (2,2), (0,6). Minimum cost2z — y at (6, 0).
3 Only two cornerg4,0,0) and(0, 2,0); letz; — —o0, z2 = 0, andzs = 1 — 4.

4 From(0,0,2) move tox = (0, 1, 1.5) with the constraint; + x5 + 2x3 = 4. The new
costis3(1) + 8(1.5) = $15 sor = —1 is the reduced cost. The simplex method also

checkse = (1,0, 1.5) with cost5(1) 4+ 8(1.5) = $17; » = 1 means more expensive.
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5 Cost= 20 at start(4, 0, 0); keepingr; +z2+223 = 4 move to(3, 1, 0) with cost 18 and
r = —2; or move to(2, 0, 1) with cost 17 and- = —3. Chooser; as entering variable
and move td0, 0, 2) with cost 14. Another step will readly, 4, 0) with minimum cost
12.

6 If we reduce the Ph.D. cost to $1 or $2 (below the student co$8) the job will
go to the Ph.D. with cost vecter= (2, 3, 8) the Ph.D. takes 4 hou(fs; + xo + 223 =
4) and charges $8.

The teacher in the dual problem now has< 2,y < 3,2y < 8 as constraints
ATy < con the charge of per problem. So the dual has maximumyat 2. The

dual cost is also $8 for 4 problems and maximgminimum.

7 x = (2,2,0)is acorner of the feasible set with+xz,+2x3 = 4 and the new constraint
271 + 9 + x3 = 6. The cost of this cornerisc’z = (5,3,8) - (2,2,0) = 16. Is

this the minimum cost?

Compute the reduced cosif x5 = 1 enters(x3 was previously zero). The two
constraint equations now requitg = 3 andzy = —1. Withx = (3,1, 1) the new
costis3.5 — 1.3 + 1.8 = 20. This is higher than 16, so the original= (2, 2,0) was

optimal.

Note thatr; = 1 led toz; = —1 and a negative, is not allowed. Ifz3 reduced

the cost (it didn’t) we would not have used as muchlras= 1.

8 yTb <yTAzx = (ATy)Tz < cx. Thefirstinequality needegl > 0 andAz—b > 0.

. . 27
1 fOQW cos((j + k)x)dz = {““(gﬂ%)m)]o =(0and similarlyf02” cos((j — k)x)dx =0

Noticej — k # 0 in the denominator. If = & thenf027r cos? jodr = 7.

2 Three integral tests show thatz, z2 — % are orthogonal on the intervak1, 1]:
1 1 1
[ (W)(z) dz =0, (1)(@* - 3) dz = 0,[ (z)(a® — %) dz = 0. Then
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207 = 2(2® — §) + 0(z) + 2(1). Those coefficients, 0, 2 can come from integrating
f(x) = 222 times the 3 basis functions and dividing by their lengthsasgd—in other
words usingz™b/a™a for functions (whereé is f(x) anda is 1 orz or 22 — 1) exactly

as for vectors.

3 One example orthogonal to= (1, 3,...)isw = (2,-1,0,0,...) with |w|| = V/5.

4 Lll(l)(a:i” —cx)dr =0 andfil( 2 — 1)(@® — ca) dz = 0 for all ¢ (odd functions).
5

Chooser so tha’tfi1 a(x® — cx)de = [t2° — £t = 2 — ¢2 = 0. Thenc = 2.

1
5
5 The integrals lead to the Fourier coefficienis= 0, b, = 4/, by = 0.

6 From egn. (3)ax, = 0 andb, = 4/7k (odd k). The square wave hdsf||?> = 2.
Then eqn. (6) i®n=n(16/7%)( + 3z + 55 + - - - ). That infinite series equats’/8.

7 The —1,1 odd square wave ig(x) = z/|z| for 0 < |z| < =. Its Fourier series in
equation (8) isi/w times[sinz + (sin3z)/3 + (sin5z/5) + ---]. The sum of the
first N terms has an interesting shape, close to the square wavgt @tere the wave
jumps between-1 and1. At those jumps, the Fourier sum spikes the wrong way to

+1.09 (the Gibbs phenomengibefore it takes the jump with the try&z).

This happens for the Fourier sums of all functions with jumfismakes shock

waves hard to compute. You can see it clearly in a graph ofuhedf 10 terms.

8 [vl|*=1+5+1+g+ - =2s0|v[| = V2 [[v]* = 1 +a’+a* +--- = 1/(1-0a?)
sofvl| = 1/v1—a%; [Z7(1 4 2sinz + sin®z)de = 27 + 0 + 7 so|| f|| = v/37.

9 (@) f(z) = (1 4 squarewave)/2 so thea’s are, 0, 0,... and theb’s are2/m, 0,

~2/3m,0,2/5m, ...  (b) ap= " wdx/2x =7, allotheray, = 0, b, = —2/k.

10 The integral from—= to = or from 0 to 2= (or from anya to a + 27) is over one
complete period of the function. If(x) is periodic this change%27T f(z)dx to
Jo f(z)dz + ffﬂ f(z)dx. If f(z)isodd, those integrals cancel to gie (z) dz = 0
over one period.

11 cos’z = %—i—%cos%ﬂ; cos(z+ %) = coswcos F —sinwsinf = 5 cosz — @sinx.
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1 0 0O 0 0 0 O 1
CcosT —sinx 0O 0-1 0 O COS T
d This shows the
12 ar sinz |=| cosz |[=|0 1 0 0 Of] sinz |- o _
z differentiation matrix.
Ccos 2x —2sin2x 0 0 0 0 —2]|cos2x
sin 2x 2cos2x 0 0 0 2 O]]|sin2x

13 The square pulse with'(z) = 1/h for —z < h/2 < «x is an even function, so all sine

coefficients,, are zero. The averagg and the cosine coefficientg are

1 h/2 1

@0 27T _h/2( / ) v 27'['
1 [h/2 2 N

ap = —/ (1/h) coskxdr = — (Sin @> which |s—smc<@>
T J_ny2 wkh 2 s 2

(introducing the sinc functiotsin z) /z). As h approaches zero, the numhee kh/2

approaches zero, arigin ) /= approaches 1. So all thoag approachl /.

The limiting “delta function” contains an equal amount df@sines: a very ir-

regular function.

1 (=z,y, z) has homogeneous coordinates, cy, cz, ¢) for ¢ = 1 and allc # 0.

2 For an affine transformation we also neEdorigin), becausd’(0) need not b for
affine T'. Including this translation by’(0), (z,y, z, 1) is transformed tor7T'(¢) +
yT(3) + 2T (k) + T(0).

1 1 1

31T = = is translation alongl, 6, 8).
1 1 1

_1431__0251_ _1681_
4 S =diag(c,c,c, 1), row4 of ST andT'S is 1,4, 3,1 andc, 4c¢, 3¢, 1; usevTS!
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1/8.5
58= 1/11 for a 1 by 1 square, starting from &rb by 11 page.
1
- ; _2 ;
1 2
6 [zyz1l] = [zyz1]
1 2
-1 -1 -2 1 1 -2 -2 -4 1_

165

The first matrix translates l:(yul_, -1,-2). The second matrix rescales by 2.
7 The three parts af in equation (1) arécos #)I and(1 — cosf)aa™ and—sinf(a x).
ThenQa = a becausaa™a = a(unit vector) anca x a = 0.

8 If a™b = 0 and those three parts ¢f (Problem 7) multiplyb, the results inQb are

(cosf)bandaa™b = 0 and(—sinf)ax b. The component alonlis (cos 6)b.

5 —4 =2
221 1
9n=(==>=-)hasP=1—-nnT == |_ —92|. Notice =1.
n=(553) S I
-2 -2 8
(5 -4 -2 0]
_ 11-4 5 -2 0
10 We can choosé), 0, 3) on the plane and multiply_ PT., = — .
912 —2 8 0
| 6 6 3 9]

11 (3,3,3) projects to (—1,—1,4) and(3, 3,3, 1) projects to($, 1, 2, 1). Row vectors!
12 The projection of a square onto a plane is a parallelograna (ore segment). The
sides of the square are perpendicular, but their projegtioay not be£Ty = 0 but
(Pz)T (Py) = 2 PT Py = ' Py may be nonzero).
13 That projection of a cube onto a plane produces a hexagon.
111 b 11 11 1
14 (3,3,3)(I — 2nnT) = <§,§,§) 8 1 —4]| = <_§7_§7_§)_

-4 -4 7
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15

16

17

(3,3,3,1) = (3,3,0,1) » (- L,-L, -3, 1) - (- L,-I 1.1).

W=

Just subtracting vectors would give= (z,y, z,0) ending in0 (not 1). In homoge-

neous coordinates, addractor to a point.

Space is rescaled hy ¢ becauséz, y, z, ¢) is the same point as:/c, y/c, z/c, 1).

Multiplying n whole numbers gives an odd number only wiaéim numbers are odd
This translates to multiplicationr{od 2). Multiplying n 1's or 0’s gives1 only when

all n numbers aré.

Adding n whole numbers gives an odd number only whenshaimbers includan
odd number of odd number$-or addition ofl’'s and(’s (mod 2), the answer is odd

when the number af’s is odd.

(a) We are given thay; — x1 andy, — x5 are both divisible byp. Then their sum

Y1+ Yz — X1 — X2 is divisible byp

(b) 5 = 2 (mod3) and8 = 2 (mod3) add to13 = 4 (mod3). The numbei is smaller
than4 and13 = 1 (mod3).

If y — x is divisible byp thenz — y is also divisible by. In other words, ify —z = mp

thenz —y = (—m)p.

5 5
A= is an invertible matrix butrbod5) A becomes the zero matrix.

5 10

10 11 10 0 1 0 1 11 _ _
are invertible :
0 1 0 1 1 1 1 0 1 1 1 0

6 out of 16 possible0-1 matrices.

Yes, Ax = 0 (mod11) says that every row od is orthogonal to every in the nullspace

(mod11). But a basis for the usudl(A) could include vectors that are zermdd11).



Solutions to Exercises 167

9

10

For simplicity, number the letters as they appear in the agss

THISWHOLEBOOKISINCODE = 123/452/678/966/(10)34/3(11)(12)/6(13)8.
Multiply each block by thid. to obtain Hill’s cipher.
1 0 0
L=|1 1 0| Cipher=136/4911/61321/91521/101317/3 14 26/6 19 27.
1 1 1
If the cipher ismodp then replace each number by the correct number fiaap — 1.

To decode, first multiply by, —!. Then what to do??

First you have to discover the block size (natrix size) and also the matrikx itself.
Start with a guess for the block size. Then the plaintext Arccbded cipher tell you a
series of matrix-vector producfse = b. If the text is long enough (and the blocks are
not too long) this is enough information to fidd—or to show that the block size must

be wrong, when there is nb that gets all correct blocksx = b.

The extra difficulty is to find the value of.
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1 Without exchange, pivot$)01 and 1000; with exchange, 1 ard. When the pivot is

1 1 1
. . t
larger than the entries below it, &fl;;| = |ep M <LA=]|0 1 -1
|pivot]|
-1 1 1
9 -36 30
2 The exactinverse dfib(3)isA~' = |—-36 192 —180|.
30 —180 180
1 11/6 1.833 0 1.80
3 Al1|=113/12|=1.083| compareswitid | 6 |=|1.10|.||Ab| < .04 but
1 47/60 0.783 -3.6 0.78 | ||Az]|| > 6.

The differencg1,1,1) — (0,6, —3.6) is in a directionAx that hasAAx near zero.
4 Thelargest|z|| = ||[A71b||is||A71]| = 1/A\min SinceAT = A; largest errol 016 /A iy,

5 Each row ofU has at mostv entries. Useav multiplications to substitute components

of x (already known from below) and divide by the pivot. Total forows < wn.

6 The triangularL~*, U~!, R~! need$n? multiplications. @ needs»? to multiply the

right side byQ—! = QT. SoQRx = b takes 1.5 times longer thai/x = b.

7 UU~! =1: Back substitution needs;j? multiplications on columry, using thej by

j upper left block. Thed (12 + 2% + - - - + n?) ~ $(4n?) = total to findU .

1 0 2 2 2 2 , 0 1 10

8 — — = U with P = andL = ;

2 2 1 0 0 —1 10 501
2 2 0 2 20 2 20 2 20

A= |1 0 1| =10 =1 1| = ]0 2 0| = |0 2 0| = Uwith
0 2 0 0 2 0 0 -1 1 0 0 1
010 1 0

P=10 0 1jandL=|0 1

1 0 0 b5 =5
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1 1 00
1

1 1 0| hascofactorg’i3 = C31 = Cyy = Cyo =1 and

9 A=
0 1 1 1| Cyu=0Cy; =—-1. A" is afull matrix!

0 0 11

10 With 16-digit floating point arithmetic the errofisc — @computed| for e = 1073, 1079,
1072,10712, 10715 are of orderl0—16, 10~11,10=7, 104, 1073,

1 3] |1 -1 10 14
11 (a) cosf = 1/4/10, sinf = —3/4/10, R=—— =L )
VIOl 3 ql |3 5| Y™ lo 8
(b) A has eigenva_lueasand2. Put one of the unit eigenvectors in ravof Q: either
0 1 1 -1 d0AQ-! 2 —4
V2 |11 0 4
0 1 1 -3 dQAQ—! 4 —4
= —_— an - = .
V10 |3 1 0 2

12 When A is multiplied by a plane rotatiof);;, this changes then (notn?) entries in
rowsi andj. Then multiplying on the right byQ,;)~! = (Q.;)T changes thén

entries in columng andj.

13 Qi; A usesin multiplications (2 for each entry in rowisand;). By factoring outcos 6,
the entries 1 and tan # need only2n multiplications, which leads t§n3 for QR.

14 The (2,1) entry of Q21 A is 1(—sin6 + 2cosf). This is zero ifsing = 2cos 6 or
tan 6 = 2. Then the2, 1, v/5 right triangle hasin § = 2//5 andcos§ = 1/1/5.

Every3 by 3 rotation withdet () = +1 is the product oB plane rotations.

15 This problem shows how elimination is more expensive (the nonzero multipligrs in
and LL are counted byinz(L) andnnz(L L)) when we spoil the tridiagonak by a

random permutation.

If on the other hand we start with a poorly ordered makfixan improved ordering

is found by the codeymamddiscussed in this section.
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16 The “red-black ordering” puts rows and columin® 10 in the odd-even order, 3, 5, 7,
9,2,4,6,8,10. WhenK is the—1, 2, —1 tridiagonal matrix, odd points are connected

only to even points (an@l stays on the diagonal, connecting every point to itself):

2 -1
k|t 2 andrrpt = | 2 P with
S DT of
L _1 2_
[ 1 1 1t02
1 -1 3102,4
D=| 0 -1 -1 5104,6
1 -1 7106,8
i ~1 —1] 9t08,10

17 Jeff Stuart'sShake a Stickactivity has long sticks representing the graphs of two linear
equations in the:-y plane. The matrix is nearly singular and Sectio2ishows how to

compute its condition number= || A[|[|A™!|| = omax/Tmin =~ 80, 000:

1 1.0001 —1  1.0001 A= = 20000
A= |Al|~2 A~'=10000
1 1.0000 1 -1 ¢ =~ 40000.

LAl =2 (A =2c=4 |4 =3 A =1Lc=3 [Al=2++V2=
Amax fOr positive definited, [|A="|| = 1/Amin, comd= (2 +v/2)/(2 — V2) = 5.83.
2 ||Al| =2, ¢ = 1;||A|| =v/2, ¢ = oo (singular matrix),ATA = 21, ||A|| =v/2, ¢ = 1.

3 For the first inequality replace by Bx in || Az|| < ||A]|||x]; the second inequality is

just|[Bz|| < [|Bl|[[|. Then[|AB| = max([|ABzx||/[lz||) < [|All[|BI|

4 1=|I]| = [AA7Y] < [JA[IATY] = e(A).
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5 If Apax = Amin = 1 thenallA; = 1 andA = SIS~! = I. The only matrices with

10

11

12

13

14

|Al| = [|A~1|| = 1 areorthogonal matrices

All orthogonal matrices have norin so||A|| < ||Q]|||R|| = || R|| and in reversd R|| <

IQIIIAll = [IA]l. Then||AJl = [|R||. Inequality is usual ir A|| < [|Z]|[|U]| when
AT A+ AAT. Usenorm on a randonmd.

The triangle inequality give$Ax + Bx|| < ||Az|| + |Bz||. Divide by ||z| and take

the maximum over all nonzero vectors to fihd + BJ| < ||A]| + || B]|-

If Az = Az then||Ax||/||x| = || for that particular vectox. When we maximize
the ratio||Ax||/||z|| over all vectors we gatA|| > |A|.

01 00 01
A+B= + = hasp(A) = 0andp(B) = 0 butp(A+ B) = 1.
00 10 10

0 0
p(AB) > p(A) p(B); thusp(A) = max |A(A)| = spectral radius is not a norm.

1 0
The triangle inequalityjA + BJ| < ||A|| + || B|| fails for p(A). AB = [ ] has

(@) The condition number o —1 is || A~||[[(A=1) || whichis[|A7L]|||A|| = c(A).
(b) SinceAT A andAAT have the same nonzero eigenvalué$, has the same norm
asA.

Use the quadratic formula fot,., /Amin, Which iS¢ = 0ax /T min Since thisd = AT

is positive definite:

(A) = (1.00005 +/(1.00005)2 — .0001) / (1.00005 —Y ) ~ 40, 000.

det(2A) is not2det A;det(A + B) is not always less thadet A + det B; taking
| det A| does not help. The only reasonable propergeisAB = (det A)(det B). The

condition number should not change whéiis multiplied by 10.

The residuab — Ay = (10~7,0) is much smaller thah — Az = (.0013,.0016). But
z is much closer to the solution than

659 —563

det A=10"%s04~! =103 { Al > 1, [|A7Y| > 106, thene > 106.
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15 & = (1,1,1,1,1) has||z]| = V5, |z|: = 5, |z]e = 1. = = (.1,.7,.3,.4,.5) has

llz]| = 1, ||z||s = 2 (sum), ||x]« = .7 (largest).

16 22+ --+a2 is notsmaller thamax(x?) and not larger thafizy |+ - -+|x,|)% = || z||3.
22 + -+ 22 < n max(z?) so||z| < /n||z| . Choosey; = signz; = +1 to get

|zl = = -y < [[@[[ly]| = vrlz|. The vector = (1,...,1) has|z|, = v |z|.

17 For the/* norm, the largest component sfplus the largest component gfis not

less tharj|z + y|| . = largest component af + y.

For the/! norm, each component has + y;| < |x;| + |y;|. Sum oni = 1 ton:

2 +yll < [zl + [yl

18 |z1| + 2|z2| is @ norm butmin(|z4|, |z2|) is not a norm. ||z| + ||zl IS a norm;
|Az|| is a norm provided is invertible (otherwise a nonzero vector has norm zero;

for rectangulard we require independent columns to avgidz| = 0).
19 @y = ziys + 2oy + -+ < (maxfys])(Joa| + [w2] + ) = [[2]|1 [|Y]]oc-

20 With \; = 2 —2cos(jm/n+1), the largest eigenvalue Js, ~ 2+ 2 = 4. The smallest

2
isA1 =2—2cos(m/n+1) ~ ( ) , using2 cos # ~ 2 — #2. So the condition number

T
n+l

iS¢ = Amax/Amin = (4/72) n?, growing withn.

1 Theiterationry,; = (I — A)x; +bhasS =TandT =1 — AandS~!T =1 — A.

2 If Ax = Az then(I—A)x = (1—-\)z. Real eigenvalues @ = I— A have|1-)\| < 1
provided) is between 0 and 2.

1
3 This matrixA hasl — A = which hag\| = 2. The iteration diverges.
1 -1

4 Always |AB|| < ||A||||B||. Choosed = B to find || B?|| < ||B||?. Then choos&l =
B2 tofind || B3| < ||B2||||B|| < ||B||>. Continue (or use induction) to findB*|| <

| B||*. Since|| B|| > max |\(B)| it is no surprise thaf B|| < 1 gives convergence.
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5

10

11

12

13

173

Ax = 0 gives(S —T)x = 0. ThenSz = Tx andS~'Tz = . Then\ = 1 means
that the errors do not approach zero. We can'’t expect convergenceAvisesingular

andAxz = b is unsolvable!

Jacobihass—'7 = 1 With |A|max = 3. Small problem, fast convergence.

0o 1
Gauss-Seidel has— 17 = | with [Almax = & Which is (|A|max for Jacobif.
0 5
— _
0 —-b 0 —b/a
Jacobihas—!T = = / with | \| = |be/ad|/2.
d — 0 —c/d
| o L
, 0 0 —b 0  —bla|
Gauss-Seidel ha& 1T = = with |\| = |bc/ad|.
c d 0 0 0 —bc/ad

So Gauss-Seidel is twice as fast to converga|it< 1 (or to explode iflbc| > |ad)).

Gauss-Seidel will converge for thel, 2, —1 matrix. |\|max = cos? (RLH) is given

on page 527, together with the improvement from successive overrelaxation.

If the iteration gives alk]®¥ =

meansAxz = b. For Jacobi change™" on the right side ta:°!d.

’U,]C/>\If =121 —|—CQ(132(/\2//\1)k—|-' . '+Cn$n(/\n/>\1)k — ¢y ifall ratiOS|/\i/>\1‘ <

1
1. The largest ratio controls the rate of convergence (wWhéenlarge). A =

1 0
has| 2| = |A1| and no convergence.

The eigenvectors of and alsad~! arex; = (.75, .25) andz, = (1, —1). The inverse

power method converges to a multiplexf, since|1/Az| > [1/\].

. . . 4 L (i—1 . (1
In the jth component ofAz;, A;sin ;25 = 2sin;25 — sm% — sin %
The last two terms combine inte2 sin -2 cos -75. Then\; = 2 — 2 cos 7.

29 then the quantity in parentheses is zero, which
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2 -1 1 2 5 14
14 A = producesug = , U = , Uy = , U3 = .
-1 2 0 -1 —4 —13

1
This is converging to the eigenvector directi{n with largest eigenvalug = 3.
-1

Divide uy, by ||u|| to keep unit vectors.

112 1] | 12 115 1 |14 1/2
15 A~ t=2 givesu; = - Uy =— UG = — —Usp =
311 2 311 914 27 113 1/2
1 cosfsind cos O(1 + sin? 4) —sin® 6
16 R=QTA= and4; = RQ =
0 —sin®6 —sin® @ — cosfsin? 0

17 If Ais orthogonal therd) = A andR = I. ThereforeA; = RQ = A again, and the
“QR method” doesn’t move froml. But shift A slightly and the method goes quickly
to A.

18 If A—cl = QRthenA; = RQ +cl = QY (QR + cI)Q = Q' AQ. No change in

eigenvalues from the shift and shift back, becadsgés similar to A.

19 Multiply Ag; = b;_1q; ; + a;q; + b;q,,, by q] tofindq] Aq; = a; (because the
g's are orthonormal). The matrix form (multiplying by columns)4§) = QT where

T istridiagonal. The entries down the diagonalsBfare thea's andb’s.

20 Theoretically theg’s are orthonormal. In reality this important algorithm is not very
stable. We must stop every few steps to reorthogonalize—or find another more stable

way to orthogonalize the sequengeAq, A%q, . ..

21 If A is symmetric themd; = Q1AQ = QTAQ is also symmetric.A; = RQ =
R(QR)R!' = RAR~! hasR and R~ upper triangular, sel; cannot have nonzeros
on a lower diagonal thad. If A is tridiagonal and symmetric then (by using symmetry

for the upper part ofi; ) the matrixA; = RAR~! is also tridiagonal.

22 From the last line of codeg, is in the direction ofv = Agq, — h11q; = Ag; —
(g1 Aq,)q,. The dot product withy, is zero. This is Gram-Schmidt withq, as the

second input vector; we subtract fraf, its projection onto the first vectay; .
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23

24

25

26

Note The three lines after the short “pseudocodes” describe two key properties of con-
jugate gradients—the residuals = b — Ax;, are orthogonal and the search directions
are A-orthogonal(d; Ad;, = 0). Then each new approximatiar,; is the closest
vector to z among all combinations df, Ab. .., A¥b. Ordinary iterationSz;,; =

Tz + b doesnotfind this best possible combinatian, ;.

The solution is straightforward and important. Sinde= Q 'AQ = QTAQ is
symmetridf A = AT, and sincefl has only one lower diagonal by construction, then
H has onlyone upper diagonal H is tridiagonal and all the recursions in Arnoldi’s

method have only 3 terms.

H = Q 'AQ is similar to 4, so H has the same eigenvalues_ 4gat the end of
Arnoldi). When Arnoldi is stopped sooner because the matrix size is large, the eigen-
values of H;, (calledRitz value} are close to eigenvalues df. This is an important

way to compute approximations #ofor large matrices.

In principle the conjugate gradient method converges in 100 (or 99) steps to the exact
solutionz. But it is slower than elimination and its all-important property is to give
good approximations ta@ much sooner. (Stopping elimination part way leaves you
nothing.) The problem asks how clase, andxs are tox¢g, which equalse except

for roundoff errors.

L. 1 q .
A= has A" = with g = 14 1.1 4 -+ + (L1)"L =
0 1.1 0 (11"
. . 10
(11" —1)/(1.1 — 1) ~ 10(1.1)™. So the growing part of\™ is (1.1)"
0 1

with ||A™|| ~ /101 times1.1™ for larger n.
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1 When7 is added to every output, the mean increase3 hpd the variance does not

change (because new variance comes from (distanacée new mean).
New sample mean and new expected mean : Addew variance : No change.

2 If we add 5 ltol = (fraction of integers divisible by plus fraction divisible by7) we
havedouble countedthe integers divisible by bothand7. This is a fract|0n2—1 of all
integers (because these double counted numbers are multifléks do the fraction

divisible by3 or 7 or both is
1 1 1 7 3 1 9 3

37772 2t a7
3 In the numbers from to 1000, each group of ten numbers will contain each possible
endingz = 1,2,3,...,0. So those endings all have the same probabjljty= %

Expected mean of that last digit
9

1 .45
:Eplxzzl_();lzl_o:él"’s

The best way to find the varianeé = 8.25 isin the last line below and in problem

12.1.7. The slower way to find> is
9

1
2 _ _ . 2
0? =E[(z — 4.5)? E pi(z; —4.5)% =10 E (i —4.5)

=0

We can separat@ — 4.5)2 into (i* — 9i + (4.5)%) and add from = 0toi =9:

9 9 9
1 1
o <§ it -9 § i+ § (4.5) ) (285 —9(45) + 10(4.5)%)
0 0 0
2.
(285 405 4+ 202.5) = —— = 8.25 = —.

Notice that202.5 is half of 405—like Nm? and2Nm? in equation(4), page536.

I should have extended equatior{4) to its best form:
2 = E[(@—m)?] = E[a?] — m?

That quickly gives?®3 — (4.5)? = 8.25 = same answer.
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4 For numbers ending i®, 1,2, ...,9 the squaresendin=10,1,4,9,6,5,6,9,4,1. So
the probabilities ofc = 0 and5 arep = 11—0 and the probabilities of = 1,4,6,9 are

p=+t. The meanis

1
m= Ep,x,— +—+ (1+4+6+4+9)=4.5= same as before.

10 5
The variance using the improvement of equatiéhis
1 1 1
2 —E 21 _ 2:_02 _52 _12 42 62 92 _ 2
o [x]m10+10+5(+—|——|—)m
_® + 131 20.25 = 9.05
10 5 B

5 For numbers from to 1000, the first digit isz = 1 for 1000 and100-199 and10-19
and1 (112 times). The first digit isc = 2 for 200-299 and20-29 and2 (111 times).
The other first digits: = 3 to 9 also happenl(l1 times). Total {000 times) is correct.

The average first digit is the mean, closeltd +2 + --- +9) = 5:

111 112+ 111(44) 4996
Lz S (2434 49) = =270 4 996 ~ 5.
m=) i 1000 (D+1ogg 343+ -+9) 1000 1000
The variance is
112 111
2 2 2 2 2 2 2 2
—El(z — —ERY—m?=—2(1 2 : _
7 = El(r ~m)) = B[]~ m® = S (12) 4 2o (22 4 4 9%) —m

C 1124111(284) 31635

—m? =~ — 5% = 6.635.
1000 1000
6 The first digits of 1572,3122,6962, and 6022 are 2,9,4,3, The sample mean is

1(2+9+4+3) =18 = 4.5. The sample variance with — 1 = 3 is

[ 45)° + (5 + (-15)?] = £ [29].

C«O|'_‘

7 This question is about the fast way to compateusingm?. The meann is probably
already computed:
0® =3 pi(xi —m)® =3 pi (xF — 2ma; +m?)
=" pix —2m Y piri +m* Y p;
=Y pix? —2m?*+m? =3 p;x? — m? = E[z?] — m>.
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8

10

For N = 24 samples, all equal to = 20,

1 24 1
= ,=—(20)=20 and S2=—— i—p)?=0
p= 2 @i = 52(20) e DI CED
For 12 samples ofc = 20 and12 samples ofc = 21,
12(20) + 12(21) 1 1 1\? 6
=" =7 _20.5 and S*=— —p)P==24(=) =—.
H 24 SN @ =52\ 5) —o3

This question asks you to set up a rand@ generator and run it a million times to

find the averageloogo0o-

One way is to ustMATLAB’s rand command with a uniform distribution betweén
and1. Add 3 to go between.5 and1.5, then find the integer paré (or 1). Using your
computed averagd y (its mean ism = 3 since0 and1 are equally likely for every

sample) find the normalized variahlé:
Av—f Av)
2/N 2000

for N = one million

The average number of headshhfair coin flips ism = N/2. This is obvious—but

how to derive it from probabilitieg, to p of 0 to V heads? We have to compute

B 1 N ith b1 N!
m =0po+1p1 +---+ Npy Wit pi—Z—N—Q—Nm
A useful factisp; = pn—;. The probability ofi headsequals the probability aftails.

If we take just those two terms in, they give
ipi + (N —i)pn—i = ipi + (N —i)p; = Np;
So we can compute: two ways and add :
m = 0po+ 1p1 + -+ (N —1)pn—1 + Npn
m = Npo+ (N —1)p1 + -+ Ipn—1 + Opo
2m = Npo+ Np1 + ---+ Npy—1 + Npn

=N(po+p1+-+pyv-1+pn)=N.
Thenm = NN/2. The average number of heads\ig2.
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11 E[z?] =E[(x —m)?+ 2zm —m?|
= E[(x — m)?] + 2mE [¢] - m?E[1]
=02+42m? —m? = 02 + m?
12 The first step multiplies two independenRtiimensional integrals (each one frorro

to co) to produce 2-dimensional integral over the whole plane:

27r/ p(x) dx/ p(y) dy:27r/ /p(x)p(y) da:dyz/ /6_12/26_92/2 dzdy.

The second step changes to polar coordinates ¢ cos 6,y = rsin 6, dxdy = r dr db,

2% +y? = r2with 0 < 0 < 27 and0 < r < oc). Notice—z2/2 — y2/2 = —12/2:

2w oo
/ /e_’"z/zrdrcw:/ /e_TQ/Q'rd'rdH

plane 6=0 r=0

Ther andéd integrals give the answetsand2r :

0o 27

/ e 2rdr = [—e*TQ/Q} :io =1 / 1dO = 2.

r=0 6=0

The trick was to ge<12—7"2/2 rdr (which is a perfect derivative oie—””z/Q) by combin-

ing e~ /2 4z ande=¥’/2 dy (which cannot be separately integrated fromto b).

1 (a) Meanm = Efz] = (0)(1 — p) + (1)(p) = p when the probability of heads is
p. Herex = 0 for tails andz = 1 for heads. Notice thai?* = 0 and1? = 1 so
E[z% = E[z] = p.

Variance o2 = E[z?] — m? = p — p?
(b) These are independent flips! So tNeby N covariance matri¥” is diagonal. The
diagonal entries are the varianegs= p—p? for each flip. Then the rulgl6—17—18)

gives the overall variance of the sum frashflips:
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overallvariance=[1 1... 1]V | | = No? = N(p —p?)

1

This is just saying : Add the variances for theindependent experiments. Here those

N experiments just repeat one experiment.

2 | am just imitating equatiofi2) in the text. Now the experiments are numbesezhd
5. They have means:3 andms. The covariances; adds upgoint probabilities p;;
times (distancer; — ms) times (distancg; — ms). Herex; andy; are outputs from
experiments and5:

o35 = > pij (€ —ma) (y; —ms).
all 4,5
3 The3 by 3 covariance matri¥” will be a sum of rank one matricé$;, = UUT mul-

tiplied by the joint probabilityp; 5, of outputsz;, y;, z;. | am copying equatiol2) :

outputr; — meanz

V=>"3"> ppUU" U= | outputy; — meany
all 4,74, k
A outputz, — meanz

These matrice§ U = column times row are positive semidefinite with ranfunless
U = 0). The sumV is positivedefiniteunless thel experiments are dependent.

Notice that the means, v,z = mq, ms, m3 have to be computed before the variances.

4 We are told that th8 experiments arendependentThen thecovariances are zeroff
the main diagonal o¥/. This covariance matrix only shows “covariances with itself”

= “variances’s?, 02, o2 on the main diagonal.
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5 The point is that some outpuf = z; must occur. So the possibilities are = y;
andX =z, 0rY = y; andX = x5, orY = y; andX = x5 et cetera. The total
probability of Y = y; is the sum of the conditional probabilities thet= y; when
Here is another way to say tHaw of total probability . WhenB;, B,, . .. are separate

disjoint outcomes that together account for all possible outcomes, then fot any

Prob(A) = Prob(AN B;) =) _ Prob(A|B;) Prob(B;).

6 Prob(A|B) = conditional probability of A givenB satisfies this axiom:
Prob(A and B) = Prob(A|B) Prob(B).
Reason: If bothA and B occur, thenB must occur—and knowing tha® occurs,
Prob(A|B) gives the probability thatl also occurs.
This axiom is saying that;; = Prob (A|B) p;
whereB is the eventr = x; which has Prol§B) = p;.

7 The joint probabilitieg;; = Prob(z = x; andy = y;) are in the matrixP :

0.1 0.3 _ _ ,
P = with entries adding ta.

0.2 04
D12 0.3 3

Problem6 says that ProlpY = y5| X = z;) = = = —.
y b yQ‘ 1) P11 —|—p12 0.1 + 0.3 4

Problem5 says that ProbX = z1) = p1; + p12 = 0.1 4+ 0.3 = 0.4.
8 This product rule of conditional probability is the axiom in Solutidh2.6 above :

Prob (A and B) = Prob (A given B) times Prob(B).
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9 This discussion of Bayes’ Theorem is much too compressed! Let me reproduce three
equations from Wolfram MathWorld. Heré and B are possible “sets* “outcomes
from an experiment” and the simple-looking identity) (connects conditional and

unconditional probabilities.

We know from8 that Prob @ and B) = Prob (4 given B) times Prob B)
Reversingd andB gives Prob 4 and B) = Prob (B given A) times Prob 4)
Prob( A given B) Prob(B)

(*) Therefore ProbB given 4) = Prob(A)

MathWorld gives this extension to non-overlapping séts. . . , A,, whose unionisA :
Prob(A;) Prob(A given A;)
Z Prob(A;) Prob(A givenA,)
J

Prob(A; givenA) =

1 The two equations from two measurements are

z=h ! {x}: b1 or Ax =0b.

or
xr = bg 1 bg

The covariance matriX is diagonal since the measurements are independent:
o2 0

V:
0 o2

The weighted least squares equatiodi§V —! Az = AT V~1b.

/02 0 1 1 1
s ][ 1.2
0 1/03 1 o1 03
—102 0 __b_ b b
ATV‘lbz[l 1} /o =S+
0 1/03 by oy 03

ThenZ is the ratio of those numbers::
by /o3 + by /03

/m\:
1/0? +1/02
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The variance of that estimaieshould be written as ifiL3) :

E @)@ - o)) = (ATV A = (4 i)

o1 03

2 (a) In the limito, — 0 the ratiox approaches, because:

blo'% —l—bgO’% bQU% b
2 — Y2

Multiply Z above and below by? %)
( ply x y102) T 0'% T 0'% o2

The second equatian= b, is 100% accurate if its variance is;, = 0.

by /ot

1/02
from the totally unreliable measurement= b,.

(b) If 02 — oo thenl/c3 — 0 andz — = by. We are gettingio information

3 The key fact ofindependencas in the equatiop(z, y) = p(z) p(y). Then

// :vyd:cdy—// dxdy—/p(:v)dx/p(y)dy:(1)(1):1~
//(m—i—y) (z,y) dx dy //xp dxdy—i—//yp y)dz dy
= /wp(x) da?/p(y) dy+/p($) dx/yp(y) dy

= (mz) (1) + (1) (my) = my +my.

4 Continue Problens to find variances?2 ando? and to see covarianeg,, = 0:

[[@=mp s dzdy = [ = mopw)ds [ pw)dy = o2

[ [=mo) =my)pto.y dody = [o-ma)p@rdo [t=m,) pw) dy=(0) ).

-1
, . o a b 1 d —b
5 We are inverting & by 2 matrix using = :
c d ad — be

-1
2 2
V-l o1 012 B 1 05 —012 - 012
- o | T o202 — o, o | T A
012 0'2 —012 0'1

1 o —01o 1 1/02 —p/oyos
2 2 =
ofo3(1—p?) —013 0} 1—p? —p/oroy  1)a2
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6 The right hand side o1 shows thegain factor 1/(k + 1) :

~ 1 ~ by + -+ by 1 b1+ -+ by by + -+ by
—b — = — =
Bt g (e —2) k +k+1<k+1 k k1

Check that each numbéy, bs, . .., b, bi11 is correctly divided byt + 1:

11 1 1/ k+1 -1\ 1
ko k+1k k E+1 k41

7 We are considering the case when all the measuremeliis . . ., b, have the same

variances2. We know that the correct variance of their averagd’is.; = o%/(k+1).
We want to see how this answer comes from equatién when we have the correct
W), = o2 /k from the previous step, and we updatdi@. ; :

_ _ _ k ko1 k+1
(18) says thalV, "}, = W, +Ap, Vi Ay = poagtl [1/0%[1] = 2 2T

2 o
SoW,41 = o?/(k + 1) is correct at the new step (and forever by induction).

8 The three equations have varianeés s2, 02 and they haveero covariances(This
makes the step-by-step Kalman filter possible.) We can divide the equatiens lay

to produceunit variancegwhich lead to ordinary unweighted least squares). We are

givenF =1:
1/o 0 by/o
Zo .
~1/s 1/s = 0 isourAxz = b.
Z1
0 1/o bi/o

The normal equation (now unweighted)Ad Az = AT b:

1 1 1 - bo
2te T2 o e

1 11 ] bk
T 2l e

. . . 1 L.
The determinant of thigl™ A is det = — + The solution is
ag

022"

= qet \of T 22 T 52 52 27 Gt \ 022 T2z T gh )¢



Solutions to Exercises

9 With A = I andu™ = »T =[1 2 3] we can use the direct formula fad —* :

185

1
T 1
w2 [129]
(I—-uv) 0T toa | 2 1 2 3
3
-5 & & 2 2 1
16
— 2 4 6 i — — I i
= = 1- 35 3 . Multiply b= | 1| togety=|1 3 2 13
13_3 % 1= 193 4 4 3
Instead of this formula fof/ = wv™) 1, try stepsl and2:
Step 1with A = I givesx = b andz = w.
2 1
, Tu 16
Step 2givesy = b — 3 4= 1] — 3 2 | as before.
4 3
10 We are asked to check th&fy = b using the update formula. Start with
T
My = (A —uv?) <a:—|—v wz)
C
Az —w@ )+ vizAz u(v'z)(v'z)
C C
SinceAx = b we hope the othed terms combine to give zero whelz = u
1 T T
uvt x {—1 += - 2} _wr [—c+1—v" 2] = 0 from the formula forc
C C C

11 Multiply columns times rowsto see that the new changesA™ A to

(AT v | AT = ATA + w7
v

So adding the new row td (and of course the new column #0") has increased™ A

by the rank one matrixv™.

10
-19
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The book is ending with matrix multiplication! We could allow changes of rank
WhenA changes ta/ = A — UW ~1V, its inverse changes to

M-t =A"1'+ A7 'UWwW -vA U tvATL

This change has rankwhenW,.,,. andV,..,, andU,, . all have rank-.
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