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2 Solutions to Exercises

Problem Set 1.1, page 8

1 The combinations give (a) a line inR3 (b) a plane inR3 (c) all ofR3.

2 v +w = (2, 3) andv −w = (6,−1) will be the diagonals of the parallelogram with

v andw as two sides going out from(0, 0).

3 This problem gives the diagonalsv +w andv −w of the parallelogram and asks for

the sides: The opposite of Problem 2. In this examplev = (3, 3) andw = (2,−2).

4 3v +w = (7, 5) andcv + dw = (2c+ d, c+ 2d).

5 u+v = (−2, 3, 1) andu+v+w = (0, 0, 0) and2u+2v+w = ( add first answers) =

(−2, 3, 1). The vectorsu,v,w are in the same plane because a combination gives

(0, 0, 0). Stated another way:u = −v −w is in the plane ofv andw.

6 The components of everycv + dw add to zero because the components ofv and ofw

add to zero.c = 3 andd = 9 give(3, 3,−6). There is no solution tocv+dw = (3, 3, 6)

because3 + 3 + 6 is not zero.

7 The nine combinationsc(2, 1) + d(0, 1) with c = 0, 1, 2 andd = (0, 1, 2) will lie on a

lattice. If we took all whole numbersc andd, the lattice would lie over the whole plane.

8 The other diagonal isv −w (or elsew − v). Adding diagonals gives2v (or 2w).

9 The fourth corner can be(4, 4) or (4, 0) or (−2, 2). Three possible parallelograms!

10 i− j = (1, 1, 0) is in the base (x-y plane).i+ j + k = (1, 1, 1) is the opposite corner

from (0, 0, 0). Points in the cube have0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

11 Four more corners(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). The center point is(12 ,
1
2 ,

1
2).

Centers of faces are(1
2
, 1
2
, 0), (1

2
, 1
2
, 1) and(0, 1

2
, 1
2
), (1, 1

2
, 1
2
) and(1

2
, 0, 1

2
), (1

2
, 1, 1

2
).

12 The combinations ofi = (1, 0, 0) andi+ j = (1, 1, 0) fill the xy plane inxyz space.

13 Sum= zero vector. Sum= −2:00 vector= 8:00 vector. 2:00 is 30◦ from horizontal

= (cos π
6
, sin π

6
) = (

√
3/2, 1/2).

14 Moving the origin to6:00 addsj = (0, 1) to every vector. So the sum of twelve vectors

changes from0 to 12j = (0, 12).
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15 The point
3

4
v +

1

4
w is three-fourths of the way tov starting fromw. The vector

1

4
v +

1

4
w is halfway tou =

1

2
v +

1

2
w. The vectorv +w is 2u (the far corner of the

parallelogram).

16 All combinations withc + d = 1 are on the line that passes throughv and w.

The pointV = −v + 2w is on that line but it is beyondw.

17 All vectorscv + cw are on the line passing through(0, 0) andu = 1
2v + 1

2w. That

line continues out beyondv +w and back beyond(0, 0). With c ≥ 0, half of this line

is removed, leaving aray that starts at(0, 0).

18 The combinationscv + dw with 0 ≤ c ≤ 1 and0 ≤ d ≤ 1 fill the parallelogramwith

sidesv andw. For example, ifv = (1, 0) andw = (0, 1) thencv + dw fills the unit

square. But whenv = (a, 0) andw = (b, 0) these combinations only fill a segment of

a line.

19 With c ≥ 0 andd ≥ 0 we get the infinite “cone” or “wedge” betweenv andw. For

example, ifv = (1, 0) andw = (0, 1), then the cone is the whole quadrantx ≥ 0, y ≥
0. Question: What if w = −v? The cone opens to a half-space. But the combinations

of v = (1, 0) andw = (−1, 0) only fill a line.

20 (a) 1
3u + 1

3v + 1
3w is the center of the triangle betweenu,v andw; 1

2u + 1
2w lies

betweenu andw (b) To fill the triangle keepc≥0, d≥0, e≥0, andc+d+e = 1.

21 The sum is(v−u)+(w−v)+(u−w) = zero vector. Those three sides of a triangle

are in the same plane!

22 The vector1
2
(u+ v +w) is outsidethe pyramid becausec+ d+ e = 1

2
+ 1

2
+ 1

2
> 1.

23 All vectors are combinations ofu,v,w as drawn (not in the same plane). Start by

seeing thatcu+ dv fills a plane, then addingew fills all of R3.

24 The combinations ofu andv fill one plane. The combinations ofv andw fill another

plane. Those planes meet in aline: only the vectorscv are in both planes.

25 (a) For a line, chooseu = v = w = any nonzero vector (b) For a plane, choose

u andv in different directions. A combination likew = u+ v is in the same plane.
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26 Two equations come from the two components:c + 3d = 14 and2c + d = 8. The

solution isc = 2 andd = 4. Then2(1, 2) + 4(3, 1) = (14, 8).

27 A four-dimensional cube has24 = 16 corners and2 · 4 = 8 three-dimensional faces

and24 two-dimensional faces and32 edges in Worked Example2.4 A.

28 There are6 unknown numbersv1, v2, v3, w1, w2, w3. The six equations come from the

components ofv +w = (4, 5, 6) andv −w = (2, 5, 8). Add to find2v = (6, 10, 14)

sov = (3, 5, 7) andw = (1, 0,−1).

29 Two combinations out of infinitely many that produceb = (0, 1) are−2u + v and

1
2
w − 1

2
v. No, three vectorsu,v,w in the x-y plane could fail to produceb if all

three lie on a line that does not containb. Yes, if one combination producesb then two

(and infinitely many) combinations will produceb. This is true even ifu = 0; the

combinations can have differentcu.

30 The combinations ofv andw fill the planeunlessv andw lie on the same line through

(0, 0). Four vectors whose combinations fill4-dimensional space: one example is the

“standard basis”(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and(0, 0, 0, 1).

31 The equationscu+ dv + ew = b are

2c −d = 1

−c +2d −e = 0

−d +2e = 0

Sod = 2e

thenc = 3e

then4e = 1

c = 3/4

d = 2/4

e = 1/4

Problem Set 1.2, page 18

1 u · v = −2.4 + 2.4 = 0, u · w = −.6 + 1.6 = 1, u · (v + w) = u · v + u ·w =

0 + 1,w · v = 4− 6 = −2 = v ·w.

2 ‖u‖ = 1 and‖v‖ = 5 and‖w‖ =
√
5. Then|u · v| = 0 < (1)(5) and|v ·w| = 10 <

5
√
5, confirming the Schwarz inequality.
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3 Unit vectorsv/‖v‖ = (4
5
, 3
5
) = (0.8, 0.6). The vectorsw, (2,−1), and−w make

0 ◦, 90 ◦, 180 ◦ angles withw andw/‖w‖ = (1/
√
5, 2/

√
5). The cosine ofθ is v

‖v‖ ·
w

‖w‖ = 10/5
√
5.

4 (a) v · (−v) = −1 (b) (v +w) · (v −w) = v · v +w · v − v ·w −w ·w =

1+( )−( )−1 = 0 soθ = 90◦ (noticev·w = w·v) (c) (v−2w)·(v+2w) =

v · v − 4w ·w = 1− 4 = −3.

5 u1 = v/‖v‖ = (1, 3)/
√
10 andu2 = w/‖w‖ = (2, 1, 2)/3. U 1 = (3,−1)/

√
10 is

perpendicular tou1 (and so is(−3, 1)/
√
10). U2 could be(1,−2, 0)/

√
5: There is a

whole plane of vectors perpendicular tou2, and a whole circle of unit vectors in that

plane.

6 All vectorsw = (c, 2c) are perpendicular tov. They lie on a line. All vectors(x, y, z)

with x + y + z = 0 lie on aplane. All vectors perpendicular to(1, 1, 1) and(1, 2, 3)

lie on aline in 3-dimensional space.

7 (a) cos θ = v · w/‖v‖‖w‖ = 1/(2)(1) so θ = 60◦ or π/3 radians (b)cos θ =

0 so θ = 90◦ or π/2 radians (c)cos θ = 2/(2)(2) = 1/2 so θ = 60◦ or π/3

(d) cos θ = −1/
√
2 soθ = 135◦ or 3π/4.

8 (a) False:v andw are any vectors in the plane perpendicular tou (b) True: u ·
(v+2w) = u · v+2u ·w = 0 (c) True,‖u− v‖2 = (u− v) · (u− v) splits into

u · u+ v · v = 2 whenu · v = v · u = 0.

9 If v2w2/v1w1 = −1 thenv2w2 = −v1w1 or v1w1+v2w2 = v ·w = 0: perpendicular!

The vectors(1, 4) and(1,− 1
4
) are perpendicular.

10 Slopes2/1 and−1/2 multiply to give−1: thenv ·w = 0 and the vectors (the direc-

tions) are perpendicular.

11 v ·w < 0 means angle> 90◦; thesew’s fill half of 3-dimensional space.

12 (1, 1) perpendicular to(1, 5)− c(1, 1) if (1, 1) · (1, 5)− c(1, 1) · (1, 1) = 6− 2c = 0 or

c = 3; v · (w − cv) = 0 if c = v ·w/v · v. Subtractingcv is the key to constructing

a perpendicular vector.
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13 The plane perpendicular to(1, 0, 1) contains all vectors(c, d,−c). In that plane,v =

(1, 0,−1) andw = (0, 1, 0) are perpendicular.

14 One possibility among many:u = (1,−1, 0, 0),v = (0, 0, 1,−1),w = (1, 1,−1,−1)

and(1, 1, 1, 1) are perpendicular to each other. “We can rotate thoseu,v,w in their

3D hyperplane and they will stay perpendicular.”

15 1
2(x+ y) = (2 + 8)/2 = 5 and5 > 4; cos θ = 2

√
16/

√
10
√
10 = 8/10.

16 ‖v‖2 = 1+1+ · · ·+1 = 9 so‖v‖ = 3;u = v/3 = (1
3
, . . . , 1

3
) is a unit vector in9D;

w = (1,−1, 0, . . . , 0)/
√
2 is a unit vector in the8D hyperplane perpendicular tov.

17 cosα = 1/
√
2, cosβ = 0, cos γ = −1/

√
2. For any vectorv = (v1,v2,v3) the

cosines with(1, 0, 0) and(0, 0, 1) arecos2 α+cos2 β+cos2 γ=(v21+v22+v23)/‖v‖2= 1.

18 ‖v‖2 = 42 + 22 = 20 and‖w‖2 = (−1)2 + 22 = 5. Pythagoras is‖(3, 4)‖2 = 25 =

20 + 5 for the length of the hypotenusev +w = (3, 4).

19 Start from the rules(1), (2), (3) for v ·w = w · v andu · (v +w) and(cv) ·w. Use

rule (2) for (v + w) · (v + w) = (v + w) · v + (v + w) · w. By rule (1) this is

v · (v +w) + w · (v + w). Rule(2) again givesv · v + v ·w +w · v +w ·w =

v · v + 2v ·w +w ·w. Noticev ·w = w · v! The main point is to feel free to open

up parentheses.

20 We know that(v−w) · (v−w) = v ·v− 2v ·w+w ·w. The Law of Cosines writes

‖v‖‖w‖ cos θ for v · w. Hereθ is the angle betweenv andw. Whenθ < 90◦ this

v ·w is positive, so in this casev · v +w ·w is larger than‖v −w‖2.

Pythagoras changes from equalitya2+b2 = c2 to inequalitywhenθ < 90 ◦ orθ > 90 ◦.

21 2v ·w ≤ 2‖v‖‖w‖ leads to‖v+w‖2 = v ·v+2v ·w+w ·w ≤ ‖v‖2+2‖v‖‖w‖+
‖w‖2. This is(‖v‖+ ‖w‖)2. Taking square roots gives‖v +w‖ ≤ ‖v‖+ ‖w‖.

22 v21w
2
1 + 2v1w1v2w2 + v22w

2
2 ≤ v21w

2
1 + v21w

2
2 + v22w

2
1 + v22w

2
2 is true (cancel4 terms)

because the difference isv21w
2
2 + v22w

2
1 − 2v1w1v2w2 which is(v1w2 − v2w1)

2 ≥ 0.

23 cosβ = w1/‖w‖ andsin β = w2/‖w‖. Thencos(β−a) = cosβ cosα+sinβ sinα =

v1w1/‖v‖‖w‖+ v2w2/‖v‖‖w‖ = v ·w/‖v‖‖w‖. This iscos θ becauseβ − α = θ.



Solutions to Exercises 7

24 Example 6 gives|u1||U1| ≤ 1
2
(u2

1 + U2
1 ) and|u2||U2| ≤ 1

2
(u2

2 + U2
2 ). The whole line

becomes.96 ≤ (.6)(.8) + (.8)(.6) ≤ 1
2
(.62 + .82) + 1

2
(.82 + .62) = 1. True: .96 < 1.

25 The cosine ofθ isx/
√
x2 + y2, near side over hypotenuse. Then| cos θ|2 is not greater

than 1:x2/(x2 + y2) ≤ 1.

26 The vectorsw = (x, y) with (1, 2) ·w = x+ 2y = 5 lie on a line in thexy plane. The

shortestw on that line is(1, 2). (The Schwarz inequality‖w‖ ≥ v ·w/‖v‖ =
√
5 is

an equality whencos θ = 0 andw = (1, 2) and‖w‖ =
√
5.)

27 The length‖v−w‖ is between2 and8 (triangle inequality when‖v‖ = 5 and‖w‖ =

3). The dot productv ·w is between−15 and15 by the Schwarz inequality.

28 Three vectors in the plane could make angles greater than90◦ with each other: for

example(1, 0), (−1, 4), (−1,−4). Four vectors couldnot do this (360◦ total angle).

How many can do this inR3 or Rn? Ben Harris and Greg Marks showed me that the

answer isn + 1. The vectors from the center of a regular simplex inRn to itsn + 1

vertices all have negative dot products. Ifn+2 vectors inRn had negative dot products,

project them onto the plane orthogonal to the last one. Now you haven+ 1 vectors in

Rn−1 with negative dot products. Keep going to 4 vectors inR2 : no way!

29 For a specific example, pickv = (1, 2,−3) and thenw = (−3, 1, 2). In this example

cos θ = v · w/‖v‖‖w‖ = −7/
√
14
√
14 = −1/2 and θ = 120◦ . This always

happens whenx+ y + z = 0:

v ·w = xz + xy + yz =
1

2
(x+ y + z)2 − 1

2
(x2 + y2 + z2)

This is the same asv ·w = 0− 1

2
‖v‖‖w‖. Then cos θ =

1

2
.

30 Wikipedia gives this proof of geometric meanG = 3
√
xyz ≤ arithmetic mean

A = (x + y + z)/3. First there is equality in casex = y = z. OtherwiseA is

somewhere between the three positive numbers, say for example z < A < y.

Use the known inequalityg ≤ a for the two positive numbersx andy + z − A. Their

meana = 1
2(x + y + z − A) is 1

2(3A − A) = same asA! So a ≥ g says that
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A3 ≥ g2A = x(y + z − A)A. But (y + z − A)A = (y − A)(A − z) + yz > yz.

Substitute to findA3 > xyz = G3 as we wanted to prove. Not easy!

There are many proofs ofG = (x1x2 · · ·xn)
1/n ≤ A = (x1 + x2 + · · · + xn)/n. In

calculus you are maximizingG on the planex1 + x2 + · · · + xn = n. The maximum

occurs when allx’s are equal.

31 The columns of the 4 by 4 “Hadamard matrix” (times12 ) are perpendicular unit

vectors:

1

2
H =

1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



.

32 The commandsV = randn (3, 30);D = sqrt (diag (V ′ ∗ V )); U = V \D; will give

30 random unit vectors in the columns ofU . Thenu ′ ∗ U is a row matrix of 30 dot

products whose average absolute value may be close to2/π.

Problem Set 1.3, page 29

1 2s1 + 3s2 + 4s3 = (2, 5, 9). The same vectorb comes fromS timesx = (2, 3, 4):




1 0 0

1 1 0

1 1 1







2

3

4


 =




(row 1) · x
(row 2) · x
(row 2) · x


 =




2

5

9


 .

2 The solutions arey1 = 1, y2 = 0, y3 = 0 (right side= column1) andy1 = 1, y2 = 3,

y3 = 5. That second example illustrates that the firstn odd numbers add ton2.

3

y1 = B1

y1 + y2 = B2

y1 + y2 + y3 = B3

gives

y1 = B1

y2 = −B1 +B2

y3 = −B2 +B3

=




1 0 0

−1 1 0

0 −1 1







B1

B2

B3



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The inverse ofS=




1 0 0

1 1 0

1 1 1


 isA=




1 0 0

−1 1 0

0 −1 1


: independentcolumns inA andS!

4 The combination0w1 + 0w2 + 0w3 always gives the zero vector, but this problem

looks for otherzerocombinations (then the vectors aredependent, they lie in a plane):

w2 = (w1 +w3)/2 so one combination that gives zero is1
2w1 −w2 +

1
2w3 = 0.

5 The rows of the3 by 3 matrix in Problem 4 must also bedependent: r2 = 1
2(r1 + r3).

The column and row combinations that produce0 are the same: this is unusual. Two

solutions toy1r1 + y2r2 + y3r3 = 0 are(Y1, Y2, Y3) = (1,−2, 1) and(2,−4, 2).

6 c = 3




1 1 0

3 2 1

7 4 3


 has column3 = column1− column2

c = −1




1 0 −1

1 1 0

0 1 1


 has column3 = − column1 + column2

c = 0




0 0 0

2 1 5

3 3 6


 has column3 = 3 (column1)− column2

7 All three rows are perpendicular to the solutionx (the three equationsr1 · x = 0 and

r2 ·x = 0 andr3 ·x = 0 tell us this). Then the whole plane of the rows is perpendicular

tox (the plane is also perpendicular to all multiplescx).

8

x1 − 0 = b1

x2 − x1 = b2

x3 − x2 = b3

x4 − x3 = b4

x1 = b1

x2 = b1 + b2

x3 = b1 + b2 + b3

x4 = b1 + b2 + b3 + b4

=




1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1







b1

b2

b3

b4



= A−1b
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9 The cyclic difference matrixC has a line of solutions (in4 dimensions) toCx = 0:




1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1







x1

x2

x3

x4



=




0

0

0

0




whenx =




c

c

c

c



= any constant vector.

10

z2 − z1 = b1

z3 − z2 = b2

0− z3 = b3

z1 = −b1 − b2 − b3

z2 = − b2 − b3

z3 = − b3

=




−1 −1 −1

0 −1 −1

0 0 −1







b1

b2

b3


 = ∆−1b

11 The forward differences of the squares are(t+ 1)2 − t2 = t2 + 2t+ 1− t2 = 2t+ 1.

Differences of thenth power are(t+ 1)n − tn = tn − tn + ntn−1 + · · · . The leading

term is the derivativentn−1. The binomial theorem gives all the terms of(t+ 1)n.

12 Centered difference matrices ofeven sizeseem to be invertible. Look at eqns.1 and4:




0 1 0 0

−1 0 1 0

0 −1 0 1

0 0 −1 0







x1

x2

x3

x4



=




b1

b2

b3

b4




First

solve

x2 = b1

−x3 = b4




x1

x2

x3

x4



=




−b2 − b4

b1

−b4

b1 + b3




13 Odd size: The five centered difference equations lead tob1 + b3 + b5 = 0.

x2 = b1

x3 − x1 = b2

x4 − x2 = b3

x5 − x3 = b4

− x4 = b5

Add equations1, 3, 5

The left side of the sum is zero

The right side isb1 + b3 + b5

There cannot be a solution unlessb1 + b3 + b5 = 0.

14 An example is(a, b) = (3, 6) and(c, d) = (1, 2). We are given that the ratiosa/c and

b/d are equal. Thenad = bc. Then (when you divide bybd) the ratiosa/b andc/d

must also be equal!
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Problem Set 2.1, page 41

1 The row picture forA = I has3 perpendicular planesx = 2 andy = 3 andz = 4.

Those are perpendicular to thex andy and z axes : z = 4 is a horizontal plane at

height4.

The column vectors arei = (1, 0, 0) andj = (0, 1, 0) andk = (0, 0, 1). Thenb =

(2, 3, 4) is the linear combination2i+ 3j + 4k.

2 The planes in a row picture are the same:2x = 4 is x = 2, 3y = 9 is y = 3, and

4z = 16 is z = 4. The solution is the same pointX = x. The three column vectors

are changed; but the same combination (coefficientsz, producesb = 34), (4, 9, 16).

3 The solution is not changed! The second plane and row 2 of the matrix and all columns

of the matrix (vectors in the column picture) are changed.

4 If z = 2 thenx+ y = 0 andx − y = 2 give the point(x, y, z) = (1,−1, 2). If z = 0

thenx+ y = 6 andx− y = 4 produce(5, 1, 0). Halfway between those is(3, 0, 1).

5 If x, y, z satisfy the first two equations they also satisfy the third equation= sum of

the first two. The lineL of solutions containsv = (1, 1, 0) andw = (12 , 1,
1
2) and

u = 1
2v+ 1

2w and all combinationscv+ dw with c+ d = 1. (Notice that requirement

c+ d = 1. If you allow all c andd, you get a plane.)

6 Equation1 + equation2− equation3 is now0 = −4. The intersection lineL of planes

1 and2 misses plane3 : no solution.

7 Column3 = Column 1 makes the matrix singular. Forb = (2, 3, 5) the solutions are

(x, y, z) = (1, 1, 0) or (0, 1, 1) and you can add any multiple of(−1, 0, 1). b = (4, 6, c)

needsc = 10 for solvability (thenb lies in the plane of the columns and the three

equations add to0 = 0).

8 Four planes in 4-dimensional space normally meet at apoint. The solution toAx =

(3, 3, 3, 2) is x = (0, 0, 1, 2) if A has columns(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0),

(1, 1, 1, 1). The equations arex+ y+ z+ t = 3, y+ z+ t = 3, z+ t = 3, t = 2. Solve

them in reverse order !
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9 (a) Ax = (18, 5, 0) and (b) Ax = (3, 4, 5, 5).

10 Multiplying as linear combinations of the columns gives the sameAx = (18, 5, 0) and

(3, 4, 5, 5). By rows or by columns:9 separate multiplications whenA is 3 by 3.

11 Ax equals(14, 22) and(0, 0) and (9, 7).

12 Ax equals(z, y, x) and(0, 0, 0) and (3, 3, 6).

13 (a) x hasn components andAx hasm components (b) Planes from each equation

in Ax = b are inn-dimensional space. The columns ofA are inm-dimensional space.

14 2x+3y+z+5t= 8 isAx = b with the1 by4 matrixA = [ 2 3 1 5 ] : one row. The

solutions(x, y, z, t) fill a 3D “plane” in 4 dimensions. It could be called ahyperplane.

15 (a) I =


1 0

0 1


 = “identity” (b) P =


0 1

1 0


 = “permutation”

16 90◦ rotation fromR =


 0 1

−1 0


, 180◦ rotation fromR2 =


−1 0

0 −1


 = −I .

17 P =




0 1 0

0 0 1

1 0 0


 produces




y

z

x


 andQ =




0 0 1

1 0 0

0 1 0


 recovers




x

y

z


. Q is the

inverseof P . Later we writeQP = I andQ = P−1.

18 E =


 1 0

−1 1


 andE =




1 0 0

−1 1 0

0 0 1


 subtract the first component from the second.

19 E =




1 0 0

0 1 0

1 0 1


 andE−1 =




1 0 0

0 1 0

−1 0 1


, Ev =




3

4

8


 andE−1Ev recovers




3

4

5


.

20 P1 =


1 0

0 0


 projects onto thex-axis andP2 =


0 0

0 1


 projects onto they-axis.

The vectorv =


5

7


 projects toP1v =


5

0


 andP2P1v =


0

0


.
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21 R =
1

2



√
2 −

√
2

√
2

√
2


 rotates all vectors by 45◦ . The columns ofR are the results

from rotating(1, 0) and(0, 1)!

22 The dot productAx = [ 1 4 5 ]




x

y

z


 = (1 by 3)(3 by 1) is zero for points(x, y, z)

on a plane in three dimensions. The3 columns ofA are one-dimensional vectors.

23 A = [ 1 2 ; 3 4 ] andx = [ 5 −2 ]
′ or [ 5 ; −2 ] andb = [ 1 7 ]

′ or [ 1 ; 7 ].

r = b− A ∗ x prints as two zeros.

24 A ∗ v = [ 3 4 5 ]
′ andv ′ ∗ v = 50. But v ∗ A gives an error message from 3 by 1

times 3 by 3.

25 ones(4, 4) ∗ ones(4, 1) = column vector[ 4 4 4 4 ]
′; B ∗w = [ 10 10 10 10 ]

′.

26 The row picture has two lines meeting at the solution (4, 2). The column picture will

have4(1, 1) + 2(−2, 1) = 4(column 1)+ 2(column 2)= right side(0, 6).

27 The row picture shows2 planesin 3-dimensional space. The column picture is in

2-dimensional space. The solutions normally fill aline in 3-dimensional space.

28 The row picture shows fourlines in the 2D plane. The column picture is infour-

dimensional space. No solution unless the right side is a combination ofthe two columns.

29 u2 =


 .7

.3


 andu3 =


 .65

.35


 .

The components add to1. They are always positive.

Their components still add to1.

30 u7 andv7 have components adding to1; they are close tos = (.6, .4).


 .8 .3

.2 .7




 .6

.4


 =


 .6

.4


 = steady states. No change when multiplied by


 .8 .3

.2 .7


.

31 M =




8 3 4

1 5 9

6 7 2


 =




5 + u 5− u+ v 5− v

5− u− v 5 5 + u+ v

5 + v 5 + u− v 5− u


; M3(1, 1, 1) = (15, 15, 15);

M4(1, 1, 1, 1) = (34, 34, 34, 34) because1 + 2 + · · ·+ 16 = 136 which is4(34).
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32 A is singular when its third columnw is a combinationcu + dv of the first columns.

A typical column picture hasb outside the plane ofu, v, w. A typical row picture has

the intersection line of two planes parallel to the third plane.Then no solution.

33 w = (5, 7) is 5u + 7v. ThenAw equals5 timesAu plus 7 timesAv. Linearity

means : Whenw is a combination ofu andv, thenAw is the same combination ofAu

andAv.

34




2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2







x1

x2

x3

x4



=




1

2

3

4




has the solution




x1

x2

x3

x4



=




4

7

8

6




.

35 x = (1, . . . , 1) givesSx = sum of each row= 1+ · · ·+9 = 45 for Sudoku matrices.

6 row orders(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) are in Section 2.7.

The same6 permutations ofblocksof rows produce Sudoku matrices, so64 = 1296

orders of the9 rows all stay Sudoku. (And also1296 permutations of the9 columns.)

Problem Set 2.2, page 53

1 Multiply equation1 by ℓ21 = 10
2

= 5 and subtract from equation2 to find2x+3y = 1

(unchanged) and−6y = 6. The pivots to circle are 2 and−6.

2 −6y = 6 givesy = −1. Then2x + 3y = 1 givesx = 2. Multiplying the right side

(1, 11) by 4 will multiply the solution by 4 to give the new solution(x, y) = (8,−4).

3 Subtract− 1
2 (or add 1

2 ) times equation 1. The new second equation is3y=3. Then

y=1 andx=5. If the right side changes sign, so does the solution:(x, y)=(−5,−1).

4 Subtractℓ = c
a times equation1 from equation2. The new second pivot multiplyingy

is d− (cb/a) or (ad− bc)/a. Theny = (ag− cf)/(ad− bc). Notice the “determinant

of A” = ad− bc. It must be nonzero for this division.
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5 6x + 4y is 2 times3x + 2y. There is no solution unless the right side is2 · 10 = 20.

Then all the points on the line3x+2y = 10 are solutions, including(0, 5) and(4,−1).

The two lines in the row picture are the same line, containing all solutions.

6 Singular system ifb = 4, because4x+ 8y is 2 times2x+ 4y. Theng = 32 makes the

lines2x+ 4y = 16 and4x+ 8y = 32 become thesame: infinitely many solutions like

(8, 0) and(0, 4).

7 If a = 2 elimination must fail (two parallel lines in the row picture). The equations

have no solution. Witha = 0, elimination will stop for a row exchange. Then3y = −3

givesy = −1 and4x+ 6y = 6 givesx = 3.

8 If k = 3 elimination must fail: no solution. Ifk = −3, elimination gives0 = 0 in

equation 2: infinitely many solutions. Ifk = 0 a row exchange is needed: one solution.

9 On the left side,6x− 4y is 2 times(3x− 2y). Therefore we needb2 = 2b1 on the right

side. Then there will be infinitely many solutions (two parallel lines become one single

line in the row picture). The column picture has both columns along the same line.

10 The equationy = 1 comes from elimination (subtractx + y = 5 from x + 2y = 6).

Thenx = 4 and5x− 4y = 20− 4 = c = 16.

11 (a) Another solution is1
2
(x+X, y+Y, z+Z). (b) If 25 planes meet at two points,

they meet along the whole line through those two points.

12 Elimination leads to this upper triangular system; then comes back substitution.

2x + 3y + z = 8

y + 3z = 4

8z = 8

gives

x = 2

y = 1 If a zero is at the start of row 2 or row 3,

z = 1 that avoids a row operation.

13 2x − 3y = 3

4x − 5y + z = 7

2x − y − 3z = 5

gives

2x − 3y = 3

y + z = 1

2y + 3z = 2

and

2x − 3y = 3

y + z = 1

− 5z = 0

and

x = 3

y = 1

z = 0

Here are steps1, 2, 3 : Subtract 2× row 1 from row 2, subtract 1× row 1 from row 3,

subtract 2× row 2 from row 3
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14 Subtract2 times row 1 from row 2 to reach(d−10)y−z = 2. Equation (3) isy−z = 3.

If d = 10 exchange rows 2 and 3. Ifd = 11 the system becomes singular.

15 The second pivot position will contain−2 − b. If b = −2 we exchange with row 3.

If b = −1 (singular case) the second equation is−y − z = 0. But equation(3) is the

same so there is aline of solutions(x, y, z) = (1, 1,−1).

16 (a)

Example of

2 exchanges

0x + 0y + 2z = 4

x + 2y + 2z = 5

0x + 3y + 4z = 6

(exchange 1 and 2, then 2 and 3)

(b)

Exchange

but then

breakdown

0x + 3y + 4z = 4

x + 2y + 2z = 5

0x + 3y + 4z = 6

(rows 1 and 3 are not consistent)

17 If row 1 = row 2, then row2 is zero after the first step; exchange the zero row with row

3 and row3 has no pivot. If column2 = column1, then column2 has no pivot.

18 Examplex + 2y + 3z = 0, 4x + 8y + 12z = 0, 5x + 10y + 15z = 0 has 9 different

coefficients but rows 2 and 3 become0 = 0: infinitely many solutions toAx = 0 but

almost surely no solution toAx = b for a randomb.

19 Row 2 becomes3y − 4z = 5, then row 3 becomes(q + 4)z = t − 5. If q = −4 the

system is singular—no third pivot. Then ift = 5 the third equation is0 = 0 which

allows infinitely many solutions. Choosingz = 1 the equation3y−4z = 5 givesy = 3

and equation 1 givesx = −9.

20 Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes

form a triangle. This happens if rows1+2=row 3 on the left side but not the right side:

x+y+z= 0, x−2y−z = 1, 2x−y= 4. No parallel planes but still no solution. The

three planes in the row picture form a triangular tunnel.

21 (a) Pivots2, 3
2
, 4
3
, 5
4

in the equations2x + y = 0, 3
2
y + z = 0, 4

3
z + t = 0, 5

4
t = 5

after elimination. Back substitution givest = 4, z = −3, y = 2, x = −1. (b) If

the off-diagonal entries change from+1 to−1, the pivots are the same. The solution is

(1, 2, 3, 4) instead of(−1, 2,−3, 4).

22 The fifth pivot is 6

5
for both matrices (1’s or−1’s off the diagonal). Thenth pivot is

n+1

n
.
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23 If ordinary elimination leads tox + y = 1 and2y = 3, the original second equation

could be2y+ ℓ(x+y) = 3+ ℓ for anyℓ. Thenℓ will be the multiplier to reach2y = 3,

by subtractingℓ times equation1 from equation2.

24 Elimination fails on


a 2

a a


 if a = 2 or a = 0. (You could notice that the determinant

a2 − 2a is zero fora = 2 anda = 0.)

25 a = 2 (equal columns),a = 4 (equal rows),a = 0 (zero column).

26 Solvable fors = 10 (add the two pairs of equations to geta+b+c+d on the left sides,

12 and2 + s on the right sides). So12 must agree with2 + s, which makess = 10.

The four equations fora, b, c, d aresingular! Two solutions are


1 3

1 7


 and


0 4

2 6


,

A =




1 1 0 0

1 0 1 0

0 0 1 1

0 1 0 1




andU =




1 1 0 0

0 −1 1 0

0 0 1 1

0 0 0 0




.

27 Elimination leaves the diagonal matrix diag(3, 2, 1) in 3x = 3, 2y = 2, z = 2. Then

x = 1, y = 1, z = 2.

28 A(2, :) = A(2, :)− 3 ∗ A(1, :) subtracts3 times row1 from row2.

29 The average pivots for rand(3)withoutrow exchanges were12 , 5, 10 in one experiment—

but pivots 2 and 3 can be arbitrarily large. Their averages are actually infinite !With

row exchangesin MATLAB’s lu code, the averages.75 and .50 and .365 are much

more stable (and should be predictable, also forrandn with normal instead of uniform

probability distribution for the numbers inA).

30 If A(5, 5) is 7 not11, then the last pivot will be0 not4.

31 Rowj of U is a combination of rows1, . . . , j of A (when there are no row exchanges).

If Ax = 0 thenUx = 0 (not true ifb replaces0). U just keeps the diagonal ofA when

A is lower triangular.

32 The question deals with 100 equationsAx = 0 whenA is singular.
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(a) Some linear combination of the 100 rows isthe row of 100 zeros.

(b) Some linear combination of the 100columns is the column of zeros.

(c) A very singular matrix has all ones:A = ones(100). A better example has 99

random rows (or the numbers1i, . . . , 100i in those rows). The 100th row could

be the sum of the first 99 rows (or any other combination of those rows with no

zeros).

(d) The row picture has 100 planesmeeting along a common line through0. The

column picture has 100 vectors all in the same 99-dimensional hyperplane.

Problem Set 2.3, page 66

1 E21 =




1 0 0

−5 1 0

0 0 1


 , E32 =




1 0 0

0 1 0

0 7 1


 , P =




1 0 0

0 0 1

0 1 0







0 1 0

1 0 0

0 0 1


 =




0 1 0

0 0 1

1 0 0


.

2 E32E21b = (1,−5,−35) but E21E32b = (1,−5, 0). WhenE32 comes first, row 3

feels no effect from row 1.

3




1 0 0

−4 1 0

0 0 1


 ,




1 0 0

0 1 0

2 0 1


 ,




1 0 0

0 1 0

0 −2 1


 M = E32E31E21 =




1 0 0

−4 1 0

10 −2 1


 .

ThoseE’s are in the right order to giveMA = U .

4 Elimination on column 4:b =




1

0

0




E21→




1

−4

0




E31→




1

−4

2




E32→




1

−4

10




. The

original Ax = b has becomeUx = c = (1,−4, 10). Then back substitution gives

z = −5, y = 1
2
, x = 1

2
. This solvesAx = (1, 0, 0).

5 Changinga33 from 7 to11 will change the third pivot from 5 to 9. Changinga33 from

7 to 2 will change the pivot from 5 tono pivot.
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6 Example:




2 3 7

2 3 7

2 3 7







1

3

−1



=




4

4

4




. If all columns are multiples of column1, there

is no second pivot.

7 To reverseE31, add 7 times row1 to row 3. The inverse of the elimination matrix

E =




1 0 0

0 1 0

−7 0 1




isE−1 =




1 0 0

0 1 0

7 0 1




. Multiplication confirmsEE−1 = I.

8 M =


a b

c d


 andM* =


 a b

c− ℓa d− ℓb


. detM* = a(d − ℓb) − b(c − ℓa)

reduces toad− bc ! Subtracting row1 from row2 doesn’t changedetM .

9 M=




1 0 0

0 0 1

−1 1 0


. After the exchange, we needE31 (notE21) to act on the new row 3.

10 E13=




1 0 1

0 1 0

0 0 1


 ;




1 0 1

0 1 0

1 0 1


 ;E31E13=




2 0 1

0 1 0

1 0 1


 . Test on the identity matrix!

11 An example with two negative pivots isA =




1 2 2

1 1 2

1 2 1


. The diagonal entries can

change sign during elimination.

12 The first product is




9 8 7

6 5 4

3 2 1




rows and

also columns

reversed.

The second product is




1 2 3

0 1 −2

0 2 −3


.



20 Solutions to Exercises

13 (a) E times the third column ofB is the third column ofEB. A column that starts

at zero will stay at zero. (b)E could add row2 to row 3 to change a zero row to a

nonzero row.

14 E21 has−ℓ21=
1
2 , E32 has−ℓ32=

2
3 , E43 has−ℓ43=

3
4 . Otherwise theE’s matchI .

15 aij = 2i− 3j: A =




−1 −4 −7

1 −2 −5

3 0 −3


 →




−1 −4 −7

0 −6 −12

0 −12 −24


. The zero became−12,

an example offill-in . To remove that−12, chooseE32 =




1 0 0

0 1 0

0 −2 1


.

Every3 by 3 matrix with entriesaij = ci+ dj is singular !

16 (a) The ages ofX andY arex andy: x− 2y = 0 andx+ y = 33; x = 22 andy = 11

(b) The liney = mx + c containsx = 2, y = 5 andx = 3, y = 7 when2m+ c = 5

and3m+ c = 7. Thenm = 2 is the slope.

17 The parabolay=a+bx+cx2 goes through the3 given points when

a+ b+ c = 4

a+ 2b+ 4c = 8

a+ 3b+ 9c = 14

.

Thena = 2, b = 1, andc = 1. This matrix with columns(1, 1, 1), (1, 2, 3), (1, 4, 9) is

a “Vandermonde matrix.”

18 EF =




1 0 0

a 1 0

b c 1


, FE=




1 0 0

a 1 0

b+ac c 1


, E2=




1 0 0

2a 1 0

2b 0 1


, F 3=




1 0 0

0 1 0

0 3c 1


 .

19 PQ =




0 1 0

0 0 1

1 0 0


. In the opposite order, two row exchanges giveQP =




0 0 1

1 0 0

0 1 0


,

P 2 = I . If M exchanges rows2 and3 thenM2 = I (also(−M)
2
= I). There are

many square roots ofI : Any matrixM =


a b

c −a


 hasM2 = I if a2 + bc = 1.



Solutions to Exercises 21

20 (a) Each column ofEB is E times a column ofB (b)


1 0

1 1





1 2 4

1 2 4


 =


 1 2 4

2 4 8


. All rows of EB aremultiplesof

[
1 2 4

]
.

21 No. E =


1 0

1 1


 andF =


1 1

0 1


 giveEF =


1 1

1 2


 butFE =


2 1

1 1


.

22 (a)
∑

a3jxj (b) a21 − a11 (c) a21 − 2a11 (d) (EAx)1 = (Ax)1 =
∑

a1jxj .

23 E(EA) subtracts4 times row1 from row 2 (EEA does the row operation twice).

AE subtracts2 times column2 of A from column1 (multiplication byE on the right

side acts oncolumns instead of rows).

24
[
A b

]
=


2 3 1

4 1 17


→


2 3 1

0 −5 15


. The triangular system is

2x1 + 3x2 = 1

−5x2 = 15

Back substitution givesx1 = 5 andx2 = −3.

25 The last equation becomes0 = 3. If the original 6 is 3, then row 1+ row 2= row 3.

Then the last equation is0 = 0 and the system has infinitely many solutions.

26 (a) Add two columnsb andb∗ to get[A b b∗]. The example has

1 4 1 0

2 7 0 1


→


1 4 1 0

0 −1 −2 1


→ x =


−7

2


 andx∗ =


 4

−1


.

27 (a) No solution ifd=0 andc 6=0 (b) Many solutions ifd=0=c. No effect froma, b.

28 A = AI = A(BC) = (AB)C = IC = C. That middle equation is crucial.

29 E=




1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1




subtracts each row from the next row. The result




1 0 0 0

0 1 0 0

0 1 1 0

0 1 2 1




still has multipliers= 1 in a 3 by 3 Pascal matrix. The productM of all elimination
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matrices is




1 0 0 0

−1 1 0 0

1 −2 1 0

−1 3 −3 1




. This “alternating sign Pascal matrix” is on page91.

30 (a)E = A−1 =


 1 0

−1 1


 will reduce row2 of EM to [2 3].

(b) ThenF = B−1 =


 1 −1

0 1


 will reduce row1 of FEM to [1 1].

(c) ThenE = A−1 twice will reduce row2 of EEFEM to [0 1]

(d) NowEEFEM = B. MoveE’s andF ’s to getM = ABAAB. This question

focuses on positive integer matricesM with ad − bc = 1. The same steps make the

entries smaller and smaller untilM is a product ofA’s andB’s.

31 E21 =




1

a 1

0 0 1

0 0 0 1




, E32 =




1

0 1

0 b 1

0 0 0 1




, E43 =




1

0 1

0 0 1

0 0 c 1




,

E43 E32E21 =




1

a 1

ab b 1

abc bc c 1




Problem Set 2.4, page 77

1 If all entries ofA,B,C,D are1, thenBA = 3 ones(5) is 5 by 5; AB = 5 ones(3) is

3 by 3; ABD = 15 ones(3, 1) is 3 by 1. DC andA(B + C) are not defined.

2 (a) A (column2 of B) (b) (Row1 of A) B (c) (Row3 of A)(column5 of B)

(d) (Row1 of C)D(column1 of E).



Solutions to Exercises 23

3 AB + AC is the same asA(B + C) =


3 8

6 9


. (Distributive law).

4 A(BC) = (AB)C by theassociative law. In this example both answers are


0 0

0 0


.

Column1 of AB and row2 of C are zero (then multiply columns times rows).

5 (a) A2 =


1 2b

0 1


 andAn =


1 nb

0 1


. (b) A2 =


4 4

0 0


 andAn =


2

n 2n

0 0


.

6 (A+B)2 =


10 4

6 6


 = A2 +AB +BA+B2. ButA2 + 2AB +B2 =


16 2

3 0


.

7 (a) True (b) False (c) True (d) False: usually(AB)2 = ABAB 6= A2B2.

8 The rows ofDA are3 (row 1 ofA) and5 (row 2 of A). Both rows ofEA are row2 ofA.

The columns ofAD are3 (column1 of A) and5 (column2 of A). The first column of

AE is zero, the second is column1 of A + column2 of A.

9 AF =




a a+ b

c c+ d


 andE(AF ) equals(EA)F because matrix multiplication is

associative.

10 FA =




a+ c b+ d

c d


 and thenE(FA) =




a+ c b+ d

a+ 2c b+ 2d


. E(FA) is not

the same asF (EA) because multiplication is not commutative:EF 6= FE.

11 SupposeEA does the row operation and then(EA)F does the column operation (be-

causeF is multiplying from the right). The associative law says that(EA)F = E(AF )

so the column operation can be done first !

12 (a) B = 4I (b) B = 0 (c) B =




0 0 1

0 1 0

1 0 0


 (d) Every row ofB is 1, 0, 0.
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13 AB =




a 0

c 0


 = BA =




a b

0 0


 givesb = c = 0. ThenAC = CA gives

a = d. The only matrices that commute withB andC (and all other matrices) are

multiples ofI : A = aI .

14 (A − B)2 = (B − A)2 = A(A − B) − B(A − B) = A2 − AB − BA + B2. In a

typical case (whenAB 6= BA) the matrixA2−2AB+B2 is different from(A−B)2.

15 (a) True (A2 is only defined whenA is square).

(b) False (ifA ism by n andB is n bym, thenAB ism bym andBA is n by n).

(c) True by part (b).

(d) False (takeB = 0).

16 (a) mn (use every entry ofA) (b) mnp = p×part (a) (c)n3 (n2 dot products).

17 (a) Use only column 2 ofB (b) Use only row 2 ofA (c)–(d) Use row 2 of firstA.

Column2 ofAB =


 0

0


 Row2 ofAB =

[
1 0 0

]
Row2 ofA2 =

[
0 1

]

Row2 of A3 =
[
3 −2

]

18 A =




1 1 1

1 2 2

1 2 3




hasaij = min(i, j). A =




1 −1 1

−1 1 −1

1 −1 1




hasaij = (−1)i+j =

“alternating sign matrix”.A =




1/1 1/2 1/3

2/1 2/2 2/3

3/1 3/2 3/3




hasaij = i/j. This will be an

example of arank one matrix: 1 column
[
1 2 3

]T
multiplies1 row

[
1 1

2
1
3

]
.

19 Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four.

20 (a) a11 (b) ℓ31 = a31/a11 (c) a32 −
(
a31
a11

)
a12 (d) a22 −

(
a21
a11

)
a12.
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21 A2 =




0 0 4 0

0 0 0 4

0 0 0 0

0 0 0 0




, A3 =




0 0 0 8

0 0 0 0

0 0 0 0

0 0 0 0




, A4 = zero matrix forstrictly triangularA.

ThenAv = A




x

y

z

t




=




2y

2z

2t

0




, A2v =




4z

4t

0

0




, A3v =




8t

0

0

0




, A4v = 0.

22 A =


 0 1

−1 0


 hasA2 = −I ; BC =


1 −1

1 −1




1 1

1 1


 =


0 0

0 0


;

DE =


0 1

1 0




 0 1

−1 0


 =


−1 0

0 1


 = −ED. You can find more examples.

23 A =




0 1

0 0


 hasA2 = 0. Note: Any matrixA = column times row= uvT will

haveA2 = uvTuvT = 0 if vTu = 0. A =




0 1 0

0 0 1

0 0 0




hasA2 =




0 0 1

0 0 0

0 0 0




butA3 = 0; strictly triangular as in Problem 21.

24 (A1)
n =


2

n 2n − 1

0 1


, (A2)

n = 2n−1


1 1

1 1


, (A3)

n =


a

n an−1b

0 0


.

25




a b c

d e f

g h i







1 0 0

0 1 0

0 0 1


=




a

d

g




[
1 0 0

]

+




d

e

h




[
0 1 0

]

+




c

f

i




[
0 0 1

]

.



26 Solutions to Exercises

26
Columns ofA

times rows ofB




1

2

2



[
3 3 0

]
+




0

4

1



[
1 2 1

]
=




3 3 0

6 6 0

6 6 0


+




0 0 0

4 8 4

1 2 1


 =




3 3 0

10 14 4

7 8 1


 = AB.

27 (a) (row 3 ofA) · (column 1 or 2 ofB) and (row 3 ofA) · (column 2 ofB) are all zero.

(b)




x

x

0



[
0 x x

]
=




0 x x

0 x x

0 0 0


 and




x

x

x



[
0 0 x

]
=




0 0 x

0 0 x

0 0 x


: both upper.

28
A timesB

with cuts
A

[ ∣∣∣∣
∣∣∣∣
∣∣∣∣
]
,


 −−−−


B,


 −−−−



[ ∣∣∣∣

∣∣∣∣
∣∣∣∣
]
,

[ ∣∣∣∣
∣∣∣∣
]



−−−−
−−−−




4 cols 2 rows 2 rows –4 cols 3 cols –3 rows

29 E21 =




1 0 0

1 1 0

0 0 1


 andE31 =




1 0 0

0 1 0

−4 0 1


 produce zeros in the2, 1 and3, 1 entries.

Multiply E’s to getE = E31E21 =




1 0 0

1 1 0

−4 0 1


. ThenEA =




2 1 0

0 1 1

0 1 3


 is the

result of bothE’s since(E31E21)A = E31(E21A).

30 In 29, c =


−2

8


, D =


0 1

5 3


, D − cb/a =


1 1

1 3


 in the lower corner ofEA.

31


A −B

B A




x

y


=


Ax− By

Bx+ Ay


 real part

imaginary part.

Complex matrix times complex vector

needs4 real times real multiplications.

32 A timesX = [x1 x2 x3 ] will be the identity matrixI = [Ax1 Ax2 Ax3 ].
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33 b =




3

5

8


 givesx = 3x1 + 5x2 + 8x3 =




3

8

16


 ; A =




1 0 0

−1 1 0

0 −1 1


 will have

thosex1 = (1, 1, 1),x2 = (0, 1, 1),x3 = (0, 0, 1) as columns of its “inverse”A−1.

34 A ∗ ones=


a+ b a+ b

c+ d c+ d


 agrees withones∗A =


a+ c b+ b

a+ c b+ d


 whenb = c

anda = d

ThenA =


a b

b a


. These are the matrices that commute with


1 1

1 1


.

35 S =




0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0



, S2 =




2 0 2 0

0 2 0 2

2 0 2 0

0 2 0 2



,

aba, ada cba, cda

bab, bcb dab, dcb

abc, adc cbc, cdc

bad, bcd dad, dcd

These show

16 2-step

paths in

the graph

36 Multiplying AB =(m by n)(n by p) needsmnp multiplications. Then(AB)C needs

mpq more. MultiplyBC = (n by p)(p by q) needsnpq and thenA(BC) needsmnq.

(a) If m,n, p, q are2, 4, 7, 10 we compare(2)(4)(7) + (2)(7)(10) = 196 with the

larger number(2)(4)(10) + (4)(7)(10) = 360. SoAB first is better, we want to

multiply that7 by 10 matrix by as few rows as possible.

(b) If u,v,w areN by 1, then(uTv)wT needs2N multiplications butuT(vwT)

needsN2 to findvwT andN2 more to multiply by the row vectoruT. Apologies

to use the transpose symbol so early.

(c) We are comparingmnp + mpq with mnq + npq. Divide all terms bymnpq:

Now we are comparingq−1 + n−1 with p−1 + m−1. This yields a simple im-

portant rule. If matricesA andB are multiplyingv for ABv, don’t multiply the

matrices first. Better to multiplyBv and thenA(Bv).
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37 The proof of(AB)c = A(Bc) used the column rule for matrix multiplication—this

rule is clearly linear, column by column.

Even for nonlinear transformations,A(B(c)) would be the“composition” of A with

B (applyingB thenA). This compositionA ◦B is justAB for matrices.

One of many uses for the associative law: The left-inverseB = right-inverseC from

B = B(AC) = (BA)C = C.

38 (a) Multiply the columnsa1, . . . ,am by the rowsaT
1 , . . . ,a

T
m and add the resulting

matrices.

(b) ATCA = c1a1a
T
1 + · · ·+ cmamaT

m. DiagonalC makes it neat.

Problem Set 2.5, page 92

1 A−1 =


 0 1

4

1
3 0


 and B−1 =




1
2

0

−1 1
2


 and C−1 =


 7 −4

−5 3


.

2 For the first, a simple row exchange hasP 2 = I so P−1 = P . For the second,

P−1 =




0 0 1

1 0 0

0 1 0


. AlwaysP−1 = “transpose” ofP , coming in Section2.7.

3


x

y


 =


 .5

−.2


 and


 t

z


 =


−.2

.1


 so A−1 =

1

10


 5 −2

−2 1


. This question

solvedAA−1 = I column by column, the main idea of Gauss-Jordan elimination. For

a different matrixA =


 1 1

0 0


, you could find a first column forA−1 but not a

second column—soA would be singular (no inverse).

4 The equations arex+ 2y = 1 and3x+ 6y = 0. No solution because3 times equation

1 gives3x+ 6y = 3.
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5 An upper triangularU with U2 = I isU =


1 a

0 −1


 for anya. And also−U .

6 (a) Multiply AB = AC byA−1 to findB = C (sinceA is invertible) (b) As long as

B − C has the form


 x y

−x −y


, we haveAB = AC for A =


1 1

1 1


.

7 (a) In Ax = (1, 0, 0), equation 1+ equation 2− equation 3 is0 = 1 (b) Right

sides must satisfyb1+ b2 = b3 (c) Row 3 becomes a row of zeros—no third pivot.

8 (a) The vectorx = (1, 1,−1) solvesAx = 0 (b) After elimination, columns 1

and 2 end in zeros. Then so does column3 = column1 + 2: no third pivot.

9 Yes,B is invertible (A was just multiplied by a permutation matrixP ). If you exchange

rows1 and2 of A to reachB, you exchangecolumns1 and2 of A−1 to reachB−1. In

matrix notation,B = PA hasB−1 = A−1P−1 = A−1P for thisP .

10 A−1 =




0 0 0 1/5

0 0 1/4 0

0 1/3 0 0

1/2 0 0 0




andB−1 =




3 −2 0 0

−4 3 0 0

0 0 6 −5

0 0 −7 6




( invert each

block of B)

11 (a) If B = −A then certainlyA+ B = zero matrix is not invertible.

(b) A =


1 0

0 0


 andB =


0 0

0 1


 are both singular butA+B = I is invertible.

12 Multiply C = AB on the left byA−1 and on the right byC−1. ThenA−1 = BC−1.

13 M−1 = C−1B−1A−1 so multiply on the left byC and the right byA : B−1 =

CM−1A.

14 B−1 = A−1


1 0

1 1



−1

= A−1


 1 0

−1 1


: subtractcolumn2 of A−1 from column1.

15 If A has a column of zeros, so doesBA. ThenBA = I is impossible. There is noA−1.
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16


a b

c d




 d −b

−c a


 =


ad− bc 0

0 ad− bc


.

The inverse of each matrix is

the other divided byad− bc

17 E32E31E21 =




1

1

−1 1







1

1

1 1







1

−1 1

1


 =




1

−1 1

0 −1 1


 = E.

Reverse the order and change−1 to+1 to get inversesE−1
21 E−1

31 E−1
32 =




1

1 1

1 1 1


 =

L = E−1. Notice the1’s unchanged by multiplying inverses in this order.

18 A2B = I can also be written asA(AB) = I . ThereforeA−1 isAB.

19 The(1, 1) entry requires4a− 3b = 1; the(1, 2) entry requires2b− a = 0. Thenb = 1

5

anda = 2

5
. For the5 by 5 case5a− 4b = 1 and2b = a giveb = 1

6
anda = 2

6
.

20 A ∗ ones(4, 1) = A (column of1’s) is the zero vector soA cannot be invertible.

21 Six of the sixteen0− 1 matrices are invertible :I andP and all four with three 1’s.

22


1 3 1 0

2 7 0 1


→


1 3 1 0

0 1 −2 1


→


1 0 7 −3

0 1 −2 1


 =

[
I A−1

]
;


1 4 1 0

3 9 0 1


→


1 4 1 0

0 −3 −3 1


→


1 0 −3 4/3

0 1 1 −1/3


 =

[
I A−1

]
.

23 [A I] =




2 1 0 1 0 0

1 2 1 0 1 0

0 1 2 0 0 1


→




2 1 0 1 0 0

0 3/2 1 −1/2 1 0

0 1 2 0 0 1


→




2 1 0 1 0 0

0 3/2 1 −1/2 1 0

0 0 4/3 1/3 −2/3 1


→




2 1 0 1 0 0

0 3/2 0 −3/4 3/2 −3/4

0 0 4/3 1/3 −2/3 1


→
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


2 0 0 3/2 −1 1/2

0 3/2 0 −3/4 3/2 −3/4

0 0 4/3 1/3 −2/3 1


→




1 0 0 3/4 −1/2 1/4

0 1 0 −1/2 1 −1/2

0 0 1 1/4 −1/2 3/4


 =

[I A−1].

24




1 a b 1 0 0

0 1 c 0 1 0

0 0 1 0 0 1


→




1 a 0 1 0 −b

0 1 0 0 1 −c

0 0 1 0 0 1


→




1 0 0 1 −a ac− b

0 1 0 0 1 −c

0 0 1 0 0 1


.

25




2 1 1

1 2 1

1 1 2




−1

=
1

4




3 −1 −1

−1 3 −1

−1 −1 3


 ; B




1

1

1


 =




2 −1 −1

−1 2 −1

−1 −1 2







1

1

1


 =




0

0

0




soB−1 does not exist.

26 E21A=


 1 0

−2 1




1 2

2 6


=


1 2

0 2


. E12E21A=


1 −1

0 1




 1 0

−2 1


A =


1 0

0 2


.

Multiply by D =


1 0

0 1/2


 to reachDE12E21A = I . ThenA−1 = DE12E21 =

1

2


 6 −2

−2 1


.

27 A−1 =




1 0 0

−2 1 −3

0 0 1


 (notice the sign changes);A−1 =




2 −1 0

−1 2 −1

0 −1 1


.

28


0 2 1 0

2 2 0 1


→


2 2 0 1

0 2 1 0


→


2 0 −1 1

0 2 1 0


→


1 0 −1/2 1/2

0 1 1/2 0


.

This is
[
I A−1

]
: row exchanges are certainly allowed in Gauss-Jordan.
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29 (a) True (IfA has a row of zeros, then everyAB has too, andAB = I is impossible).

(b) False (the matrix of all ones is singular even with diagonal 1’s.

(c) True (the inverse ofA−1 is A and the inverse ofA2 is (A−1)2).

30 Elimination produces the pivotsa anda−b anda−b. A−1 =
1

a(a− b)




a 0 −b

−a a 0

0 −a a


.

The matrixC is not invertible ifc = 0 or c = 7 or c = 2.

31 A−1 =




1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1




. When the triangularA has1,−1, 1,−1, . . . on successive

diagonals,A−1 is bidiagonalwith 1’s on the diagonal and first superdiagonal.

32 x = (1, 1, . . . , 1) hasx = Px = Qx so(P −Q)x = 0. Permutations do not change

this all-ones vector.

33


 I 0

−C I


 and


 A−1 0

−D−1CA−1 D−1


 and


−D I

I 0


.

34 A can be invertible with diagonal zeros (example to find).B is singular because each

row adds to zero. The all-ones vectorx hasBx = 0.

35 The equationLDLD = I says thatLD = pascal (4, 1) is its own inverse.

36 hilb(6) is not the exact Hilbert matrix because fractions are rounded off. Soinv(hilb(6))

is not the exact inverse either.

37 The three Pascal matrices haveP = LU = LLT and theninv(P ) = inv(LT)∗inv(L).

38 Ax = b has many solutions whenA = ones (4, 4) = singularandb = ones (4, 1).

A\b in MATLAB will pick the shortest solutionx = (1, 1, 1, 1)/4. This is the only

solution that is a combination of the rows ofA (later it comes from the “pseudoinverse”

A+ = pinv(A) which replacesA−1 whenA is singular). Any vector that solvesAx = 0

could be added to this particular solutionx.
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39 The inverse ofA =




1 −a 0 0

0 1 −b 0

0 0 1 −c

0 0 0 1




isA−1 =




1 a ab abc

0 1 b bc

0 0 1 c

0 0 0 1




. (This would

be a good example for the cofactor formulaA−1 = CT/ detA in Section 5.3)

40




1

a 1

b 0 1

c 0 0 1







1

0 1

0 d 1

0 e 0 1







1

1

1

f 1



=




1

a 1

b d 1

c e f 1




In this order the multipliersa, b, c, d, e, f are unchanged in the product (important for

A = LU in Section 2.6).

41 4 by 4 still with T11 = 1 has pivots1, 1, 1, 1; reversing toT ∗ = UL makesT ∗
44 = 1.

T =




1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2




and T−1 =




4 3 2 1

3 3 2 1

2 2 2 1

1 1 1 1




42 Add the equationsCx = b to find0 = b1 + b2 + b3 + b4. SoC is singular. Same for

Fx = b.

43 The block pivots areA and S = D − CA−1B (and d− cb/a is the correct

second pivot of an ordinary 2 by 2 matrix). The example problem has

Schur complementS =


 1 0

0 1


−


 4

4


 1

2

[
3 3

]
=


 −5 −6

−6 −5


.

44 Inverting the identityA(I + BA) = (I + AB)A gives(I + BA)−1A−1 = A−1(I +

AB)−1. SoI+BA andI+AB are both invertible or both singular whenA is invertible.

(This remains true also whenA is singular : Chapter 6 will show thatAB andBA have

the same nonzero eigenvalues, and we are looking here at the eigenvalue−1.)
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Problem Set 2.6, page 104

1 ℓ21 = 1 multiplied row 1;L =


1 0

1 1


 times


1 0

1 1




x

y


 =


5

2


 = c is Ax = b:


1 1

1 2




x

y


 =


5

7


. L multipliesUx = c to giveAx = b.

2 Lc = b is


1 0

1 1




c1
c2


 =


5

7


, solved byc =


5

2


 as elimination goes forward.

Ux = c is


1 1

0 1




x

y


 =


5

2


, solved byx =


3

2


 in back substitution.

3 ℓ31 = 1 andℓ32 = 2 (and ℓ33 = 1): reverse steps to getAu = b from Ux = c:

1 times(x+y+z = 5)+2 times(y+2z = 2)+1 times(z = 2) givesx+3y+6z = 11.

4 Lc =




1

1 1

1 2 1







5

2

2


 =




5

7

11


; Ux =




1 1 1

1 2

1





x


 =




5

2

2


; x =




5

−2

2


.

5 EA =




1

0 1

−3 0 1







2 1 0

0 4 2

6 3 5


 =




2 1 0

0 4 2

0 0 5


 = U .

With E−1 asL, A = LU =




1

0 1

3 0 1







2 1 0

0 4 2

0 0 5


 =




2 1 0

0 4 2

6 3 5


.

6




1

0 1

0 −2 1







1

−2 1

0 0 1


A =




1 1 1

0 2 3

0 0 −6


 = U . ThenA =




1 0 0

2 1 0

0 2 1


 U is

the same asE−1
21 E−1

32 U = LU . The multipliersℓ21 = ℓ32 = 2 fall into place inL.
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7 E32E31E21 A =




1

1

−2 1







1

1

−3 1







1

−2 1

1







1 0 0

2 2 2

3 4 5


. This is




1 0 1

0 2 0

0 0 2


 = U . Put those multipliers2, 3, 2 intoL.ThenA =




1 0 0

2 1 0

3 2 1


U = LU .

8 E = E32E31E21 =




1

−a 1

ac− b −c 1


 is mixed butL isE−1

21 E−1
31 E−1

32 =




1

a 1

b c 1


.

9 2 by 2:d = 0 not allowed;




1 1 0

1 1 2

1 2 1


=




1

ℓ 1

m n 1







d e g

f h

i




d = 1, e = 1, thenℓ = 1

f = 0 is not allowed

no pivot in row 2

10 c = 2 leads to zero in the second pivot position: exchange rows and not singular.

c = 1 leads to zero in the third pivot position. In this case the matrix issingular.

11 A =




2 4 8

0 3 9

0 0 7


 hasL = I (A is already upper triangular) andD =




2

3

7


 ;

A=LU hasU=A; A=LDU hasU = D−1A=




1 2 4

0 1 3

0 0 1


with 1’s on the diagonal.

12 A =


2 4

4 11


 =


1 0

2 1




2 4

0 3


 =


1 0

2 1




2 0

0 3




1 2

0 1


=LDU ; U isLT




1

4 1

0 −1 1







1 4 0

0 −4 4

0 0 4


 =




1

4 1

0 −1 1







1

−4

4







1 4 0

0 1 −1

0 0 1


=LDLT.



36 Solutions to Exercises

13




a a a a

a b b b

a b c c

a b c d



=




1

1 1

1 1 1

1 1 1 1







a a a a

b− a b− a b− a

c− b c− b

d− c




. Need

a 6= 0 All of the

b 6= a multipliers

c 6= b areℓij = 1

d 6= c for thisA

14




a r r r

a b s s

a b c t

a b c d



=




1

1 1

1 1 1

1 1 1 1







a r r r

b− r s− r s− r

c− s t− s

d− t




. Need

a 6= 0

b 6= r

c 6= s

d 6= t

15


1 0

4 1


 c =


 2

11


 givesc =


2

3


. Then


2 4

0 1


x =


2

3


 givesx =


−5

3


.

Ax = b is LUx =


2 4

8 17


 x =


 2

11


. Eliminate to


2 4

0 1


x =


2

3


 = c.

16




1 0 0

1 1 0

1 1 1


 c =




4

5

6


 givesc =




4

1

1


. Then




1 1 1

0 1 1

0 0 1


x =




4

1

1


 givesx =




3

0

1


.

Those are forward elimination and back substitution for




1 1 1

1 2 2

1 2 3


x =




4

5

6


.

17 (a)L goes toI (b) I goes toL−1 (c)LU goes toU . Elimination multiplies byL−1!

18 (a) Multiply LDU = L1D1U1 by inverses to getL−1
1 LD = D1U1U

−1. The left side

is lower triangular, the right side is upper triangular⇒ both sides are diagonal.

(b) L,U, L1, U1 have diagonal1’s soD = D1. ThenL−1
1 L andU1U

−1 are bothI .

19




1

1 1

0 1 1







1 1 0

1 1

1


 = LIU ;




a a 0

a a+ b b

0 b b+ c


 = L




a

b

c


U .

A tridiagonal matrixA hasbidiagonal factorsL andU .
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20 A tridiagonalT has 2 nonzeros in the pivot row and only one nonzero below the pivot

(one operation to findℓ and then one for the new pivot!). Only2n operations for

elimination on a tridiagonal matrix.T =bidiagonalL times bidiagonalU .

21 For the first matrixA,L keeps the 3 zeros at the start of rows. ButU may not have the

upper zero whereA24 = 0. For the second matrixB,L keeps the bottom left zero at

the start of row 4.U keeps the upper right zero at the start of column 4. One zero inA

and two zeros inB are filled in.

22 Eliminatingupwards,




5 3 1

3 3 1

1 1 1


 →




4 2 0

2 2 0

1 1 1


 →




2 0 0

2 2 0

1 1 1


 = L. We reach

a lower triangularL, and the multipliers are in anuppertriangularU . A = UL with

U =




1 1 1

0 1 1

0 0 1


.

23 The 2 by 2 upper submatrixA2 has the first two pivots5, 9. Reason: Elimination onA

starts in the upper left corner with elimination onA2.

24 The upper left blocks all factor at the same time asA: Ak is LkUk. SoA = LU is

possible only if all those blocksAk are invertible.

25 Thei, j entry ofL−1 is j/i for i ≥ j. AndLi i−1 is (1− i)/i below the diagonal

26 (K−1)ij = j(n− i+ 1)/(n+ 1) for i ≥ j (and symmetric): MultiplyK−1 by n+ 1

(the determinant ofK) to see all whole numbers.



38 Solutions to Exercises

Problem Set 2.7, page 117

1 A =


1 0

9 3


 hasAT =


1 9

0 3


 , A−1 =


 1 0

−3 1/3


 , (A−1)T = (AT)−1 =


1 −3

0 1/3


;

A =


1 c

c 0


 hasAT = A andA−1 =

1

c2


0 c

c −1


 = (A−1)T.

2 (AB)T =


1 2

3 7


 = BTAT. This answer is different fromATBT (except when

AB = BA and transposing givesBTAT = ATBT).

3 (a) ((AB)−1)T = (B−1A−1)T = (A−1)T(B−1)T. This is also(AT)−1(BT)−1.

(b) If U is upper triangular, so isU−1: then(U−1)T is lower triangular.

4 A =


0 1

0 0


 hasA2 = 0. But the diagonal ofATA has dot products of columns ofA

with themselves. If ATA = 0, zero dot products⇒ zero columns⇒ A = zero matrix.

5 (a) xTAy=
[
0 1

]

1 2 3

4 5 6







0

1

0


=5

(b) This is the rowxTA =
[
4 5 6

]
timesy.

(c) This is also the rowxT timesAy=


2

5


.

6 MT =


A

T CT

BT DT


; MT = M needsAT = A andBT = C andDT = D.

7 (a) False:


 0 A

A 0


 is symmetric only ifA = AT.

(b) False: The transpose ofAB isBTAT = BA. So(AB)T = AB needsBA = AB.
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(c) True: Invertible symmetric matrices have symmetric inverses! Easiest proof is to

transposeAA−1 = I .

(d) True:(ABC)T is CTBTAT(= CBA for symmetric matricesA,B, andC).

8 The1 in row 1 hasn choices; then the1 in row 2 hasn− 1 choices . . . (n! overall).

9 P1P2 =




0 1 0

0 0 1

1 0 0







1 0 0

0 0 1

0 1 0


 =




0 0 1

0 1 0

1 0 0


 but P2P1 =




0 1 0

1 0 0

0 0 1


.

If P3 andP4 exchangedifferentpairs of rows,P3P4 = P4P3 = both exchanges.

10 (3, 1, 2, 4) and(2, 3, 1, 4) keep4 in place;6 more evenP ’s keep 1 or 2 or 3 in place;

(2, 1, 4, 3) and(3, 4, 1, 2) and(4, 3, 2, 1) exchange 2 pairs.(1, 2, 3, 4) makes12.

11 PA =




0 1 0

0 0 1

1 0 0







0 0 6

1 2 3

0 4 5


 =




1 2 3

0 4 5

0 0 6


 is upper triangular. MultiplyingA

on the rightby a permutation matrixP2 exchanges thecolumnsof A. To make thisA

lower triangular, we also needP1 to exchange rows 2 and 3:

P1AP2 =




1

1

1


A




1

1

1


 =




6 0 0

5 4 0

3 2 1


.

12 (Px)T(Py)=xTPTPy=xTy sincePTP =I . In generalPx·y=x·PTy 6= x·Py:

Non-equality whereP 6= PT:




0 1 0

0 0 1

1 0 0







1

2

3


 ·




1

1

2


 6=




1

2

3


 ·




0 1 0

0 0 1

1 0 0







1

1

2


.

13 A cyclic P =




0 1 0

0 0 1

1 0 0


 or its transpose will haveP 3 = I : (1, 2, 3) → (2, 3, 1) →

(3, 1, 2) → (1, 2, 3). The permutation̂P =


1 0

0 P


 for the sameP hasP̂ 4 = P̂ 6= I.
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14 The “reverse identity”P takes(1, . . . , n) into (n, . . . , 1). When rows and also columns

are reversed, the1, 1 andn, n entries ofA change places inPAP . So do the1, n and

n, 1 entries. In general(PAP )ij is (A)n−i+1,n−j+1 .

15 (a) If P sends row1 to row4, thenPT sends row4 to row1 (b) P =


E 0

0 E


 =

PT with E =


0 1

1 0


moves all rows:1 and2 are exchanged,3 and4 are exchanged.

16 A2 − B2 (but not(A + B)(A − B), this is different) and alsoABA are symmetric if

A andB are symmetric.

17 (a) S =


1 1

1 1


= ST is not invertible (b)S =


0 1

1 1


 needs row exchange

(c) S =


1 1

1 0


 has pivotsD =


1 0

0 −1


 : no real square root.

18 (a) 5+ 4+ 3+ 2+ 1 = 15 independent entries ifS = ST (b) L has 10 andD has 5;

total 15 inLDLT (c) Zero diagonal ifAT = −A, leaving4+3+2+1 = 10 choices.

19 (a) The transpose ofATSA isATSTAT T = ATSA = n by n whenST = S (anym

by n matrixA) (b) (ATA)jj = (columnj of A)· (columnj of A) = (length squared

of columnj) ≥ 0.

20


1 3

3 2


 =


1 0

3 1




1 0

0 −7




1 3

0 1


;


1 b

b c


 =


1 0

b 1




1 0

0 c− b2




1 b

0 1







2 −1 0

−1 2 −1

0 −1 2


 =




1

−1

2
1

0 −2

3
1







2

3

2

4

3







1 −1

2
0

1 −2

3

1


 = LDLT.

21 Elimination on a symmetric 3 by 3 matrix leaves a symmetric lower right 2 by 2 matrix.


2 4 8

4 3 9

8 9 0


 and




1 b c

b d e

c e f


 lead to


−5 −7

−7 −32


 and


d− b2 e− bc

e− bc f − c2


 : symmetric!
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22




1

1

1


A =




1

0 1

2 3 1







1 0 1

1 1

−1


;




1

1

1


A =




1

1 1

2 0 1







1 2 0

−1 1

1




23 A =




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0



= P andL = U = I .

This cyclicP exchanges rows1-2 then

rows2-3 then rows3-4.

24 PA = LU is




1

1

1







0 1 2

0 3 8

2 1 1


 =




1

0 1

0 1/3 1







2 1 1

3 8

−2/3


. If we

wait to exchange anda12 is the pivot,A = L1P1U1 =




1

3 1

1







1

1

1







2 1 1

0 1 2

0 0 2


.

25 One way to decide even vs. odd is to count all pairs thatP has in the wrong order. Then

P is even or odd when that count is even or odd. Hard step: Show that an exchange

always switches that count! Then 3 or 5 exchanges will leave that count odd.

26 (a) E21=




1

−3 1

1


puts 0 in the2, 1 entry ofE21A. ThenE21AE

T
21=




1 0 0

0 2 4

0 4 9




is still symmetric, with zero also in its 1, 2 entry. (b) Now useE32 =




1

1

−4 1




to make the 3, 2 entry zero andE32E21AE
T
21E

T
32 = D also has zero in its 2, 3 entry.

Key point: Elimination from both sides gives the symmetricLDLT directly.

27 A =




0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2




= AT has0, 1, 2, 3 in every row. I don’t know any rules for a

symmetric construction like this “Hankel matrix” with constant antidiagonals.
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28 Reordering the rows and/or the columns of
[
a b

c d

]
will move the entrya. So the result

cannot be the transpose (which doesn’t movea).

29 (a) Total currents areATy =




1 0 1

−1 1 0

0 −1 −1







yBC

yCS

yBS


 =




yBC + yBS

−yBC + yCS

−yCS − yBS


.

(b) Either way(Ax)Ty = xT(ATy) = xByBC + xByBS − xCyBC + xCyCS −
xSyCS − xSyBS. Six terms.

30




1 50

40 1000

2 50





x1

x2


 = Ax; ATy =


 1 40 2

50 1000 50







700

3

3000


 =


 6820

188000


 1 truck

1 plane

31 Ax · y is thecost of inputswhilex ·ATy is thevalue of outputs.

32 P 3 = I so three rotations for360◦; P rotates everyv around the(1, 1, 1) line by120◦.

33


1 2

4 9


 =


1 0

2 1




1 2

2 5


 = EH = (elementary matrix) times (symmetric ma-

trix).

34 L(UT)−1 is lower triangular times lower triangular, solower triangular. The transpose

of UTDU isUTDTUT T = UTDU again, soUTDU is symmetric. The factorization

multiplies lower triangular by symmetric to getLDU which isA.

35 These are groups: Lower triangular with diagonal1’s, diagonal invertibleD, permuta-

tionsP , orthogonal matrices withQT = Q−1.

36 CertainlyBT is northwest.B2 is a full matrix! B−1 is southeast:
[
1 1
1 0

]−1
=
[
0 1

1 −1

]
.

The rows ofB are in reverse order from a lower triangularL, soB = PL. Then

B−1 = L−1P−1 has thecolumnsin reverse order fromL−1. SoB−1 is southeast.

NorthwestB = PL times southeastPU is (PLP )U = upper triangular.

37 There aren! permutation matrices of ordern. Eventuallytwo powers ofP must be

the same permutation. And if P r = P s thenP r − s = I . Certainlyr − s ≤ n!

P =


P2

P3


 is 5 by 5 with P2 =


0 1

1 0


 andP3 =




0 1 0

0 0 1

1 0 0


 andP 6 = I .
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38 To split the matrixM into (symmetricS) + (anti-symmetricA), the only choice is

S = 1
2
(M +MT) andA = 1

2
(M −MT).

39 Start fromQTQ = I , as in



qT
1

qT
2



[
q1 q2

]
=


1 0

0 1




(a) The diagonal entries giveqT
1 q1 = 1 andqT

2 q2 = 1: unit vectors

(b) The off-diagonal entry isqT
1 q2 = 0 (and in generalqT

i qj = 0)

(c) The leading example forQ is the rotation matrix


cos θ − sin θ

sin θ cos θ


.
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Problem Set 3.1, page 131

NoteAn interesting “max-plus” vector space comes from the real numbersR combined

with −∞. Change addition to givex + y = max(x, y) and change multiplication to

xy = usualx + y. Whichy is the zero vector that givesx+0 = max(x,0) = x for every

x?

1 x+ y 6= y + x andx+ (y + z) 6= (x+ y) + z and(c1 + c2)x 6= c1x+ c2x.

2 Whenc(x1, x2) = (cx1, 0), the only broken rule is 1 timesx equalsx. Rules (1)-(4)

for additionx+ y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Also no 0 and no−x

(b) c(x+ y) is the usual(xy)c, while cx+ cy is the usual(xc)(yc). Those are equal.

With c = 3, x = 2, y = 1 this is3(2+ 1) = 8. The zero vector is the number 1.

4 The zero vector in matrix spaceM is


0 0

0 0


 ; 1

2
A =


1 −1

1 −1


 and−A =


−2 2

−2 2


.

The smallest subspace ofM containing the matrixA consists of all matricescA.

5 (a) One possibility: The matricescA form a subspace not containingB (b) Yes: the

subspace must containA−B = I (c) Matrices whose main diagonal is all zero.

6 Whenf(x) = x2 andg(x) = 5x, the combination3f − 4g in function space is

h(x) = 3f(x)− 4g(x) = 3x2 − 20x.

7 Rule 8 is broken: Ifcf(x) is defined to be the usualf(cx) then (c1 + c2)f =

f((c1 + c2)x) is not generally the same asc1f + c2f = f(c1x) + f(c2x).

8 If (f + g)(x) is the usualf(g(x)) then(g + f)x is g(f(x)) which is different. In

Rule 2 both sides aref(g(h(x))). Rule 4 is broken because there might be no inverse

functionf−1(x) such thatf(f−1(x)) = x. If the inverse function exists it will be the

vector−f .

9 (a) The vectors with integer components allow addition, butnot multiplication by1
2

(b) Remove thex axis from thexy plane (but leave the origin). Multiplication by any

c is allowed but not all vector additions :(1, 1) + (−1, 1) = (0, 2) is removed.



Solutions to Exercises 45

10 The only subspaces are (a) the plane withb1 = b2 (d) the linear combinations ofv

andw (e) the plane withb1 + b2 + b3 = 0.

11 (a) All matrices


a b

0 0


 (b) All matrices


a a

0 0


 (c) All diagonal matri-

ces.

12 For the planex+ y− 2z = 4, the sum of(4, 0, 0) and(0, 4, 0) is not on the plane. (The

key is that this plane does not go through(0, 0, 0).)

13 The parallel planeP0 has the equationx + y − 2z = 0. Pick two points, for example

(2, 0, 1) and(0, 2, 1), and their sum(2, 2, 2) is inP0.

14 (a) The subspaces ofR2 areR2 itself, lines through(0, 0), and(0, 0) by itself (b) The

subspaces ofR4 areR4 itself, three-dimensional planesn · v = 0, two-dimensional

subspaces(n1 · v = 0 andn2 · v = 0), one-dimensional lines through(0, 0, 0, 0), and

finally (0, 0, 0, 0) by itself, which is the zero subspaceZ.

15 (a) Two planes through(0, 0, 0) probably intersect in a line through(0, 0, 0)

(b) The plane and line probably intersect in the point(0, 0, 0)

(c) If x andy are in bothS andT , x+ y andcx are in both subspaces.

16 The smallest subspace containing a planeP and a lineL is eitherP (when the lineL

is in the planeP) or R3 (whenL is not inP).

17 (a) The invertible matrices do not include the zero matrix, so they are not a subspace

(b) The sum of singular matrices


1 0

0 0


+


0 0

0 1


 is not singular: not a subspace.

18 (a) True: The symmetric matrices do form a subspace (b)True: The matrices with

AT = −A do form a subspace (c)False: The sum of two unsymmetric matrices

could be symmetric.

19 The column space ofA is thex-axis= all vectors(x, 0, 0) : a line. The column space

of B is thexy plane= all vectors(x, y, 0). The column space ofC is the line of vectors

(x, 2x, 0).
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20 (a) Elimination leads to0 = b2 − 2b1 and 0 = b1 + b3 in equations 2 and 3:

Solution only if b2 = 2b1 andb3 = −b1 (b) Elimination leads to0 = b1 + b3

in equation 3: Solution only ifb3 = −b1.

21 A combination of the columns ofC is also a combination of the columns ofA. Then

C =


1 3

2 6


 andA =


1 2

2 4


 have the same column space.B =


1 2

3 6


 has a

different column space. The key word is “space”.

22 (a) Solution for everyb (b) Solvable only ifb3 = 0 (c) Solvable only ifb3 = b2.

23 The extra columnb enlarges the column space unlessb is already inthe column space.

[A b ] =


1 0 1

0 0 1


 (larger column space)

(no solution toAx = b)


1 0 1

0 1 1


 (b is in column space)

(Ax = b has a solution)

24 The column space ofAB is contained in(possibly equal to) the column space ofA.

The exampleB = zero matrix andA 6= 0 is a case whenAB = zero matrix has a

smaller column space (it is just the zero spaceZ) thanA.

25 The solution toAz = b+ b∗ is z = x+ y. If b andb∗ are inC(A) so isb+ b∗.

26 The column space of any invertible 5 by 5 matrix isR5. The equationAx = b is

always solvable (byx = A−1b) so everyb is in the column space of that invertible

matrix.

27 (a) False: Vectors that arenot in a column space don’t form a subspace.

(b) True: Only the zero matrix hasC(A) = {0}. (c) True: C(A) = C(2A).

(d) False: C(A− I) 6= C(A) whenA = I orA =


1 0

0 0


 (or other examples).

28 A =




1 1 0

1 0 0

0 1 0


 and




1 1 2

1 0 1

0 1 1


 do not have




1

1

1


 in C(A). A =




1 2 0

2 4 0

3 6 0


 has

C(A) = line in R3.

29 WhenAx = b is solvable for allb, everyb is in the column space ofA. So that space

isC(A) = R9.
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30 (a) If u andv are both inS + T , thenu = s1 + t1 andv = s2 + t2. Sou + v =

(s1 + s2)+(t1 + t2) is also inS+T . And so iscu = cs1+ct1 : S+T = subspace.

(b) If S andT are different lines, thenS ∪ T is just the two lines (not a subspace) but

S + T is the whole plane that they span.

31 If S = C(A) andT = C(B) thenS + T is the column space ofM = [A B ].

32 The columns ofAB are combinations of the columns ofA. So all columns of[A AB ]

are already inC(A). ButA =


0 1

0 0


 has a larger column space thanA2 =


0 0

0 0


.

For square matrices, the column space isRn exactly whenA is invertible.

Problem Set 3.2, page 142

1 (a) U=




1 2 2 4 6

0 0 1 2 3

0 0 0 0 0




Free variablesx2, x4, x5

Pivot variablesx1, x3

(b) U=




2 4 2

0 4 4

0 0 0




Freex3

Pivotx1, x2

2 (a) Free variablesx2, x4, x5 and solutions(−2, 1, 0, 0, 0), (0, 0,−2, 1, 0), (0, 0,−3, 0, 1)

(b) Free variablex3: solution(1,−1, 1). Special solution for each free variable.

3 R =




1 2 0 0 0

0 0 1 2 3

0 0 0 0 0


, R =




1 0 −1

0 1 1

0 0 0


, R has the same nullspace asU andA.

4 (a) Special solutions(3, 1, 0) and(5, 0, 1) (b) (3, 1, 0). Total of pivot and free isn.

5 (a) False: Any singular square matrix would have free variables (b)True: An in-

vertible square matrix hasno free variables. (c)True(onlyn columns to hold pivots)

(d) True(onlym rows to hold pivots)

6




0 1 1 1 1 1 1

0 0 0 1 1 1 1

0 0 0 0 1 1 1

0 0 0 0 0 0 0







1 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 0 0 1 1

0 0 0 0 0 0 1







0 0 0 1 1 1 1

0 0 0 0 0 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0



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7




1 1 0 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




,




0 1 1 0 0 1 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0




. Notice the identity

matrix in the pivot columns of thesereducedrow echelon formsR.

8 If column 4 of a 3 by 5 matrix is all zero thenx4 is a freevariable. Its special solution

isx = (0, 0, 0, 1, 0), because 1 will multiply that zero column to giveAx = 0.

9 If column 1= column 5 thenx5 is a free variable. Its special solution is(−1, 0, 0, 0, 1).

10 If a matrix hasn columns andr pivots, there aren−r special solutions. The nullspace

contains onlyx = 0 whenr = n. The column space is all ofRm whenr = m. All

those statements are important!

11 The nullspace contains onlyx = 0 whenA has 5 pivots. Also the column space isR5,

because we can solveAx = b and everyb is in the column space.

12 A = [ 1 − 3 − 1 ] gives the planex − 3y − z = 0; y andz are free variables. The

special solutions are(3, 1, 0) and(1, 0, 1).

13 Fill in 12 then4 then1 to get the complete solution inR3 to x − 3y − z = 12:


x

y

z


 =




12

0

0


+ y




4

1

0


+ z




1

0

1


 = xparticular+ xnullspace.

14 Column 5 is sure to have no pivot since it is a combination of earlier columns. With

4 pivots in the other columns, the special solution iss = (1, 0, 1, 0, 1). The nullspace

contains all multiples of this vectors (this nullspace is a line inR5).

15 To produce special solutions(2, 2, 1, 0) and (3, 1, 0, 1) with free variablesx3, x4:

R =


1 0 −2 −3

0 1 −2 −1


 andA can be any invertible 2 by 2 matrix times thisR.
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16 The nullspace ofA =




1 0 0 −4

0 1 0 −3

0 0 1 −2


 is the line through the special solution




4

3

2

1




.

17 A =




1 0 −1/2

1 3 −2

5 1 −3


 has




1

1

5


 and




0

3

1


 in C(A) and




1

1

2


 in N(A). Which otherA’s?

18 This construction is impossible for 3 by 3 ! 2 pivot columns and 2 free variables.

19 A =




1 −1 0 0

1 0 −1 0

1 0 0 −1


 has(1, 1, 1) in C(A) and only the line(c, c, c, c) in N(A).

20 A =


0 1

0 0


 hasN(A) = C(A). Notice thatrref(AT)=


1 0

0 0


 is notAT.

21 If nullspace= column space (withr pivots) thenn − r = r. If n = 3 then3 = 2r is

impossible.

22 If A times every column ofB is zero, the column space ofB is contained in thenullspace

of A. An example isA =


1 1

1 1


 andB =


 1 1

−1 −1


. HereC(B) equalsN(A).

ForB = 0,C(B) is smaller thanN(A).

23 ForA = random 3 by 3 matrix,R is almost sure to beI . For 4 by 3,R is most likely

to beI with a fourth row of zeros. What isR for a random 3 by 4 matrix?

24 A =


0 1

0 0


 shows that (a)(b)(c) are all false. Noticerref(AT) =


1 0

0 0


.

25 If N(A) = line throughx = (2, 1, 0, 1), A hasthree pivots(4 columns and 1 special

solution). Its reduced echelon form can beR =




1 0 0 −2

0 1 0 −1

0 0 1 0


 (add any zero rows).

26 R = [ 1 −2 −3 ], R =


1 0 0

0 1 0


, R = I . Any zero rows come after those rows.
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27 (a)


1 0

0 1


 ,


1 0

0 0


,


1 1

0 0


,


0 1

0 0


,


0 0

0 0


 (b) All 8 matrices areR’s !

28 One reason thatR is the same forA and−A: They have the same nullspace. (They

also have the same row space. They also have the same column space, but that is not

required for two matrices to share the sameR. R tells us the nullspace and row space.)

29 The nullspace ofB = [A A ] contains all vectorsx =


 y

−y


 for y in R4.

30 If Cx = 0 thenAx = 0 andBx = 0. SoN(C) = N(A) ∩N(B) = intersection.

31 (a) rank1 (b) rank2 because every row is a combination of(1, 2, 3, 4) and(1, 1, 1, 1)

(c) rank1 because all columns are multiples of(1, 1, 1)

32 ATy = 0 : y1 − y3 + y4 = −y1 + y2 ++y5 = −y2 + y4 + y6 = −y4 − y5 − y6 = 0.

These equations add to0 = 0. Free variablesy3, y5, y6: watch for flows around loops.

The solutions toATy = 0 are combinations of(−1, 0, 0, 1,−1, 0) and(0, 0,−1,−1, 0, 1)

and(0,−1, 0, 0, 1,−1). Those are flows around the3 small loops.

33 (a) and (c) are correct; (b) is completely false; (d) is falsebecauseR might have1’s

in nonpivot columns.

34 RA =




1 2 0

0 0 1

0 0 0


 RB =

[
RA RA

]
RC −→


RA 0

0 RA


 −→

Zero rows go

to the bottom

35 If all pivot variables come last thenR =


0 I

0 0


. The nullspace matrix isN =


I
0


.

36 I think R1 = A1, R2 = A2 is true. ButR1 − R2 may have−1’s in some pivots.

37 A andAT have the same rankr = number of pivots. Butpivcol (the column number)

is 2 for this matrixA and 1 forAT: A =




0 1 0

0 0 0

0 0 0


.

38 Special solutions inN = [−2 −4 1 0; −3 −5 0 1 ] and [ 1 0 0; 0 −2 1 ].
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39 The new entries keep rank 1:A =




1 2 4

2 4 8

4 8 16


 , B =




2 6 −3

1 3 −3/2

2 6 −3


 ,

M =


a b

c bc/a


.

40 If A has rank 1, the column space is aline in Rm. The nullspace is aplane in Rn

(given by one equation). The nullspace matrixN is n by n − 1 (with n − 1 special

solutions in its columns). The column space ofAT is a line in Rn.

41




3 6 6

1 2 2

4 8 8


=




3

1

4




[
1 2 2

]

and


 2 2 6 4

−1 −1 −3 −2


=


 2

−1



[
1 1 3 2

]

42 With rank1, the second row ofR is a zero row.

43
Invertibler by r submatrices

Use pivot rows and columns
S =


1 3

1 4


 andS = [ 1 ] andS =


1 0

0 1


.

44 P hasrank r (the same asA) because elimination produces the same pivot columns.

45 The rank ofRT is alsor. The example matrixA hasrank 2 with invertibleS:

P =




1 3

2 6

2 7


 PT =


1 2 2

3 6 7


 ST =


1 2

3 7


 S =


1 3

2 7


 .

46 The product of rank one matrices has rank one or zero. These particular matrices have

rank(AB) = 1; rank(AM) = 1 exceptAM = 0 if c = −1/2.

47 (uvT)(wzT) = u(vTw)zT has rank one unless the inner product isvTw = 0.

48 (a) By matrix multiplication, each column ofAB isA times the corresponding column

of B. So if columnj of B is a combination of earlier columns, then columnj of AB

is the same combination of earlier columns ofAB. Then rank(AB) ≤ rank(B). No

new pivot columns! (b) The rank ofB is r = 1. Multiplying by A cannot increase
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this rank. The rank ofAB stays the same forA1 = I andB =
[
1 1
1 1

]
. It drops to zero

for A2 =
[

1 1

−1 −1

]
.

49 If we know thatrank(BTAT) ≤ rank(AT), then since rank stays the same for trans-

poses, (apologies that this fact is not yet proved), we haverank(AB) ≤ rank(A).

50 We are givenAB = I which has rankn. Then rank(AB) ≤ rank(A) forces rank(A) =

n. This means thatA is invertible. The right-inverseB is also a left-inverse:BA = I

andB = A−1.

51 CertainlyA andB have at mostrank 2. Then their productAB has at mostrank 2.

SinceBA is 3 by 3, it cannot beI even ifAB = I .

52 (a) A andB will both have the same nullspace and row space as theR they share.

(b) A equals aninvertiblematrix timesB, when they share the sameR. A key fact!

53 A = (pivot columns)(nonzero rows ofR) =




1 0

1 4

1 8





1 1 0

0 0 1


 =




1 1 0

1 1 0

1 1 0


 +




0 0 0

0 0 4

0 0 8


. B =


2 2

2 3




1 0

0 1


 =

columns

times rows
=


2 0

2 0


+


0 2

0 3




54 If c = 1, R =




1 1 2 2

0 0 0 0

0 0 0 0


 hasx2, x3, x4 free. If c 6= 1, R =




1 0 2 2

0 1 0 0

0 0 0 0




hasx3, x4 free. Special solutions inN =




−1 −2 −2

1 0 0

0 1 0

0 0 1




(for c = 1) andN =




−2 −2

0 0

1 0

0 1




(for c 6= 1). If c = 1, R =


0 1

0 0


 andx1 free; if c = 2, R =


1 −2

0 0



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andx2 free; R = I if c 6= 1, 2. Special solutions inN =


1

0


 (c = 1) or N =


2

1


 (c = 2) orN = 2 by 0 empty matrix.

55 A =
[
I I

]
hasN =


 I

−I


 ;B =


I I

0 0


 has the sameN ; C =

[
I I I

]
has

N =




−I −I

I 0

0 I


.

56




1 1 1 1

1 1 1 1

1 1 1 1


 = (pivot column) (first row)=




1

1

1



[
1 1 1 1

]

57 Them by n matrixZ hasr ones to start its main diagonal. OtherwiseZ is all zeros.

58 R=


I F

0 0


=


 r by r r by n−r

m−r by r m−r by n−r


; rref (RT)=


I 0

0 0


; rref (RTR)=same

R

59 R =


1 2 0

0 0 1


 hasRTR =




1 2 0

2 4 0

0 0 1


 and this matrix row reduces to




1 2 0

0 0 1

0 0 0


 =


 R

zero row


. AlwaysRTR has the same nullspace asR, so its row reduced form must

beR with n−m extra zero rows.R is determined by its nullspace and shape !

60 Therow-column reduced echelon formis always


I 0

0 0


; I is r by r.
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Problem Set 3.3, page 158

1




2 4 6 4 b1

2 5 7 6 b2

2 3 5 2 b3


→




2 4 6 4 b1

0 1 1 2 b2 − b1

0 −1 −1 −2 b3 − b1


→




2 4 6 4 b1

0 1 1 2 b2 − b1

0 0 0 0 b3 + b2 − 2b1




Ax = b has a solution whenb3 + b2 − 2b1 = 0; the column space contains all combi-

nations of(2, 2, 2) and(4, 5, 3). This is the planeb3+ b2− 2b1 = 0 (!). The nullspace

contains all combinations ofs1 = (−1,−1, 1, 0) ands2 = (2,−2, 0, 1);xcomplete =

xp + c1s1 + c2s2;

[
R d

]
=




1 0 1 −2 4

0 1 1 2 −1

0 0 0 0 0


 gives the particular solutionxp = (4,−1, 0, 0).

2




2 1 3 b1

6 3 9 b2

4 2 6 b3


→




2 1 3 b1

0 0 0 b2 − 3b1

0 0 0 b3 − 2b1


 Then[R d ] =




1 1/2 3/2 5

0 0 0 0

0 0 0 0




Ax = b has a solution whenb2 − 3b1 = 0 andb3 − 2b1 = 0; C(A) = line through

(2, 6, 4) which is the intersection of the planesb2 − 3b1 = 0 and b3 − 2b1 = 0;

the nullspace contains all combinations ofs1 = (−1/2, 1, 0) ands2 = (−3/2, 0, 1);

particular solutionxp = d = (5, 0, 0) and complete solutionxp + c1s1 + c2s2.

3 x
complete

=




−2

0

1


 + x2




−3

1

0


. The matrix is singular but the equations are

still solvable;b is in the column space. Our particular solution has free variabley = 0.

4 x
complete

= xp + xn = (1
2
, 0, 1

2
, 0) + x2(−3, 1, 0, 0) + x4(0, 0,−2, 1).

5




1 2 −2 b1

2 5 −4 b2

4 9 −8 b3


→




1 2 −2 b1

0 1 0 b2 − 2b1

0 0 0 b3 − 2b1 − b2


 solvable ifb3 − 2b1 − b2 = 0.
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Back-substitution gives the particular solution toAx = b and the special solution to

Ax = 0: x =




5b1 − 2b2

b2 − 2b1

0


+ x3




2

0

1


.

6 (a) Solvable ifb2 = 2b1 and3b1 − 3b3 + b4 = 0. Thenx =


5b1 − 2b3

b3 − 2b1


 = xp

(b) Solvable ifb2 = 2b1 and3b1 − 3b3 + b4 = 0. x =




5b1 − 2b3

b3 − 2b1

0


+ x3




−1

−1

1


.

7




1 3 1 b1

3 8 2 b2

2 4 0 b3


→




1 3 1 b2

0 −1 −1 b2 − 3b1

0 −2 −2 b3 − 2b1




One more step gives[ 0 0 0 0 ] =

row 3− 2 (row 2)+ 4(row 1)

provided b3−2b2+4b1=0.

8 (a) Everyb is inC(A): independent rows, only the zero combination gives0.

(b) We needb3 = 2b2, because(row 3)− 2(row 2) = 0.

9 L
[
U c

]
=




1 0 0

2 1 0

3 −1 1







1 2 3 5 b1

0 0 2 2 b2 − 2b1

0 0 0 0 b3 + b2 − 5b1


=




1 2 3 5 b1

2 4 8 12 b2

3 6 7 13 b3




=
[
A b

]
; particularxp = (−9, 0, 3, 0) means−9(1, 2, 3) + 3(3, 8, 7) = (0, 6,−6).

This isAxp = b.

10


1 0 −1

0 1 −1


x =


2

4


 hasxp = (2, 4, 0) andxnull = (c, c, c). Many possibleA !

11 A 1 by 3 system has at leasttwo free variables. Butxnull in Problem 10 only hasone.

12 (a) If Ax1 = b andAx2 = b thenx1 − x2 and alsox = 0 solveAx = 0

(b) A(2x1 − 2x2) = 0, A(2x1 − x2) = b

13 (a) The particular solutionxp is always multiplied by 1 (b) Any solution can bexp

(c)


3 3

3 3




x

y


 =


6

6


. Then


1

1


 is shorter (length

√
2) than


2

0


 (length 2)

(d) The only “homogeneous” solution in the nullspace isxn = 0 whenA is invertible.
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14 If column 5 has no pivot,x5 is a freevariable. The zero vectoris not the only solution

toAx = 0. If this systemAx = b has a solution, it hasinfinitely manysolutions.

15 If row 3 of U has no pivot, that is azero row. Ux = c is only solvable provided

c3 = 0. Ax = b might not be solvable, becauseU may have other zero rows needing

moreci = 0.

16 The largest rank is 3. Then there is a pivot in everyrow. The solutionalways exists.

The column space isR3. An example isA = [ I F ] for any3 by 2 matrixF .

17 The largest rank of a 6 by 4 matrix is 4. Then there is a pivot in every column. The

solution isunique(if there is a solution). The nullspace contains only thezero vector.

An example isA = R = [ I F ] for any 4 by 2 matrixF .

18 Rank= 2; rank= 3 unlessq = 2 (then rank= 2). Transpose has the same rank!

19 Both matricesA have rank 2. AlwaysATA andAAT havethe same rankasA.

20 A = LU =


1 0

2 1




3 4 1 0

0 −3 0 1


 ;A = LU =




1 0 0

2 1 0

0 3 1







1 0 1 0

0 2 −2 3

0 0 11 −5


.

21 (a)




x

y

z


 =




4

0

0


 + y




−1

1

0


 + z




−1

0

1


 (b)




x

y

z


 =




4

0

0


+ z




−1

0

1


. The second

equation in part (b) removed one special solution from the nullspace.

22 If Ax1 = b and alsoAx2 = b thenA(x1 − x2) = 0 and we can addx1 − x2 to any

solution ofAx = B: the solutionx is not unique. But there will beno solution to

Ax = B if B is not in the column space.

23 ForA, q = 3 gives rank 1, every otherq gives rank 2. ForB, q = 6 gives rank 1, every

otherq gives rank 2. These matrices cannot have rank 3.

24 (a)


1

1


 [x ] =


b1
b2


 has 0 or 1 solutions, depending onb (b)

[
1 1

] 
x1

x2


 =

[ b ] has infinitely many solutions for everyb (c) There are 0 or∞ solutions whenA
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has rankr < m andr < n: the simplest example is a zero matrix. (d)onesolution

for all b whenA is square and invertible (likeA = I).

25 (a) r < m, alwaysr ≤ n (b) r = m, r < n (c) r < m, r = n (d) r = m = n.

26




2 4 4

0 3 6

0 0 0


→ R =




1 0 −2

0 1 2

0 0 0


 and




2 4 4

0 3 6

0 0 5


→ R = I .

27 R = I whenA is square and invertible—so for a triangular matrix, all diagonal entries

must be nonzero.

28


1 2 3 0

0 0 4 0


→


1 2 0 0

0 0 1 0


; xn =




−2

1

0


;


1 2 3 5

0 0 4 8


→


1 2 0 −1

0 0 1 2


.

Freex2 = 0 givesxp = (−1, 0, 2) because the pivot columns containI .

29 [R d ] =




1 0 0 0

0 0 1 0

0 0 0 0


 leads to xn =




0

1

0


; [R d ] =




1 0 0 −1

0 0 1 2

0 0 0 5


:

this has no solution because of the 3rd equation

30




1 0 2 3 2

1 3 2 0 5

2 0 4 9 10


→




1 0 2 3 2

0 3 0−3 3

0 0 0 3 6


→




1 0 2 0 −4

0 1 0 0 3

0 0 0 1 2


;




−4

3

0

2




; xn = x3




−2

0

1

0




.

31 ForA =




1 1

0 2

0 3


, the only solution toAx =




1

2

3


 is x =


0

1


. B cannot exist since

2 equations in 3 unknowns cannot have a unique solution.

32 A =




1 3 1

1 2 3

2 4 6

1 1 5




factors intoLU =




1

1 1

2 2 1

1 2 0 1







1 3 1

0 −1 2

0 0 0

0 0 0




and the rank is

r = 2. The special solution toAx = 0 andUx = 0 is s = (−7, 2, 1). Since
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b = (1, 3, 6, 5) is also the last column ofA, a particular solution toAx = b is

(0, 0, 1) and the complete solution isx = (0, 0, 1) + cs. (Or use the particular solution

xp = (7,−2, 0) with free variablex3 = 0.)

For b = (1, 0, 0, 0) elimination leads toUx = (1,−1, 0, 1) and the fourth equa-

tion is0 = 1. No solution for thisb.

33 If the complete solution toAx =


1

3


 is x =


1

0


+


0

c


 thenA =


1 0

3 0


.

34 (a) If s = (2, 3, 1, 0) is the only special solution toAx = 0, the complete solution is

x = cs (a line of solutions). The rank ofA must be4− 1 = 3.

(b) The fourth variablex4 is not freein s, andR must be




1 0 −2 0

0 1 −3 0

0 0 0 1


.

(c) Ax = b can be solved for allb, becauseA andR havefull row rank r = 3.

35 For the−1, 2,−1 matrix K(9 by 9) and constant right sideb = (10, · · · , 10), the

solutionx = K−1b = (45, 80, 105, 120, 125, 120, 105, 80, 45) rises and falls along

the parabolaxi = 50i− 5i2. (A formula forK−1 is later in the text.)

36 If Ax = b andCx = b have the same solutions,A andC have the same shape and

the same nullspace (takeb = 0). If b = column1 of A, x = (1, 0, . . . , 0) solves

Ax=b so it solvesCx=b. ThenA andC share column1. Other columns too:A=C!

37 The column space ofR (m by n with rankr) spanned by itsr pivot columns (the first

r columns of anm bym identity matrix).
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Problem Set 3.4, page 175

1




1 1 1

0 1 1

0 0 1







c1

c2

c3


 = 0 givesc3 = c2 = c1 = 0. So those 3 column vectors are

independent. But




1 1 1 2

0 1 1 3

0 0 1 4





c


 =




0

0

0


 is solved byc = (1, 1,−4, 1). Then

v1 + v2 − 4v3 + v4 = 0 (dependent).

2 v1,v2,v3 are independent (the−1’s are in different positions). All six vectors inR4

are on the plane(1, 1, 1, 1) · v = 0 so no four of these six vectors can be independent.

3 If a = 0 then column1 = 0; if d = 0 thenb(column1)− a(column2) = 0; if f = 0

then all columns end in zero (they are all in thexy plane, they must be dependent).

4 Ux =




a b c

0 d e

0 0 f







x

y

z


 =




0

0

0


 givesz = 0 theny = 0 thenx = 0 (by back

substitution). A square triangular matrix has independentcolumns (invertible matrix)

when its diagonal has no zeros.

5 (a)




1 2 3

3 1 2

2 3 1


→




1 2 3

0 −5 −7

0 −1 −5


→




1 2 3

0 −5 −7

0 0 −18/5




: invertible⇒ independent

columns.

(b)




1 2 −3

−3 1 2

2 −3 1


→




1 2 −3

0 7 −7

0 −7 7


→




1 2 −3

0 7 −7

0 0 0


 ;A




1

1

1


 =




0

0

0




columns

add to0.

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3).

Same column numbers (not same columns!) forA. This is becauseEA = U for the

matrixE that subtracts2 times row1 from row4. SoA andU have the same nullspace

(same dependencies of columns).
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7 The sumv1−v2+v3 = 0 because(w2−w3)− (w1−w3)+(w1−w2) = 0. So the

difference aredependentand the difference matrix is singular:A =




0 1 −1

1 0 −1

1 −1 0


.

8 If c1(w2+w3)+ c2(w1+w3)+ c3(w1+w2) = 0 then(c2+ c3)w1+(c1+ c3)w2+

(c1 + c2)w3 = 0. Since thew’s are independent,c2 + c3 = c1 + c3 = c1 + c2 = 0.

The only solution isc1 = c2 = c3 = 0. Only this combination ofv1,v2,v3 gives0.

(changing−1’s to 1’s for the matrixA in solution7 above makesA invertible.)

9 (a) The four vectors inR3 are the columns of a 3 by 4 matrixA. There is a nonzero

solution toAx = 0 because there is at least one free variable (b) Two vectors are

dependent if[v1 v2 ] has rank 0 or 1. (OK to say “they are on the same line” or “one

is a multiple of the other” butnot “v2 is a multiple ofv1” —since v1 might be0.)

(c) A nontrivial combination ofv1 and0 gives0: 0v1 + 3(0, 0, 0) = 0.

10 The plane is the nullspace ofA = [ 1 2 −3 −1 ]. Three free variables give three inde-

pendent solutions(x, y, z, t) = (2,−1, 0, 0) and (3, 0, 1, 0) and (1, 0, 0, 1).

Combinations of those special solutions give more solutions (all solutions).

11 (a) Line inR3 (b) Plane inR3 (c) All of R3 (d) All of R3.

12 b is in the column space whenAx = b has a solution;c is in the row space when

ATy = c has a solution.False. The zero vector is always in the row space.

13 The column space and row space ofA andU all have the same dimension =2. The row

spaces ofA andU are the same, because the rows ofU are combinations of the rows

of A (and vice versa!).

14 v = 1
2
(v +w) + 1

2
(v −w) andw = 1

2
(v +w)− 1

2
(v −w). The two pairsspanthe

same space. They are a basis whenv andw areindependent.

15 Then independent vectors span a space of dimensionn. They are abasisfor that space.

If they are the columns ofA thenm is not lessthann (m ≥ n). Invertible if m = n.
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16 These bases are not unique! (a)(1, 1, 1, 1) for the space of all constant vectors

(c, c, c, c) (b) (1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1) for the space of vectors with

sum of components =0 (c) (1,−1,−1, 0), (1,−1, 0,−1) for the space perpendic-

ular to(1, 1, 0, 0) and(1, 0, 1, 1) (d) The columns ofI are a basis for its column

space, the empty set is a basis (by convention) forN(I) = Z = {zero vector}.

17 The column space ofU =


1 0 1 0 1

0 1 0 1 0


 is R2 so take any bases forR2; (row 1

and row2) or (row1 and row1+ row 2) or (row1 and− row 2) are bases for the row

space ofU .

18 (a) The 6 vectorsmight notspanR4 (b) The 6 vectorsare notindependent

(c) Any fourmight bea basis.

19 n independent columns⇒ rankn. Columns spanRm ⇒ rankm. Columns are basis

for Rm ⇒ rank= m = n. The rank counts the number ofindependentcolumns.

20 One basis is(2, 1, 0), (−3, 0, 1). A basis for the intersection with thexy plane is

(2, 1, 0). The normal vector(1,−2, 3) is a basis for the line perpendicular to the plane.

21 (a) The only solution toAx = 0 is x = 0 becausethe columns are independent

(b) Ax = b is solvable becausethe columns spanR5. Key point: A basis gives

exactly one solution for everyb.

22 (a) True (b) False because the basis vectors forR6 might not be inS.

23 Columns1 and2 are bases for the (different ) column spaces ofA andU ; rows1 and

2 are bases for the (equal) row spaces ofA andU ; (1,−1, 1) is a basis for the (equal)

nullspaces.

24 (a) FalseA = [ 1 1 ] has dependent columns, independent row (b)FalseColumn

space6= row space forA =


0 1

0 0


 (c) True: Both dimensions= 2 if A is

invertible, dimensions= 0 if A = 0, otherwise dimensions= 1 (d) False, columns

may be dependent, in that case not a basis forC(A).
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25 A has rank2 if c = 0 andd = 2; B =


 c d

d c


 has rank2 except whenc = d or

c = −d.

26 (a) Basis for all diagonal matrices :




1 0 0

0 0 0

0 0 0


 ,




0 0 0

0 1 0

0 0 0


 ,




0 0 0

0 0 0

0 0 1




(b) Add




0 1 0

1 0 0

0 0 0


 ,




0 0 1

0 0 0

1 0 0


,




0 0 0

0 0 1

0 1 0


 = basis for symmetric matrices.

(c)




0 1 0

−1 0 0

0 0 0


 ,




0 0 1

0 0 0

−1 0 0


 ,




0 0 0

0 0 1

0 −1 0


.

These are simple bases (among many others) for (a) diagonal matrices (b) symmetric

matrices (c) skew-symmetric matrices. The dimensions are3, 6, 3.

27 I ,




1 0 0

0 1 0

0 0 2


,




1 0 0

0 2 0

0 0 1


,




1 1 0

0 1 0

0 0 1


,




1 0 1

0 1 0

0 0 1


,




1 0 0

0 1 1

0 0 1


;

echelon matrices donot form a subspace; theyspan the upper triangular matrices (not

everyU is an echelon matrix).

28


 1 0 0

−1 0 0


,


0 1 0

0 −1 0


,


0 0 1

0 0 −1


;


 1 −1 0

−1 1 0


 and


 1 0 −1

−1 0 1


.

29 (a) The invertible matrices span the space of all3 by 3 matrices (b) The rank one

matrices also span the space of all3 by 3 matrices (c)I by itself spans the space of

all multiplescI .

30


−1 2 0

0 0 0


,


−1 0 2

0 0 0


,


 0 0 0

−1 2 0


,


 0 0 0

−1 0 2


. Dimension= 4.

31 (a) y(x)= constantC (b) y(x)=3x. (c) y(x)=3x+C=yp + yn solvesy ′ = 3.

32 y(0) = 0 requiresA+ B + C = 0. One basis iscosx− cos 2x andcosx− cos 3x.
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33 (a) y(x) = e2x is a basis for all solutions toy′ = 2y (b) y = x is a basis for all

solutions tody/dx = y/x (First-order linear equation⇒ 1 basis function in solution

space).

34 y1(x), y2(x), y3(x) can bex, 2x, 3x (dim1) or x, 2x, x2 (dim2) or x, x2, x3 (dim3).

35 Basis1, x, x2, x3, for cubic polynomials; basisx− 1, x2 − 1, x3 − 1 for the subspace

with p(1) = 0.

36 Basis forS: (1, 0,−1, 0), (0, 1, 0, 0), (1, 0, 0,−1); basis forT: (1,−1, 0, 0) and(0, 0, 2, 1);

S∩T= multiples of(3,−3, 2, 1)= nullspace for3 equations inR4 has dimension 1.

37 The subspace of matrices that haveAS = SA has dimensionthree. The3 numbers

a, b, c can be chosen independently inA.

38 (a) No,2 vectors don’t spanR3 (b) No,4 vectors inR3 are dependent (c) Yes, a

basis (d) No, these three vectors are dependent

39 If the 5 by 5 matrix [A b ] is invertible,b is not a combination of the columns ofA :

no solution toAx = b. If [A b ] is singular, and the4 columns ofA are independent

(rank4), b is a combination of those columns. In this caseAx = b has a solution.

40 (a) The functionsy = sinx, y = cosx, y = ex, y = e−x are a basis for solutions to

d4y/dx4 = y(x).

(b) A particular solution tod4y/dx4 = y(x)+1 isy(x) = −1. The complete solution

is y(x) = −1 + c1 sinx + c2 cosx + c3e
x + c4e

−x (or use another basis for the

nullspace of the4th derivative).

41 I =




1

1

1


 −




1

1

1


 +




1

1

1


 +




1

1

1


 −




1

1

1


.

The sixP ’s

are dependent
.

Those five are independent: The4th hasP11 = 1 and cannot be a combination of the

others. Then the2nd cannot be (fromP32 = 1) and also5th (P32 = 1). Continuing,

a nonzero combination of all five could not be zero. Further challenge: How many

independent4 by 4 permutation matrices?
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42 The dimension ofS spanned by all rearrangements ofx is (a) zero whenx = 0

(b) one whenx = (1, 1, 1, 1) (c) three whenx = (1, 1,−1,−1) because all rear-

rangements of thisx are perpendicular to(1, 1, 1, 1) (d) four when thex’s are not

equal and don’t add to zero.No x givesdim S = 2. I owe this nice problem to Mike

Artin—the answers are the same in higher dimensions:0, 1, n− 1, n.

43 The problem is to show that theu’s, v’s, w’s together are independent. We know the

u’s andv’s together are a basis forV , and theu’s andw’s together are a basis forW .

Suppose a combination ofu’s, v’s, w’s gives0. To be proved: All coefficients= zero.

Key idea: In that combination giving0, the partx from theu’s andv’s is inV . So the

part from thew’s is−x. This part is now inV and also inW . But if −x is inV ∩W

it is a combination ofu’s only. Now the combination giving0 uses onlyu’s andv’s

(independent inV !) so all coefficients ofu’s andv’s must be zero. Thenx = 0 and

the coefficients of thew’s are also zero.

44 The inputs to multiplication by anm by n matrix fill Rn : dimensionn. The outputs

(column space!) have dimensionr. The nullspace hasn − r special solutions. The

formula becomesr + (n− r) = n.

45 If the left side ofdim(V) + dim(W) = dim(V ∩W) + dim(V+W) is greater than

n, thendim(V ∩W) must be greater than zero. SoV ∩W contains nonzero vectors.

Oh here is a more basic approach : Put a basis forV and then a basis forW in the

columns of a matrixA. ThenA has more columns than rows and there is a nonzero

solution toAx = 0. Thatx gives a combination of theV columns= a combination of

theW columns.

46 If A2 = zero matrix, this says that each column ofA is in the nullspace ofA. If the

column space has dimensionr, the nullspace has dimension10 − r. So we must have

r ≤ 10− r and this leads tor ≤ 5.
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Problem Set 3.5, page 190

1 (a) Row and column space dimensions= 5, nullspace dimension= 4, dim(N (AT))

= 2 sum5 + 5 + 4 + 2 = 16 = m+ n

(b) Column space isR3; left nullspace contains only0.

2 A: Row space basis= row 1 = (1, 2, 4); nullspace(−2, 1, 0) and(−4, 0, 1); column

space basis= column1 = (1, 2); left nullspace(−2, 1). B: Row space basis=

both rows= (1, 2, 4) and(2, 5, 8); column space basis= two columns= (1, 2) and

(2, 5); nullspace(−4, 0, 1); left nullspace basis is empty because the space contains

only y = 0 : the rows ofB are independent.

3 Row space basis= first two rows ofU ; column space basis= pivot columns (ofA notU )

= (1, 1, 0) and(3, 4, 1); nullspace basis(1, 0, 0, 0, 0), (0, 2,−1, 0, 0), (0, 2, 0,−2, 1);

left nullspace(1,−1, 1) = last row ofE−1 = L.

4 (a)




1 0

1 0

0 1


 (b) Impossible:r+(n−r)must be 3 (c)[ 1 1 ] (d)


9 −3

3 −1




(e) ImpossibleRow space= column space requiresm = n. Thenm − r = n −
r; nullspaces have the same dimension. Section 4.1 will proveN(A) andN(AT)

orthogonal to the row and column spaces respectively—here those are the same space.

5 A =


1 1 1

2 1 0


 has those rows spanning its row space.B =

[
1 −2 1

]
has the

same rows spanning its nullspace andABT = 0.

6 A: dim 2,2,2,1: Rows (0, 3, 3, 3) and (0, 1, 0, 1); columns(3, 0, 1) and (3, 0, 0);

nullspace(1, 0, 0, 0) and(0,−1, 0, 1); N(AT) (0, 1, 0). B: dim 1,1,0,2 Row space

(1), column space(1, 4, 5), nullspace: empty basis,N(AT) (−4, 1, 0) and(−5, 0, 1).

7 Invertible3 by 3 matrixA: row space basis= column space basis= (1, 0, 0), (0, 1, 0),

(0, 0, 1); nullspace basis and left nullspace basis areempty. Matrix B =
[
A A

]
: row

space basis(1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0) and (0, 0, 1, 0, 0, 1); column space basis
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(1, 0, 0), (0, 1, 0), (0, 0, 1); nullspace basis(−1, 0, 0, 1, 0, 0) and(0,−1, 0, 0, 1, 0) and

(0, 0,−1, 0, 0, 1); left nullspace basis is empty.

8
[
I 0

]
and

[
I I ; 0 0

]
and

[
0
]
= 3 by 2 haverow space dimensions= 3, 3, 0 =

column space dimensions;nullspace dimensions2, 3, 2; left nullspace dimensions0, 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of row space) is the same

(b) Same column space and left nullspace. Same rank (dimension of column space).

10 Forrand (3), almost surely rank= 3, nullspace and left nullspace contain only(0, 0, 0).

For rand (3, 5) the rank is almost surely3 and the dimension of the nullspace is2.

11 (a) No solution means thatr < m. Always r ≤ n. Can’t comparem andn here.

(b) Sincem− r > 0, the left nullspace must contain a nonzero vector.

12 A neat choice is




1 1

0 2

1 0





1 0 1

1 2 0


 =




2 2 1

2 4 0

1 0 1


; r + (n − r) = n = 3 does

not match2 + 2 = 4. Onlyv = 0 is in bothN(A) andC(AT).

13 (a) False: Usually row space6= column space (they do not have the same dimension!)

(b) True: A and−A have the same four subspaces

(c) False (chooseA andB same size and invertible: then they have the same four

subspaces)

14 Row space basis can be the nonzero rows ofU : (1, 2, 3, 4), (0, 1, 2, 3), (0, 0, 1, 2);

nullspace basis(0, 1,−2, 1) as forU ; column space basis(1, 0, 0), (0, 1, 0), (0, 0, 1)

(happen to haveC(A) = C(U) = R3); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the same; (2, 1, 3, 4) is in the

new left nullspace after the row exchange.

16 If Av = 0 andv is a row ofA thenv · v = 0. Sov = 0.

17 Row space= yz plane; column space= xy plane; nullspace= x axis; left nullspace

= z axis. ForI + A: Row space= column space= R3, both nullspaces contain only

the zero vector.
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18 Row3−2 row 2+ row 1 = zero row so the vectorsc(1,−2, 1) are in the left nullspace.

The same vectors happen to be in the nullspace (an accident for this matrix).

19 (a) Elimination onAx = 0 leads to0 = b3 − b2 − b1 so (−1,−1, 1) is in the left

nullspace. (b)4 by 3: Elimination leads tob3 − 2b1 = 0 andb4 + b2 − 4b1 = 0, so

(−2, 0, 1, 0) and(−4, 1, 0, 1) are in the left nullspace.Why? Those vectors multiply

the matrix to givezero rowsin vA. Section 4.1 will show another approach:Ax = b

is solvable (b is inC(A)) exactly whenb is orthogonal to the left nullspace.

20 (a) Special solutions(−1, 2, 0, 0) and(− 1
4
, 0,−3, 1) are perpendicular to the rows of

R (and rows ofER). (b) ATy = 0 has1 independent solution= last row ofE−1.

(E−1A = R has a zero row, which is just the transpose ofATy = 0).

21 (a) u andw (b) v andz (c) rank< 2 if u andw are dependent or ifv andz

are dependent (d) The rank ofuvT +wzT is 2.

22 A =


u w





 vT

zT


 =




1 2

2 2

4 1





1 0

1 1


 =




3 2

4 2

5 1




u,w span column space;

v, z span row space

23 As in Problem 22: Row space basis(3, 0, 3), (1, 1, 2); column space basis(1, 4, 2),

(2, 5, 7); the rank of (3 by 2) times (2 by 3) cannot be larger than the rank of either

factor, so rank≤ 2 and the 3 by 3 product is not invertible.

24 ATy = d putsd in therow spaceof A; unique solution if theleft nullspace(nullspace

of AT) contains onlyy = 0.

25 (a) True(A andAT have the same rank) (b)FalseA = [ 1 0 ] andAT have very

different left nullspaces (c)False (A can be invertible and unsymmetric even if

C(A) = C(AT)) (d) True(The subspaces forA and−A are always the same. If

AT = A or AT = −A they are also the same forAT)

26 Choosed = bc/a to make
[
a b

c d

]
a rank-1 matrix. Then the row space has basis(a, b)

and the nullspace has basis(−b, a). Those two vectors are perpendicular !

27 B andC (checkers and chess) both have rank 2 ifp 6= 0. Row 1 and 2 are a basis for the

row space ofC, BTy = 0 has 6 special solutions with−1 and 1 separated by a zero;
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N(CT) has(−1, 0, 0, 0, 0, 0, 0, 1) and(0,−1, 0, 0, 0, 0, 1, 0) and columns3, 4, 5, 6 of

I ; N(C) is a challenge : one vector inN(C) is (1, 0, . . . , 0,−1).

28 a11 = 1, a12 = 0, a13 = 1, a22 = 0, a32 = 1, a31 = 0, a23 = 1, a33 = 0, a21 = 1.

(Need to specify the five moves).

29 The subspaces forA = uvT are pairs of orthogonal lines (v andv⊥, u andu⊥).

If B has those same four subspaces thenB = cA with c 6= 0.

30 (a) AX = 0 if each column ofX is a multiple of(1, 1, 1); dim(nullspace) = 3.

(b) If AX = B then all columns ofB add to zero; dimension of theB’s = 6.

(c) 3 + 6 = dim(M3×3) = 9 entries in a3 by 3 matrix.

31 The key is equal row spaces. First row ofA = combination of the rows ofB: only

possible combination (noticeI) is 1 (row 1 ofB). Same for each row soF = G.
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Problem Set 4.1, page 202

1 Both nullspace vectors will be orthogonal to the row space vector inR3. The column

space ofA and the nullspace ofAT are perpendicular lines inR2 because rank= 1.

2 The nullspace of a 3 by 2 matrix with rank 2 isZ (only the zero vector because the2

columns are independent). Soxn = 0, and row space= R2. Column space= plane

perpendicular to left nullspace= line inR3 (because the rank is2).

3 (a) One way is to use these two columns directly :A =




1 2 −3

2 −3 1

−3 5 −2




(b)
Impossible becauseN(A) andC(AT)

are orthogonal subspaces :




2

−3

5


 is not orthogonal to




1

1

1




(c)




1

1

1


 and




1

0

0


 in C(A) andN(AT) is impossible: not perpendicular

(d) Rows orthogonal to columns makesA timesA = zero matrixρ. An example isA =
[
1 −1

1 −1

]

(e) (1, 1, 1) in the nullspace (columns add to the zero vector) and also(1, 1, 1) is in

the row space: no such matrix.

4 If AB = 0, the columns ofB are in thenullspaceof A and the rows ofA are in theleft

nullspaceof B. If rank = 2, all those four subspaces have dimension at least2 which

is impossible for3 by 3.

5 (a) If Ax = b has a solution andATy = 0, theny is perpendicular tob. bTy =

(Ax)Ty = xT(ATy) = 0. This says again thatC(A) is orthogonal toN(AT).

(b) If ATy = (1, 1, 1) has a solution,(1, 1, 1) is a combination of the rows ofA. It is

in therow spaceand is orthogonal to everyx in thenullspace.



70 Solutions to Exercises

6 Multiply the equations byy1, y2, y3 = 1, 1,−1. Now the equations add to0 = 1 so

there is no solution. In subspace language,y = (1, 1,−1) is in the left nullspace.

Ax = b would need0 = (yTA)x = yTb = 1 but hereyTb = 1.

7 Multiply the 3 equations byy = (1, 1,−1). Thenx1−x2 = 1 plusx2−x3 = 1 minus

x1 − x3 = 1 is 0 = 1. Key point: Thisy in N(AT) is not orthogonal tob = (1, 1, 1)

sob is not in the column space andAx = b hasno solution.

8 Figure4.3 hasx = xr + xn, wherexr is in the row space andxn is in the nullspace.

ThenAxn = 0 andAx = Axr + Axn = Axr. The example hasx = (1, 0) and row

space= line through(1, 1) so the splitting isx = xr + xn =
(
1
2
, 1
2

)
+
(
1
2
,− 1

2

)
. All

Ax are inC(A).

9 Ax is always in thecolumn spaceof A. If ATAx = 0 thenAx is also in thenullspace

of AT. Those subspaces are perpendicular. SoAx is perpendicular to itself. Conclu-

sion:Ax = 0 if ATAx = 0.

10 (a) WithAT = A, the column and row spaces are thesame. The nullspace is always

perpendicular to the row space. (b)x is in the nullspace andz is in the column

space = row space: so these “eigenvectors”x andz havexTz = 0.

11 For A: The nullspace is spanned by(−2, 1), the row space is spanned by(1, 2). The

column space is the line through(1, 3) andN(AT) is the perpendicular line through

(3,−1). For B: The nullspace ofB is spanned by(0, 1), the row space is spanned by

(1, 0). The column space and left nullspace are the same as forA.

12 x = (2, 0) splits intoxr + xn = (1,−1) + (1, 1). NoticeN(AT) is they − z plane.

13 V TW = zero matrix makes each column ofV orthogonal to each column ofW . This

means: each basis vector forV is orthogonal to each basis vector forW . Thenevery

v in V (combinations of the basis vectors) is orthogonal toeveryw in W .

14 Ax = Bx̂ means that[A B ]


 x

−x̂


 = 0. Three homogeneous equations (zero right

hand sides) in four unknowns always have a nonzero solution.Herex = (3, 1) and
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x̂ = (1, 0) andAx = Bx̂ = (5, 6, 5) is in both column spaces. Two planes inR3 must

share a line.

15 A p-dimensional and aq-dimensional subspace ofRn share at least a line ifp + q > n.

(Thep + q basis vectors ofV andW cannot be independent, so same combination of

the basis vectors ofV is also a combination of the basis vectors ofW .)

16 ATy = 0 leads to(Ax)Ty = xTATy = 0. Theny ⊥ Ax andN(AT) ⊥ C(A).

17 If S is the subspace ofR3 containing only the zero vector, thenS⊥ is all of R3.

If S is spanned by(1, 1, 1), thenS⊥ is the plane spanned by(1,−1, 0) and(1, 0,−1).

If S is spanned by(2, 0, 0) and(0, 0, 3), thenS⊥ is the line spanned by(0, 1, 0).

18 S⊥ contains all vectors perpendicular to those two given vectors. SoS⊥ is the nullspace

of A =


1 5 1

2 2 2


. ThereforeS⊥ is asubspaceeven ifS is not.

19 L⊥ is the2-dimensional subspace(a plane) in R3 perpendicular toL. Then(L⊥)⊥ is

a 1-dimensional subspace(a line) perpendicular toL⊥. In fact(L⊥)⊥ is L.

20 If V is the whole spaceR4, thenV ⊥ contains only thezero vector. Then(V ⊥)⊥ =

all vectors perpendicular to the zero vector= R4 = V .

21 For example(−5, 0, 1, 1) and(0, 1,−1, 0) spanS⊥=nullspace ofA=


1 2 2 3

1 3 3 2


.

22 (1, 1, 1, 1) is a basis for the lineP⊥ orthogonal toP . A =
[
1 1 1 1

]
hasP as its

nullspace andP⊥ as its row space.

23 x in V ⊥ is perpendicular to every vector inV . SinceV contains all the vectors inS,

x is perpendicular to every vector inS. So everyx in V ⊥ is also inS⊥.

24 AA−1 = I : Column1 of A−1 is orthogonal to rows2, 3, . . . , n and therefore to the

space spanned by those rows.

25 If the columns of A are unit vectors, all mutually perpendicular, thenATA = I . Simple

but important ! We writeQ for such a matrix.
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26 A =




2 2 −1

−1 2 2

2 −1 2


,

This example shows a matrix with perpendicular columns.

ATA = 9I is diagonal: (ATA)ij = (columni of A) · (columnj of A).

When the columns areunit vectors, thenATA = I .

27 The lines3x + y = b1 and6x + 2y = b2 areparallel. They are the same line if

b2 = 2b1. In that case(b1, b2) is perpendicular to(−2, 1). The nullspace of the 2 by 2

matrix is the line3x+ y = 0. One particular vector in the nullspace is(−1, 3).

28 (a) (1,−1, 0) is in both planes. Normal vectors are perpendicular, but planes still in-

tersect! Two planes inR3 can’t be orthogonal. (b) Needthreeorthogonal vectors to

span the whole orthogonal complement inR5. (c) Lines inR3 can meet at the zero

vector without being orthogonal.

29 A =




1 2 3

2 1 0

3 0 1


 , B =




1 1 −1

2 −1 0

3 0 −1


;

A hasv = (1, 2, 3) in row and column spaces

B hasv in its column space and nullspace.

v can notbe in the nullspace and row space,

or in the left nullspace and column space. These spaces are orthogonal andvTv 6= 0.

30 WhenAB = 0, every column ofB is multiplied byA to give zero. So the column

space ofB is contained in the nullspace ofA. Therefore the dimension ofC(B) ≤
dimension ofN(A). This means rank(B) ≤ 4 − rank(A).

31 null(N ′) produces a basis for therow spaceof A (perpendicular toN(A)).

32 We needrTn = 0 andcTℓ = 0. All possible examples have the formacrT with

a 6= 0.

33 Bothr’s must be orthogonal to bothn’s, bothc’s must be orthogonal to bothℓ’s, each

pair (r’s, n’s, c’s, andℓ’s) must be independent. Fact : AllA’s with these subspaces

have the form[c1 c2]M [r1 r2]
T for a2 by 2 invertibleM .

You must take[c1, c2] times[r1, r2]T.

Problem Set 4.2, page 214

1 (a) aTb/aTa = 5/3; p = 5a/3 = (5/3, 5/3, 5/3); e = (−2, 1, 1)/3
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(b) aTb/aTa=−1; p=a; e=0.

2 (a) The projection ofb = (cos θ, sin θ) onto a = (1, 0) is p = (cos θ, 0)

(b) The projection ofb = (1, 1) ontoa = (1,−1) is p = (0, 0) sinceaTb = 0.

The picture for part (a) has the vectorb at an angleθ with the horizontala. The picture

for part (b) has vectorsa andb at a90◦ angle.

3 P1 =
1

3




1 1 1

1 1 1

1 1 1


 andP1b =

1

3




5

5

5


. P2 =

1

11




1 3 1

3 9 3

1 3 1


 andP2b =




1

3

1


.

4 P1 =


1 0

0 0


,P2 =

aaT

aTa
=

1

2


 1 −1

−1 1


.

P1 projects onto(1, 0), P2 projects onto(1,−1)

P1P2 6= 0 andP1 + P2 is not a projection matrix.

(P1 + P2)
2 is different fromP1 + P2.

5 P1 =
1

9




1 −2 −2

−2 4 4

−2 4 4


 and P2 =

1

9




4 4 −2

4 4 −2

−2 −2 1


.

P1 andP2 are the projection matrices onto the lines througha1 = (−1, 2, 2) and

a2 = (2, 2,−1). P1P2 = zero matrix becausea1 ⊥ a2.

6 p1=(1
9
,− 2

9
,− 2

9
) andp2=(4

9
, 4
9
,− 2

9
) andp3 = (4

9
,− 2

9
, 4
9
). Sop1 + p2 + p3 = b.

7 P1 + P2 + P3 =
1

9




1 −2 −2

−2 4 4

−2 4 4


+

1

9




4 4 −2

4 4 −2

−2 −2 1


+

1

9




4 −2 4

−2 1 −2

4 −2 4


 = I .

We canadd projections ontoorthogonal vectorsto get the projection matrix onto the

larger space. This is important.

8 The projections of(1, 1) onto(1, 0) and(1, 2) arep1 = (1, 0) andp2 = 3
5
(1, 2). Then

p1 + p2 6= b. The sum of projections is not a projection because(1, 0) and(2, 1) are

not orthogonal.

9 SinceA is invertible,P = A(ATA)−1AT separates intoAA−1(AT)−1AT = I . And

I is the projection matrix onto all ofR2.
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10 P2 =
a2a

T
2

aT
2 a2

=


0.2 0.4

0.4 0.8


,P2a1 =


0.2

0.4


,P1 =

a1a
T
1

aT
1 a1

=


1 0

0 0


,P1P2a1 =


0.2

0


.

This is nota1 = (1, 0)

No, P1P2 6= (P1P2)
2.

11 (a) p=A(ATA)−1ATb=(2, 3, 0), e=(0, 0, 4), ATe=0

(b) p = (4, 4, 6) ande=0 becauseb is in the column space ofA.

12 P1 =




1 0 0

0 1 0

0 0 0


 = projection matrix onto the column space ofA (thexy plane)

P2 =




0.5 0.5 0

0.5 0.5 0

0 0 1


=

Projection matrixA(ATA)−1AT onto the second column space.

Certainly(P2)
2 = P2. A true projection matrix.

13 A =




1 0 0

0 1 0

0 0 1

0 0 0




, P = square matrix=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




, p = P




1

2

3

4



=




1

2

3

0




.

14 The projection of thisb = column1 of A onto the column space ofA isb itself because

b is in that column space. ButP is not necessarilyI .

A =




0 1

1 2

2 0


 givesP =

1

21




5 8 −4

8 17 2

−4 2 20


 andb = Pb = p =




0

2

4


 = 2 (column

1 of A).

15 2A has the same column space asA. ThenP is the same forA and2Am butx̂ for 2A

is half of x̂ for A.

16 1
2(1, 2,−1) + 3

2 (1, 0, 1) = (2, 1, 1). Sob is in the plane. Projection showsPb = b.

17 If P 2 = P then(I − P )2 = (I −P )(I −P ) = I −PI − IP +P 2 = I − P . When

P projects onto the column space,I − P projects onto theleft nullspace.
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18 (a) I − P is the projection matrix onto(1,−1) in the perpendicular direction to(1, 1)

(b) I − P projects onto the planex+ y + z = 0 perpendicular to(1, 1, 1).

19
For any basis vectors in the planex− y − 2z = 0,

say(1, 1, 0) and(2, 0, 1), the matrixP = A(ATA)−1AT is




5/6 1/6 1/3

1/6 5/6 −1/3

1/3 −1/3 1/3


.

20 e =




1

−1

−2


, Q = eeT

eTe =




1/6 −1/6 −1/3

−1/6 1/6 1/3

−1/3 1/3 2/3


, I −Q =




5/6 1/6 1/3

1/6 5/6 −1/3

1/3 −1/3 1/3


.

21
(
A(ATA)−1AT

)2
= A(ATA)−1(ATA)(ATA)−1AT = A(ATA)−1AT. SoP 2 = P .

Pb is in the column space (whereP projects). Then its projectionP (Pb) is alsoPb.

22 PT = (A(ATA)−1AT)T = A((ATA)−1)TAT = A(ATA)−1AT = P . (ATA is sym-

metric!)

23 If A is invertible then its column space is all ofRn. SoP = I ande = 0.

24 The nullspace ofAT is orthogonalto the column spaceC(A). So ifATb = 0, the pro-

jection ofb ontoC(A) should bep = 0. CheckPb = A(ATA)−1ATb = A(ATA)−10.

25 The column space ofP is the space thatP projects onto. The column space ofA

always contains all outputsAx and here the outputsPx fill the subspaceS. Then rank

of P = dimension ofS = n.

26 A−1 exists since the rank isr = m. Multiply A2 = A byA−1 to getA = I .

27 If ATAx = 0 thenAx is in thenullspace ofAT. But Ax is always in thecolumn

space ofA. To be in both of those perpendicular spaces,Ax must be zero. SoA and

ATA have thesame nullspace: ATAx = 0 exactly whenAx = 0.

28 P 2 = P = PT givePTP = P . Then the(2, 2) entry ofP equals the(2, 2) entry of

PTP . But the(2, 2) entry ofPTP is the length squared of column 2.

29 A = BT has independent columns, soATA (which isBBT) must be invertible.

30 (a) The column space is the line througha =


3
4


 soPC =

aaT

aTa
=

1

25


 9 12

12 25


.
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The formulaP = A(ATA)−1AT needs independent columns—thisA has dependent

columns. The update formula is correct.

(b) The row space is the line throughv = (1, 2, 2) andPR = vvT/vTv. Always

PCA = A (columns ofA project to themselves) andAPR = A. ThenPCAPR = A.

31 Test: The errore = b− p must be perpendicular to all thea’s.

32 SinceP1b is in C(A) andP2 projects onto that column space,P2(P1b) equalsP1b.

SoP2P1 = P1 = aaT/aTa wherea = (1, 2, 0).

33 Eachb1 to b99 is multiplied by 1
999 − 1

1000

(
1

999

)
= 999

1000
1

999 = 1
1000 . The last pages of

the book discuss least squares and the Kalman filter.

Problem Set 4.3, page 229

1 A =




1 0

1 1

1 3

1 4




andb =




0

8

8

20




giveATA =


4 8

8 26


 andATb =


 36

112


.

ATAx̂ = ATb givesx̂ =


1

4


 andp = Ax̂ =




1

5

13

17




ande = b− p =

E = ‖e‖2 = 44




−1

3

−5

3




2




1 0

1 1

1 3

1 4





C

D


=




0

8

8

20




.
ThisAx = b is unsolvable

Projectb to p = Pb =




1

5

13

17




; Whenp replacesb,

x̂=


1

4


 exactly solvesAx̂ = p.

3 In Problem 2,p = A(ATA)−1ATb = (1, 5, 13, 17) ande = b − p = (−1, 3,−5, 3).

Thise is perpendicular to both columns ofA. This shortest distance‖e‖ is
√
44.
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4 E = (C + 0D)2 + (C + 1D − 8)2 + (C + 3D − 8)2 + (C + 4D − 20)2. Then

∂E/∂C = 2C + 2(C + D − 8) + 2(C + 3D − 8) + 2(C + 4D − 20) = 0 and

∂E/∂D = 1 · 2(C + D − 8) + 3 · 2(C + 3D − 8) + 4 · 2(C + 4D − 20) = 0.

These two normal equations are again


4 8

8 26




C

D


 =


 36

112


.

5 E = (C−0)2+(C−8)2+(C−8)2+(C−20)2. AT = [ 1 1 1 1 ] andATA = [ 4 ].

ATb = [ 36 ] and (ATA)−1ATb = 9 = best heightC for the horizontal line.

Errorse = b− p = (−9,−1,−1, 11) still add to zero.

6 a = (1, 1, 1, 1) andb = (0, 8, 8, 20) give x̂ = aTb/aTa = 9 and the projection is

x̂a = p = (9, 9, 9, 9). TheneTa = (−9,−1,−1, 11)T(1, 1, 1, 1) = 0 and the shortest

distance fromb to the line througha is ‖e‖ =
√
204.

7 Now the4 by 1 matrix in Ax = b is A = [ 0 1 3 4 ]
T. Then ATA = [ 26 ] and

ATb = [ 112 ]. BestD = 112/26 = 56/13.

8 x̂ = aTb/aTa = 56/13 andp = (56/13)(0, 1, 3, 4). (C,D) = (9, 56/13) don’t

match(C,D) = (1, 4) from Problems1-4. Columns ofA were not perpendicular so

we can’t project separately to findC andD.

9

Parabola

Projectb

4D to 3D




1 0 0

1 1 1

1 3 9

1 4 16







C

D

E


=




0

8

8

20




. ATAx̂=




4 8 26

8 26 92

26 92 338







C

D

E


=




36

112

400


.

Figure4.9 (a) is fitting4 points and4.9 (b) is a projection inR4: same problem !

10




1 0 0 0

1 1 1 1

1 3 9 27

1 4 16 64







C

D

E

F



=




0

8

8

20




. Then




C

D

E

F



=
1

3




0

47

−28

5




.

Exact cubic sop = b, e = 0.

This Vandermonde matrix

gives exact interpolation

by a cubic at0, 1, 3, 4

11 (a) The best linex = 1 + 4t gives the center point̂b = 9 at center time,̂t = 2.

(b) The first equationCm +D
∑

ti =
∑

bi divided bym givesC +Dt̂ = b̂. This

shows : The best line goes throughb̂ at timet̂.
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12 (a) a = (1, . . . , 1) hasaTa = m, aTb = b1 + · · · + bm. Thereforex̂ = aTb/m is

themeanof theb’s (their average value)

(b) e = b − x̂a and‖e‖2 = (b1 − mean)2 + · · · + (bm − mean)2 = variance

(denoted byσ2).

(c) p = (3, 3, 3) ande = (−2,−1, 3) pTe = 0. Projection matrixP =
1

3




1 1 1

1 1 1

1 1 1


.

13 (ATA)−1AT(b − Ax) = x̂− x. This tells us: When the components ofAx − b add

to zero, so do the components ofx̂− x : Unbiased.

14 The matrix(x̂− x)(x̂− x)T is (ATA)−1AT(b− Ax)(b −Ax)TA(ATA)−1. When

the average of(b−Ax)(b−Ax)T is σ2I , the average of(x̂−x)(x̂−x)T will be the

output covariance matrix(ATA)−1ATσ2A(ATA)−1 which simplifies toσ2(ATA)−1.

That gives the average of the squared output errorsx̂− x.

15 WhenA has1 column of4 ones, Problem14 gives the expected error(x̂ − x)2 as

σ2(ATA)−1 = σ2/4. By takingm measurements, the variance drops fromσ2 to

σ2/m. This leads to theMonte Carlo method in Section12.1.

16
1

10
b10 +

9

10
x̂9 =

1

10
(b1 + · · ·+ b10). Knowing x̂9 avoids adding all tenb’s.

17




1 −1

1 1

1 2





C

D


 =




7

7

21


. The solutionx̂ =


9

4


 comes from


3 2

2 6




C

D


 =


35

42


.

18 p = Ax̂ = (5, 13, 17) gives the heights of the closest line. The vertical errors are

b− p = (2,−6, 4). This errore hasPe = Pb− Pp = p− p = 0.

19 If b = errore thenb is perpendicular to the column space ofA. Projectionp = 0.

20 The matrixA has columns1, 1, 1 and−1, 1, 2. If b = Ax̂ = (5, 13, 17) thenx̂ = (9, 4)

ande = 0 sinceb = 9 (column1) + 4 (column2) is in the column space ofA.
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21 e is in N(AT); p is in C(A); x̂ is in C(AT); N(A) = {0} = zero vector only.

22 The least squares equation is


 5 0

0 10




C

D


=


 5

−10


. Solution:C = 1, D = −1.

The best line isb = 1− t. Symmetrict’s ⇒ diagonalATA ⇒ easy solution.

23 e is orthogonal top in Rm; then‖e‖2 = eT(b− p) = eTb = bTb− bTp.

24 The derivatives of‖Ax− b‖2 = xTATAx− 2bTAx+ bTb (this last term is constant)

are zero when2ATAx = 2ATb, orx = (ATA)−1ATb.

25 3 points on a linewill giveequal slopes(b2 − b1)/(t2 − t1) = (b3 − b2)/(t3 − t2).

Linear algebra: Orthogonal to the columns(1, 1, 1) and(t1, t2, t3) isy = (t2− t3, t3−
t1, t1 − t2) in the left nullspace ofA. b is in the column space ! ThenyTb = 0 is the

same equal slopes condition written as(b2 − b1)(t3 − t2) = (b3 − b2)(t2 − t1).

26

The unsolvable

equations for

C +Dx+Ey = (0, 1, 3, 4)

at the4 corners are




1 1 0

1 0 1

1 −1 0

1 0 −1







C

D

E


 =




0

1

3

4




. ThenATA =




4 0 0

0 2 0

0 0 2




andATb =




8

−2

−3


 and




C

D

E


=




2

−1

−3/2


. At x, y = 0, 0 the best plane2 − x − 3

2y

has heightC = 2 = average of0, 1, 3, 4.

27 The shortest link connecting two lines in space isperpendicular to those lines.

28 If A has dependent columns, thenATA is not invertable and the usual formulaP =

A(ATA)−1AT will fail. ReplaceA in that formula by the matrixB that keepsonly the

pivot columns ofA.

29 Only1 plane contains0,a1,a2 unlessa1,a2 aredependent. Same test fora1, . . . ,an−1.

If they are dependent, there is a vectorv perpendicular to all thea’s. Then they all lie

on the planevTx = 0 going throughx = (0, 0, . . . , 0).
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30 WhenA has orthogonal columns(1, . . . , 1) and (T1, . . . , Tm), the matrixATA is

diagonalwith entriesm andT 2
1 + · · ·+ T 2

m. AlsoATb has entriesb1 + · · ·+ bm and

T1b1+ · · ·+Tmbm. The solution with that diagonalATA is just the given̂x = (C,D).

Problem Set 4.4, page 242

1 (a) Independent(b) Independentand orthogonal(c) Independentand orthonormal.

For orthonormal vectors, (a) becomes(1, 0), (0, 1) and (b) is(.6, .8), (.8,−.6).

2
Divide by length 3 to get

q1 = (2
3
, 2
3
,− 1

3
). q2 = (− 1

3
, 2
3
, 2
3
).

QTQ =


1 0

0 1


 butQQT =




5/9 2/9 −4/9

2/9 8/9 2/9

−4/9 2/9 5/9


.

3 (a) ATA will be 16I (b) ATA will be diagonal with entries12, 22, 32 = 1, 4, 9.

4 (a) Q =




1 0

0 1

0 0


, QQT =




1 0 0

0 1 0

0 0 0


 6= I . Any Q with n < m hasQQT 6= I .

(b) (1, 0) and(0, 0) areorthogonal, not independent. Nonzero orthogonal vectorsare

independent. (c) Fromq1 = (1, 1, 1)/
√
3 my favorite isq2 = (1,−1, 0)/

√
2 and

q3 = (1, 1,−2)/
√
6.

5 Orthogonalvectors are(1,−1, 0) and(1, 1,−1). Orthonormalafter dividing by their

lengths :
(

1√
2
,− 1√

2
, 0
)

and
(

1√
3
, 1√

3
,− 1√

3

)
.

6 Q1Q2 is orthogonal because(Q1Q2)
TQ1Q2 = QT

2 Q
T
1Q1Q2 = QT

2 Q2 = I .

7 When Gram-Schmidt givesQ with orthonormal columns,QTQx̂ = QTb becomes

x̂ = QTb. No cost to solve the normal equations !

8 If q1 andq2 areorthonormalvectors inR5 thenp = (qT
1 b)q1+(qT

2 b)q2 is closest tob.

The errore = b− p is orthogonal toq1 andq2.

9 (a) Q =




.8 −.6

.6 .8

0 0


 hasP = QQT =




1 0 0

0 1 0

0 0 0


 = projection on thexy plane.
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(b) (QQT)(QQT) = Q(QTQ)QT = QQT.

10 (a) If q1, q2, q3 areorthonormalthen the dot product ofq1 with c1q1+c2q2+c3q3 =

0 givesc1 = 0. Similarly c2 = c3 = 0. This proves :Independentq’s

(b) Qx = 0 leads toQTQx = 0 which saysx = 0.

11 (a) Twoorthonormalvectors areq1 = 1
10
(1, 3, 4, 5, 7) andq2 = 1

10
(−7, 3, 4,−5, 1)

(b) Closest projection in the plane= projectionQQT(1, 0, 0, 0, 0) = (0.5,−0.18,−0.24, 0.4, 0).

12 (a) Orthonormala’s: aT
1 b = aT

1 (x1a1 + x2a2 + x3a3) = x1(a
T
1 a1) = x1

(b) Orthogonala’s: aT
1 b = aT

1 (x1a1 + x2a2 + x3a3) = x1(a
T
1 a1). Therefore

x1 = aT
1 b/a

T
1 a1

(c) x1 is the first component ofA−1 timesb (A is 3 by 3 and invertible).

13 The multiple to subtract isa
Tb

aTa . ThenB = b − aTb
aTaa =


 4

0


 − 2


 1

1


 =


 2

−2


.

14


1 4

1 0


 =

[
q1 q2

]
‖a‖ qT

1 b

0 ‖B‖


 =


1/

√
2 1/

√
2

1/
√
2 −1/

√
2





√
2 2

√
2

0 2
√
2


 = QR.

15 (a) Gram-Schmidt choosesq1 = a/||a|| = 1

3
(1, 2,−2) andq2 = 1

3
(2, 1, 2). Then

q3 = 1
3
(2,−2,−1).

(b) The nullspace ofAT containsq3

(c) x̂ = (ATA)−1AT(1, 2, 7) = (1, 2).

16 p = (aTb/aTa)a = 14a/49 = 2a/7 is the projection ofb ontoa. q1 = a/‖a‖ =

a/7 is (4, 5, 2, 2)/7. B = b− p = (−1, 4,−4,−4)/7 has‖B‖ = 1 soq2 = B.

17 p = (aTb/aTa)a = (3, 3, 3) ande = (−2, 0, 2). Then Gram-Schmidt will choose

q1 = (1, 1, 1)/
√
3 andq2 = (−1, 0, 1)/

√
2.

18 A = a = (1,−1, 0, 0);B = b−p = (1
2
, 1
2
,−1, 0);C = c−pA−pB = (1

3
, 1
3
, 1
3
,−1).

Notice the pattern in those orthogonalA,B,C. In R5, D would be(1
4
, 1
4
, 1
4
, 1
4
,−1).

Gram-Schmidt would go on to normalizeq1 = A/||A||, q2 = B/||B||, q3 = C/||C||.
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19 If A = QR thenATA = RTQTQR = RTR = lower triangular timesuppertriangular

(this Cholesky factorization ofATA uses the sameR as Gram-Schmidt!). The example

hasA =




−1 1

2 1

2 4


 =

1

3




−1 2

2 −1

2 2





3 3

0 3


 = QR and the sameR appears in

ATA =


9 9

9 18


 =


3 0

3 3




3 3

0 3


 = RTR.

20 (a) TruebecauseQTQ = I leads to(Q−1) (Q−1) = I .

(b) True. Qx = x1q1 + x2q2. ‖Qx‖2 = x2
1 + x2

2 becauseq1 · q2 = 0. Also

||Qx||2 = xTQTQx = xTx.

21 The orthonormal vectors areq1 = (1, 1, 1, 1)/2 andq2 = (−5,−1, 1, 5)/
√
52. Then

b = (−4,−3, 3, 0) projects top = (qT
1 b)q1 + (qT

2 b)q2 = (−7,−3,−1, 3)/2. And

b− p = (−1,−3, 7,−3)/2 is orthogonal to bothq1 andq2.

22 A = (1, 1, 2), B = (1,−1, 0), C = (−1,−1, 1). These are not yet unit vectors. As in

Problem18, Gram-Schmidt will divide by||A|| and||B|| and||C||.

23 You can see whyq1 =




1

0

0


, q2 =




0

0

1


, q3 =




0

1

0


. A =




1 0 0

0 0 1

0 1 0







1 2 4

0 3 6

0 0 5


 =

QR. ThisQ is just a permutation matrix—certainly orthogonal.

24 (a) One basis for the subspaceS of solutions tox1+x2+x3−x4 = 0 is the3 special

solutionsv1 = (−1, 1, 0, 0), v2 = (−1, 0, 1, 0), v3 = (1, 0, 0, 1)

(b) SinceS contains solutions to(1, 1, 1,−1)Tx = 0, a basis forS⊥ is (1, 1, 1,−1)

(c) Split (1, 1, 1, 1) into b1 + b2 by projection onS⊥ andS: b2 = (12 ,
1
2 ,

1
2 ,− 1

2 ) and

b1 = (12 ,
1
2 ,

1
2 ,

3
2).

25 This question shows2 by 2 formulas forQR; breakdownR22 = 0 for singularA.

Nonsingular example


2 1

1 1


 =

1√
5


2 −1

1 2


 · 1√

5


5 3

0 1


.
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Singular example


1 1

1 1


 =

1√
2


1 −1

1 1


 · 1√

2


2 2

0 0


.

The Gram-Schmidt process breaks down whenad− bc = 0.

26 (qT
2 C

∗)q2 = BTc
BTB

B becauseq2 = B
‖B‖ and the extraq1 in C∗ is orthogonal toq2.

27 Whena andb are not orthogonal, the projections onto these linesdo not addto the pro-

jection onto the plane ofa andb. We must use the orthogonalA andB (or orthonormal

q1 andq2) to be allowed to add projections on those lines.

28 There are1
2
m2n multiplications to find the numbersrkj and the same forvij .

29 q1 = 1
3
(2, 2,−1), q2 = 1

3
(2,−1, 2), q3 = 1

3
(1,−2,−2).

30 The columns of the wavelet matrixW areorthonormal. ThenW−1 =WT. This is a

useful orthonormal basis with many zeros.

31 (a) c = 1
2

normalizes all the orthogonal columns to have unit length (b) The pro-

jection(aTb/aTa)a of b = (1, 1, 1, 1) onto the first column isp1 = 1
2
(−1, 1, 1, 1).

(Checke = 0.) To project onto the plane, addp2 = 1
2 (1,−1, 1, 1) to get(0, 0, 1, 1).

32 Q1 =


1 0

0 −1


 reflects acrossx axis,Q2 =




1 0 0

0 0 −1

0 −1 0


 across planey+ z = 0.

33 Orthogonal and lower triangular⇒ ±1 on the main diagonal and zeros elsewhere.

34 (a) Qu = (I − 2uuT)u = u − 2uuTu. This is−u, provided thatuTu equals1

(b) Qv = (I − 2uuT)v = u− 2uuTv = u, provided thatuTv = 0.

35 Starting fromA = (1,−1, 0, 0), the orthogonal (not orthonormal) vectorsB =

(1, 1,−2, 0) andC=(1, 1, 1,−3)andD=(1, 1, 1, 1)are in the directions ofq2, q3, q4.

The4 by 4 and5 by 5 matrices withinteger orthogonal columns(not orthogonal rows,

since not orthonormalQ!) are
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

A B C D



=




1 1 1 1

−1 1 1 1

0 −2 1 1

0 0 −3 1




and




1 1 1 1 1

−1 1 1 1 1

0 −2 1 1 1

0 0 −3 1 1

0 0 0 −4 1




36 [Q,R] = qr(A) produces fromA (m byn of rankn) a “full-size” squareQ=[Q1 Q2 ]

and


R

0


. The columns ofQ1 are the orthonormal basis from Gram-Schmidt of the

column spaceof A. Them − n columns ofQ2 are an orthonormal basis for theleft

nullspaceof A. Together the columns ofQ = [Q1 Q2 ] are an orthonormal basis

for Rm.

37 This question describes the nextqn+1 in Gram-Schmidt using the matrixQ with the

columnsq1, . . . , qn (instead of using thoseq’s separately). Start froma, subtract its

projectionp = QTa onto the earlierq’s, divide by the lengthof e = a − QTa to get

qn+1 = e/‖e‖.
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Problem Set 5.1, page 254

1 det(2A)= 24 detA = 8; det(−A) = (−1)4 detA = 1
2 ; det(A

2) = 1
4 ; det(A

−1)=2.

2 det(12A) = (12 )
3 detA = − 1

8 anddet(−A) = (−1)3 detA = 1; det(A2) = 1;

det(A−1) = −1.

3 (a) False:det(I + I) is not1 + 1 (except whenn = 1) (b) True: The product rule

extends toABC (use it twice) (c)False:det(4A) is 4n detA

(d) False:A =


0 0

0 1


, B =


0 1

1 0


, AB − BA =


0 −1

1 0


 is invertible.

4 Exchange rows 1 and 3 to show|J3| = −1. Exchange rows 1 and 4, then rows 2 and 3

to show|J4| = 1.

5 |J5| = 1 by exchanging row1 with 5 and row2 with 4. |J6| = −1, |J7| = −1.

Determinants1, 1,−1,−1 repeat in cycles of length4 so the determinant ofJ101 is+1.

6 To prove Rule 6, multiply the zero row byt = 2. The determinant is multiplied by2

(Rule 3) but the matrix is the same. So2 det(A) = det(A) anddet(A) = 0.

7 det(Q) = 1 for rotation anddet(Q) = 1− 2 sin2 θ − 2 cos2 θ = −1 for reflection.

8 QTQ = I ⇒ |QT| |Q| = |Q|2 = 1 ⇒ |Q| = ±1; Qn stays orthogonal so its

determinant can’t blow up asn → ∞.

9 detA = 1 from two row exchanges .detB = 2 (subtract rows 1 and 2 from row 3, then

columns 1 and 2 from column 3).detC = 0 (equal rows) even thoughC = A+B!

10 If the entries in every row add to zero, then(1, 1, . . . , 1) is in the nullspace: singular

A hasdet = 0. (The columns add to the zero column so they are linearly dependent.)

If every row adds to one, then rows ofA − I add to zero (not necessarilydetA = 1).

11 CD = −DC ⇒ detCD = (−1)n detDC andnot just− detDC. If n is even then

detCD = detDC and we can have an invertibleCD.

12 det(A−1) divides twice byad − bc (once for each row). This givesdetA−1 =
ad− bc

(ad− bc)2
=

1

ad− bc
.
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13 Pivots1, 1, 1 give determinant= 1; pivots1,−2,−3/2 give determinant= 3.

14 det(A) = 36 and the4 by 4 second difference matrix has det= 5.

15 The first determinant is0, the second is1− 2t2 + t4 = (1− t2)2.

16 A singular rank one matrix has determinant= 0. The skew-symmetricK also has

detK = 0 (see#17): a skew-symmetric matrixK of odd order3.

17 Any 3 by 3 skew-symmetricK has det(KT) = det(−K) = (−1)3det(K). This is

−det(K). But always det(KT) = det(K). So we must have det(K) = 0 for 3 by 3.

18

∣∣∣∣∣∣∣∣∣

1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

1 a a2

0 b− a b2 − a2

0 c− a c2 − a2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
b− a b2 − a2

c− a c2 − a2

∣∣∣∣∣∣
(to reach2 by 2,

eliminate a and a2 in row 1 by column operations)—subtracta and a2 times

column 1 from columns2 and 3. Factor outb − a and c − a from the 2 by 2:

(b− a)(c − a)

∣∣∣∣∣∣
1 b+ a

1 c+ a

∣∣∣∣∣∣
= (b− a)(c − a)(c − b).

19 For triangular matrices, just multiply the diagonal entries:det(U) = 6, det(U−1) = 1
6
,

anddet(U2) = 36. 2 by 2 matrix: det(U) = ad, det(U2) = a2d2. If ad 6= 0 then

det(U−1) = 1/ad.

20 det


a− Lc b− Ld

c− ℓa d− ℓb


 reduces to(ad− bc)(1−Lℓ). The determinant changes if you

do two row operations at once.

21 We can exchange rows using the three elimination steps in the problem, followed by

multiplying row 1 by −1. So Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5,

they also give Rule 2.)

22 det(A) = 3, det(A−1) = 1
3 , det(A − λI) = λ2 − 4λ + 3. The numbersλ = 1 and

λ = 3 givedet(A− λI) = 0. The (singular !) matrices are

A− I =


 1 1

1 1


 andA− 3I =


 −1 1

1 −1






Solutions to Exercises 87

Note to instructor: You could explain that this is the reason determinants come before

eigenvalues. Identifyλ = 1 andλ = 3 as the eigenvalues ofA.

23 A =


4 1

2 3


 has det(A) = 10, A2 =


18 7

14 11


, det(A2) = 100, A−1 =

1
10


 3 −1

−2 4


 has det 1

10
. det(A− λI) = λ2 − 7λ+ 10 = 0 whenλ = 2 or 5; those

are eigenvalues.

24 HereA = LU with det(L) = 1 anddet(U) = −6 = product of pivots, so also

det(A) = −6. det(U−1L−1) = − 1
6 = 1/ det(A) anddet(U−1L−1A) is det I = 1.

25 When thei, j entry isij, row 2 = 2 times row 1 sodetA = 0.

26 When theij entry isi+ j, row 3− row 2 = row2− row 1 soA is singular:detA = 0.

27 detA = abc, detB = −abcd, detC = a(b − a)(c − b) by doing elimination.

28 (a) True:det(AB) = det(A) det(B) = 0 (b) False: A row exchange gives− det =

product of pivots. (c)False:A = 2I andB = I haveA−B = I but the determinants

have2n − 1 6= 1 (d) True:det(AB) = det(A) det(B) = det(BA).

29 A is rectangular sodet(ATA) 6= (detAT)(detA): these determinants are not defined.

In fact if A is tall and thin (m > n), thendet(ATA) adds up| detB|2 where theB’s

are all then by n submatrices ofA.

30 Derivatives off = ln(ad− bc):


∂f/∂a ∂f/∂c

∂f/∂b ∂f/∂d


 =




d

ad− bc

−b

ad− bc
−c

ad− bc

a

ad− bc


 =

1

ad− bc


 d −b

−c a


 = A−1.

31 The Hilbert determinants are1, 8 × 10−2, 4.6 × 10−4, 1.6 × 10−7, 3.7 × 10−12,

5.4× 10−18, 4.8× 10−25, 2.7× 10−33, 9.7× 10−43, 2.2× 10−53. Pivots are ratios of

determinants so the10th pivot is near10−10. The Hilbert matrix is numerically difficult

(ill-conditioned). Please see the Figure7.1 and Section8.3.
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32 Typical determinants ofrand(n) are106, 1025, 1079, 10218 for n = 50, 100, 200, 400.

randn(n) with normal distribution gives1031, 1078, 10186, Inf which means≥ 21024.

MATLAB allows1.999999999999999× 21023 ≈ 1.8× 10308 but one more 9 givesInf!

33 I now know that maximizing the determinant for1, −1 matrices isHadamard’s prob-

lem (1893): see Brenner in American Math. Monthly volume 79 (1972) 626-630. Neil

Sloane’s wonderful On-Line Encyclopedia of Integer Sequences (research.att.com/∼
njas) includes the solution for smalln (and more references) when the problem is

changed to0, 1 matrices. That sequence A003432 starts fromn = 0 with 1, 1, 1, 2,

3, 5, 9. Then the1,−1 maximum for sizen is 2n−1 times the0, 1 maximum for size

n− 1 (so(32)(5) = 160 for n = 6 in sequenceA003433).

To reduce the1,−1 problem from6 by 6 to the0, 1 problem for5 by 5, multiply the

six rows by±1 to put+1 in column1. Then subtract row1 from rows2 to 6 to get a5

by 5 submatrixS with entries−2 and0. Then divideS by−2.

Here is an advanced MATLAB code that finds a1,−1 matrix with largestdetA = 48

for n = 5:

n = 5; p = (n− 1)ˆ2;A0 =ones(n); maxdet= 0;

for k = 0 : 2ˆp− 1

Asub = rem(floor(k. ∗ 2.ˆ(−p+ 1 : 0)), 2);A = A0;A(2 : n, 2 : n) = 1− 2∗
reshape(Asub, n− 1, n− 1);

if abs(det(A)) > maxdet, maxdet = abs(det(A)); maxA = A;

end

end

Output:maxA =

1 1 1 1 1

1 1 1 −1 −1

1 1 −1 1 −1

1 −1 1 1 −1

1 −1 −1 −1 1

maxdet = 48.
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34 ReduceB by row operations to[ row 3; row 2; row 1]. ThendetB = −6 (odd per-

mutation from the order of the rows inA).

Problem Set 5.2, page 266

1 detA = 1 + 18 + 12 − 9 − 4 − 6 = 12, the rows ofA are independent;

detB = 0, row 1 + row 2 = row 3 so the rows ofB are linearly dependent;

detC = −1, soC has independent rows (detC has one term, an odd permutation).

2 detA = −2, independent;detB = 0, dependent;detC = −1, independent but

detD = 0 because its submatrixB has dependent rows.

3 The problem suggests3 ways to see thatdetA = 0 : All cofactors of row1 are zero.

A has rank≤ 2. Each of the 6 terms indetA is zero. Notice also that column 2 has no

pivot.

4 a11a23a32a44 gives−1, because the termsa23a32 have columns2 and 3 in reverse

order.a14a23a32a41 which has2 row exchanges gives+1, detA = 1− 1 = 0. Using

the same entries but now taken fromB, detB = 2 ·4 ·4 ·2−1 ·4 ·4 ·1 = 64−16 = 48.

5 Four zeros in the same row guaranteedet = 0 (and also four zeros in the same column).

A = I has12 zeros (this is the maximum withdet 6= 0).

6 (a) If a11 = a22 = a33 = 0 then 4 terms will be zeros (b) 15 terms must be zero.

Effectively we are counting the permutations that make everyone move;2, 3, 1 and

3, 1, 2 for n = 3 mean that the other4 permutations take a term from the diagonal of

A; so those terms are0 when the diagonal is all zeros.

7 5!/2 = 60 permutation matrices (half of5 ! = 120 permutations) havedet = +1.

Move row 5 of I to the top; then starting from(5, 1, 2, 3, 4) elimination will do four

row exchanges onP .

8 If detA 6= 0, then certainly some terma1αa2β · · · anω in the big formula is not zero!

Move rows1, 2, . . .,n into rowsα, β, . . .,ω. Then all these nonzeroa’s will be on the

main diagonal.
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9 The big formula has six terms all±1 : sayq are−1 and6 − q are1. ThendetA =

−q + 6− q = even (sodetA = 5 is impossible). AlsodetA = 6 is impossible. All3

even permutations likea11a22a33 would have to give+1 (so an even number of−1’s

in the matrix). But all3 odd permutations likea11a23a32 would have to give−1 (so an

odd number of−1’s in the matrix). We can’t have it both ways, sodetA = 4 is best

possible and not hard to arrange : put−1’s on the main diagonal.

10 The4!/2 = 12 even permutations are(1, 2, 3, 4), (2, 1, 4, 3), (3, 1, 4, 2), (4, 3, 2, 1), and

8 P ’s with one number in place and even permutation of the other three numbers :

examples are1, 3, 4, 2 and1, 4, 2, 3.

det(I + Peven) is always16 or 4 or 0 (16 comes fromI + I).

11 C =


 d −b

−c a


. D =




0 42 −35

0 −21 14

−3 6 −3


.

detB = 1(0) + 2(42) + 3(−35) = −21.

Puzzle:detD = 441 = (−21)2. Whyis

det(cofactor matrix) = (det matrix)n−1 ?

12 C =




3 2 1

2 4 2

1 2 3


 andACT =




4 0 0

0 4 0

0 0 4


. ThereforeA−1 = 1

4C
T = CT/ detA.

13 (a) C1 = 0, C2 = −1, C3 = 0, C4 = 1 (b) Cn = −Cn−2 by cofactors of row

1 then cofactors of column 1. ThereforeC10 = −C8 = C6 = −C4 = C2 = −1.

14 For the matrices in Problem13 to produce nonzeros in the big formula, we must choose

1’s from column 2 then column 1, column 4 then column 3,and so on. Thereforen

must be even to havedet 6= 0. The number of row exchanges isn/2 so the overall

determinant isCn = (−1)n/2.

15 The1, 1 cofactor of then by n matrix isEn−1. The1, 2 cofactor has a single 1 in its

first column, with cofactorEn−2: sign gives−En−2. SoEn = En−1 − En−2. Then

E1 to E6 is 1, 0, −1, −1, 0, 1 and this cycle of six will repeat:E100 = E4 = −1.

16 The1, 1 cofactor of then by n matrix isFn−1. The1, 2 cofactor has a 1 in column

1, with cofactorFn−2. Multiply by (−1)1+2 and also(−1) from the1, 2 entry to find

Fn = Fn−1 + Fn−2. So these determinants are Fibonacci numbers.
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17 Use cofactors along row4 instead of row 1 (last row instead of first).

|B4| = 2det




1 −1

−1 2 −1

−1 2


+det




1 −1

−1 2

−1 −1


 = 2|B3| − det


 1 −1

−1 2


 .

So|B4| = 2|B3| − |B2|.

18 Rule 3 (linearity in row 1) gives|Bn| = |An| − |An−1| = (n+ 1)− n = 1.

19 Sincex, x2, x3 are all in the same row, they never multiply each other indetV4.

The determinant is zero atx = a or b or c because of equal rows ! SodetV has

factors(x − a)(x − b)(x − c). Multiply by the cofactorV3. The Vandermonde matrix

Vij = (xi)
j−1 is for fitting a polynomialp(x) = b at the pointsxi. It hasdetV =

product of allxk − xm for k > m.

20 G2 = −1, G3 = 2, G4 = −3, andGn = (−1)n−1(n− 1). One way to reach thatGn

is to multiply then eigenvalues−1,−1, . . . ,−1, n − 1 of the matrix. Is there a good

choice of row operations to produce this determinantGn ?

21 S1 = 3, S2 = 8, S3 = 21. The rule looks like every second number in Fibonacci’s

sequence. . . 3, 5, 8, 13, 21, 34, 55, . . . so the guess isS4 = 55. Following the solution

to Problem 30 with 3’s instead of 2’s on the diagonal confirmsS4 = 81+1−9−9−9 =

55. Problem 32 directly provesSn = F2n+2.

22 Changing 3 to 2 in the corner reduces the determinantF2n+2 by 1 times the cofactor

of that corner entry. This cofactor is the determinant ofSn−1 (one size smaller) which

is F2n. Therefore changing 3 to 2 changes the determinant toF2n+2 − F2n which is

Fibonacci’sF2n+1.

23 (a) If we choose an entry fromB we must choose an entry from the zero block; re-

sult zero. This leaves entries fromA times entries fromD leading to(detA)(detD)

(b) and (c) TakeA =


1 0

0 0


, B =


0 0

1 0


, C =


0 1

0 0


, D =


0 0

0 1


. See

#25.

24 (a) All the lower triangular blocksLk have1’s on the diagonal anddet = 1. Then use

Ak = LkUk to finddetUk=detAk=2, 6,−6 for k=1, 2, 3
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(b) Equation (3) in this section gives thekth pivot asdetAk/ detAk−1. SodetAk =

5, 6, 7 gives pivotdk = 5/1, 6/5, 7/6.

25 Problem 23 givesdet


 I 0

−CA−1 I


 = 1 anddet


A B

C D


 = |A| times |D −

CA−1B|. By the product rule this is|AD−ACA−1B|. If AC = CA this is|AD−
CAA−1B| = det(AD − CB).

26 If A is a row andB is a column thendetM = detAB = dot product ofA andB. If

A is a column andB is a row thenAB has rank 1 anddetM = detAB = 0 (unless

m = n = 1). This block matrixM is invertible whenAB is invertible which certainly

requiresm ≤ n.

27 (a) detA = a11C11 + · · ·+ a1nC1n. Derivative with respect toa11 = cofactorC11.

28 Row1− 2 row 2 + row 3 = 0 so this matrix is singular anddetA is zero.

29 There are five nonzero products, all 1’s with a plus or minus sign. Here are the (row,

column) numbers and the signs:+(1, 1)(2, 2)(3, 3)(4, 4) + (1, 2)(2, 1)(3, 4)(4, 3) −
(1, 2)(2, 1)(3, 3)(4, 4) − (1, 1)(2, 2)(3, 4)(4, 3) − (1, 1)(2, 3)(3, 2)(4, 4). Total−1.

30 The 5 products in solution 29 change to16 + 1− 4− 4− 4 sinceA has2’s and−1’s:

(2)(2)(2)(2) + (−1)(−1)(−1)(−1)− (−1)(−1)(2)(2)− (2)(2)(−1)(−1)−
(2)(−1)(−1)(2) = 5 = n + 1.

31 detP = −1 because the cofactor ofP14 = 1 in row one has sign(−1)1+4. The

big formula fordetP has only one term(1 · 1 · 1 · 1) with minus sign because three

exchanges take4, 1, 2, 3 into 1, 2, 3, 4; det(P 2) = (detP )(detP ) = +1 so

det


0 I

I 0


 = det


0 1

1 0


 is not right.

32 The problem is to show thatF2n+2 = 3F2n − F2n−2. Keep using Fibonacci’s rule:

F2n+2=F2n+1+F2n=F2n+F2n−1+F2n=2F2n+(F2n−F2n−2)=3F2n−F2n−2.
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33 The difference from20 to 19 multiplies its3 by 3 cofactor= 1: thendet drops by1.

34 (a) The last three rows must be dependent because only2 columns are nonzero

(b) In each of the 120 terms: Choices from the last 3 rows must use 3 different columns;

at least one of those choices will be zero.

35 Subtracting 1 from then, n entry subtracts its cofactorCnn from the determinant. That

cofactor isCnn = 1 (smaller Pascal matrix). Subtracting 1 from 1 leaves 0.

Problem Set 5.3, page 283

1 (a) |A| =

∣∣∣∣∣∣
2 5

1 4

∣∣∣∣∣∣
= 3, |B1| =

∣∣∣∣∣∣
1 5

2 4

∣∣∣∣∣∣
= 6, |B2| =

∣∣∣∣∣∣
2 1

1 2

∣∣∣∣∣∣
= 3 sox1 =

−6/3 = −2 andx2 = 3/3 = 1 (b) |A| = 4, |B1| = 3, |B2| = 2, |B3| = 1.

Thereforex1 = 3/4 andx2 = −1/2 andx3 = 1/4.

2 (a) y =
∣∣∣ a 1

c 0

∣∣∣ /
∣∣∣ a b

c d

∣∣∣ = c/(ad − bc) (b) y = detB2/ detA = (fg − id)/D.

That is becauseB2 with (1, 0, 0) in column2 hasdetB2 = fg − id.

3 (a) x1 = 3/0 andx2 = −2/0: no solution (b) x1 = x2 = 0/0: undetermined.

4 (a) x1 = det
(
[ b a2 a3 ]

)
/ detA, if detA 6= 0. This is|B1|/|A|.

(b) The determinant is linear in its first column so|x1a1 + x2a2 + x3a3a2a3| splits

into x1|a1 a2 a3|+ x2|a2 a2 a3|+ x3|a3 a2 a3|. The last two determinants are zero

because of repeated columns, leavingx1|a1 a2 a3| which isx1 detA.

5 If the first column inA is also the right sideb thendetA = detB1. BothB2 andB3 are

singular since a column is repeated. Thereforex1 = |B1|/|A| = 1 andx2 = x3 = 0.

6 (a)




1 − 2
3

0

0 1
3

0

0 − 7
3 1




(b)
1

4




3 2 1

2 4 2

1 2 3




.
An invertible symmetric matrix

has a symmetric inverse.
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7 If all cofactors= 0 thenA−1 would be the zero matrix if it existed; cannot exist. (And

also, the cofactor formula givesdetA = 0.) A =


1 1

1 1


 has no zero cofactors but it

is not invertible.

8 C =




6 −3 0

3 1 −1

−6 2 1


 andACT=




3 0 0

0 3 0

0 0 3


.

This is(detA)I anddetA = 3.

The1, 3 cofactor ofA is 0.

ThenC31 = 4 or 100: no change.

9 If we know the cofactors anddetA = 1, thenCT = A−1 and alsodetA−1 = 1.

NowA is the inverse ofCT, soA can be found from the cofactor matrix forC.

10 Take the determinant ofACT = (detA)I . The left side givesdetACT = (detA)(detC)

while the right side gives(detA)n. Divide bydetA to reachdetC = (detA)n−1.

11 The cofactors ofA are integers. Division bydetA = ±1 gives integer entries inA−1.

12 Both detA anddetA−1 are integers since the matrices contain only integers. But

detA−1 = 1/ detA sodetA must be 1 or−1.

13 A =




0 1 3

1 0 1

2 1 0


 has cofactor matrixC =




−1 2 1

3 −6 2

1 3 −1


 andA−1 =

1

5
CT.

14 (a) Lower triangularL has cofactorsC21 = C31 = C32 = 0 (b) C12 = C21,

C31 = C13, C32 = C23 makeS−1 symmetric. (c) OrthogonalQ has cofactor

matrixC = (detQ)(Q−1)T = ±Q also orthogonal. NotedetQ = 1 or−1.

15 Forn = 5, C contains25 cofactors and each 4 by 4 cofactor has24 terms. Each term

needs3 multiplications: total1800 multiplications vs.125 for Gauss-Jordan.

16 (a) Area
∣∣ 3 2
1 4

∣∣ = 10 (b) and (c) Area10/2 = 5, these triangles are half of the

parallelogram in (a).

17 Volume=

∣∣∣∣
3 1 1
1 3 1
1 1 3

∣∣∣∣=20.
Area of faces=

length of cross product
=

∣∣∣∣
i j k
3 1 1
1 3 1

∣∣∣∣=
−2i− 2j + 8k

length=6
√
2

18 (a) Area1
2

∣∣∣∣
2 1 1
3 4 1
0 5 1

∣∣∣∣ = 5 (b) 5 + new triangle area12

∣∣∣∣
2 1 1
0 5 1

−1 0 1

∣∣∣∣ = 5 + 7 = 12.

19
∣∣ 2 1
2 3

∣∣ = 4 =
∣∣ 2 2
1 3

∣∣ because the transpose has the same determinant. See#22.
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20 The edges of the hypercube have length
√
1 + 1 + 1 + 1 = 2. The volumedetH

is 24 = 16. (H/2 has orthonormal columns. Thendet(H/2) = 1 leads again to

detH = 16 in 4 dimensions.)

21 The maximum volumeL1L2L3L4 is reached when the edges are orthogonal inR4.

With entries1 and−1 all lengths are
√
4 = 2. The maximum determinant is24 = 16,

achieved in Problem 20. For a3 by 3 matrix,detA = (
√
3)3 can’t be achieved by±1.

ρ2 sinφdρ dφ dθ.

22 This question is still waiting for a solution! An18.06 student showed me how to trans-

form the parallelogram forA to the parallelogram forAT, without changing its area.

(Edges slide along themselves, so no change in baselength or height or area.)

23 ATA =




aT

bT

cT



[
a b c

]
=




aTa 0 0

0 bTb 0

0 0 cTc


 has

detATA = (‖a‖‖b‖‖c‖)2

detA = ±‖a‖‖b‖‖c‖

24 The box has height 4 and volume= det




1 0 0

0 1 0

2 3 4


 = 4. i× j = k and(k ·w) = 4.

25 The n-dimensional cube has2n corners,n2n−1 edges and2n (n − 1)-dimensional

faces. Coefficients from(2 + x)n in Worked Example2.4A. Cube from2I has volume

2n.

26 The pyramid has volume1
6
. The 4-dimensional pyramid has volume1

24
(and 1

n!
in Rn)

27 x = r cos θ, y = r sin θ giveJ = r. This is ther in polar arear dr dθ. The columns

are orthogonal and their lengths are1 andr.

28 J =

∣∣∣∣∣∣∣∣∣

sinϕ cos θ ρ cosϕ sin θ −ρ sinϕ sin θ

sinϕ sin θ ρ cosϕ sin θ ρ sinϕ cos θ

cosϕ −ρ sinϕ θ

∣∣∣∣∣∣∣∣∣
= ρ2 sinϕ. This Jacobian is needed

for triple integrals inside spheres. Those integrals haveρ2 sinφdρ dφ dθ.
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29 Fromx, y to r, θ:

∣∣∣∣∣∣
∂r/∂x ∂r/∂y

∂θ/∂x ∂θ/∂y

∣∣∣∣∣∣
=

∣∣∣∣∣∣
x/r y/r

−y/r2 x/r2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
cos θ sin θ

(− sin θ)/r (cos θ)/r

∣∣∣∣∣∣

=
1

r
=

1

Jacobian in27
. The surprise was thatdr

dx
and dx

dr
are bothx

r
.

30 The triangle with corners(0, 0), (6, 0), (1, 4) has area(6)(4)/2 = 12. Rotated by

θ = 60◦ the area isunchanged. The determinant of the rotation matrix is

J =

∣∣∣∣∣∣
cos θ − sin θ

sin θ cos θ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1/2 −

√
3/2

√
3/2 1/2

∣∣∣∣∣∣
= 1.

31 Base area||u× v|| = 10, height||w|| cos θ = 2, volume(10)(2) = 20.

32 The volume of the box isdet




2 4 0

−1 3 0

1 2 2


 = 20, agreeing with Problem31.

33

∣∣∣∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣
= u1

∣∣∣∣∣∣
v2 v3

w2 w3

∣∣∣∣∣∣
−u2

∣∣∣∣∣∣
v1 v3

w1 w3

∣∣∣∣∣∣
+u3

∣∣∣∣∣∣
v1 v2

w1 w2

∣∣∣∣∣∣
. This isu ·(v×w).

34 (w × u) · v = (v ×w) · u = (u× v) ·w : Even permutationof (u,v,w) keeps the

same determinant. Odd permutations like(u× v) · v will reverse the sign.

35 S = (2, 1,−1), area‖PQ × PS‖ = ‖(−2,−2,−1)‖ =
√
22 + 22 + 12 = 3. The

other four corners of the box can be(0, 0, 0), (0, 0, 2), (1, 2, 2), (1, 1, 0). The volume

of the tilted box with edges alongP,Q, andR is | det | = 1.

36 If (1, 1, 0), (1, 2, 1), (x, y, z) are in a plane the volume isdet

The “box” with those edges is flattened to zero height.




x y z

1 1 0

1 2 1



=x−y+z=0.

37 det




x y z

2 3 1

1 2 3


 = 7x−5y+z will be zerowhen(x, y, z) is a combination of(2, 3, 1)

and(1, 2, 3). The plane containing those two vectors has equation7x − 5y + z = 0.

Volume= zero because the3 box edges out from(0, 0, 0) lie in a plane.
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38 Doubling each row multiplies the volume by2n. Then2 detA=det(2A) only if n=1.

39 ACT = (detA)I gives(detA)(detC) = (detA)n. ThendetA = (detC)1/3 with

n = 4. With detA−1 = 1/ detA, constructA−1 using the cofactors.Invert to findA.

40 The cofactor formula adds1 by 1 determinants (which are just entries)timestheir co-

factors of sizen−1. Jacobi discovered that this formula can be generalized. Forn = 5,

Jacobi multiplied each2 by 2 determinant from rows1-2 (with columnsa < b) times a

3 by 3 determinant from rows3-5 (using the remaining columnsc < d < e).

The key question is+ or − sign (as for cofactors). The product is given a+

sign whena, b, c, d, e is an even permutation of1, 2, 3, 4, 5. This gives the correct

determinant+1 for that permutation matrix. More than that, all otherP that permutea,

b and separatelyc, d, e will come out with the correct sign when the2 by 2 determinant

for columns a, b multiplies the3 by 3 determinant for columnsc, d, e.

41 The Cauchy-Binet formula gives the determinant of a square matrixAB (andAAT in

particular) when the factorsA, B are rectangular. For (2 by 3) times (3 by 2) there are

3 products of2 by 2 determinants fromA andB (printed in boldface):


a b c

d e f







g j

h k

i ℓ





a b c

d e f







g j

h k

i ℓ





a b c

d e f







g j

h k

i ℓ




Check A =


1 2 3

1 4 7


 B =




1 1

2 4

3 7


 AB =


14 30

30 66




Cauchy-Binet: (4− 2)(4− 2) + (7− 3)(7− 3) + (14− 12)(14− 12) = 24

det ofAB : (14)(66)− (30)(30) = 24

42 A 5 by 5 tridiagonal matrix has cofactorC11 = 4 by 4 tridiagonal matrix. Cofactor

C12 has only one nonzero at the top of column1. That nonzero multiplies its3 by 3

cofactor which is tridiagonal. SodetA = a11C11+a12C12 = tridiagonal determinants

of sizes4 and3. The numberFn of nonzero terms indetA follows Fibonacci’s rule

Fn = Fn−1 + Fn−2.



98 Solutions to Exercises

Problem Set 6.1, page 298

1 The eigenvalues are1 and0.5 for A, 1 and0.25 for A2, 1 and0 for A∞. Exchanging

the rows ofA changes the eigenvalues to1 and−0.5 (the trace is now0.2 + 0.3).

Singular matrices stay singular during elimination, soλ = 0 does not change.

2 A hasλ1 = −1 andλ2 = 5 with eigenvectorsx1 = (−2, 1) andx2 = (1, 1). The

matrixA + I has the same eigenvectors, with eigenvalues increased by1 to 0 and6.

That zero eigenvalue correctly indicates thatA+ I is singular.

3 A hasλ1 = 2 andλ2 = −1 (check trace and determinant) withx1 = (1, 1) and

x2 = (2,−1). A−1 has the same eigenvectors, with eigenvalues1/λ = 1
2

and−1.

4 det(A−λI) = λ2+λ− 6 = (λ+3)(λ− 2). ThenA hasλ1 = −3 andλ2 = 2 (check

trace= −1 and determinant= −6) with x1 = (3,−2) andx2 = (1, 1). A2 has the

same eigenvectorsasA, with eigenvaluesλ2
1 = 9 andλ2

2 = 4.

5 A andB have eigenvalues1 and3 (their diagonal entries : triangular matrices).A+B

hasλ2 + 8λ + 15 = 0 andλ1 = 3, λ2 = 5. Eigenvalues ofA + B are not equalto

eigenvalues ofA plus eigenvalues ofB.

6 A andB haveλ1 = 1 andλ2 = 1. AB andBA haveλ2 − 4λ + 1 and the quadratic

formula givesλ = 2±
√
3. Eigenvalues ofAB are not equalto eigenvalues ofA times

eigenvalues ofB. Eigenvalues ofAB andBA are equal (this is proved at the end of

Section 6.2).

7 The eigenvalues ofU (on its diagonal) are thepivotsof A. The eigenvalues ofL (on its

diagonal) are all1’s. The eigenvalues ofA are notthe same as the pivots.

8 (a) Multiply Ax to seeλx which revealsλ (b) Solve(A− λI)x = 0 to findx.

9 (a) Multiply byA: A(Ax) = A(λx) = λAx givesA2x = λ2x

(b) Multiply by A−1: x = A−1Ax = A−1λx = λA−1x givesA−1x = 1

λ
x

(c) Add Ix = x: (A+ I)x = (λ + 1)x.
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10 det(A− λI) = d2 − 1.4λ+ 0.4 soA hasλ1 = 1 andλ2 = 0.4 with x1 = (1, 2) and

x2 = (1,−1). A∞ hasλ1 = 1 andλ2 = 0 (same eigenvectors).A100 hasλ1 = 1 and

λ2 = (0.4)100 which is near zero. SoA100 is very nearA∞: same eigenvectors and

close eigenvalues.

11 Columns ofA−λ1I are in the nullspace ofA−λ2I becauseM = (A−λ2I)(A−λ1I)

is the zero matrix[this is the Cayley-Hamilton Theoremin Problem 6.2.30].

Notice thatM haszero eigenvalues(λ1−λ2)(λ1−λ1) = 0 and(λ2−λ2)(λ2−λ1) = 0.

So those columns solve(A− λ2I)x = 0, they are eigenvectors.

12 The projection matrixP hasλ = 1, 0, 1 with eigenvectors(1, 2, 0), (2,−1, 0), (0, 0, 1).

Add the first and last vectors:(1, 2, 1) also hasλ = 1. The whole column space ofP

contains eigenvectors withλ = 1 ! NoteP 2 = P leads toλ2 = λ soλ = 0 or 1.

13 (a) Pu = (uuT)u = u(uTu) = u soλ = 1 (b) Pv = (uuT)v = u(uTv) = 0

(c) x1 = (−1, 1, 0, 0), x2 = (−3, 0, 1, 0), x3 = (−5, 0, 0, 1) all havePx = 0x = 0.

14 det(Q−λI) = λ2− 2λ cos θ+1 = 0 whenλ = cos θ± i sin θ = eiθ ande−iθ. Check

thatλ1λ2 = 1 andλ1 + λ2 = 2 cos θ. Two eigenvectors of this rotation matrix are

x1 = (1, i) andx2 = (1,−i) (more generallycx1 anddx2 with cd 6= 0).

15 The other two eigenvalues areλ = 1
2
(−1± i

√
3). The three eigenvalues are1, 1,−1.

16 Setλ = 0 in det(A− λI) = (λ1 − λ) . . . (λn − λ) to finddetA = (λ1)(λ2) · · · (λn).

17 λ1 = 1
2
(a + d+

√
(a− d)2 + 4bc) andλ2 = 1

2
(a + d−

√
) add toa + d.

If A hasλ1 = 3 andλ2 = 4 then det(A− λI) = (λ− 3)(λ− 4) = λ2 − 7λ+ 12.

18 These3 matrices haveλ = 4 and5, trace9, det 20:


4 0

0 5


 ,


 3 2

−1 6


 ,


 2 2

−3 7


.

19 (a) rank= 2 (b) det(BTB) = 0 (d) eigenvalues of(B2 + I)−1 are1, 12 ,
1
5 .

20 A =


 0 1

−28 11


 has trace11 and determinant28, soλ = 4 and7. Moving to a3 by

3 companion matrix, for eigenvalues1, 2, 3 we wantdet(C − λI) = (1 − λ)(2 − λ)

(3 − λ). Multiply out to get−λ3 + 6λ2 − 11λ + 6. To get those numbers6,−11, 6

from a companion matrix you just put them into the last row:
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C =




0 1 0

0 0 1

6 −11 6


 Notice the trace6 = 1 + 2 + 3 and determinant6 = (1)(2)(3).

21 (A − λI) has the same determinant as(A − λI)T because every square matrix has

detM = detMT. PickM = A− λI .


1 0

1 0


 and


1 1

0 0


 havedifferent

eigenvectors.

22 The eigenvalues must beλ = 1 (because the matrix is Markov),0 (for singular),−1

2

(so sum of eigenvalues= trace= 1
2
).

23


0 0

1 0


,


0 1

0 0


,


−1 1

−1 1


.

AlwaysA2 is the zero matrix ifλ = 0 and0,

by the Cayley-Hamilton Theorem in Problem 6.2.30.

24 λ = 0, 0, 6 (notice rank1 and trace6). Two eigenvectors ofuvT are perpendicular to

v and the third eigenvector isu : x1=(0,−2, 1), x2=(1,−2, 0), x3=(1, 2, 1).

25 WhenA andB have the samen λ’s andx’s, look at any combinationv = c1x1 +

· · · + cnxn. Multiply by A andB : Av = c1λ1x1 + · · · + cnλnxn equalsBv =

c1λ1x1 + · · ·+ cnλnxn for all vectors v. SoA = B.

26 The block matrix hasλ = 1, 2 from B andλ = 5, 7 from D. All entries ofC are

multiplied by zeros indet(A− λI), soC has no effect on the eigenvalues of the block

matrix.

27 A has rank 1 with eigenvalues0, 0, 0, 4 (the 4 comes from the trace ofA). C has rank

2 (ensuring two zero eigenvalues) and(1, 1, 1, 1) is an eigenvector withλ = 2. With

trace 4, the other eigenvalue is alsoλ = 2, and its eigenvector is(1,−1, 1,−1).

28 Subtract from0, 0, 0, 4 in Problem27. B = A − I hasλ = −1, −1, −1, 3 and

C = I − A hasλ = 1, 1, 1,−3. Both havedet = −3.

29 A is triangular :λ(A) = 1, 4, 6; λ(B) = 2,
√
3, −

√
3; C has rank one :λ(C) = 0, 0, 6.
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30


a b

c d




1

1


 =


a+ b

c+ d


 = (a + b)


1

1


; λ2 = d − b to produce the correct trace

(a+ b) + (d− b) = a+ d.

31 Eigenvector(1, 3, 4) for A with λ = 11 and eigenvector(3, 1, 4) for PAPT with

λ = 11. Eigenvectors withλ 6= 0 must be in the column space sinceAx is always

in the column space, andx = Ax/λ.

32 (a) u is a basis for the nullspace (we knowAu = 0u); v andw give a basis for the

column space (we knowAv andAw are in the column space).

(b) A(v/3 + w/5) = 3v/3 + 5w/5 = v + w. Sox = v/3 + w/5 is a particular

solution toAx = v +w. Add anycu from the nullspace

(c) If Ax = u had a solution,u would be in the column space: wrong dimension 3.

33 Always (uvT)u = u(vTu) sou is an eigenvector ofuvT with λ = vTu. (watch

numbersvTu, vectorsu, matricesuvT!!) If vTu = 0 thenA2 = u(vTu)vT is the

zero matrix andλ2 = 0, 0 andλ = 0, 0 and trace(A) = 0. This zero trace also comes

from adding the diagonal entries ofA = uvT:

A =


u1

u2



[
v1 v2

]
=


u1v1 u1v2

u2v1 u2v2


 has traceu1v1 + u2v2 = vTu = 0

34 det(P − λI) = 0 gives the equationλ4 = 1. This reflects the fact thatP 4 = I .

The solutions ofλ4 = 1 areλ = 1, i,−1,−i. The real eigenvectorx1 = (1, 1, 1, 1)

is not changed by the permutationP . Three more eigenvectors are(1, i, i2, i3) and

(1,−1, 1,−1) and(1,−i, (−i)2, (−i)3).

35 The six3 by 3 permutation matrices includeP = I and three single row exchange

matricesP12, P13, P23 and two double exchange matrices likeP12P13. SincePTP = I

gives(detP )2 = 1, the determinant ofP is 1 or−1. The pivots are always 1 (but there

may be row exchanges). The trace ofP can be 3 (forP = I) or 1 (for row exchange)

or 0 (for double exchange). The possible eigenvalues are 1 and −1 ande2πi/3 and

e−2πi/3.
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36 AB − BA = I can happen only for infinite matrices. IfAT = A andBT = −B then

xTx = xT (AB − BA)x = xT (ATB + BTA)x ≤ ||Ax|| ||Bx||+ ||Bx|| ||Ax||.

Therefore||Ax|| ||Bx|| ≥ 1
2 ||x||2 and(||Ax||/||x||) (||Bx||/||x||) ≥ 1

2 .

37 λ1 = e2πi/3 and λ2 = e−2πi/3 give detλ1λ2 = 1 and traceλ1 + λ2 = −1.

A =


cos θ − sin θ

sin θ cos θ


 with θ =

2π

3
has this trace anddet. So does everyM−1AM !

38 (a) Since the columns ofA add to 1, one eigenvalue isλ = 1 and the other isc − 0.6

(to give the correct tracec+ 0.4).

(b) If c = 1.6 then both eigenvalues are 1, and all solutions to(A − I) x = 0 are

multiples ofx = (1,−1). In this caseA has rank1.

(c) If c = 0.8, the eigenvectors forλ = 1 are multiples of (1, 3). Since all powersAn

also have column sums= 1, An will approach
1

4


1 1

3 3


 = rank-1 matrixA∞ with

eigenvalues1, 0 and correct eigenvectors.(1, 3) and(1,−1).

Problem Set 6.2, page 314

1 Eigenvectors inX and eigenvalues inΛ. ThenA = XΛX−1 is


1 2

0 3


 =


1 1

0 1




1 0

0 3




1 −1

0 1


.

The second matrix hasλ = 0 (rank1) andλ = 4 (trace= 4). ThenA = XΛX−1 is
1 1

3 3


 =


 1 1

−1 3




0 0

0 4







3
4 − 1

4

1
4

1
4


.

2
Put the eigenvectors inX

and eigenvalues2, 5 in Λ.
A = XΛX−1 =


1 1

0 1




2 0

0 5




1 −1

0 1


 =


2 3

0 5


.

3 If A = XΛX−1 then the eigenvalue matrix forA + 2I is Λ + 2I and the eigenvector

matrix is stillX . SoA+ 2I = S(Λ + 2I)X−1 = XΛX−1 +X(2I)X−1 = A+ 2I .

4 (a) False: We are not given theλ’s (b) True (c) True (d) False: For this we

would need the eigenvectors ofX
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5 With X = I, A = XΛX−1 = Λ is a diagonal matrix. IfX is triangular, thenX−1 is

triangular, soXΛX−1 is also triangular.

6 The columns ofS are nonzero multiples of(2,1) and(0,1): either order. The same

eigenvector matrices diagonalizeA andA−1.

7 A = XΛX−1 =


1 1

1 −1




λ1

λ2




1 1

1 −1


 /2 =


λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2


 /2.

These are the matrices


a b

b a


, their eigenvectors are(1, 1) and(1,−1).

8 A = XΛX−1 =


1 1

1 0


 =

1

λ1 − λ2


λ1 λ2

1 1




λ1 0

0 λ2




 1 −λ2

−1 λ1


.

XΛkX−1 =
1

λ1 − λ2


λ1 λ2

1 1




λ

k
1 0

0 λk
2




 1 −λ2

−1 λ1




1

0


.

The second componentis Fk = (λk
1 − λk

2)/(λ1 − λ2).

9 (a) The equations are


 Gk+2

Gk+1


 = A


 Gk+1

Gk


 with A =


 .5 .5

1 0


. This matrix

hasλ1 = 1, λ2 = − 1
2

with x1 = (1, 1), x2 = (1,−2)

(b) An = XΛnX−1 =


1 1

1 −2




1

n 0

0 (−.5)n







2
3

1
3

1
3 − 1

3


→ A∞ =




2
3

1
3

2
3

1
3




10 The ruleFk+2 = Fk+1 + Fk produces the pattern: even, odd, odd, even, odd, odd,. . .

11 (a) True (no zero eigenvalues) (b)False(repeatedλ = 2 may have only one line of

eigenvectors) (c)False(repeatedλ may have a full set of eigenvectors)

12 (a) False: don’t know ifλ = 0 or not.

(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors.

13 A =


 8 3

−3 2


 (or other),A =


 9 4

−4 1


, A =


 10 5

−5 0


;

only eigenvectors

arex = (c,−c).

14 The rank ofA − 3I is r = 1. Changing any entry excepta12 = 1 makesA

diagonalizable (the newA will have two different eigenvalues)
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15 Ak = XΛkX−1 approaches zeroif and only if every |λ| < 1; A1 is a Markov matrix

soλmax = 1 andAk
1 → A∞

1 , A2 hasλ = .6± .3 soAk
2 → 0.

16 A1 isXΛX−1 with Λ =


1 0

0 .2


 andX =


1 1

1 −1


 ; Λk →


1 0

0 0


.

ThenA1k = XΛkX−1 →




1
2

1
2

1
2

1
2


: steady state.

17 A2 isXΛX−1 with Λ =


 .9 0

0 .3


 and X =


3 −3

1 1


; A10

2


3

1


 = (.9)10


3

1


.

A10
2


 3

−1


 = (.3)10


 3

−1


. Then A10

2


6

0


 = (.9)10


3

1


 + (.3)10


 3

−1


 because


6

0


 is the sum of


3

1


+


 3

−1


.

18


 2 −1

−1 2


 = XΛX−1 =

1

2


1 −1

1 1




1 0

0 3




 1 1

−1 1


 and

Ak = XΛkX−1 =
1

2


1 −1

1 1




1 0

0 3k




 1 1

−1 1


.

Multiply those last three matrices to getAk =
1

2


1 + 3k 1− 3k

1− 3k 1 + 3k


.

19 Bk = XΛkX−1 =


1 1

0 −1




5 0

0 4



k 
1 1

0 −1


 =


5

k 5k − 4k

0 4k


.

20 detA = (detX)(detΛ)(detX−1) = detΛ = λ1 · · ·λn. This proof (det = product

of λ’s) works whenA is diagonalizable. The formula is always true.

21 traceXY = (aq + bs) + (cr + dt) is equal to(qa + rc) + (sb + td) = traceY X .

Diagonalizable case: the trace ofXΛX−1 = trace of(ΛX−1)X = Λ: sum of theλ’s.
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22 AB − BA = I is impossible since traceAB − traceBA = zero 6= trace I .

AB − BA = C is possible when trace(C) = 0. For exampleE =


1 0

1 1


 has

EET −ETE =


−1 0

0 1


 = C with trace zero.

23 If A = XΛX−1 thenB =


A 0

0 2A


 =


X 0

0 X




Λ 0

0 2Λ




X

−1 0

0 X−1


. So

B has the originalλ’s from A and the additional eigenvalues2λ1, . . . , 2λn from 2A.

24 TheA’s form a subspace sincecA andA1 + A2 all have the sameX . WhenX = I

theA’s with those eigenvectors give the subspace ofdiagonal matrices. The dimension

of that matrix space is4 since the matrices are4 by 4.

25 If A has columnsx1, . . . ,xn then column by column,A2 = A means everyAxi = xi.

All vectors in the column space (combinations of those columnsxi) are eigenvectors

with λ = 1. Always the nullspace hasλ = 0 (A might have dependent columns,

so there could be less thann eigenvectors withλ = 1). Dimensions of those spaces

C (A) andN (A) add ton by the Fundamental Theorem, soA is diagonalizable(n

independent eigenvectors altogether).

26 Two problems: The nullspace and column space can overlap, sox could be in both.

There may not ber independent eigenvectors in the column space.

27 R=X
√
ΛX−1 =


1 1

1 −1




3

1




1 1

1 −1


 /2 =


2 1

1 2


 hasR2=A.

√
B needsλ =

√
9 and

√
−1, trace (their sum) is not real so

√
B cannot be real. Note

that


−1 0

0 −1


 hastwo imaginary eigenvalues

√
−1 = i and−i, real trace0, real

square root


 0 1

−1 0


.

28 The factorizations ofA andB into XΛX−1 are the same. SoA = B. (This is

the same as Problem 6.1.25, expressed in matrix form.)



106 Solutions to Exercises

29 A = XΛ1X
−1 andB = XΛ2X

−1. Diagonal matrices always giveΛ1Λ2 = Λ2Λ1.

ThenAB = BA from

XΛ1X
−1XΛ2X

−1 = XΛ1Λ2X
−1 = XΛ2Λ1X

−1 = XΛ2X
−1XΛ1X

−1 = BA.

30 (a) A =


a b

0 d


 hasλ = a andλ = d: (A−aI)(A−dI) =


0 b

0 d− a




a− d b

0 0




=


0 0

0 0


. (b) A =


1 1

1 0


 hasA2 =


2 1

1 1


 andA2 − A − I = 0 is true,

matchingλ2 − λ− 1 = 0 as the Cayley-Hamilton Theorem predicts.

31 WhenA = XΛX−1 is diagonalizable, the matrixA − λjI = X(Λ − λjI)X
−1 will

have0 in thej, j diagonal entry ofΛ−λjI . In the productp(A) = (A−λ1I) · · · (A−
λnI), each insideX−1 cancelsX . This leavesX times (product of diagonal matrices

Λ−λjI) timesX−1. That product is the zero matrix because the factors producea zero

in each diagonal position. Thenp(A) = zero matrix, which is the Cayley-Hamilton

Theorem. (IfA is not diagonalizable, one proof is to take a sequence of diagonalizable

matrices approachingA.)

Comment I have also seen this Caley-Hamilton proof but I am not convinced:

Apply the formulaACT = (detA)I from Section 5.3 toA − λI with variableλ. Its

cofactor matrixC will be a polynomial inλ, since cofactors are determinants:

(A− λI) cof (A− λI)T = det(A− λI)I = p(λ)I.

“For fixedA, this is an identity between two matrix polynomials.” Setλ = A to find

the zero matrix on the left, sop(A) = zero matrix on the right—which is the Cayley-

Hamilton Theorem.

I am not certain about the key step of substituting a matrix for λ. If other matricesB

are substituted forλ, does the identity remain true? IfAB 6= BA, even the order of

multiplication seems unclear. . .
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32 If AB = BA, thenB has the same eigenvectors(1, 0) and (0, 1) asA. So B is

also diagonalb = c = 0. The nullspace for the following equation is 2-dimensional:

AB − BA =


1 0

0 2




a b

c d


 −


a b

c d




1 0

0 2


 =


0 −b

c 0


 =


0 0

0 0


.

Those4 equations0 = 0,−b = 0, c = 0, 0 = 0 have a4 by 4 coefficient matrix with

rank4− 2 = 2.

33 B hasλ = i and−i, soB4 hasλ4 = 1 and 1 andB1024 = I .

C hasλ = (1 ±
√
3i)/2. Thisλ is exp(±πi/3) soλ3 = −1 and−1. ThenC3 = −I

which leads toC1024 = (−I)341C = −C.

34 The eigenvalues ofA =


cos θ − sin θ

sin θ cos θ


 areλ = eiθ ande−iθ (trace2 cos θ and

determinant= 1). Their eigenvectors are(1,−i) and(1, i):

An = XΛnX−1 =


 1 1

−i i




e

inθ

e−inθ




 i −1

i 1


 /2i

=


 (einθ + e−inθ)/2 · · ·
(einθ − e−inθ)/2i · · ·


 =


cosnθ − sinnθ

sinnθ cosnθ


 .

Geometrically,n rotations byθ give one rotation bynθ.

35 Columns ofX times rows ofΛX−1 gives a sum ofr rank-1 matrices(r = rank ofA).

36 Multiply ones(n) ∗ ones(n) = n ∗ ones(n). This leads toC = −1/(n + 1).

AA−1 = (eye(n) + ones(n)) ∗ (eye(n) + C ∗ ones(n))

= eye(n) + (1 + C + Cn) ∗ ones(n) = eye(n).
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Problem Set 6.3, page 332

1 Eigenvalues4 and1 with eigenvectors(1, 0) and(1,−1) give solutionsu1 = e4t


1

0




and u2 = et


 1

−1


. If u(0) =


 5

−2


 = 3


1

0


+2


 1

−1


, thenu(t) = 3e4t


1

0


+

2et


 1

−1


.

2 z(t) = 2et solvesdx/dt = z with z(0) = 2. Thendy/dt = 4y − 6et with y(0) = 5

givesy(t) = 3e4t + 2et as in Problem 1.

3 (a) If every column ofA adds to zero, this means that the rows add to the zero row.

So the rows are dependent, andA is singular, andλ = 0 is an eigenvalue.

(b) The eigenvalues ofA =


−2 3

2 −3


 areλ1 = 0 with eigenvectorx1 = (3, 2) and

λ2 = −5 (to give trace= −5) with x2 = (1,−1). Then the usual 3 steps:

1. Writeu(0) =


4

1


 as


3

2


+


 1

−1


 = x1 + x2 = combination of eigenvectors

2. The solutions follow those eigenvectors:e0tx1 ande−5tx2

3. The solutionu(t) = x1 + e−5tx2 has steady statex1 = (3, 2) sincee−5t → 0.

4 d(v + w)/dt = (w − v) + (v − w) = 0, so the totalv + w is constant.

A =


−1 1

1 −1


 has

λ1 = 0

λ2 = −2
with x1 =


1

1


, x2 =


 1

−1


.


 v(0)

w(0)


 =


 30

10


 = 20


 1

1


+10


 1

−1


 leads to

v(1) = 20 + 10e−2

w(1) = 20− 10e−2

v(∞) = 20

w(∞) = 20

5
d

dt


 v

w


 =


 1 −1

−1 1


 hasλ = 0 andλ = +2: v(t) = 20 + 10e2t → −∞ as

t → ∞.

6 A =


a 1

1 a


 has real eigenvaluesa+1 anda−1. These are both negative ifa < −1.

In this case the solutions ofu′ = Au approach zero.
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B =


 b −1

1 b


 has complex eigenvaluesb+ i andb− i. These have negative real parts

if b < 0. In this case and all solutions ofv′ = Bv approach zero.

7 A projection matrix has eigenvaluesλ = 1 andλ = 0. EigenvectorsPx = x fill the

subspace thatP projects onto: herex = (1, 1). Eigenvectors withPx = 0 fill the

perpendicular subspace: herex = (1,−1). For the solution tou′ = −Pu,

u(0) =


3

1


 =


2

2


+


 1

−1


 u(t) = e−t


2

2


+e0t


 1

−1


 approaches


 1

−1


 .

8


6 −2

2 1


 hasλ1 = 5, x1 =


2

1


, λ2 = 2, x2 =


1

2


; rabbitsr(t) = 20e5t+10e2t,

w(t) = 10e5t+20e2t. The ratio of rabbits to wolves approaches20/10; e5t dominates.

9 (a)


4

0


 = 2


1

i


+2


 1

−i


. (b) Thenu(t) = 2eit


1

i


+2e−it


 1

−i


 =


4 cos t

4 sin t


.

10
d

dt


y

y′


 =


y

′

y′′


 =


0 1

4 5




y

y′


. This correctly givesy ′ = y ′ andy ′′ = 4y+5y ′.

A =


0 1

4 5


 hasdet(A− λI) = λ2 − 5λ− 4 = 0. Directly substitutingy = eλt into

y′′ = 5y′ + 4y also givesλ2 = 5λ+ 4 and the same two values ofλ. Those values are
1

2
(5±

√
41) by the quadratic formula.

11 The series foreAt is eAt = I + t


0 1

0 0


+ zeros=


1 t

0 1


.

Then


 y(t)

y′(t)


 =


1 t

0 1




 y(0)

y′(0)




y(0) + y′(0)t

y′(0)


. This y(t) = y(0) + y ′(0)t

solves the equation—the factort tells us thatA had only one eigenvector : not diago-

nalizable.
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12 A =


 0 1

−9 6


 has trace 6,det 9, λ = 3 and 3 withone independent eigenvector

(1, 3). Substitutey = te3t to show that this gives the needed second solution (y = e3t

is the first solution).

13 (a) y(t) = cos 3t andsin 3t solvey′′ = −9y. It is3 cos 3t that starts withy(0) = 3 and

y′(0) = 0. (b) A =


 0 1

−9 0


 hasdet = 9: λ = 3i and−3i with eigenvectors

x =


 1

3i


 and


 1

−3i


. Thenu(t) = 3

2
e3it


 1

3i


+3

2
e−3it


 1

−3i


 =


 3 cos 3t

−9 sin 3t


.

14 WhenA is skew-symmetric, the derivative of||u(t)||2 is zero. Then‖u(t)‖ = ‖eAtu(0)‖
stays at‖u(0)‖. SoeAt is matrixorthogonal.

15 up = 4 andu(t) = cet+4. For the matrix equation, the particular solutionup = A−1b

is


4

2


 andu(t) = c1e

t


1

t


+ c2e

t


0

1


+


4

2


.

16 Substitutingu = ectv givescectv = Aectv − ectb or (A − cI)v = b or v = (A −
cI)−1b = particular solution. Ifc is an eigenvalue thenA− cI is not invertible.

17 (a)


1 0

0 −1


 (b)


1 0

0 1


 (c)


 1 1

−1 1


. These show the unstable cases

(a) λ1 < 0 andλ2 > 0 (b) λ1 > 0 andλ2 > 0 (c) λ = a± ib with a > 0

18 d/dt(eAt) = A+A2t+ 1

2
A3t2 + 1

6
A4t3 + · · · = A(I +At+ 1

2
A2t2 + 1

6
A3t3 + · · · ).

This is exactlyAeAt, the derivative we expect.

19 eBt = I + Bt (short series withB2 = 0) =


1 −4t

0 1


. Derivative=


0 −4

0 0


 =

B.

20 The solution at timet+ T is eA(t+T )u(0). ThuseAt timeseAT equalseA(t+T ).

21


1 4

0 0


 =


1 4

0 −1




1 0

0 0


 diagonalizesA = XΛX−1.

TheneAt = XeΛtX−1 =


1 4

0 −1


;


1 4

0 −1




e

t 0

0 1




1 4

0 −1


 =


e

t 4et − 4

0 1


.
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22 A2 = A giveseAt = I+At+ 1
2
At2+ 1

6
At3+ · · · = I+(et−1)A =


e

t 4et − 4

0 1


.

23 eA =


e 4(e− 1)

0 1


 from21 andeB =


1 −4

0 1


 from19. By direct multiplication

eAeB 6= eBeA 6= eA+B =


e 0

0 1


.

24 A =


1 1

0 3


 =


1 1

0 2




1 0

0 3




1 − 1

2

0 1
2


. Then eAt =


e

t 1
2
(e3t − et)

0 e3t


.

At t = 0, eAt = I andΛeAt = A.

25 The matrix hasA2 =


1 3

0 0



2

=


1 3

0 0


 = A. Then allAn = A. So eAt =

I + (t+ t2/2! + · · · )A = I + (et − 1)A =


e

t 3(et − 1)

0 0


 as in Problem 22.

26 (a) The inverse ofeAt is e−At (b) If Ax = λx theneAtx = eλtx andeλt 6= 0.

To seeeAtx, write (I +At + 1
2A

2t2 + · · · )x = (1 + λt+ 1
2λ

2t2 + · · · )x = eλtx.

27 (x, y) = (e4t, e−4t) is a growing solution. The correct matrix for the exchanged

u =


y

x


 is


 2 −2

−4 0


. It doeshave the same eigenvalues as the original matrix.

28 Invert


 1 0

∆t 1


 to produceUn+1 =


 1 0

−∆t 1




1 ∆t

0 1


Un =


 1 ∆t

−∆t 1− (∆t)2


Un.

At ∆t = 1,


 1 1

−1 0


 hasλ = eiπ/3 ande−iπ/3. Both eigenvalues haveλ6 = 1 so

A6 = I . ThereforeU6 = A6U0 comes exactly back toU0.

29
FirstA hasλ = ±i andA4 = I .

SecondA hasλ = −1,−1 and
An = (−1)n


1− 2n −2n

2n 2n+ 1


 Linear growth.

30 With a = ∆t/2 the trapezoidal step isUn+1 =
1

1 + a2


1− a2 2a

−2a 1− a2


Un.

That matrix has orthonormal columns⇒ orthogonal matrix⇒ ‖Un+1‖ = ‖Un‖



112 Solutions to Exercises

31 (a) If Ax = λx then the infinite cosine series gives(cosA)x = (cosλ)x

(b) λ(A) = 2π and0 socosλ = 1 and1 which means thatcosA = I

(c) u(t) = 3(cos 2πt)(1, 1)+1(cos 0t)(1,−1) [u ′ = Au hasexp, u ′′ = Au hascos]

32 For proof2, square the start of the series to see(I + A+ 1
2A

2 + 1
6A

3)2 = I + 2A+

1
2(2A)

2 + 1
6 (2A)

3 + · · · . The diagonalizing proof is easiest when it works (needing

diagonalizableA).

Problem Set 6.4, page 345

Note A way to complete the proof at the end of page334, (perturbing the matrix to pro-

duce distinct eigenvalues) is now on the course website: “Proofs of the Spectral Theorem.”

math.mit.edu/linearalgebra.

1 The first isASAT: symmetric but eigenvalues are different from1 and−1 for S.

The second isASA−1: same eigenvalues asS but not symmetric.

The third isASAT = ASA−1: symmetric with the same eigenvalues asS.

This neededB = AT = A−1 to be anorthogonal matrix .

2 (a) ASB stays symmetric likeS whenB = AT

(b) ASB is similar toS whenB = A−1

To have both (a) and (b) we needB = AT = A−1 to be anorthogonal matrix

3 A =




1 3 6

3 3 3

6 3 5


+




0 −1 −2

1 0 −3

2 3 0




= 1
2
(A+AT) + 1

2
(A− AT)

= symmetric+ skew-symmetric.

4 (ATCA)T = ATCT(AT)T = ATCA. WhenA is 6 by 3, C will be 6 by 6 and the

triple productATCA is 3 by 3.

5 λ = 0, 4,−2; unit vectors±(0, 1,−1)/
√
2 and±(2, 1, 1)/

√
6 and±(1,−1,−1)/

√
3.
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6 λ = 10 and−5 in Λ =


10 0

0 −5


, x =


1

2


 and


 2

−1


 have to be normalized to

unit vectors inQ =
1√
5


1 2

2 −1


.

7 Q =
1

3




2 1 2

2 −2 −1

−1 −2 2


.

The columns ofQ are unit eigenvectors ofS

Each unit eigenvector could be multiplied by−1

8 S =


 9 12

12 16


 hasλ = 0 and25 so the columns ofQ are the two eigenvectors:

Q =


 .8 .6

−.6 .8


 or we can exchange columns or reverse the signs of any column.

9 (a)


1 2

2 1


 hasλ = −1 and3 (b) The pivots1, 1− b2 have the same signs as theλ’s

(c) The trace isλ1 + λ2 = 2, soS can’t have two negative eigenvalues.

10 If A3 = 0 then allλ3 = 0 so allλ = 0 as inA =


0 1

0 0


. If A is symmetricthen

A3 = QΛ3QT = 0 requiresΛ = 0. The only symmetricA isQ 0QT = zero matrix.

11 If λ is complex thenλ is also an eigenvalue(Ax = λx). Alwaysλ + λ is real. The

trace is real so the third eigenvalue of a3 by 3 real matrix must be real.

12 If x is not real thenλ=xTAx/xTx is notalways real. Can’t assume real eigenvectors!

13


3 1

1 3


 = 2




1
2 − 1

2

− 1
2

1
2


+4




1
2

1
2

1
2

1
2


;


 9 12

12 16


 = 0


 .64 −.48

−.48 .36


+25


 .36 .48

.48 .64




14

[
x1 x2

]
is anQ matrix soP1 + P2 = x1x

T
1 + x2x

T
2 =

[
x1 x2

]

xT
1

xT
2


 = I ;

alsoP1P2 = x1(x
T
1 x2)x

T
2 = zero matrix.

Second proof:P1P2 = P1(I − P1) = P1 − P1 = 0 sinceP 2
1 = P1.
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15 A =


 0 b

−b 0


 hasλ = ib and−ib. The block matrices


A 0

0 A


 and


 0 A

A 0


 are

also skew-symmetric withλ = ib (twice) andλ = −ib (twice).

16 M is skew-symmetric andorthogonal; λ’s must bei, i, −i, −i to have trace zero.

17 A =


 i 1

1 −i


 hasλ = 0, 0 and only one independent eigenvectorx = (i, 1). The

good property for complex matrices is notAT = A (symmetric) butA
T

= A (Her-

mitian with real eigenvalues and orthogonal eigenvectors:see Problem22 and Sec-

tion 9.2).

18 (a) If Az = λy andATy = λz thenB[y; −z ] = [−Az; ATy ] = −λ[y; −z ].

So−λ is also an eigenvalue ofB. (b) ATAz = AT(λy) = λ2z. (c) λ = −1, −1,

1, 1; x1 = (1, 0,−1, 0), x2 = (0, 1, 0,−1), x3 = (1, 0, 1, 0), x4 = (0, 1, 0, 1).

19 The eigenvalues ofS =




0 0 1

0 0 1

1 1 0


 are0,

√
2,−

√
2 by Problem16 with

x1 =




1

−1

0


 ,x2 =




1

1
√
2


 ,x3 =




1

1

−
√
2


 .

20 1. y is in the nullspace ofS andx is in the column space (that is also row space because

S = ST). The nullspace and row space are perpendicular soyTx = 0.

2. If Sx = λx andSy = βy then shiftS byβI to have a zero eigenvalue that matches

Step1.(S − βI)x = (λ− β)x and(S − βI)y = 0 and againx is perpendicular toy.

21 S hasX =




1 1 0

1 −1 0

0 0 1


; B hasX =




1 0 1

0 1 0

0 0 2d


.

Perpendicular forA

Not perpendicular forS

sinceBT 6= B
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22 S =


 1 3 + 4i

3− 4i 1


 is aHermitian matrix(S

T
= S). Its eigenvalues6 and−4 are

real. Adjust equations(1)–(2) in the text to prove thatλ is always real whenS
T
= S:

Sx = λx leads toSx = λx. Transpose toxTS = xTλ usingS
T
= S.

ThenxTSx = xTλx and alsoxTSx = xTλx. Soλ = λ is real.

23 (a) False.A =


1 2

0 1


 (b) True fromAT = QΛQT = A

(c) True fromS−1 = QΛ−1QT
(d) False!

24 A andAT have the sameλ’s but theorder of thex’s can change.A =


 0 1

−1 0


 has

λ1 = i andλ2 = −i with x1 = (1, i) first for A butx1 = (1,−i) is first forAT.

25 A is invertible, orthogonal, permutation, diagonalizable,Markov;B is projection, diag-

onalizable, Markov.A allowsQR,XΛX−1, QΛQT; B allowsXΛX−1 andQΛQT.

26 Symmetry givesQΛQT if b = 1; repeatedλ and noX if b = −1; singular ifb = 0.

27 Orthogonal and symmetric requires|λ| = 1 andλ real, soλ = ±1. ThenS = ±I or

S = QΛQT =


cos θ − sin θ

sin θ cos θ




1 0

0 −1




 cos θ sin θ

− sin θ cos θ


=


cos 2θ sin 2θ

sin 2θ − cos 2θ


.

28 Eigenvectors(1, 0) and(1,1) give a45◦ angle even withAT very close toA.

29 The roots ofλ2 + bλ + c = 0 are 1

2
(−b ±

√
b2 − 4ac). Thenλ1 − λ2 is

√
b2 − 4c.

Fordet(A+ tB − λI) we haveb = −3− 8t andc = 2 + 16t − t2. The minimum of

b2 − 4c is 1/17 at t = 2/17. Thenλ2 − λ1 = 1/
√
17 : close but not equal !

30 S =


 4 2 + i

2− i 0


 = S

T
has real eigenvaluesλ = 5 and−1 with trace= 4 and

det = −5. The solution to20 proves thatλ is real whenS
T
= S is Hermitian.

31 (a) A = QΛQT timesA T = QΛTQT equalsA T timesA becauseQ = Q
T

and

ΛΛ T = ΛTΛ (diagonal!) (b) Step2: The1, 1 entries ofT T T andTT T are |a|2

and|a|2 + |b|2. Equally makesb = 0 andT = Λ.
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32 a11 is
[
q11 . . . q1n

] [
λ1q11 . . . λnq1n

]T
≤ λmax

(
|q11|2 + · · ·+ |q1n|2

)
= λmax.

33 (a) xT(Ax) = (Ax)Tx = xTATx = −xTAx. (b) zTAz is pure imaginary, its

real part isxTAx + yTAy = 0 + 0 (c) detA = λ1 . . . λn ≥ 0 : pairs ofλ’s

= ib,−ib.

34 SinceS is diagonalizable with eigenvalue matrixΛ = 2I , the matrixS itself has to be

XΛX−1 = X(2I)X−1 = 2I . (The unsymmetric matrix[2 1 ; 0 2] also hasλ = 2, 2.)

35 (a) ST = S andSTS = I lead toS2 = I .

(b) The only possible eigenvalues ofS are1 and−1.

(c) Λ =


 I 0

0 −I


 soS =

[
Q1 Q2

]
Λ


QT

1

QT
2


 = Q1Q

T
1 −Q2Q

T
2 with QT

1 Q2 =

0.

36 (ATSA)T = ATSTATT = ATSA. This matrixATSA may have different eigen-

values fromS, but the “inertia theorem” says that the two sets of eigenvalues have the

same signs. The inertia= number of (positive, zero, negative) eigenvalues is the same

for S andATSA.

37 Substituteλ = a to finddet(S− aI) = a2 − a2 − ca+ ac− b2 = −b2 (negative). The

parabola crosses at the eigenvaluesλ because they havedet(S − λI) = 0.

Problem Set 6.5, page 358

1 Supposea > 0 andac > b2 so that alsoc > b2/a > 0.

(i) The eigenvalues have thesame signbecauseλ1λ2 = det = ac− b2 > 0.

(ii) That sign ispositivebecauseλ1 + λ2 > 0 (it equals the tracea+ c > 0).

2 OnlyS4 =


 1 10

10 101


 has two positive eigenvalues since101 > 102.

xTS1x = 5x2
1 + 12x1x2 + 7x2

2 is negative for example whenx1 = 4 andx2 = −3:

A1 is not positive definite as its determinant confirms;S2 has tracec0; S3 hasdet = 0.
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3
Positive definite

for −3 < b < 3


1 0

b 1




1 b

0 9− b2


 =


1 0

b 1




1 0

0 9− b2




1 b

0 1


 =

LDLT

Positive definite

for c > 8


1 0

2 1




2 4

0 c− 8


 =


1 0

2 1




2 0

0 c− 8




1 2

0 1


 = LDLT.

Positive definite forc > b L =


 1 1

−b/c 0


 D =


 c 0

0 c− b/c


 S =

LDLT.

4 f(x, y) = x2 + 4xy + 9y2 = (x+ 2y)2 + 5y2; x2 + 6xy + 9y2 = (x + 3y)2.

5 x2+4xy+3y2 = (x+2y)2−y2 = difference of squaresis negative atx = 2, y = −1,

where the first square is zero.

6 A =


0 1

1 0


 producesf(x, y) =

[
x y

]

0 1

1 0




x

y


 = 2xy. A hasλ = 1 and

−1. ThenA is anindefinite matrixandf(x, y) = 2xy has asaddle point.

7 ATA =


1 2

2 13


 andATA =


6 5

5 6


 are positive definite;ATA =




2 3 3

3 5 4

3 4 5


 is

singular (and positive semidefinite). The first twoA’s have independent columns. The

2 by 3 A cannot have full column rank3, with only 2 rows;ATA is singular.

8 S =


3 6

6 16


 =


1 0

2 1




3 0

0 4




1 2

0 1


.

Pivots3, 4 outside squares,ℓij inside.

xTSx = 3(x+ 2y)2 + 4y2

9 S =




4 −4 8

−4 4 −8

8 −8 16




has only one pivot= 4, rankS = 1,

eigenvalues are24, 0, 0, detS = 0.

10 S =




2 −1 0

−1 2 −1

0 −1 2




has pivots

2, 3
2
, 4
3
;

T =




2 −1 −1

−1 2 −1

−1 −1 2


 is singular;T




1

1

1


 =




0

0

0


.

11 Corner determinants|S1| = 2, |S2| = 6, |S3| = 30. The pivots are2/1, 6/2, 30/6.
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12 S is positive definite forc > 1; determinantsc, c2 − 1, and(c − 1)2(c + 2) > 0.

T is neverpositive definite (determinantsd− 4 and−4d+ 12 are never both positive).

13 S =


1 5

5 10


 is an example witha+ c > 2b butac < b2, so not positive definite.

14 The eigenvalues ofS−1 are positive because they are1/λ(S). Also the entries ofS−1

pass the determinant tests. AndxTS−1x = (S−1x)TS(S−1x) > 0 for all x 6= 0.

15 SincexTSx > 0 andxTTx > 0 we havexT(S + T )x = xTSx + xTTx > 0 for

all x 6= 0. ThenS + T is a positive definite matrix. The second proof uses the test

S = ATA (independent columns inA): If S = ATA andT = BTB pass this test,

thenS + T =
[
A B

]T

A

B


 also passes, and must be positive definite.

16 xTSx is zero when(x1, x2, x3) = (0, 1, 0) because of the zero on the diagonal. Actu-

ally xTSx goesnegativefor x = (1,−10, 0) because the second pivot isnegative.

17 If ajj were smaller than allλ’s, S − ajjI would have all eigenvalues> 0 (positive

definite). ButS − ajjI has azeroin the(j, j) position; impossible by Problem 16.

18 If Sx = λx thenxTSx = λxTx. If S is positive definite this leads toλ = xTSx/xTx >

0 (ratio of positive numbers). So positive energy⇒ positive eigenvalues.

19 All cross terms arexT
i xj = 0 because symmetric matrices have orthogonal eigenvec-

tors. So positive eigenvalues⇒ positive energy.

20 (a) The determinant is positive; allλ > 0 (b) All projection matrices exceptI are

singular (c) The diagonal entries ofD are its eigenvalues (d)S = −I hasdet =

+1 whenn is even.

21 S is positive definite whens > 8; T is positive definite whent > 5 by determinants.

22 A =











1 −1

1 1











√
2











√
9

√
1





















1 1

−1 1











√
2

=


2 1

1 2


; A = Q


4 0

0 2


QT =


3 1

1 3


.

23 x2/a2 + y2/b2 isxTSx whenS = diag(1/a2, 1/b2). Thenλ1 = 1/a2 andλ2 = 1/b2

soa = 1/
√
λ1 andb = 1/

√
λ2. The ellipse9x2 +16y2 = 1 has axes with half-lengths

a = 1
3 andb = 1

4 . The points(13 , 0) and(0, 14 ) are at the ends of the axes.
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24 The ellipsex2 + xy + y2 = 1 has axes with half-lengths1/
√
λ =

√
2 and

√
2/3.

25 S = CTC =


9 3

3 5


;


4 8

8 25


 =


1 0

2 1




4 0

0 9




1 2

0 1


 andC =


2 4

0 3




26 The Cholesky factorsC =
(
L
√
D
)T

=




3 0 0

0 1 2

0 0 2


 andC =




1 1 1

0 1 1

0 0
√
5


 have

square rootsof the pivots fromD. Note againCTC = LDLT = S.

27 Writing outxTSx = xTLDLTx givesax2+2bxy+cy2 = a(x+ b
ay)

2+ ac−b2

a y2. So

theLDLT from elimination is exactly the same ascompleting the square. The example

2x2+8xy+10y2 = 2(x+2y)2+2y2 with pivots2, 2 outside the squares and multiplier

2 inside.

28 detS = (1)(10)(1) = 10; λ = 2 and5; x1 = (cos θ, sin θ), x2 = (− sin θ, cos θ); the

λ’s are positive. SoS is positive definite.

29 S1 =


6x

2 2x

2x 2


 is semidefinite;f1 = (12x

2 + y)2 = 0 on the curve12x
2 + y = 0;

S2 =


6x 1

1 0


 =


0 1

1 0


 is indefinite at(0, 1) where first derivatives= 0. Then

x = 0, y = 1 is a saddle point of the functionf2(x, y).

30 ax2 + 2bxy + cy2 has a saddle point ifac < b2. The matrix isindefinite(λ < 0 and

λ > 0) because the determinantac− b2 is negative.

31 If c > 9 the graph ofz is a bowl, ifc < 9 the graph has a saddle point. Whenc = 9 the

graph ofz = (2x+ 3y)2 is a “trough” staying at zero along the line2x+ 3y = 0.

32 Orthogonal matrices, exponentialseAt, matrices withdet = 1 are groups. Examples

of subgroups are orthogonal matrices withdet = 1, exponentialseAn for integern.

Another subgroup: lower triangular elimination matricesE with diagonal1’s.

33 A productST of symmetric positive definite matrices comes into many applications.

The “generalized” eigenvalue problemKx = λMx hasST = M−1K. (Often we use
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eig(K,M) without actually invertingM .) All eigenvaluesλ are positive:

STx = λx gives(Tx)TSTx = (Tx)Tλx. Thenλ = xTTTSTx/xTTx > 0.

34 The five eigenvalues ofK are 2 − 2 cos kπ
6

= 2 −
√
3, 2 − 1, 2, 2 + 1, 2 +

√
3.

The product of those eigenvalues is6 = detK.

35 Put parentheses inxTATCAx = (Ax)TC(Ax). SinceC is assumed positive definite,

this energy can drop to zero only whenAx = 0. SineA is assumed to have independent

columns,Ax = 0 only happens whenx = 0. ThusATCA has positive energy and is

positive definite.

My textbooksComputational Science and Engineeringand Introduction to Ap-

plied Mathematicsstart with many examples ofATCA in a wide range of applications.

I believe this is a unifying concept from linear algebra.

36 (a) The eigenvectors ofλ1I − S areλ1 − λ1, λ1 − λ2, . . . , λ1 − λn. Those are≥ 0;

λ1I − S is semidefinite.

(b) Semidefinite matrices have energyxT (λ1I − S)x2 ≥ 0. Thenλ1x
Tx ≥ xTSx.

(c) Part (b) saysxTSx/xTx ≤ λ1 for all x. Equality at the eigenvector withSx =

λ1x.

37 EnergyxTSx = a (x1+x2+x3)
2+c (x2−x3)

2 ≥ 0 if a ≥ 0 andc ≥ 0 : semidefinite.

The matrix has rank≤ 2 and determinant= 0; cannot be positive definite for anya and

c.

Problem Set 6.6, page 360

1 B=GCG−1=GF−1AFG−1 soM=FG−1. C similar toA andB⇒A similar toB.

2 A =


1 0

0 3


 is similar toB =


3 0

0 1


 = M−1AM with M =


0 1

1 0


.
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3 B =


1 0

0 0


 =


1 0

1 1



−1 
1 0

1 0




1 0

1 1


 = M−1AM ;

B =


 1 −1

−1 1


 =


1 0

0 −1



−1 
1 1

1 1




1 0

0 −1


;

B =


4 3

2 1


 =


0 1

1 0



−1 
1 2

3 4




0 1

1 0


.

4 A has no repeatedλ so it can be diagonalized:S−1AS = Λ makesA similar toΛ.

5


1 1

0 0


,


0 0

1 1


,


1 0

1 0


,


0 1

0 1


 are similar (they all have eigenvalues1 and0).


1 0

0 1


 is by itself and also


0 1

1 0


 is by itself with eigenvalues1 and−1.

6 Eight familiesof similar matrices: six matrices haveλ = 0, 1 (one family); three

matrices haveλ = 1, 1 and three haveλ = 0, 0 (two families each!); one hasλ = 1,−1;

one hasλ = 2, 0; two matrices haveλ = 1
2
(1±

√
5) (they are in one family).

7 (a) (M−1AM)(M−1x) = M−1(Ax) = M−10 = 0 (b) The nullspaces ofA

and ofM−1AM have the samedimension. Different vectors and different bases.

8
SameΛ

SameS
ButA =


0 1

0 0


 andB =


0 2

0 0


 have the same line of eigenvectors

and the same eigenvaluesλ = 0, 0.

9 A2 =


1 2

0 1


, A3 =


1 3

0 1


, everyAk =


1 k

0 1


. A0 =


1 0

0 1


 andA−1 =


1 −1

0 1


.

10 J2 =


c

2 2c

0 c2


 andJk =


c

k kck−1

0 ck


; J0 = I andJ−1 =


c

−1 −c−2

0 c−1


.

11 u(0) =


5

2


 =


 v(0)

w(0)


. The equation

du

dt
=


λ 1

0 λ


u has

dv

dt
= λv + w and

dw

dt
= λw. Thenw(t) = 2eλt and v(t) must include2teλt (this comes from the

repeatedλ). To matchv(0) = 5, the solution isv(t) = 2teλt + 5eλt.
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12 If M−1JM=K thenJM=




m21 m22 m23 m24

0 0 0 0

m41 m42 m43 m44

0 0 0 0




= MK=




0 m12 m13 0

0 m22 m23 0

0 m32 m33 0

0 m42 m43 0




.

That meansm21 = m22 = m23 = m24 = 0. M is not invertible,J not similar toK.

13 The five4 by 4 Jordan forms withλ = 0, 0, 0, 0 areJ1 = zero matrix and

J2 =




0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0




J3 =




0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0




J4 =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0




J5 =




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




Problem12 showed thatJ3 andJ4 arenot similar, even with the same rank. Every

matrix with all λ = 0 is “nilpotent” (its nth power isAn = zero matrix). You see

J4 = 0 for these matrices. How many possible Jordan forms forn = 5 and allλ = 0?

14 (1) ChooseMi = reverse diagonal matrix to getM−1
i JiMi = MT

i in each block

(2) M0 has those diagonal blocksMi to getM−1
0 JM0 = JT. (3) AT = (M−1)TJTMT

equals(M−1)TM−1
0 JM0M

T = (MM0M
T)−1A(MM0M

T), andAT is similar to

A.

15 det(M−1AM − λI) = det(M−1AM −M−1λIM). This isdet(M−1(A− λI)M).

By the product rule, the determinants ofM andM−1 cancel to leavedet(A− λI).

16


a b

c d


 is similar to


d c

b a


;


 b a

d c


 is similar to


 c d

a b


. So two pairs of similar

matrices but


1 0

0 1


 is not similar to


0 1

1 0


: different eigenvalues!
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17 (a) False: Diagonalize a nonsymmetricA = SΛS−1. ThenΛ is symmetric and similar

(b) True: A singular matrix hasλ = 0. (c) False:


 0 1

−1 0


 and


0 −1

1 0


 are simi-

lar

(they haveλ = ±1) (d) True: AddingI increases all eigenvalues by 1

18 AB = B−1(BA)B soAB is similar toBA. If ABx = λx thenBA(Bx) = λ(Bx).

19 Diagonal blocks 6 by 6, 4 by 4;AB has the same eigenvalues asBA plus6− 4 zeros.

20 (a) A = M−1BM ⇒ A2 = (M−1BM)(M−1BM) = M−1B2M . SoA2 is similar

to B2. (b) A2 equals(−A)2 but A may not be similar toB = −A (it could be!).

(c)


3 1

0 4


is diagonalizableto


3 0

0 4


becauseλ1 6= λ2, sothesematrices are similar.

(d)


3 1

0 3


 has only one eigenvector, so not diagonalizable (e)PAPT is similar

toA.

21 J2 has three1’s down thesecondsuperdiagonal, andtwo independent eigenvectors for

λ = 0. Its5 by5 Jordan form is


J3

J2


with J3 =




0 1 0

0 0 1

0 0 0


 andJ2 =


0 1

0 0


.

Note to professors: An interesting question:Which matricesA have (complex) square

rootsR2 = A? If A is invertible, no problem. But any Jordan blocks forλ = 0 must

have sizesn1 ≥ n2 ≥ . . . ≥ nk ≥ nk+1 = 0 that come in pairs like 3 and 2 in this

example:n1 = (n2 or n2+1) andn3 = (n4 or n4+1) and so on.
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A list of all 3 by 3 and 4 by 4 Jordan forms could be




a 0 0

0 b 0

0 0 c


,




a 1 0

0 a 0

0 0 b


,




a 1 0

0 a 1

0 0 a




(for any numbersa, b, c)

with 3, 2, 1 eigenvectors; diag(a, b, c, d) and




a 1

a

b

c




,




a 1

a

b 1

b




,




a 1

a 1

a

b




,




a 1

a 1

a 1

a




with 4, 3, 2, 1 eigenvectors.

22 If all roots areλ = 0, this means thatdet(A − λI) must be justλn. The Cayley-

Hamilton Theorem in Problem 6.2.32 immediately says thatAn = zero matrix. The

key example is a singlen by n Jordan block (withn − 1 ones above the diagonal):

Check directly thatJn = zero matrix.

23 CertainlyQ1R1 is similar toR1Q1 = Q−1
1 (Q1R1)Q1. ThenA1 = Q1R1 − cs2I is

similar toA2 = R1Q1 − cs2I.

24 A could have eigenvaluesλ = 2 andλ = 1
2

(A could be diagonal). ThenA−1 has the

same two eigenvalues (and is similar toA).

Problem Set 6.7, page 371

1 A=UΣV T=



u1 u2




σ1

0





v1 v2



T

=











1 3

3 −1











√
10











√
50 0

0 0





















1 2

2 −1











√
5
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2 ThisA =


1 2

3 6


 is a2 by 2 matrix of rank1. Its row space has basisv1, its nullspace

has basisv2, its column space has basisu1, its left nullspace has basisu2:

Row space
1√
5


1

2


 Nullspace

1√
5


 2

−1




Column space
1√
10


1
3


 , N(AT)

1√
10


 3

−1


 .

3 If A has rank1 then so doesATA. The only nonzero eigenvalue ofATA is its trace,

which is the sum of alla2ij . (Each diagonal entry ofATA is the sum ofa2ij down one

column, so the trace is the sum down all columns.) Thenσ1 = square root of this sum,

andσ2
1 = this sum of alla2ij .

4 ATA = AAT =


2 1

1 1


 has eigenvaluesσ2

1 =
3 +

√
5

2
, σ2

2 =
3−

√
5

2
.

ButA is

indefinite

σ1 = (1 +
√
5)/2 = λ1(A), σ2 = (

√
5− 1)/2 = −λ2(A); u1 = v1 but u2 = −v2.

5 A proof thateigshow finds the SVD. WhenV 1 = (1, 0),V 2 = (0, 1) the demo finds

AV 1 andAV 2 at some angleθ. A 90◦ turn by the mouse toV 2,−V 1 findsAV 2 and

−AV 1 at the angleπ − θ. Somewhere between, the constantly orthogonalv1 andv2

must produceAv1 andAv2 at angleπ/2. Those orthogonal directions giveu1 andu2.

6 AAT =


2 1

1 2


 hasσ2

1 = 3 with u1 =


1/

√
2

1/
√
2


 andσ2

2 = 1 with u2 =


 1/

√
2

−1/
√
2


.

ATA =




1 1 0

1 2 1

0 1 1


 has σ2

1 = 3with v1 =




1/
√
6

2/
√
6

1/
√
6


, σ2

2 = 1with v2 =




1/
√
2

0

−1/
√
2


;

andv3 =




1/
√
3

−1/
√
3

1/
√
3


. Then


1 1 0

0 1 1


 = [u1 u2 ]



√
3 0 0

0 1 0


 [v1 v2 v3 ]

T.
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7 The matrixA in Problem6 hadσ1 =
√
3 andσ2 = 1 in Σ. The smallest change to

rank1 is to makeσ2 = 0. In the factorization

A = UΣV T = u1σ1v
T
1 + u2σ2v

T
2

this changeσ2 → 0 will leave the closest rank–1 matrix asu1σ1v
T
1 . See Problem14

for the general case of this problem.

8 The numberσmax(A
−1)σmax(A) is the same asσmax(A)/σmin(A). This is certainly≥

1. It equals1 if all σ’s are equal, andA = UΣV T is a multiple of an orthogonal matrix.

The ratioσmax/σmin is the importantcondition number of A studied in Section9.2.

9 A = UV T since allσj = 1, which means thatΣ = I .

10 A rank–1 matrix with Av = 12u would haveu in its column space, soA = uwT

for some vectorw. I intended (but didn’t say) thatw is a multiple of the unit vector

v = 1
2
(1, 1, 1, 1) in the problem. ThenA = 12uvT to getAv = 12u whenvTv = 1.

11 If A has orthogonal columnsw1, . . . ,wn of lengthsσ1, . . . , σn, thenATA will be

diagonal with entriesσ2
1, . . . , σ

2
n. So theσ’s are definitely the singular values ofA

(as expected). The eigenvalues of that diagonal matrixATA are the columns ofI , so

V = I in the SVD. Then theui areAvi/σi which is the unit vectorwi/σi.

The SVD of thisA with orthogonal columns isA = UΣV T = (AΣ−1)(Σ)(I).

12 SinceAT = A we haveσ2
1 = λ2

1 andσ2
2 = λ2

2. But λ2 is negative, soσ1 = 3 and

σ2 = 2. The unit eigenvectors ofA are the sameu1 = v1 as forATA = AAT and

u2 = −v2 (notice the sign change becauseσ2 = −λ2, as in Problem4).

13 Suppose the SVD ofR is R = UΣV T. Then multiply byQ to getA = QR. So the

SVD of thisA is (QU)ΣV T. (OrthogonalQ times orthogonalU = orthogonalQU .)

14 The smallest change inA is to set its smallest singular valueσ2 to zero. See# 7.
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15 The singular values ofA + I are notσj + 1. They come from eigenvalues of

(A+ I)T(A+ I).

16 This simulates the random walk used byGoogleon billions of sites to solveAp = p.

It is like the power method of Section9.3 except that it follows the links in one “walk”

where the vectorpk = Akp0 averages over all walks.

17 A = UΣV T = [cosines includingu4] diag(sqrt(2 −
√
2, 2, 2 +

√
2)) [sine matrix]T.

AV = UΣ says that differences of sines inV are cosines inU timesσ’s.

The SVD of thederivativeon [0, π] with f(0) = 0 hasu = sinnx, σ = n, v = cosnx!
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Problem Set 7.1, page 370

1 A = uvT has rank1 with uT = vT =
[
1 2 3 4

]
. Those vectors have||u||2 =

||v||2 = 30 so the SVD has a division by
√
30 to reachu1 andv1. Multiply by σ1 = 30

to recoverA.

A = σ1u1v
T
1 = 30

u√
30

vT

√
30

= UΣV T (1 column inU andV ).

B has rankr = 2. The first two columns ofB are independent (the pivot columns).

Column3 is a combination2 (col 2)− (col 1). Column4 is 3 (col 2)− 2 (col 1) :

B =




2 3 4 5

3 4 5 6

4 5 6 7

5 6 7 8



=




2 3

3 4

4 5

5 6





1 0 −1 −2

0 1 2 3


 (col 1)(row 1)T

+

(col 2)(row 2)T

Those pivot columns come from the first half of the book :not orthogonal! They don’t

give theu’s andv’s of the SVD. For that we need eigenvalues and eigenvectors of

BTB andBBT.

2 All the singular values ofI areσ = 1. We cannot leave out any of the termsui·vT
i

without making an error of size1. And the matrixA = I starts with size1 ! None of

the SVD pieces can be left out.

Notice that the SVD isI = (U)(I)(UT) so thatU = V . The natural choice for

the SVD is justUΣV T = III . But we could actually choose any orthogonal matrix

U . (The eigenvectors ofI are very far from unique—many choices ! Any orthogonal

matrixU holds orthonormal eigenvectors ofI .)

One possible rank5 flag with a3 by 3 cross of zeros isA =




1 0 1 0 0

0 0 0 1 1

1 0 1 1 1

1 1
2 1 1 1

1 1
2 1 1

2
1
2




.
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3 


1 2 1 1

2 2 2 2

1 2 1 1


 =




1 0

0 1

1 0


 =


1 2 1 1

2 2 2 2





1 2 2

1 3 3


 =


1 2

1 3




1 0 0

0 1 1


 =


 pivot

columns




 rows

of R




4 BBT =


1 2 2

1 3 3






1 1

2 3

2 3


 =


 9 13

13 19




. Trace28, Determinant2.

BTB =




1 1

2 3

2 3





1 2 2

1 3 3




=




2 5 5

5 13 13

5 13 13


. Trace28, Determinant0.

With a small singular valueσ2 ≈ 1√
14
, B is compressible. But we don’t just keep the

first row and column ofB. The good rowv1 and columnu1 are eigenvectors ofBTB

andBBT.

5 My hand calculation producedATA =




7 10 7

10 16 10

7 10 7


 and det(ATA − λI) =

−λ3 + 30λ2 − 24λ.

This givesλ = 0 as one eigenvalue ofATA (correct). The others are :

λ2 − 30λ+ 24 = 0 gives λ = 15±
√

152 − 24 ≈ 15± 14 = 29 and 1.

Soσ1 ≈
√
29 andσ2 = 1. Thesvd (A) command inMATLAB will give accurateσ’s

andU andV .

6 The matrixA has trace4 and determinant0. So its eigenvalues are4 and0—not used

in the SVD! The matrixATA has trace25 and determinant0, soλ1 = 25 = σ2
1 gives

σ1 = 5.

The eigenvectorsv1,v2 of ATA (a symmetric matrix !) are orthogonal :
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
20 10

10 5




2

1


 = 25


2

1


 and


20 10

10 5




 1

−2


 = 0


 1

−2




SimilarlyAAT has orthogonal eigenvectorsu1,u2 :


 5 10

10 20




1

2


 = 25


1

2


 and


 5 10

10 20




 2

−1


 = 0


 2

−1




7 Multiply both sides ofA = UΣV T by the matrixV to getAV = UΣ. Column by

column this says thatAvi = σiui. Notice thatΣ goes on theright side of U when we

want to multiply everycolumnof U by its singular valueσi.

8 The text foundλ1=σ2
1=

1
2

(
3+

√
5
)

and thenσ1=
1
2

(
1+

√
5
)
. Thenσ1+1 equalsσ2

1.

Also λ2 = σ2
2 = 1

2

(
3−

√
5
)

andσ2 = 1
2

(√
5− 1

)
andσ1 − σ2 = 1

2 + 1
2 = 1.

(Why don’t we chooseσ2 = 1
2

(
1−

√
5
)

?).

9 The20 by 40 random matrices areA = rand (20, 40) andB = randn (20, 40). With

those random choices the20 rows are independent with probability1. Notice for these

continuous probabilities, this does not mean that the rows are always independent! A

random determinant might be0 even when the probability of nonzero is1.

MATLAB again gives the singular values of a randomA andB.

By averaging100 samples you would begin to see the expected distribution ofσ’s,

which is highly imortant in “random matrix theory”.

Problem Set 7.2, page 379

1 A =


0 4

0 0


 has eigenvalues0 and0; ATA =


0 0

0 16


 has eigenvaluesλ = 16 and

0. Thenσ1(A) =
√
16 = 4. The eigenvectors ofATA andAAT are the columns of

V =


0 1

1 0


 andU =


1 0

0 1


.
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ThenUΣV T =


1 0

0 1




4 0

0 0




0 1

1 0


 =


0 4

0 0


 = A.

A =


0 4

1 0


 givesATA =


1 0

0 16


 with λ1 = 16 andλ2 = 1. SameU andV .

ThenUΣV T =


1 0

0 1




4 0

0 1




0 1

1 0


 =


0 4

1 0


 = A.

2 A =


 2 2

−1 1


 leads toATA =


5 3

3 5


 with eigenvectors inV =

1√
2


1 −1

1 1


 .

σ2
1 = 8 u1 =

Av1

σ1
=

1√
2


4

0


 1

σ1
has unit vectoru1 =


1

0


 andσ1 = 2

√
2

σ2
2 = 2 u2 =

Av2

σ2
=

1√
2


0

2


 1

σ2
has unit vectoru2 =


0

1


 andσ2 =

√
2

The full SVD isA = UΣV T =


1 0

0 1




2

√
2

√
2




 1 1

−1 1


 /

√
2.

3 Problem7.2.2 happens to haveAAT = diagonal matrix


8 0

0 2


. So its eigenvectors

(1, 0) and(0, 1) go inU = I . Its eigenvalues areσ2
1 = 8 andσ2

2 = 2. The rows ofA

are orthogonal but notorthonormal. SoATA is not diagonal andV is notI .

4 AAT =


2 1

1 2


 hasσ2

1 = 3 with u1 =


1/

√
2

1/
√
2


 andσ2

2 = 1 with u2 =


 1/

√
2

−1/
√
2


.

ATA =




1 1 0

1 2 1

0 1 1


 has σ2

1 = 3with v1 =




1/
√
6

2/
√
6

1/
√
6


, σ2

2 = 1 with v2 =




1/
√
2

0

−1/
√
2




andv3=




1/
√
3

−1/
√
3

1/
√
3


. Then


1 1 0

0 1 1




v1 v2 v3


=


u1 u2





√
3 0 0

0 1 0


=UΣ.



132 Solutions to Exercises

5 (a) A =


1 1

3 3


 hasv1 =

1√
2


1

1


 in its row space andu1 =

1√
10


1

3


 in its

column space. Those are unit vectors.

SinceATA =


10 10

10 10


 hasλ1 = 20 andλ2 = 0, A itself hasσ1 =

√
20 and has no

σ2. (Remember that ther singular values have to be strictly positive!)

(b) If we want square matricesU andV , chooseu2 andv2 orthogonal tou1 andv1 :

U =
1√
10


1 3

3 −1


 and V =

1√
2


1 −1

1 1


 .

6 If A = UΣV T thenAT = V ΣTUT andATA = V ΣTΣV T. This is a diagonaliza-

tion V ΛV T with Λ = ΣTΣ (so eachσ2
i = λi). Similarly AAT = UΣΣTUT is a

diagonalization ofAAT. We see that the eigenvalues inΣΣT are the sameσ2
i = λi.

7 This small question is a key to everything. It is based on the associative law(AAT)A =

A(ATA). Here we are applying both sides to an eigenvectorv of ATA :

(AAT)Av = A(ATA)v = Aλv = λAv.

SoAv is an eigenvector ofAAT with the same eigenvalueλ.

8 A=UΣV T=



u1 u2




σ1

0





v1 v2



T

=











1 3

3 −1











√
10











√
50 0

0 0





















1 2

2 −1











√
5

9 ThisA =


1 2

3 6


 is a2 by 2 matrix of rank1. Its row space has basisv1, its nullspace

has basisv2, its column space has basisu1, its left nullspace has basisu2:

Row space
1√
5


1

2


 Nullspace

1√
5


 2

−1




Column space
1√
10


1

3


 , N(AT)

1√
10


 3

−1


 .
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10 If A has rank1 then so doesATA. The only nonzero eigenvalue ofATA is its trace,

which is the sum of alla2ij . (Each diagonal entry ofATA is the sum ofa2ij down one

column, so the trace is the sum down all columns.) Thenσ1 = square root of this sum,

andσ2
1 = this sum of alla2ij .

11 ATA = AAT =


2 1

1 1


 has eigenvaluesσ2

1 =
3 +

√
5

2
, σ2

2 =
3−

√
5

2
.

ButA is

indefinite

σ1 = (1+
√
5)/2 = λ1(A), σ2 = (

√
5− 1)/2 = −λ2(A); u1 = v1 but u2 = −v2.

12 A proof thateigshow finds the SVD. WhenV 1 = (1, 0),V 2 = (0, 1) the demo finds

AV 1 andAV 2 at some angleθ. A 90◦ turn by the mouse toV 2,−V 1 findsAV 2 and

−AV 1 at the angleπ − θ. Somewhere between, the constantly orthogonalv1 andv2

must produceAv1 andAv2 at angleπ/2. Those orthogonal directions giveu1 andu2.

13 The numberσmax(A
−1)σmax(A) is the same asσmax(A)/σmin(A). This is certainly≥

1. It equals1 if all σ’s are equal, andA = UΣV T is a multiple of an orthogonal matrix.

The ratioσmax/σmin is the importantcondition number of A studied in Section9.2.

14 A = UV T since allσj = 1, which means thatΣ = I .

15 A rank–1 matrix with Av = 12u would haveu in its column space, soA = uwT

for some vectorw. I intended (but didn’t say) thatw is a multiple of the unit vector

v = 1
2(1, 1, 1, 1) in the problem. ThenA = 12uvT to getAv = 12u whenvTv = 1.

16 If A has orthogonal columnsw1, . . . ,wn of lengthsσ1, . . . , σn, thenATA will be

diagonal with entriesσ2
1, . . . , σ

2
n. So theσ’s are definitely the singular values ofA

(as expected). The eigenvalues of that diagonal matrixATA are the columns ofI , so

V = I in the SVD. Then theui areAvi/σi which is the unit vectorwi/σi.

The SVD of thisA with orthogonal columns isA = UΣV T = (AΣ−1)(Σ)(I).

17 SinceAT = A we haveσ2
1 = λ2

1 andσ2
2 = λ2

2. But λ2 is negative, soσ1 = 3 and

σ2 = 2. The unit eigenvectors ofA are the sameu1 = v1 as forATA = AAT and

u2 = −v2 (notice the sign change becauseσ2 = −λ2, as in Problem11).

18 Suppose the SVD ofR is R = UΣV T. Then multiply byQ to getA = QR. So the

SVD of thisA is (QU)ΣV T. (OrthogonalQ times orthogonalU = orthogonalQU .)
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19 The smallest change inA is to set its smallest singular valueσ2 to zero.

20 ATA =


1 100

0 1




 1 0

100 1


 =


10001 100

100 1


 has eigenvaluesλ(ATA) = σ2(A).

λ2 − 10002λ+ 1 = 0 givesλ = 5001±
√
(5001)2 − 1 ≈ 5001±

(
5001− 1

10002

)
.

Soλ ≈ 10002 and1/10002 andσ ≈ 100.01 and1/100.01. Checkσ1σ2 ≈ 1 = detA.

21 The singular values ofA + I are notσj + 1. They come from eigenvalues of

(A+ I)T(A+ I). Test the diagonal matrixA =


1 0

0 3


.

22 SinceQ1 andU are orthogonal, so isQ1U . (check :(Q1U)T(Q1U) = UTQT
1 Q1U =

UTU = I .) So the SVD of the matrixQ1AQ
T
2 is justQ1UΣV TQT

2 = (Q1U)Σ(Q2V )T

andΣ is the same as forA. The matricesA andQ1AQ
T
2 andΣ are all “isometric” =

sharing the sameΣ.

23 The singular values ofQ are the eigenvalues ofQTQ = I (therefore all1’s).

24 (a) FromxTSx = 3x2
1 + 2x1x2 + 3x2

2 you can see thatS =


3 1

1 3


. Its eigenvalues

are4 and2. The maximum ofxTSx/xTx is 4.

(b) The1 by 2 matrixA =
[
1 4

]
leads to

||Ax||2
||x||2 =

(x1 + 4x2)
2

x2
1 + x2

2

. The maximum

value isσ2
1(A). For this matrixA =

[
1 4

]
that singular value squared isσ2

1 = 17.

This is becauseAAT =
[
17
]

and alsoATA =


1 4

4 16


 hasλ = 17 and0.

25 The minimum value of
xTSx

xTx
is thesmallesteigenvalue ofS. The eigenvector is the

minimizingx. That eigenvector givesxTSx = xTλminx.

Since
||Ax||2
||x||2 =

xTATAx

xTx
we see that the minimizingx is aneigenvector ofATA

(and not usually an eigenvector ofA).
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26 FromAV = UΣ we know that


0

1


 = first column ofV goes to2


cos θ

sin θ


 = first

column ofUΣ. Similarly the second column


1

0


 goes to


− sin θ

cos θ


. The two outputs

are orthogonal and they are the axes of an ellipse. Withθ = 30◦ those axes are



√
3

1




going out from(0, 0) at30◦ and
1

2


−1
√
3


 going out at120◦. Comparing to the picture

in Section7.4, the first step would be a reflection (not a rotation), then a stretch by

factors2 and1, then a30◦ rotation.

27 Start fromA = UΣV T. The columns ofU are a basis for the column space ofA, and

so are the columns ofC, soU = CF for some invertibler by r matrixF .

Similarly the columns ofV are a basis for the row space ofA and so are the columns

of B, soV = BG for some invertibler by r matrixG.

ThenA = UΣV T = C(FΣGT)BT = CMBT andM = FΣGT is r by r and

invertible.

Problem Set 7.3, page 391

1 The row averages ofA0 are3 and0. Therefore

A =


 2 1 0 −1 −2

−1 1 0 1 −1


 and S =

AAT

4
=

1

4


10 0

0 4




The eigenvalues ofS areλ1 =
10

4
andλ2 =

4

4
= 1. The top eigenvector ofS is


1

0


.

I think this means that avertical line is closer to the five points(2,−1), . . . , (−2,−1)

in the columns ofA than any other line through the origin(0, 0).
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2 Now the row averages ofA0 are 1
2

and2. Therefore

A =




1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

−1 0 1 1 0 −1


 and S =

AAT

5
=

1

5




3
2

0

0 4


 .

Again the rows ofA are accidentally orthogonal (because of the special patterns of

those rows). This time the top eigenvector ofS is


0

1


. So ahorizontal line is closer

to the six points
(
1
2
,−1

)
, . . . ,

(
− 1

2
,−1

)
from the columns ofA than any other line

through the center point(0, 0).

3 A0 =


1 2 3

5 2 2


 has row averages2 and soA =


−1 0 1

2 −1 −1


. ThenS =

1

2
AAT =

1

2


 2 −3

−3 6


.

Then trace(S) = 1
2
(8) anddet(S) =

(
1
2

)2
(3). The eigenvaluesλ(S) are 1

2
times the

roots ofλ2 − 8λ + 3 = 0. Those roots are4 ±
√
16− 3. Then theσ’s are

√
λ1 and

√
λ2.

4 This matrixA with orthogonal rows hasS =
AAT

n− 1
=

1

3




2 0 0

0 8 0

0 0 4


.

With λ’s in descending orderλ1 > λ2 > λ3, the eigenvectors are(0, 1, 0) and(0, 0, 1)

and(1, 0, 0). The first eigenvector shows theu1 direction. Combined with the second

eigenvectoru2, the best plane is theyz plane.

These problems are examples where the samplecorrelation matrix (rescalingS so all

its diagonal entries are1) would be the identity matrix. If we think the original scaling

is not meaningful and the rows should have the same length, then there is no reason to

chooseu1 = (0, 1, 0) from the8 in row 2.

5 The correlation matrixDSD which has1’s on the diagonal is

DSD =




1
2

1
2

1







4 2 0

2 4 1

0 1 1







1
2

1
2

1


 =




1 1
2 0

1
2 1 1

2

0 1
2 1


 .
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6 Working with letters instead of numbers, the correlation matrix C = DSD is




1 c12 c13

c12 1 c23

c13 c23 1


 with c12 =

S12

σ1σ2
andc13 =

S13

σ1σ3
andc23 =

S23

σ2σ3
.

Then D =




1/σ1

1/σ2

1/σ3


 givesDSD = C.

7 From each row ofA0, subtract the average of that row (the average grade for that

course) from the10 grades in that row. This produces the centered matrixA. Then the

sample covariance matrix isS = 1
9
AAT. The leading eigenvector of the5 by 5 matrix

S tells the weights on the5 courses to produce the “eigencourse”. This is the course

whose grades have the most information (the greatest variance).

If a course gives everyone anA, the variance is zero and that course is not included in

the eigencourse. We are looking for most information not best grade.

Problem Set 7.4, page 398

1 ATA =


10 20

20 40


 hasλ = 50 and0, v1 =

1√
5


1

2


, v2 =

1√
5


 2

−1


; σ1 =

√
50.

2 Orthonormal bases:v1 for row space,v2 for nullspace,u1 for column space,u2 for

N(AT). All matrices with those four subspaces are multiplescA, since the subspaces

are just lines. Normally many more matrices share the same4 subspaces. (For example,

all n by n invertible matrices shareRn as their column space.)

3 A = QS =
1√
50


7 −1

1 7


 1√

50


10 20

20 40


. S is semidefinite becauseA is singular.

4 A+ = V


1/

√
50 0

0 0


UT =

1

50


1 3

2 6


; A+A =


 .2 .4

.4 .8


, AA+ =


 .1 .3

.3 .9


.
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5 ATA =


10 8

8 10


 hasλ = 18 and2, v1 =

1√
2


1

1


, v2 =

1√
2


 1

−1


, σ1 =

√
18

andσ2 =
√
2.

6 AAT =


18 0

0 2


 hasu1 =


1
0


, u2 =


0
1


. The same

√
18 and

√
2 go intoΣ.

7


σ1u1 σ2u2






vT
1

vT
2


=σ1u1v

T
1 +σ2u2v

T
2 . In general this isσ1u1v

T
1 +· · ·+σrurv

T
r .

8 A = UΣV T splits intoQK (polar):Q = UV T =
1√
2


1 1

1 −1


 andK = V ΣV T =



√
18 0

0
√
2


.

9 A+ isA−1 becauseA is invertible. Pseudoinverse equals inverse whenA−1 exists!

10 ATA =




9 12 0

12 16 0

0 0 0


 hasλ = 25, 0, 0 andv1 =




.6

.8

0


, v2 =




.8

−.6

0


, v3 =




0

0

1


.

HereA = [ 3 4 0 ] has rank1 andAAT = [ 25 ] andσ1 = 5 is the only singular value

in Σ = [ 5 0 0 ].

11 A=[ 1 ] [ 5 0 0 ]V T andA+=V




.2

0

0


=




.12

.16

0


; A+A=




.36 .48 0

.48 .64 0

0 0 0


 ;AA+=[ 1 ]

12 The zero matrix has no pivots or singular values. ThenΣ = same2 by 3 zero matrix

and the pseudoinverse is the3 by 2 zero matrix.

13 If detA = 0 then rank(A) < n; thus rank(A+) < n anddetA+ = 0.

14 This problem explains why the matrixA transforms the circle of unit vectors||x|| = 1

into anellipseof vectorsy = Ax. The reason is thatx = A−1y and the vectors with

||A−1y|| = 1 do lie on an ellipse :

||A−1 y||2 = 1 is yT (A−1)T A−1 y = 1 or yT (AAT)−1 y = 1.

That matrix(AAT)−1 is symmetric positive definite(A is assumed invertible).
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A =


 2 1

1 2


 gives AAT =


 5 4

4 5


 and (AAT)−1 =

1

9


 5 −4

−4 5


 .

So the ellipse||A−1 y||2 = 1 of outputsy = Ax has equation5y21 − 8y1y2 +5y22 = 9.

The singular values of this positive definiteA are its eigenvalues3 and1.

The ellipse||A−1 y|| = 1 has semi-axes of lengths1/3 and1/1.

15 (a) ATA is singular (b) Thisx+ in the row space does giveATAx+ = ATb (c) If

(1,−1) in the nullspace ofA is added tox+, we get another solution toATAx̂ = ATb.

But thisx̂ is longer thanx+ because the added part is orthogonal tox+ in the row space

and||x̂||2 = ||x+||2 + ||added part from nullspace||2.

16 x+ in the row space ofA is perpendicular tôx − x+ in the nullspace ofATA =

nullspace ofA. The right triangle hasc2 = a2 + b2.

17 AA+p = p, AA+e = 0, A+Axr = xr, A+Axn = 0.

18 A+ = V Σ+UT is 1
5
[ .6 .8 ] = [ .12 .16 ] andA+A = [ 1 ] andAA+ =


 .36 .48

.48 .64


 =

projection.

19 L is determined byℓ21. Each eigenvector inX is determined by one number. The

counts are1 + 3 for LU , 1 + 2 + 1 for LDU , 1 + 3 for QR (notice1 rotation angle),

1 + 2 + 1 for UΣV T, 2 + 2 + 0 for XΛX−1.

20 LDLT andQΛQT are determined by1+ 2+ 0 numbers becauseA is symmetric.

NoteProblem20 should have referred to Problem19 not18.

21 Check the formula forA+A usingA+ andA :

A+A=

(
r∑

1

viu
T
i

σi

)(
r∑

1

σjujv
T
j

)
=

r∑

1

viu
T
i uiv

T
i becauseuT

i uj=0 wheni 6= j

Then everyuT
i ui = 1 (unit vector) soA+A =

r∑

1

viv
T
i is correct.

SimilarlyAA+ =

(
r∑

1

σj uj v
T
j

)(
r∑

1

vi u
T
i

σi

)
=

r∑

1

ui u
T
i .
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22 M =


 0 A

AT 0




u

v


 =


 Av

ATu


 = σ


u

v


. Thus


u

v


 is an eigenvector.

The singular values ofA areeigenvaluesof this block matrix.
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Problem Set 8.1, page 407

1 With w = 0 linearity givesT (v + 0) = T (v) + T (0). ThusT (0) = 0. With c = −1

linearity givesT (−0) = −T (0). This is a second proof thatT (0) = 0.

2 CombiningT (cv) = cT (v) andT (dw) = dT (w) with addition givesT (cv + dw) =

cT (v) + dT (w). Then one more addition givescT (v) + dT (w) + eT (u).

3 (d) is not linear.

4 (a) S(T (v)) = v (b) S(T (v1) + T (v2)) = S(T (v1)) + S(T (v2)).

5 Choosev = (1, 1) andw = (−1, 0). ThenT (v) + T (w) = (v+w) butT (v+w) =

(0, 0).

6 (a) T (v) = v/‖v‖ does not satisfyT (v + w) = T (v) + T (w) or T (cv) = cT (v)

(b) and (c) are linear (d) satisfiesT (cv) = cT (v).

7 (a)T (T (v))=v (b) T (T (v))=v+(2, 2) (c) T (T (v))=−v (d) T (T (v))=T (v).

8 (a) The range ofT (v1, v2) = (v1 − v2, 0) is the line of vectors(c, 0). The nullspace

is the line of vectors(c, c). (b) T (v1, v2, v3) = (v1, v2) has RangeR2, kernel

{(0, 0,v3)} (c) T (v) = 0 has Range{0}, kernelR2 (d) T (v1, v2) = (v1, v1)

has Range = multiples of(1, 1), kernel = multiples of(1,−1).

9 If T (v1, v2, v3) = (v2, v3, v1) thenT (T (v)) = (v3,v1,v2); T 3(v) = v; T 100(v) =

T (v).

10 (a) T (1, 0)=0 (b) (0, 0, 1) is not in the range (c)T (0, 1)=0.

11 For multiplicationT (v) = Av: V = Rn, W = Rm; the outputs fill the column

space;v is in the kernel ifAv = 0.

12 T (v) = (4, 4); (2, 2); (2, 2); if v = (a, b) = b(1, 1)+ a−b
2 (2, 0) thenT (v) = b(2, 2)+

(0, 0).

13 Thedistributive law(page 69) givesA(M1 + M2) = AM1 + AM2. Thedistributive

law overc’s givesA(cM) = c(AM).
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14 This A is invertible. MultiplyAM = 0 andAM = B by A−1 to getM = 0 and

M = A−1B. The kernel contains only the zero matrixM = 0.

15 This A is not invertible. AM = I is impossible.A


 2 2

−1 −1


 =


0 0

0 0


. The

range contains only matricesAM whose columns are multiples of(1, 3).

16 No matrixA givesA


0 0

1 0


 =


0 1

0 0


. To professors: Linear transformations on

matrix space come from4 by 4 matrices. Those in Problems 13–15 were special.

17 ForT (M) = MT (a) T 2 = I is True (b) True (c) True (d) False.

18 T (I) = 0 butM =


0 b

0 0


 = T (M); theseM ’s fill the range. EveryM =


a 0

c d




is in the kernel. Notice thatdim (range)+dim (kernel)= 3 + 1 = dim (input space

of 2 by 2 M ’s).

19 T (T−1(M)) = M soT−1(M) = A−1MB−1.

20 (a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes

onto a line (c) Vertical lines stay vertical becauseT (1, 0) = (a11, 0).

21 D =


2 0

0 1


 doubles the width of the house.A =


 .7 .7

.3 .3


 projectsthe house (since

A2 = A from trace= 1 andλ = 0, 1). The projection is onto the column space ofA =

line through(.7, .3). U =


1 1

0 1


 will shearthe house horizontally: The point at

(x, y) moves over to(x+ y, y).

22 (a) A =


a 0

0 d


 with d > 0 leaves the houseAH sitting straight up (b)A = 3I

expands the house by3 (c) A =


cos θ − sin θ

sin θ cos θ


 rotates the house.

23 T (v) = −v rotates the house by180◦ around the origin. Then the affine transformation

T (v) = −v + (1, 0) shifts the rotated house one unit to the right.

24 A code to add a chimney will be gratefully received!
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25 This code needs a correction: add spaces between−10 10 −10 10

26


1 0

0 .1


 compresses vertical distances by10 to1.


 .5 .5

.5 .5


 projects onto the45◦ line.


 .5 .5

−.5 .5


 rotates by45◦ clockwise and contracts by a factor of

√
2 (the columns have

length1/
√
2).


1 1

1 0


 has determinant−1 so the house is “flipped and sheared.” One

way to see this is to factor the matrix asLDLT:


1 1

1 0


 =


1 0

1 1




1

−1




1 1

0 1


 = (shear) (flip left-right) (shear).

27 Also 30 emphasizes that circles are transformed to ellipses (see figure in Section 6.7).

28 A code that adds two eyes and a smile will be included here with public credit given!

29 (a) ad − bc = 0 (b) ad − bc > 0 (c) |ad − bc| = 1. If vectors to two

corners transform to themselves then by linearityT = I . (Fails if one corner is(0, 0).)

30 Linear transformations keep straight lines straight! And two parallel edges of a square

(edges differing by a fixedv) go to two parallel edges (edges differing byT (v)). So

the output is a parallelogram.

Problem Set 8.2, page 418

1

ForSv = d2v/dx2

v1, v2, v3, v4 = 1, x, x2, x3

Sv1 = Sv2 = 0, Sv3 = 2v1, Sv4 = 6v2;

The matrix forS isB =




0 0 2 0

0 0 0 6

0 0 0 0

0 0 0 0




.

2 Sv = d2v/dx2 = 0 for linear functionsv(x) = a + bx. All (a, b, 0, 0) are in the

nullspace of the second derivative matrixB.

3 (Matrix A)2 = B when (transformationT )2 = S and output basis = input basis.
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4 The third derivative matrix has6 in the(1, 4) position; since the third derivative ofx3

is 6. This matrix also comes fromAB. The fourth derivative of a cubic is zero, andB2

is the zero matrix.

5 T (v1 + v2 + v3) = 2w1 +w2 + 2w3; A times(1, 1, 1) gives(2, 1, 2).

6 v = c(v2−v3) givesT (v) = 0; nullspace is(0, c,−c); solutions(1, 0, 0)+(0, c,−c).

7 (1, 0, 0) is not in the column space of the matrixA, andw1 is not in the range of

the linear transformationT . Key point: Column spaceof matrix matchesrangeof

transformation.

8 We don’t knowT (w) unless thew’s are the same as thev’s. In that case the matrix is

A2.

9 Rank ofA = 2 = dimension of therangeof T . The outputsAv (column space) match

the outputsT (v) (the range ofT ). The “output space”W is like Rm: it contains all

outputs but may not be filled up.

10 The matrix forT isA =




1 0 0

1 1 0

1 1 1


. For the output




1

0

0


 choose inputv =




1

−1

0


 =

A−1




1

0

0


. This means: For the outputw1 choose the inputv1 − v2.

11 A−1 =




1 0 0

−1 1 0

0 −1 1


 soT−1(w1) = v1 − v2, T

−1(w2) = v2 − v3, T
−1(w3) =

v3. The columns ofA−1 describeT−1 from W back toV . The only solution to

T (v) = 0 is v = 0.

12 (c) T−1(T (w1)) = w1 is wrong becausew1 is not generally in the input space.

13 (a) T (v1) = v2, T (v2) = v1 is its own inverse (b)T (v1) = v1, T (v2) = 0 has

T 2 = T (c) If T 2 = I for part (a) andT 2 = T for part (b), thenT must beI .
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14 (a)


2 1

5 3


 (b)


 3 −1

−5 2


 = inverse of (a) (c)A


2

6


must be2A


1

3


.

15 (a) M =


r s

t u


 transforms


1

0


 and


0

1


 to


r

t


 and


 s

u


; this is the “easy”

direction. (b)N =


a b

c d



−1

transforms in the inverse direction, back to the stan-

dard basis vectors. (c)ad = bc will make the forward matrix singular and the inverse

impossible.

16 MW =


1 0

1 2




2 1

5 3



−1

=


 3 −1

−7 3


.

17 Recording basis vectors is done by aPermutation matrix. Changing lengths is done by

apositive diagonal matrix.

18 (a, b) = (cos θ,− sin θ). Minus sign fromQ−1 = QT.

19 M =


1 1

4 5


;


a

b


 =


 5

−4


 = first column ofM−1 = coordinates of


1

0


 in basis


1

4




1

5


.

20 w2(x) = 1− x2; w3(x) =
1
2
(x2 − x); y = 4w1 + 5w2 + 6w3.

21 w’s to v’s:




0 1 0

.5 0 −.5

.5 −1 .5


 . v’s to w’s: inverse matrix=




1 1 1

1 0 0

1 −1 1


. The key

idea: The matrix multiplies the coordinates in thev basis to give the coordinates in the

w basis.

22 The3 equations to match4, 5, 6 at x = a, b, c are




1 a a2

1 b b2

1 c c2







A

B

C




=




4

5

6




. This

Vandermonde determinant equals(b − a)(c − a)(c − b). Soa, b, c must be distinct to

havedet 6= 0 and one solutionA,B,C.
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23 The matrixM with these nine entries must be invertible.

24 Start fromA = QR. Column2 isa2 = r12q1+ r22q2. This givesa2 as a combination

of theq’s. So the change of basis matrix isR.

25 Start fromA = LU . Row 2 ofA is ℓ21(row 1 ofU) + ℓ22 (row 2 ofU ). The change of

basis matrix is alwaysinvertible, because basis goes to basis.

26 The matrix forT (vi) = λivi is Λ = diag(λ1, λ2, λ3).

27 If T is not invertible,T (v1), . . . , T (vn) is not a basis.We couldn’t choosewi = T (vi).

28 (a)


0 3

0 0


 givesT (v1) = 0 andT (v2) = 3v1. (b)


1 0

0 0


 givesT (v1) = v1

andT (v1 + v2) = v1 (which combine intoT (v2) = 0 by linearity).

29 T (x, y) = (x,−y) is reflection across thex-axis. Then reflect across they-axis to get

S(x,−y) = (−x,−y). ThusST = −I .

30 S takes(x, y) to (−x, y). S(T (v))=(−1,2). S(v)=(−2, 1) andT (S(v))=(1,−2).

31 Multiply the two reflections to get


cos 2(θ − α) − sin 2(θ − α)

sin 2(θ − α) cos 2(θ − α)


 which isrotation

by 2(θ − α). In words: (1, 0) is reflected to have angle2α, and that is reflected again

to angle2θ − 2α.

32 The matrix forT in this basis isA =




1 0 0 0

0 1 0 0

0 0 0 0


.

33 Multiplying by


a b

c d


 givesT (v1) = A


1 0

0 0


 =


a 0

c 0


 = av1 + cv3. Simi-

larly T (v2) = av2+cv4 andT (v3) = bv1+dv3 andT (v4) = bv2+dv4. The matrix

for T in this basis is




a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d




34 False: We will not knowT (v) for energyv unless then v’s are linearly independent.
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Problem Set 8.3, page 429

1 For this matrixJ , the rank ofJ − 3I is 3 so the dimension of the nullspace is only

1. There is only1 independent eigenvector even thoughλ = 3 is a double rootof

det(J − λI) = 0 : a repeated eigenvalue.

J =




2

2

3 1

3



.

2 J =


 0 1

0 0


 is similar to all other2 by2 matricesA that have2 zero eigenvalues but

only 1 independent eigenvector. ThenJ = B−1
1 A1B1 is the same asB1J = A1B1 :

B1J =


 4 0

0 1




 0 1

0 0


 =


 0 4

0 0




 4 0

0 1


 = A1B1

B2J =


 4 1

2 0




 0 1

0 0


 =


 4 −8

2 −4




 4 1

2 0


 = A2B2

3 Every matrix is similar to its transpose (same eigenvalues, same multiplicity, more than

that the same Jordan form). In this example

BJ =




1

1

1







2 1 0

0 2 1

0 0 2


 =




2 0 0

1 2 0

0 1 2







1

1

1


 = JTB.

4 HereJ andK aredifferentJordan forms (block sizes2, 2 versus block sizes3, 1). Even

thoughJ andK have the sameλ’s (all zero) and same rank,J andK arenot similar.

If BK = JB thenB is not invertible:

BK = B




0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0



=




0 b11 b12 0

0 b21 b22 0

0 b31 b32 0

0 b41 b42 0



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JB =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0



B =




b21 b22 b23 b24

0 0 0 0

b41 b42 b43 b44

0 0 0 0




Those right hand sides agree only ifb21 = 0, b41 = 0, b24 = 0, b44 = 0, b22 = 0,

b42 = 0. But then alsob11 = b22 = 0 andb31 = b42 = 0. So the first column has

b11 = b21 = b31 = b41 = 0 andB is not invertible.

5 If A3 is the zero matrix then every eigenvalue ofA is λ = 0 (becauseAx = λx leads

to θ = A3x = λ3x). The Jordan formJ will also haveJ3 = 0 becauseJ = B−1AB

hasJ3 = B−1A3B = 0. The blocks ofJ must become zero blocks inJ3. So those

blocks ofJ can be

[
0
]

 0 1

0 0







0 1 0

0 0 1

0 0 0


 but not




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0





 third power

is not zero




The rank ofJ (andA) is largest if every block is3 by 3 of rank2. Then rank≤ 2

3
n.

If An = zero matrix thenA is not invertibleand rank(A) < n.

6 This question substitutesu1 = teλt andu2 = eλt to show thatu1, u2 solve the system

u ′ = Ju :

u ′

1 = λu1 + u2 eλt + tλeλt = λ(teλt) + (eλt)

u ′

2 = λu2 λeλt = λ(eλt) .

Certainlyu1 = 0 andu2 = 1 at t = 0, so we have the solution and it involvesteλt (the

factort appears becauseλ is a double eigenvalue ofJ).

7 The equationuk+2 − 2λuk+1 + λ2uk is certainly solved byuk = λk. But this is a

second order equation and there must be another solution. In analogy withteλt for the

differential equation in8.3.6, that second solution isuk = kλk. Check :
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(k + 2)λk+2 − 2λ(k + 1)λk+1 + λ2(k)λk =
[
k + 2− 2(k + 1) + k

]
λk+2 = 0.

8 λ3 = 1 has3 rootsλ = 1 and e2πi/3 and e4πi/3. Those are1,λ,λ2 if we take

λ = e2πi/3. The Fourier matrix is

F3 =




1 1 1

1 λ λ2

1 λ2 λ4


 =




1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e8πi/3


 .

9 A 3 by 3 circulant matrix has the form on page425 :

C =




c0 c1 c2

c2 c0 c1

c1 c2 c0


 with C




1

1

1


 = (c0 + c1 + c2)




1

1

1




C




1

λ

λ2


 = (c0+c1λ+c2λ

2)




1

λ

λ2


 C




1

λ2

λ4


 = (c0+c1λ

2+c2λ
4)




1

λ2

λ4


 .

Those3 eigenvalues ofC are exactly the3 components ofFc = F




c0

c1

c2


,

10 The Fourier cosine coefficientc3 is in formula (7) with integrals from−π toπ. Because

f drops to zero atx = L, the integral stops atL :

a3 =

∫
f(x) cos 3x dx∫
(cos 3x)2 dx

=
1

π

∫ L

−L

(1)(cos 3x) dx =
1

3π

[
sin 3x

]x=L

x=−L

=
2 sin 3L

3π
.

Note that we should have definedf(x) = 0 for L < |x| < π (not2π !).
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Problem Set 9.1, page 436

1 (a)(b)(c) have sums4, −2 + 2i, 2 cos θ and products5, −2i, 1. Note(eiθ)(e−iθ) = 1.

2 In polar form these are
√
5eiθ, 5e2iθ, 1√

5
e−iθ,

√
5.

3 The absolute values arer = 10, 100, 1
10

, and100. The angles areθ, 2θ, −θ and−2θ.

4 |z × w| = 6, |z + w| ≤ 5, |z/w| = 2
3 , |z − w| ≤ 5.

5 a+ ib =
√
3
2

+ 1
2
i, 1

2
+

√
3
2
i, i, − 1

2
+

√
3
2
i; w12 = 1.

6 1/z has absolute value1/r and angle−θ; (1/r)e−iθ timesreiθ equals1.

7


a −b

b a




 c

d




ac− bd

bc+ ad


 real part

imaginary part


1 −3

3 1




 1

−3


 =


10

0


 is the matrix

form of (1 + 3i)(1 − 3i) = 10.

8


A1 −A2

A2 A1




x1

x2


 =


b1
b2


 gives complex matrix= vector multiplication(A1 +

iA2)(x1 + ix2) = b1 + ib2.

9 2 + i; (2 + i)(1 + i) = 1 + 3i; e−iπ/2 = −i; e−iπ = −1; 1−i
1+i

= −i; (−i)103 = i.

10 z + z is real;z − z is pure imaginary;zz is positive;z/z has absolute value 1.

11


 a b

−b a


 includesaI (which just addsa to the eigenvalues andb


 0 1

−1 0


. So the

eigenvectors arex1 = (1, i) andx2 = (1,−i). The eigenvalues areλ1 = a + bi and

λ2 = a− bi. We seex1 = x2 andλ1 = λ2 as expected for real matrices with complex

eigenvalues.

12 (a) Whena = b = d = 1 the square root becomes
√
4c; λ is complex if c < 0

(b) λ = 0 andλ = a+ d whenad = bc (c) theλ’s can be real and different.

13 Complexλ’s when(a+d)2 < 4(ad−bc); write (a+d)2−4(ad−bc) as(a−d)2+4bc

which is positive whenbc > 0.

14 The symmetric block matrix has real eigenvalues; soiλ is real andλ is pure imaginary.

15 (a) 2eiπ/3, 4e2iπ/3 (b) e2iθ, e4iθ (c) 7e3πi/2, 49e3πi (= −49) (d)
√
50e−πi/4,

50e−πi/2.
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16 r = 1, angleπ
2
− θ; multiply by eiθ to geteiπ/2 = i.

17 a+ ib = 1, i, −1, −i, ± 1√
2
± i√

2
. The rootw = w−1 = e−2πi/8 is 1/

√
2− i/

√
2.

18 1, e2πi/3, e4πi/3 are cube roots of1. The cube roots of−1 are−1, eπi/3, e−πi/3.

Altogether six roots ofz6 = 1.

19 cos 3θ=Re[(cos θ+ i sin θ)3]=cos3 θ−3 cos θ sin2 θ; sin 3θ=3 cos2 θ sin θ− sin3 θ.

20 If the conjugatez = 1/z then|z|2 = 1 andz is any pointeiθ on the unit circle.

21 ei is at angleθ = 1 on the unit circle;|ie| = 1e; Infinitely manyie = ei(π/2+2πn)e.

22 (a) Unit circle (b) Spiral in toe−2π (c) Circle continuing around to angleθ=2π2.

Problem Set 9.2, page 443

1 ‖u‖ =
√
9 = 3, ‖v‖ =

√
3, uHv = 3i+ 2, vHu = −3i+ 2 (this is the conjugate of

uHv).

2 AHA =




2 0 1 + i

0 2 1 + i

1− i 1− i 2


 andAAH =


3 1

1 3


 are Hermitian matrices. They

share the eigenvalues4 and2.

3 z=multiple of(1+i, 1+i,−2); Az=0 giveszHAH = 0H soz (notz!) is orthogonal

to all columns ofAH (using complex inner productzH times columns ofAH).

4 The four fundamental subspaces are nowC(A), N(A), C(AH), N(AH). AH and notAT.

5 (a) (AHA)H = AHAHH = AHA again (b) IfAHAz = 0 then(zHAH)(Az) = 0.

This is‖Az‖2 = 0 soAz = 0. The nullspaces ofA andAHA are always thesame.

6
(a) False

(c) False
A = Q =


 0 1

−1 0


 (b) True:−i is not an eigenvalue whenS = SH.

7 cS is still Hermitianfor real c; (iS)H = −iSH = −iS is skew-Hermitian.
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8 ThisP is invertible and unitary.P 2 =




0 0 −1

−1 0 0

0 −1 0


, P 3 =




−i

−i

−i


 =

−iI . ThenP 100 = (−i)33P = −iP . The eigenvalues ofP are the roots ofλ3 = −i,

which arei andie2πi/3 andie4πi/3.

9 One unit eigenvector is certainlyx1 = (1, 1, 1) with λ1 = i. The other eigenvectors

arex2 = (1, w, w2) andx3 = (1, w2, w4) with w = e2πi/3. The eigenvector matrix

is the Fourier matrixF3. The eigenvectors of any unitary matrix likeP are orthogonal

(using the correct complex formxHy of the inner product).

10 (1, 1, 1), (1, e2πi/3, e4πi/3), (1, e4πi/3, e2πi/3) are orthogonal (complex inner product!)

becauseP is an orthogonal matrix—and therefore its eigenvector matrix is unitary.

11 If QHQ = I thenQ−1(QH)−1 = Q−1(Q−1)H = I so Q−1 is also unitary. Also

(QU)H(QU) = UHQHQU = UHU = I soQU is unitary.

12 Determinant= product of the eigenvalues(all real). AndA = AH givesdetA =detA.

13 (zHAH)(Az) = ‖Az‖2 is positive unlessAz = 0. WhenA has independent columns

this meansz = 0; soAHA is positive definite.

14 S =
1√
3


 1 −1 + i

1 + i 1




2 0

0 −1


 1√

3


 1 1− i

−1− i 1


.

15 K =(iAT in Problem 14)=
1√
3


 1 −1− i

1− i 1




2i 0

0 −i


 1√

3


 1 1 + i

−1 + i 1


;

λ’s are imaginary.

16 U =
1√
2


 1 −i

−i 1




cos θ + i sin θ 0

0 cos θ − i sin θ


 1√

2


1 i

i 1


 has|λ| = 1.

17 U =
1

L


1 +

√
3 −1 + i

1 + i 1 +
√
3




1 0

0 −1


 1

L


1 +

√
3 1− i

−1− i 1 +
√
3


withL2 = 6+2

√
3.

Unitary means|λ| = 1. U = UH gives realλ. Then trace zero givesλ = 1 and−1.

18 The v’s are columns of a unitary matrixU , soUH is U−1. Thenz = UUHz =

(multiply by columns)= v1(v
H
1 z)+ · · ·+vn(v

H
nz): a typical orthonormal expansion.
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19 z = (1, i,−2) completes an orthogonal basis forC3. So does anyeiθz.

20 S = A+ iB = (A+ iB)H = AT − iBT; A is symmetric butB is skew-symmetric.

21 Cn has dimensionn; the columns of any unitary matrix are a basis. For example use

the columns ofiI : (i, 0, . . . , 0), . . . , (0, . . . , 0, i)

22 [ 1 ] and[−1 ]; any[ eiθ ];


 a b+ ic

b− ic d


;


 w eiφz

−z eiφw


 with |w|2 + |z|2 = 1

and any angleφ

23 The eigenvalues ofAH arecomplex conjugatesof the eigenvalues ofA: det(A−λI)=0

givesdet(AH − λI) = 0.

24 (I − 2uuH)H = I − 2uuH and also(I − 2uuH)2 = I − 4uuH + 4u(uHu)uH = I .

The rank-1 matrixuuH projects onto the line throughu.

25 UnitaryUHU = I means(AT−iBT)(A+iB) = (ATA+BTB)+i(ATB−BTA)=I .

ATA+ BTB = I andATB −BTA = 0 which makes the block matrix orthogonal.

26 We are givenA+ iB = (A+ iB)H = AT − iBT. ThenA = AT andB = −BT. So

that


A −B

B A


 is symmetric.

27 SS−1 = I gives(S−1)HSH = I . Therefore(S−1)H is (SH)−1 = S−1 andS−1 is

Hermitian.

28 If U has (complex) orthonormal columns, thenUHU = I andU is unitary. If those

columns are eigenvectors ofA, thenA = UΛU−1 = UΛUH is normal. The direct test

for a normal matrix (which isAAH = AHA because diagonals could be real!) andΛH

surely commute:

AAH=(UΛUH)(UΛHUH)=U(ΛΛH)UH=U(ΛHΛ)UH=(UΛHUH)(UΛUH)=AHA.

An easy way to construct a normal matrix is1 + i times a symmetric matrix. Or take

A = S + iT where the real symmetricS andT commute (ThenAH = S − iT and

AAH = AHA).
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Problem Set 9.3, page 450

1 Equation (3) (the FFT) is correct usingi2 = −1 in the last two rows and three columns.

2 F−1 =




1

1

1

1




1

2




1 1

1 i2

1 1

1 i2




1

2




1 1

1 1

1 −1

−i i



=

1

4
FH.

3 F =




1

1

1

1







1 1

1 i2

1 1

1 i2







1 1

1 1

1 −1

−i i




permutation last.

4 D =




1

e2πi/6

e4πi/6


 (note6 not3) andF3




1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e2πi/3


.

5 F−1w = v andF−1v = w/4. Delta vector↔ all-ones vector.

6 (F4)
2 =




4 0 0 0

0 0 0 4

0 0 4 0

0 4 0 0




and(F4)
4 = 16I . Four transforms recover the signal!

7 c=




1

0

1

0



→




1

1

0

0



→




2

0

0

0



→




2

0

2

0



=Fc. Also C=




0

1

0

1



→




0

0

1

1



→




0

0

2

0



→




2

0

−2

0



=FC.

Addingc+ C gives(1, 1, 1, 1) to (4, 0, 0, 0) = 4 (delta vector).

8 c → (1, 1, 1, 1, 0, 0, 0, 0) → (4, 0, 0, 0, 0, 0, 0, 0) → (4, 0, 0, 0, 4, 0, 0, 0) = F8c.

C → (0, 0, 0, 0, 1, 1, 1, 1) → (0, 0, 0, 0, 4, 0, 0, 0) → (4, 0, 0, 0,−4, 0, 0, 0) = F8C.

9 If w64 = 1 thenw2 is a 32nd root of 1 and
√
w is a 128th root of 1: Key to FFT.
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10 For every integern, thenth roots of 1 add to zero. For evenn, they cancel in pairs. For

anyn, use the geometric series formula1+w+ · · ·+wn−1 = (wn − 1)/(w− 1) = 0.

In particular forn = 3, 1 + (−1 + i
√
3)/2 + (−1− i

√
3)/2 = 0.

11 The eigenvalues ofP are1, i, i2 = −1, andi3 = −i. Problem 11 displays the eigen-

vectors. And alsodet(P − λI) = λ4 − 1.

12 Λ = diag(1, i, i2, i3); P =




0 1 0

0 0 1

1 0 0


 andPT lead toλ3 − 1 = 0.

13 e1 = c0+c1+c2+c3 ande2 = c0+c1i+c2i
2+c3i

3; E contains the four eigenvalues

of C = FEF−1 becauseF contains the eigenvectors.

14 Eigenvaluese1 = 2− 1− 1 = 0, e2 = 2− i− i3 = 2, e3 = 2− (−1)− (−1) = 4,

e4 = 2− i3 − i9 = 2. Just transform column0 of C. Check trace0 + 2 + 4 + 2 = 8.

15 DiagonalE needsn multiplications, Fourier matrixF andF−1 need1
2
n log2 n multi-

plications each by theFFT. The total is much less than the ordinaryn2 for C timesx.

16 The row1, wk, w2k, . . . in F is the same as the row1, wN−k, wN−2k , . . . in F because

wN−k = e(2πi/N)(N−k) is e2πie−(2πi/N)k = 1 timeswk. SoF andF have thesame

rows in reversed order(except for row0 which is all ones).

17 0 000 reverses to000 = 0

1 001 reverses to100 = 4

2 010 reverses to010 = 2 Now evens come before odds!

3 011 reverses to110 = 6

4 100 reverses to001 = 1

5 101 reverses to101 = 5

6 110 reverses to011 = 3

7 111 reverses to111 = 7
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Problem Set 10.1, page 459

1 A =




−1 1 0

−1 0 1

0 −1 1


; nullspace contains




c

c

c


;




1

0

0


 is not orthogonal to that nullspace.

2 ATy = 0 for y = (1,−1, 1); current along edge 1, edge 3, back on edge 2 (full loop).

3 Elimination on b1[A b ] =




−1 1 0 b1

−1 0 1 b2

0 −1 1 b3


 leads to [U c ] =




−1 1 0 b1

0 −1 1 b2 − b1

0 0 0 b3 − b2 + b1


. The nonzero rows ofU come from edges 1 and 3

in a tree. The zero row comes from the loop (all 3 edges).

4 For the matrix in Problem 3,Ax = b is solvable forb = (1, 1, 0) and not solvable

for b = (1, 0, 0). For solvableb (in the column space),b must be orthogonal toy =

(1,−1, 1); that combination of rows is the zero row, andb1 − b2 + b3 = 0 is the third

equation after elimination.

5 Kirchhoff’s Current LawATy = f is solvable forf = (1,−1, 0) and not solvable for

f = (1, 0, 0); f must be orthogonal to(1, 1, 1) in the nullspace:f1 + f2 + f3 = 0.

6 ATAx =




2 −1 −1

−1 2 −1

−1 −1 2


x =




3

−3

0


 = f producesx =




1

−1

0


 +




c

c

c


; potentials

x = 1,−1, 0 and currents−Ax = 2, 1, −1; f sends 3 units from node 2 into node 1.

7 AT




1

2

2


A =




3 −1 −2

−1 3 −2

−2 −2 4


; f =




1

0

−1


 yieldsx =




5/4

1

7/8


+ any




c

c

c


;

potentialsx = 5
4 , 1,

7
8 and currents−CAx = 1

4 ,
3
4 ,

1
4 .
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8 A =




−1 1 0 0

−1 0 1 0

0 −1 1 0

0 −1 0 1

0 0 −1 1




leads tox =




1

1

1

1




andy =




−1

1

−1

0

0




and




0

0

1

−1

1




solving

ATy = 0.

9 Elimination onAx = b always leads toyTb = 0 in the zero rows ofU andR:

−b1 + b2 − b3 = 0 andb3 − b4 + b5 = 0 (thosey’s are from Problem 8 in the left

nullspace). This is Kirchhoff’sVoltageLaw around the twoloops.

10 The echelon form ofA isU =




−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 0

0 0 0 0




The nonzero rows ofU keep

edges 1, 2, 4. Other spanning trees

from edges, 1, 2, 5; 1, 3, 4; 1, 3, 5;

1, 4, 5; 2, 3, 4; 2, 3, 5; 2, 4, 5.

11 ATA =




2 −1 −1 0

−1 3 −1 −1

−1 −1 3 −1

0 −1 −1 2




diagonal entry= number of edges into the node

the trace is2 times the number of nodes

off-diagonal entry= −1 if nodes are connected

ATA is thegraph Laplacian, ATCA is weightedbyC

12 (a) The nullspace and rank ofATA andA are always the same (b)ATA is always

positive semidefinite becausexTATAx = ‖Ax‖2 ≥ 0. Not positive definite because

rank is only3 and(1, 1, 1, 1) is in the nullspace (c) Real eigenvalues all≥ 0 because

positive semidefinite.

13 ATCAx =




4 −2 −2 0

−2 8 −3 −3

−2 −3 8 −3

0 −3 −3 6



x =




1

0

0

−1




gives four potentialsx = ( 5
12
, 1
6
, 1
6
, 0)

I groundedx4 = 0 and solved forx

currentsy = −CAx = (2
3
, 2
3
, 0, 1

2
, 1
2
)

14 ATCAx = 0 for x = c(1, 1, 1, 1) = (c, c, c, c). If ATCAx = f is solvable, thenf in

the column space (= row space by symmetry) must be orthogonal tox in the nullspace:

f1 + f2 + f3 + f4 = 0.
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15 The number of loops in this connected graph isn − m + 1 = 7 − 7 + 1 = 1.

What answer if the graph has two separate components (no edges between)?

16 Start from (4 nodes)− (6 edges)+ (3 loops)= 1. If a new node connects to1 old

node,5 − 7 + 3 = 1. If the new node connects to2 old nodes, a new loop is formed:

5− 8 + 4 = 1.

17 (a) 8 independent columns (b)f must be orthogonal to the nullspace sof ’s add

to zero (c) Each edge goes into 2 nodes, 12 edges make diagonalentries sum to 24.

18 A complete graphhas5 + 4 + 3 + 2 + 1 = 15 edges. Withn nodes that count is

1 + · · ·+ (n− 1) = n(n− 1)/2. Tree has5 edges.

Problem Set 10.2, page 472

1 DetAT
0 C0A0 =




c1 + c2 −c2 0

−c2 c2 + c3 −c3

0 −c3 c3 + c4


 is by direct calculation. Setc4 = 0 to

find detAT
1 C1A1 = c1c2c3.

2 (AT
1 C1A1)

−1 =




1 0 0

1 1 0

1 1 1







c−1
1

c−1
2

c−1
3







1 1 1

0 1 1

0 0 1


 =




c−1
1 c−1

1 c−1
1

c−1
1 c−1

1 + c−1
2 c−1

1 + c−1
2

c−1
1 c−1

1 + c−1
2 c−1

1 + c−1
2 + c−1

3


.

3 The rows of the free-free matrix in equation (9) add to[ 0 0 0 ] so the right side needs

f1 + f2 + f3 = 0. f = (−1, 0, 1) givesc2u1 − c2u2 = −1, c3u2 − c3u3 = −1, 0 = 0.

Thenuparticular= (−c−1
2 −c−1

3 ,−c−1
3 , 0). Add any multiple ofunullspace= (1, 1, 1).

4
∫

− d

dx

(
c(x)

du

dx

)
dx=−

[
c(x)

du

dx

]1

0

=0 (bdry cond) so we need
∫
f(x) dx=0.
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5 −dy

dx
= f(x) givesy(x) = C −

∫
x

0

f(t)dt. Theny(1) = 0 givesC =

∫ 1

0

f(t)dt and

y(x) =

∫ 1

x

f(t)dt. If the load isf(x) = 1 then the displacement isy(x) = 1− x.

6 Multiply AT
1 C1A1 as columns ofAT

1 times c’s times rows ofA1. The first3 by 3

“element matrix” c1E1 = [ 1 0 0 ]
T
c1[ 1 0 0 ] hasc1 in the top left corner.

7 For 5 springs and4 masses, the5 by 4 A has two nonzero diagonals: allaii = 1

andai+1,i = −1. With C = diag(c1, c2, c3, c4, c5) we getK = ATCA, symmetric

tridiagonal with diagonal entriesKii = ci + ci+1 and off-diagonalsKi+1,i = −ci+1.

With C = I this K is the−1, 2,−1 matrix andK(2, 3, 3, 2) = (1, 1, 1, 1) solves

Ku = ones(4, 1). (K−1 will solveKu = ones(4).)

8 The solution to−u′′=1 with u(0)=u(1)= 0 is u(x)= 1
2
(x − x2). At x= 1

5
, 2
5
, 3
5
, 4
5

this givesu=2, 3, 3, 2 (discrete solution in Problem 7) times(∆x)2=1/25.

9 −u ′′ = mg has complete solutionu(x) = A + Bx − 1
2mgx2. Fromu(0) = 0 we

get A = 0. From u ′(1) = 0 we getB = mg. Thenu(x) = 1
2
mg(2x − x2) at

x = 1
3
, 2
3
, 3
3

equalsmg/6, 4mg/9,mg/2. Thisu(x) is not proportional to the discrete

u = (3mg, 5mg, 6mg) at the meshpoints. This imperfection is because the discrete

problem uses a1-sided difference, less accurate at the free end. Perfect accuracy is

recovered by a centered difference (discussed on page21 of my CSE textbook).

10 (added in later printing, changing10-11 below into11-12). The solution in this fixed-

fixed case is(2.25, 2.50, 1.75) so the second mass moves furthest.

11 The two graphs of100 points are “discrete parabolas” starting at(0, 0): symmetric

around50 in the fixed-fixed case, ending with slope zero in the fixed-free case.

12 Forward/backward/centered fordu/dx has a big effect because that term has the large

coefficient. MATLAB: E = diag(ones(6, 1), 1); K = 64 ∗ (2 ∗ eye(7) − E − E′);

D = 80 ∗ (E− eye(7)); (K + D)\ones(7, 1); % forward; (K − D′)\ones(7, 1);

% backward;(K + D/2 − D ′/2)\ones(7, 1);% centered is usually the best: more

accurate
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Problem Set 10.3, page 480

1 Eigenvaluesλ = 1 and .75; (A − I)x = 0 gives the steady statex = (.6, .4) with

Ax = x.

2 A =


 .6 −1

.4 1




1

.75




 1 1

−.4 .6


; A∞ =


 .6 −1

.4 −1




1 0

0 0




 1 1

−.4 .6


=


.6 .6

.4 .4


.

3 λ = 1 and.8, x = (1, 0); 1 and−.8, x = (59 ,
4
9 ); 1, 14 , and1

4 , x = (13 ,
1
3 ,

1
3 ).

4 AT always has the eigenvector(1, 1, . . . , 1) for λ = 1, because each row ofAT adds

to 1. (Note again that many authors use row vectors multiplying Markov matrices.

So they transpose our form ofA.)

5 The steady state eigenvector forλ = 1 is (0, 0, 1) = everyone is dead.

6 Add the components ofAx = λx to find sums = λs. If λ 6= 1 the sum must bes = 0.

7 (.5)k → 0 givesAk → A∞; anyA =


 .6 + .4a .6− .6a

.4− .4a .4 + .6a


 with

a ≤ 1

.4 + .6a ≥ 0

8 If P = cyclic permutation andu0 = (1, 0, 0, 0) thenu1 = (0, 0, 1, 0); u2 = (0, 1, 0, 0);

u3 = (1, 0, 0, 0); u4 = u0. The eigenvalues1, i,−1,−i are allon the unit circle. This

Markov matrix contains zeros; apositivematrix hasonelargest eigenvalueλ = 1.

9 M2 is still nonnegative;[ 1 · · · 1 ]M = [ 1 · · · 1 ] so multiply on the right byM

to find [ 1 · · · 1 ]M2 = [ 1 · · · 1 ] ⇒ columns ofM2 add to 1.

10 λ = 1 anda+ d− 1 from the trace; steady state is a multiple ofx1 = (b, 1− a).

11 Last row.2, .3, .5makesA = AT; rows also add to 1 so(1, . . . , 1) is also an eigenvector

of A.

12 B hasλ = 0 and−.5 with x1 = (.3, .2) andx2 = (−1, 1); A hasλ = 1 soA− I has

λ = 0. e−.5t approaches zero and the solution approachesc1e
0tx1 = c1x1.

13 x = (1, 1, 1) is an eigenvector when the row sums are equal;Ax = (.9, .9, .9)
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14 (I−A)(I+A+A2+· · · ) = (I+A+A2+· · · )−(A+A2+A3+· · · ) = I. This says that

I +A+A2 + · · · is (I −A)−1. WhenA =


0 .5

1 0


 , A2 = 1

2I, A
3 = 1

2A,A
4 = 1

4I

and the series adds to


1 +

1
2 + · · · 1

2 + 1
4 + · · ·

1 + 1
2 + · · · 1 + 1

2 + · · ·


 =


2 1

2 2


 = (I − A)−1.

15 The first twoA’s haveλmax < 1; p =


8

6


 and


130

32


; I−


 .5 1

.5 0


 has no inverse.

16 λ = 1 (Markov), 0 (singular),.2 (from trace). Steady state(.3, .3, .4) and(30, 30, 40).

17 No, A has an eigenvalueλ = 1 and(I −A)−1 does not exist.

18 The Leslie matrix on page 435 hasdet(A−λI) = det




F1 − λ F2 F3

P1 −λ 0

0 P2 −λ


 = −λ3+

F1λ
2 + F2P1λ + F3P1P2. This is negative for largeλ. It is positive atλ = 1

provided thatF1 + F2P1 + F3P1P2 > 1. Under this key condition,det(A − λI)

must be zero at someλ between 1 and∞. That eigenvalue means that the population

grows (under this condition connectingF ’s andP ’s reproduction and survival rates).

19 Λ timesX−1∆X has the same diagonal asX−1∆X timesΛ becauseΛ is diagonal.

20 If B>A>0 andAx=λmax(A)x>0 thenBx>λmax(A)x andλmax(B)>λmax(A).

of C = four components ofFc. Circulants are special!

Problem Set 10.4, page 489

1 Feasible set= line segment(6, 0) to (0, 3); minimum cost at(6, 0), maximum at(0, 3).

2 Feasible set has corners(0, 0), (6, 0), (2, 2), (0, 6). Minimum cost2x− y at (6, 0).

3 Only two corners(4, 0, 0) and(0, 2, 0); let xi → −∞, x2 = 0, andx3 = x1 − 4.

4 From(0, 0, 2) move tox = (0, 1, 1.5) with the constraintx1+x2+2x3 = 4. The new

cost is3(1) + 8(1.5) = $15 sor = −1 is the reduced cost. The simplex method also

checksx = (1, 0, 1.5) with cost5(1) + 8(1.5) = $17; r = 1 means more expensive.
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5 Cost= 20 at start(4, 0, 0); keepingx1+x2+2x3 = 4move to(3, 1, 0)with cost 18 and

r = −2; or move to(2, 0, 1) with cost 17 andr = −3. Choosex3 as entering variable

and move to(0, 0, 2) with cost 14. Another step will reach(0, 4, 0) with minimum cost

12.

6 If we reduce the Ph.D. cost to $1 or $2 (below the student cost of $3), the job will

go to the Ph.D. with cost vectorc = (2, 3, 8) the Ph.D. takes 4 hours(x1+x2+2x3 =

4) and charges $8.

The teacher in the dual problem now hasy ≤ 2, y ≤ 3, 2y ≤ 8 as constraints

ATy ≤ c on the charge ofy per problem. So the dual has maximum aty = 2. The

dual cost is also $8 for 4 problems and maximum= minimum.

7 x = (2, 2, 0) is a corner of the feasible set withx1+x2+2x3 = 4 and the new constraint

2x1 + x2 + x3 = 6. The cost of this corner iscTx = (5, 3, 8) · (2, 2, 0) = 16. Is

this the minimum cost?

Compute the reduced costr if x3 = 1 enters(x3 was previously zero). The two

constraint equations now requirex1 = 3 andx2 = −1. With x = (3,−1, 1) the new

cost is3.5− 1.3 + 1.8 = 20. This is higher than 16, so the originalx = (2, 2, 0) was

optimal.

Note thatx3 = 1 led tox2 = −1 and a negativex2 is not allowed. Ifx3 reduced

the cost (it didn’t) we would not have used as much asx3 = 1.

8 yTb ≤ yTAx = (ATy)Tx ≤ cTx. The first inequality neededy ≥ 0 andAx−b ≥ 0.

Problem Set 10.5, page 494

1
∫ 2π

0
cos((j + k)x) dx =

[
sin((j+k)x)

j+k

]2π
0

= 0 and similarly
∫ 2π

0
cos((j − k)x) dx = 0

Noticej − k 6= 0 in the denominator. Ifj = k then
∫ 2π

0
cos2 jx dx = π.

2 Three integral tests show that1, x, x2 − 1
3 are orthogonal on the interval[−1, 1 ]:

∫ 1

−1
(1)(x) dx = 0,

∫ 1

−1
(1)(x2 − 1

3) dx = 0,
∫ 1

−1
(x)(x2 − 1

3) dx = 0. Then
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2x2 = 2(x2 − 1
3
) + 0(x) + 2

3
(1). Those coefficients2, 0, 2

3
can come from integrating

f(x) = 2x2 times the 3 basis functions and dividing by their lengths squared—in other

words usingaTb/aTa for functions (whereb is f(x) anda is 1 orx or x2− 1
3
) exactly

as for vectors.

3 One example orthogonal tov = (1, 1
2
, . . .) isw = (2,−1, 0, 0, . . .) with ‖w‖ =

√
5.

4
∫ 1

−1
(1)(x3 − cx) dx = 0 and

∫ 1

−1
(x2 − 1

3)(x
3 − cx) dx = 0 for all c (odd functions).

Choosec so that
∫ 1

−1
x(x3 − cx) dx = [ 1

5
x5 − c

3
x3]1−1 = 2

5
− c2

3
= 0. Thenc = 3

5
.

5 The integrals lead to the Fourier coefficientsa1 = 0, b1 = 4/π, b2 = 0.

6 From eqn. (3)ak = 0 and bk = 4/πk (odd k). The square wave has‖f‖2 = 2π.

Then eqn. (6) is2π=π(16/π2)( 1
12 + 1

32 + 1
52 + · · · ). That infinite series equalsπ2/8.

7 The−1, 1 odd square wave isf(x) = x/|x| for 0 < |x| < π. Its Fourier series in

equation (8) is4/π times [sinx + (sin 3x)/3 + (sin 5x/5) + · · · ]. The sum of the

first N terms has an interesting shape, close to the square wave except where the wave

jumps between−1 and1. At those jumps, the Fourier sum spikes the wrong way to

±1.09 (theGibbs phenomenon) before it takes the jump with the truef(x).

This happens for the Fourier sums of all functions with jumps. It makes shock

waves hard to compute. You can see it clearly in a graph of the sum of10 terms.

8 ‖v‖2 = 1+ 1
2 +

1
4 +

1
8 + · · · = 2 so‖v‖ =

√
2; ‖v‖2 = 1+a2+a4+ · · · = 1/(1−a2)

so‖v‖ = 1/
√
1− a2;

∫ 2π

0
(1 + 2 sinx+ sin2 x) dx = 2π + 0 + π so‖f‖ =

√
3π.

9 (a) f(x) = (1 + squarewave)/2 so thea’s are 1
2 , 0, 0, . . . and theb’s are2/π, 0,

−2/3π, 0, 2/5π, . . . (b) a0 =
∫ 2π

0
x dx/2π = π, all otherak = 0, bk = −2/k.

10 The integral from−π to π or from 0 to 2π (or from anya to a + 2π) is over one

complete period of the function. Iff(x) is periodic this changes
∫ 2π

0
f(x) dx to

∫ π

0
f(x) dx+

∫ 0

−π
f(x) dx. If f(x) is odd, those integrals cancel to give

∫
f(x) dx = 0

over one period.

11 cos2 x = 1
2 +

1
2 cos 2x; cos(x+ π

3 ) = cosx cos π
3 − sinx sin π

3 = 1
2 cosx−

√
3
2 sinx.
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12
d

dx




1

cosx

sinx

cos 2x

sin 2x




=




0

− sinx

cosx

−2 sin 2x

2 cos 2x




=




0 0 0 0 0

0 0 −1 0 0

0 1 0 0 0

0 0 0 0 −2

0 0 0 2 0







1

cosx

sinx

cos 2x

sin 2x




.
This shows the

differentiation matrix.

13 The square pulse withF (x) = 1/h for −x ≤ h/2 ≤ x is an even function, so all sine

coefficientsbk are zero. The averagea0 and the cosine coefficientsak are

a0 =
1

2π

∫ h/2

−h/2

(1/h)dx =
1

2π

ak =
1

π

∫ h/2

−h/2

(1/h) cos kxdx =
2

πkh

(
sin

kh

2

)
which is

1

π
sinc

(
kh

2

)

(introducing the sinc function(sinx)/x). Ash approaches zero, the numberx = kh/2

approaches zero, and(sinx)/x approaches 1. So all thoseak approach1/π.

The limiting “delta function” contains an equal amount of all cosines: a very ir-

regular function.

Problem Set 10.6, page 500

1 (x, y, z) has homogeneous coordinates(cx, cy, cz, c) for c = 1 and allc 6= 0.

2 For an affine transformation we also needT (origin), becauseT (0) need not be0 for

affine T . Including this translation byT (0), (x, y, z, 1) is transformed toxT (i) +

yT (j) + zT (k) + T (0).

3 TT1=




1

1

1

1 4 3 1







1

1

1

0 2 5 1



=




1

1

1

1 6 8 1




is translation along(1, 6, 8).

4 S = diag(c, c, c, 1); row 4 ofST andTS is 1, 4, 3, 1 andc, 4c, 3c, 1; usevTS!
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5 S =




1/8.5

1/11

1


 for a 1 by 1 square, starting from an8.5 by 11 page.

6 [x y z 1 ]




1

1

1

−1 −1 −2 1







2

2

2

1




= [x y z 1 ]




2

2

2

−2 −2 −4 1




.

The first matrix translates by(−1,−1,−2). The second matrix rescales by 2.

7 The three parts ofQ in equation (1) are(cos θ)I and(1− cos θ)aaT and− sin θ(a×).

ThenQa = a becauseaaTa = a(unit vector) anda× a = 0.

8 If aTb = 0 and those three parts ofQ (Problem 7) multiplyb, the results inQb are

(cos θ)b andaaTb = 0 and(− sin θ)a× b. The component alongb is (cos θ)b.

9 n =

(
2

3
,
2

3
,
1

3

)
hasP = I − nnT =

1

9




5 −4 −2

−4 5 −2

−2 −2 8


. Notice‖n‖ = 1.

10 We can choose(0, 0, 3) on the plane and multiplyT−PT+ =
1

9




5 −4 −2 0

−4 5 −2 0

−2 −2 8 0

6 6 3 9




.

11 (3, 3, 3) projects to1
3

(
−1,−1, 4

)
and(3, 3, 3, 1) projects to

(
1
3
, 1
3
, 5
3
, 1
)
. Row vectors!

12 The projection of a square onto a plane is a parallelogram (ora line segment). The

sides of the square are perpendicular, but their projections may not be (xTy = 0 but

(Px)T(Py) = xTPTPy = xTPy may be nonzero).

13 That projection of a cube onto a plane produces a hexagon.

14 (3, 3, 3)(I − 2nnT) =

(
1

3
,
1

3
,
1

3

)



1 −8 −4

−8 1 −4

−4 −4 7


 =

(
−11

3
,−11

3
,−1

3

)
.
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15 (3, 3, 3, 1) → (3, 3, 0, 1) →
(
− 7

3
,− 7

3
,− 8

3
, 1
)
→
(
− 7

3
,− 7

3
, 1
3
, 1
)
.

16 Just subtracting vectors would givev = (x, y, z, 0) ending in0 (not 1). In homoge-

neous coordinates, add avector to a point.

17 Space is rescaled by1/c because(x, y, z, c) is the same point as(x/c, y/c, z/c, 1).

Problem Set 10.7, page 507

1 Multiplying n whole numbers gives an odd number only whenall n numbers are odd.

This translates to multiplication (mod2). Multiplying n 1’s or 0’s gives1 only when

all n numbers are1.

2 Adding n whole numbers gives an odd number only when then numbers includean

odd number of odd numbers. For addition of1’s and0’s (mod2), the answer is odd

when the number of1’s is odd.

3 (a) We are given thaty1 − x1 andy2 − x2 are both divisible byp. Then their sum

y1 + y2 − x1 − x2 is divisible byp.

(b) 5 ≡ 2 (mod3) and8 ≡ 2 (mod3) add to13 ≡ 4 (mod3). The number1 is smaller

than4 and13 ≡ 1 (mod3).

5 If y−x is divisible byp thenx−y is also divisible byp. In other words, ify−x = mp

thenx− y = (−m)p.

6 A =


 5 5

5 10


 is an invertible matrix but (mod5) A becomes the zero matrix.

7


 1 0

0 1




 1 1

0 1




 1 0

1 1




 0 1

1 0




 0 1

1 1




 1 1

1 0


 are invertible :

6 out of16 possible0-1 matrices.

8 Yes,Ax = 0 (mod11) says that every row ofA is orthogonal to everyx in the nullspace

(mod11). But a basis for the usualN(A) could include vectors that are zero (mod11).
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9 For simplicity, number the letters as they appear in the message :

THISWHOLEBOOKISINCODE = 123/452/678/966/(10)34/3(11)(12)/6(13)8.

Multiply each block by thisL to obtain Hill’s cipher.

L =




1 0 0

1 1 0

1 1 1


 Cipher= 1 3 6/4 9 11/6 13 21/9 15 21/10 13 17/3 14 26/6 19 27.

If the cipher ismodp then replace each number by the correct number from0 to p− 1.

To decode, first multiply byL−1. Then what to do??

10 First you have to discover the block size (= matrix size) and also the matrixL itself.

Start with a guess for the block size. Then the plaintext and the coded cipher tell you a

series of matrix-vector productsLx ≡ b. If the text is long enough (and the blocks are

not too long) this is enough information to findL—or to show that the block size must

be wrong, when there is noL that gets all correct blocksLx ≡ b.

The extra difficulty is to find the value ofp.



168 Solutions to Exercises

Problem Set 11.1, page 516

1 Without exchange, pivots.001 and 1000; with exchange, 1 and−1. When the pivot is

larger than the entries below it, all|ℓij | =
|entry|
|pivot| ≤ 1. A =




1 1 1

0 1 −1

−1 1 1


.

2 The exact inverse ofhilb(3) isA−1 =




9 −36 30

−36 192 −180

30 −180 180


.

3 A




1

1

1


=




11/6

13/12

47/60


=




1.833

1.083

0.783


 compares withA




0

6

−3.6


=




1.80

1.10

0.78


.‖∆b‖ < .04 but

‖∆x‖ > 6.

The difference(1, 1, 1)− (0, 6,−3.6) is in a direction∆x that hasA∆x near zero.

4 The largest‖x‖ = ‖A−1b‖ is‖A−1‖ = 1/λmin sinceAT = A; largest error10−16/λmin.

5 Each row ofU has at mostw entries. Usew multiplications to substitute components

of x (already known from below) and divide by the pivot. Total forn rows< wn.

6 The triangularL−1, U−1, R−1 need1
2
n2 multiplications.Q needsn2 to multiply the

right side byQ−1 = QT. SoQRx = b takes 1.5 times longer thanLUx = b.

7 UU−1 = I : Back substitution needs12 j
2 multiplications on columnj, using thej by

j upper left block. Then12(1
2 + 22 + · · ·+ n2) ≈ 1

2 (
1
3n

3) = total to findU−1.

8


1 0

2 2


 →


2 2

1 0


 →


2 2

0 −1


 = U with P =


0 1

1 0


 andL =


 1 0

.5 1


;

A →




2 2 0

1 0 1

0 2 0


 →




2 2 0

0 −1 1

0 2 0


 →




2 2 0

0 2 0

0 −1 1


 →




2 2 0

0 2 0

0 0 1


 = U with

P =




0 1 0

0 0 1

1 0 0


 andL =




1 0 0

0 1 0

.5 −.5 1


.
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9 A =




1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1




has cofactorsC13 = C31 = C24 = C42 = 1 and

C14 = C41 = −1. A−1 is a full matrix!

10 With 16-digit floating point arithmetic the errors‖x − xcomputed‖ for ε = 10−3, 10−6,

10−9, 10−12, 10−15 are of order10−16, 10−11, 10−7, 10−4, 10−3.

11 (a) cos θ = 1/
√
10, sin θ = −3/

√
10, R= 1√

10


 1 3

−3 1




1 −1

3 5


= 1√

10


10 14

0 8


.

(b) A has eigenvalues4 and2. Put one of the unit eigenvectors in row1 of Q: either

Q =
1√
2


1 −1

1 1


 andQAQ−1 =


2 −4

0 4


 or

Q =
1√
10


1 −3

3 1


 andQAQ−1 =


4 −4

0 2


.

12 WhenA is multiplied by a plane rotationQij , this changes the2n (not n2) entries in

rows i andj. Then multiplying on the right by(Qij)
−1 = (Qij)

T changes the2n

entries in columnsi andj.

13 QijA uses4n multiplications (2 for each entry in rowsi andj). By factoring outcos θ,

the entries 1 and± tan θ need only2n multiplications, which leads to2
3
n3 for QR.

14 The (2, 1) entry ofQ21A is 1
3 (− sin θ + 2 cos θ). This is zero ifsin θ = 2 cos θ or

tan θ = 2. Then the2, 1,
√
5 right triangle hassin θ = 2/

√
5 andcos θ = 1/

√
5.

Every3 by 3 rotation withdetQ = +1 is the product of3 plane rotations.

15 This problem shows how elimination is more expensive (the nonzero multipliers inL

andLL are counted bynnz(L) andnnz(LL)) when we spoil the tridiagonalK by a

random permutation.

If on the other hand we start with a poorly ordered matrixK, an improved ordering

is found by the codesymamddiscussed in this section.
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16 The “red-black ordering” puts rows and columns1 to 10 in the odd-even order1, 3, 5, 7,

9, 2, 4, 6, 8, 10. WhenK is the−1, 2,−1 tridiagonal matrix, odd points are connected

only to even points (and2 stays on the diagonal, connecting every point to itself):

K =




2 −1

−1 2 −1

· · ·
−1 2




andPKPT =


 2I D

DT 2I


 with

D =




−1

−1 −1

0 −1 −1

−1 −1

−1 −1




1 to 2

3 to 2, 4

5 to 4, 6

7 to 6, 8

9 to 8, 10

17 Jeff Stuart’sShake a Stickactivity has long sticks representing the graphs of two linear

equations in thex-y plane. The matrix is nearly singular and Section9.2 shows how to

compute its condition numberc = ‖A‖‖A−1‖ = σmax/σmin ≈ 80, 000:

A =



1 1.0001

1 1.0000


 ‖A‖ ≈ 2 A−1 = 10000



−1 1.0001

1 −1




‖A−1‖ ≈ 20000

c ≈ 40000.

Problem Set 11.2, page 522

1 ‖A‖ = 2, ‖A−1‖ = 2, c = 4; ‖A‖ = 3, ‖A−1‖ = 1, c = 3; ‖A‖ = 2 +
√
2 =

λmax for positive definiteA, ‖A−1‖ = 1/λmin, comd= (2 +
√
2)/(2−

√
2) = 5.83.

2 ‖A‖ =2, c = 1; ‖A‖ =
√
2, c = ∞ (singular matrix);ATA = 2I , ‖A‖ =

√
2, c = 1.

3 For the first inequality replacex by Bx in ‖Ax‖ ≤ ‖A‖‖x‖; the second inequality is

just‖Bx‖ ≤ ‖B‖‖x‖. Then‖AB‖ = max(‖ABx‖/‖x‖) ≤ ‖A‖‖B‖.

4 1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖ = c(A).



Solutions to Exercises 171

5 If Λmax = Λmin = 1 then allΛi = 1 andA = SIS−1 = I . The only matrices with

‖A‖ = ‖A−1‖ = 1 areorthogonal matrices.

6 All orthogonal matrices have norm1, so‖A‖ ≤ ‖Q‖‖R‖ = ‖R‖ and in reverse‖R‖ ≤
‖Q−1‖‖A‖ = ‖A‖. Then‖A‖ = ‖R‖. Inequality is usual in‖A‖ < ‖L‖‖U‖ when

ATA 6= AAT. Usenorm on a randomA.

7 The triangle inequality gives‖Ax + Bx‖ ≤ ‖Ax‖ + ‖Bx‖. Divide by‖x‖ and take

the maximum over all nonzero vectors to find‖A+B‖ ≤ ‖A‖+ ‖B‖.

8 If Ax = λx then‖Ax‖/‖x‖ = |λ| for that particular vectorx. When we maximize

the ratio‖Ax‖/‖x‖ over all vectors we get‖A‖ ≥ |λ|.

9 A+B =


0 1

0 0


+


0 0

1 0


 =


0 1

1 0


 hasρ(A) = 0 andρ(B) = 0 butρ(A+B) = 1.

The triangle inequality‖A + B‖ ≤ ‖A‖ + ‖B‖ fails for ρ(A). AB =


1 0

0 0


 has

ρ(AB) > ρ(A) ρ(B); thusρ(A) = max |λ(A)| = spectral radius is not a norm.

10 (a) The condition number ofA−1 is ‖A−1‖‖(A−1)−1‖ which is‖A−1‖‖A‖ = c(A).

(b) SinceATA andAAT have the same nonzero eigenvalues,AT has the same norm

asA.

11 Use the quadratic formula forλmax/λmin, which isc = σmax/σmin since thisA = AT

is positive definite:

c(A) =
(
1.00005 +

√
(1.00005)2 − .0001

)
/
(
1.00005−

√ )
≈ 40, 000.

12 det(2A) is not 2 detA; det(A + B) is not always less thandetA + detB; taking

| detA| does not help. The only reasonable property isdetAB = (detA)(detB). The

condition number should not change whenA is multiplied by 10.

13 The residualb− Ay = (10−7, 0) is much smaller thanb− Az = (.0013, .0016). But

z is much closer to the solution thany.

14 detA = 10−6 soA−1 = 103


 659 −563

−913 780


:‖A‖ > 1, ‖A−1‖ > 106, thenc > 106.
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15 x = (1, 1, 1, 1, 1) has‖x‖ =
√
5, ‖x‖1 = 5, ‖x‖∞ = 1. x = (.1, .7, .3, .4, .5) has

‖x‖ = 1, ‖x‖1 = 2 (sum), ‖x‖∞ = .7 (largest).

16 x2
1+· · ·+x2

n is not smaller thanmax(x2
i ) and not larger than(|x1|+· · ·+|xn|)2= ‖x‖21.

x2
1 + · · · + x2

n ≤ n max(x2
i ) so‖x‖ ≤ √

n‖x‖∞. Chooseyi = signxi = ±1 to get

‖x‖1 = x · y ≤ ‖x‖‖y‖ =
√
n‖x‖. The vectorx = (1, . . . , 1) has‖x‖1 =

√
n ‖x‖.

17 For theℓ∞ norm, the largest component ofx plus the largest component ofy is not

less than‖x+ y‖∞ = largest component ofx+ y.

For theℓ1 norm, each component has|xi + yi| ≤ |xi|+ |yi|. Sum oni = 1 to n:

‖x+ y‖1 ≤ ‖x‖1 + ‖y‖1.

18 |x1| + 2|x2| is a norm butmin(|x1|, |x2|) is not a norm. ‖x‖ + ‖x‖∞ is a norm;

‖Ax‖ is a norm providedA is invertible (otherwise a nonzero vector has norm zero;

for rectangularA we require independent columns to avoid‖Ax‖ = 0).

19 xTy = x1y1 + x2y2 + · · · ≤ (max |yi|)(|x1|+ |x2|+ · · · ) = ||x||1 ||y||∞.

20 With λj = 2− 2 cos(jπ/n+1), the largest eigenvalue isλn ≈ 2+2 = 4. The smallest

isλ1 = 2−2 cos(π/n+1) ≈
(

π
n+1

)2
, using2 cos θ ≈ 2−θ2. So the condition number

is c = λmax/λmin ≈ (4/π2) n2, growing withn.

Problem Set 11.3, page 531

1 The iterationxk+1 = (I − A)xk + b hasS = I andT = I − A andS−1T = I − A.

2 If Ax = λx then(I−A)x = (1−λ)x. Real eigenvalues ofB = I−A have|1−λ| < 1

providedλ is between 0 and 2.

3 This matrixA hasI −A =


−1 1

1 −1


 which has|λ| = 2. The iteration diverges.

4 Always‖AB‖ ≤ ‖A‖‖B‖. ChooseA = B to find‖B2‖ ≤ ‖B‖2. Then chooseA =

B2 to find ‖B3‖ ≤ ‖B2‖‖B‖ ≤ ‖B‖3. Continue (or use induction) to find‖Bk‖ ≤
‖B‖k. Since‖B‖ ≥ max |λ(B)| it is no surprise that‖B‖ < 1 gives convergence.
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5 Ax = 0 gives(S − T )x = 0. ThenSx = Tx andS−1Tx = x. Thenλ = 1 means

that the errors do not approach zero. We can’t expect convergence whenA is singular

andAx = b is unsolvable!

6 Jacobi hasS−1T = 1
3


0 1

1 0


 with |λ|max = 1

3 . Small problem, fast convergence.

7 Gauss-Seidel hasS−1T =



0 1

3

0 1
9


 with |λ|max = 1

9 which is(|λ|max for Jacobi)2.

8 Jacobi hasS−1T =


a

d



−1 
 0 −b

−c 0


 =


 0 −b/a

−c/d 0


with |λ| = |bc/ad|1/2.

Gauss-Seidel hasS−1T =


a 0

c d



−1 
0 −b

0 0


 =


0 −b/a

0 −bc/ad


with |λ| = |bc/ad|.

So Gauss-Seidel is twice as fast to converge if|λ| < 1 (or to explode if|bc| > |ad|).

9 Gauss-Seidel will converge for the−1, 2,−1 matrix. |λ|max = cos2
(

π
n+1

)
is given

on page 527, together with the improvement from successive overrelaxation.

10 If the iteration gives allxnew
i = xold

i then the quantity in parentheses is zero, which

meansAx = b. For Jacobi changexnew on the right side toxold.

11 uk/λ
k
1 = c1x1+ c2x2(λ2/λ1)

k+ · · ·+ cnxn(λn/λ1)
k → c1x1 if all ratios |λi/λ1| <

1. The largest ratio controls the rate of convergence (whenk is large).A =


0 1

1 0




has|λ2| = |λ1| and no convergence.

12 The eigenvectors ofA and alsoA−1 arex1 = (.75, .25) andx2 = (1,−1). The inverse

power method converges to a multiple ofx2, since|1/λ2| > |1/λ1|.

13 In the jth component ofAx1, λ1 sin
jπ
n+1 = 2 sin jπ

n+1 − sin (j−1)π
n+1 − sin (j+1)π

n+1 .

The last two terms combine into−2 sin jπ
n+1 cos

π
n+1 . Thenλ1 = 2− 2 cos π

n+1 .
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14 A =


 2 −1

−1 2


 producesu0 =


1

0


, u1 =


 2

−1


, u2 =


 5

−4


, u3 =


 14

−13


.

This is converging to the eigenvector direction


 1

−1


 with largest eigenvalueλ = 3.

Divideuk by ‖uk‖ to keep unit vectors.

15 A−1 =
1

3


2 1

1 2


 givesu1 =

1

3


2

1


,u2 =

1

9


5

4


,u3 =

1

27


14

13


→u∞ =


1/2

1/2


.

16 R = QTA =


1 cos θ sin θ

0 − sin2 θ


 andA1 = RQ =


cos θ(1 + sin2 θ) − sin3 θ

− sin3 θ − cos θ sin2 θ


.

17 If A is orthogonal thenQ = A andR = I . ThereforeA1 = RQ = A again, and the

“QR method” doesn’t move fromA. But shiftA slightly and the method goes quickly

toΛ.

18 If A− cI = QR thenA1 = RQ+ cI = Q−1(QR + cI)Q = Q−1AQ. No change in

eigenvalues from the shift and shift back, becauseA1 is similar toA.

19 Multiply Aqj = bj−1qj−1 + ajqj + bjqj+1 by qT
j to findqT

j Aqj = aj (because the

q’s are orthonormal). The matrix form (multiplying by columns) isAQ = QT where

T is tridiagonal. The entries down the diagonals ofT are thea’s andb’s.

20 Theoretically theq’s are orthonormal. In reality this important algorithm is not very

stable. We must stop every few steps to reorthogonalize—or find another more stable

way to orthogonalize the sequenceq, Aq, A2q, . . .

21 If A is symmetric thenA1 = Q−1AQ = QTAQ is also symmetric.A1 = RQ =

R(QR)R−1 = RAR−1 hasR andR−1 upper triangular, soA1 cannot have nonzeros

on a lower diagonal thanA. If A is tridiagonal and symmetric then (by using symmetry

for the upper part ofA1) the matrixA1 = RAR−1 is also tridiagonal.

22 From the last line of code,q2 is in the direction ofv = Aq1 − h11q1 = Aq1 −
(qT

1 Aq1)q1. The dot product withq1 is zero. This is Gram-Schmidt withAq1 as the

second input vector; we subtract fromAq1 its projection onto the first vectorq1.
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Note The three lines after the short “pseudocodes” describe two key properties of con-

jugate gradients—the residualsrk = b−Axk are orthogonal and the search directions

areA-orthogonal(dT
i Adk = 0). Then each new approximationxk+1 is theclosest

vector to x among all combinations ofb, Ab . . . , Akb. Ordinary iterationSxk+1 =

Txk + b doesnot find this best possible combinationxk+1.

23 The solution is straightforward and important. SinceH = Q−1AQ = QTAQ is

symmetricif A = AT, and sinceH has only one lower diagonal by construction, then

H has onlyone upper diagonal: H is tridiagonal and all the recursions in Arnoldi’s

method have only 3 terms.

24 H = Q−1AQ is similar to A, soH has the same eigenvalues asA (at the end of

Arnoldi). When Arnoldi is stopped sooner because the matrix size is large, the eigen-

values ofHk (calledRitz values) are close to eigenvalues ofA. This is an important

way to compute approximations toλ for large matrices.

25 In principle the conjugate gradient method converges in 100 (or 99) steps to the exact

solutionx. But it is slower than elimination and its all-important property is to give

good approximations tox much sooner. (Stopping elimination part way leaves you

nothing.) The problem asks how closex10 andx20 are tox100, which equalsx except

for roundoff errors.

26 A =


1 1

0 1.1


 hasAn =


1 q

0 (1.1)n


 with q = 1 + 1.1 + · · · + (1.1)n−1 =

(1.1n − 1)/(1.1 − 1) ≈ 10 (1.1)n. So the growing part ofAn is (1.1)n


0 10

0 1




with ||An|| ≈
√
101 times1.1n for larger n.
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Problem Set 12.1, page 544

1 When7 is added to every output, the mean increases by7 and the variance does not

change (because new variance comes from (distance)2 to the new mean).

New sample mean and new expected mean : Add7. New variance : No change.

2 If we add 1
3 to 1

7 (fraction of integers divisible by3 plus fraction divisible by7) we

havedouble countedthe integers divisible by both3 and7. This is a fraction1
21 of all

integers (because these double counted numbers are multiples of21). So the fraction

divisible by3 or 7 or both is
1

3
+

1

7
− 1

21
=

7

21
+

3

21
− 1

21
=

9

21
=

3

7
.

3 In the numbers from1 to 1000, each group of ten numbers will contain each possible

endingx = 1, 2, 3, . . . , 0. So those endings all have the same probabilitypi = 1
10

.

Expected mean of that last digitx :

m = E [x] =Σ pi xi =
1

10

9∑

i=0

i =
45

10
= 4.5

The best way to find the varianceσ2 = 8.25 is in the last line below and in problem

12.1.7. The slower way to findσ2 is

σ2 = E [(x− 4.5)2] =

9∑

i=0

pi(xi − 4.5)2 =
1

10

9∑

i=0

(i− 4.5)2

We can separate
(
i− 4.5

)2
into

(
i2 − 9i+ (4.5)2

)
and add fromi = 0 to i = 9 :

1

10

(
9∑

0

i2 − 9

9∑

0

i+

9∑

0

(4.5)2

)
=

1

10

(
285− 9(45) + 10(4.5)2

)

=
1

10
(285− 405 + 202.5) =

82.5

10
= 8.25 =

33

4
.

Notice that202.5 is half of 405—like Nm2 and2Nm2 in equation(4), page536.

I should have extended equation(4) to its best form :

σ2 = E [(x − m)2] = E [x2] − m2

That quickly gives28510 − (4.5)2 = 8.25 = same answer.
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4 For numbers ending in0, 1, 2, . . . , 9 the squares end inx = 0, 1, 4, 9, 6, 5, 6, 9, 4, 1. So

the probabilities ofx = 0 and5 arep = 1
10

and the probabilities ofx = 1, 4, 6, 9 are

p = 1
5
. The mean is

m =Σ pi xi =
0

0
+

5

10
+

1

5
(1 + 4 + 6 + 9) = 4.5 = same as before.

The variance using the improvement of equation(4) is

σ2 = E [x2]−m2 =
1

10
02 +

1

10
52 +

1

5
(12 + 42 + 62 + 92)−m2

=
25

10
+

134

5
− 20.25 = 9.05

5 For numbers from1 to 1000, the first digit isx = 1 for 1000 and100-199 and10-19

and1 (112 times). The first digit isx = 2 for 200-299 and20-29 and2 (111 times).

The other first digitsx = 3 to 9 also happen (111 times). Total (1000 times) is correct.

The average first digit is the mean, close to1
9

(
1 + 2 + · · ·+ 9

)
= 5 :

m=Σpi xi=
112

1000
(1)+

111

1000
(2+3+· · ·+9)=

112 + 111(44)

1000
=

4996

1000
=4.996 ≈ 5.

The variance is

σ2 = E [(x−m)2] = E [x2]−m2 =
112

1000
(12) +

111

1000
(22 + · · ·+ 92)−m2

=
112 + 111(284)

1000
−m2 ≈ 31635

1000
− 52 = 6.635.

6 The first digits of1572, 3122, 6962, and 6022 are 2,9,4,3, The sample mean is

1
4
(2 + 9 + 4 + 3) = 18

4
= 4.5. The sample variance withN − 1 = 3 is

S2 =
1

3

[
(−2.5)2 + (4.5)2 + (−.5)2 + (−1.5)2

]
=

1

3

[
29
]
.

7 This question is about the fast way to computeσ2 usingm2. The meanm is probably

already computed :

σ2 =
∑

pi (xi −m)2 =
∑

pi (x
2
i − 2mxi +m2)

=
∑

pix
2
i − 2m

∑
pixi +m2

∑
pi

=
∑

pix
2
i − 2m2 +m2 =

∑
pix

2

i − m2 = E [x2] − m2.
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8 ForN = 24 samples, all equal tox = 20,

µ =
1

N

∑
xi =

24

24
(20) = 20 and S2 =

1

N − 1

∑
(xi − µ)2 = 0

.For12 samples ofx = 20 and12 samples ofx = 21,

µ =
12(20) + 12(21)

24
= 20.5 and S2=

1

N − 1

∑
(xi−µ)2 =

1

23
24

(
1

2

)2

=
6

23
.

9 This question asks you to set up a random0-1 generator and run it a million times to

find the averageA1000000.

One way is to useMATLAB’s rand command with a uniform distribution between0

and1. Add 1
2 to go between0.5 and1.5, then find the integer part (0 or 1). Using your

computed averageAN (its mean ism = 1
2 since0 and1 are equally likely for every

sample) find the normalized variableX :

X =
AN − 1

2

2
√
N

=
AN − 1

2

2000
for N = one million.

10 The average number of heads inN fair coin flips ism = N/2. This is obvious—but

how to derive it from probabilitiesp0 to pN of 0 toN heads? We have to compute

m = 0p0 + 1p1 + · · ·+NpN with pi =
bi
2N

=
1

2N
N !

i! (N − i)!

A useful fact ispi = pN−i. The probability ofi headsequals the probability ofi tails.

If we take just those two terms inm, they give

ipi + (N − i)pN−i = ipi + (N − i)pi = Npi

So we can computem two ways and add :

m = 0p0 + 1p1 + · · ·+ (N − 1)pN−1 +NpN

m = Np0 + (N − 1)p1 + · · ·+ 1pN−1 + 0p0

2m = Np0 +Np1 + · · ·+NpN−1 +NpN

= N(p0 + p1 + · · ·+ pN−1 + pN ) = N .

Thenm = N/2. The average number of heads isN/2.
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11 E [x2] = E [(x−m)2 + 2xm−m2]

= E [(x−m)2] + 2mE [x]−m2 E [1]

= σ2 + 2m2 −m2 = σ2 + m2

12 The first step multiplies two independent1-dimensional integrals (each one from−∞
to∞) to produce a2-dimensional integral over the whole plane :

2π

∞∫

−∞

p(x) dx

∞∫

−∞

p(y) dy = 2π

∞∫

−∞

∞∫

−∞

p(x) p(y) dxdy =

∞∫

−∞

∞∫

−∞

e−x2/2e−y2/2 dxdy.

The second step changes to polar coordinates (x = r cos θ, y = r sin θ, dxdy = r dr dθ,

x2 + y2 = r2 with 0 ≤ θ ≤ 2π and0 ≤ r ≤ ∞). Notice−x2/2− y2/2 = −r2/2 :

∫

plane

∫
e−r2/2 r dr dθ =

2π∫

θ=0

∞∫

r=0

e−r2/2 r dr dθ

Ther andθ integrals give the answers1 and2π :

∞∫

r=0

e−r2/2 r dr =
[
−e−r2/2

]∞
r=0

= 1

2π∫

θ=0

1 dθ = 2π.

The trick was to gete−r2/2 r dr (which is a perfect derivative of−e−r2/2) by combin-

ing e−x2/2 dx ande−y2/2 dy (which cannot be separately integrated froma to b).

Problem Set 12.2, page 554

1 (a) Meanm = E [x] = (0)(1 − p) + (1)(p) = p when the probability of heads is

p. Herex = 0 for tails andx = 1 for heads. Notice that02 = 0 and12 = 1 so

E [x2] = E [x] = p.

Varianceσ2 = E [x2]−m2 = p − p2

(b) These are independent flips ! So theN byN covariance matrixV is diagonal. The

diagonal entries are the variancesσ2 = p−p2 for each flip. Then the rule(16−17−18)

gives the overall variance of the sum fromN flips :
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overall variance= [1 1 . . . 1]V




1

1

...

1



= Nσ2 = N(p− p2)

This is just saying : Add the variances for theN independent experiments. Here those

N experiments just repeat one experiment.

2 I am just imitating equation(2) in the text. Now the experiments are numbered3 and

5. They have meansm3 andm5. The covarianceσ35 adds upjoint probabilities pij

times (distancexi − m3) times (distanceyj − m5). Herexi andyj are outputs from

experiments3 and5 :

σ35 =
∑

all

∑

i, j

pij (xi −m3) (yj −m5).

3 The3 by 3 covariance matrixV will be a sum of rank one matricesVijk = UUT mul-

tiplied by the joint probabilitypijk of outputsxi, yj , zk. I am copying equation(12) :

V =
∑

all

∑

i, j, k

∑
pijk UUT U =




outputxi − meanx

outputyj − meany

outputzk − meanz




These matricesUUT = column times row are positive semidefinite with rank1 (unless

U = 0). The sumV is positivedefiniteunless the3 experiments are dependent.

Notice that the meansx, y, z = m1,m2,m3 have to be computed before the variances.

4 We are told that the3 experiments areindependent. Then thecovariances are zerooff

the main diagonal ofV . This covariance matrix only shows “covariances with itself”

= “variances”σ2
1, σ

2
2, σ

2
3 on the main diagonal.

V =




σ2
1 0 0

0 σ2
2 0

0 0 σ2
3


 .
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5 The point is that some outputX = xi must occur. So the possibilities areY = yj

andX = x1, or Y = yj andX = x2, or Y = yj andX = x3 et cetera. The total

probability ofY = yj is the sum of the conditional probabilities thatY = yj when

X = xi.

Here is another way to say thislaw of total probability . WhenB1, B2, . . . are separate

disjoint outcomes that together account for all possible outcomes, then for anyA

Prob(A) =
∑

i

Prob(A ∩Bi) =
∑

i

Prob(A|Bi)Prob(Bi).

6 Prob(A|B) = conditional probability of A givenB satisfies this axiom :

Prob(A andB) = Prob(A|B)Prob(B).

Reason: If bothA andB occur, thenB must occur—and knowing thatB occurs,

Prob(A|B) gives the probability thatA also occurs.

This axiom is saying thatpij = Prob (A|B) pi

whereB is the eventx = xi which has Prob(B) = pi.

7 The joint probabilitiespij = Prob(x = xi andy = yj) are in the matrixP :

P =


 0.1 0.3

0.2 0.4


 with entries adding to1.

Problem6 says that Prob(Y = y2|X = x1) =
p12

p11 + p12
=

0.3

0.1 + 0.3
=

3

4
.

Problem5 says that Prob(X = x1) = p11 + p12 = 0.1 + 0.3 = 0.4.

8 This product rule of conditional probability is the axiom in Solution12.2.6 above :

Prob (A andB) = Prob (A givenB) times Prob(B).
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9 This discussion of Bayes’ Theorem is much too compressed ! Let me reproduce three

equations from Wolfram MathWorld. HereA andB are possible “sets”= “outcomes

from an experiment” and the simple-looking identity (∗) connects conditional and

unconditional probabilities.

We know from8 that Prob (A andB) = Prob (A givenB) times Prob (B)

ReversingA andB gives Prob (A andB) = Prob (B givenA) times Prob (A)

(∗) Therefore Prob (B givenA) =
Prob(A givenB)Prob(B)

Prob(A)

MathWorld gives this extension to non-overlapping setsA1, . . . , An whose union isA :

Prob(Ai givenA) =
Prob(Ai)Prob(A givenAi)∑

j

Prob(Aj)Prob(A givenAj)

Problem Set 12.3, page 560

1 The two equations from two measurements are

x = b1

x = b2
or


 1

1



[
x
]
=


 b1

b2


 or Ax = b.

The covariance matrixV is diagonal since the measurements are independent :

V =


 σ2

1 0

0 σ2
2


 .

The weighted least squares equation isATV −1 Ax̂ = AT V −1b.

AT V −1 A =
[
1 1

]

 1/σ2

1 0

0 1/σ2
2




 1

1


 =

1

σ2
1

+
1

σ2
2

AT V −1 b =
[
1 1

]

 1/σ2

1 0

0 1/σ2
2




 b1

b2


 =

b1
σ2
1

+
b2
σ2
2

.

Thenx̂ is the ratio of those numbers :

x̂ =
b1/σ

2
1 + b2/σ

2
2

1/σ2
1 + 1/σ2

2
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The variance of that estimatêx should be written as in(13) :

E
[
(x̂− x) (x̂− x)T

]
= (AT V −1 A)−1 =

(
1

σ2
1

+
1

σ2
2

)−1

.

2 (a) In the limitσ2 → 0 the ratiox̂ approachesb2 because :

(Multiply x̂ above and below byσ2
1 σ

2
2) x̂ =

b1σ
2
2 + b2σ

2
1

σ2
2 + σ2

1

→ b2σ
2
1

σ2
1

= b2.

The second equationx = b2 is 100% accurate if its variance isσ2 = 0.

(b) If σ2 → ∞ then1/σ2
2 → 0 andx̂ → b1/σ

2
1

1/σ2
1

= b1. We are gettingno information

from the totally unreliable measurementx = b2.

3 The key fact ofindependenceis in the equationp(x, y) = p(x) p(y). Then
∫ ∫

p(x, y) dx dy =

∫ ∫
p(x) p(y) dx dy =

∫
p(x) dx

∫
p(y) dy = (1) (1) = 1.

∫ ∫
(x+ y) p(x, y) dx dy =

∫ ∫
x p(x) p(y) dx dy +

∫ ∫
y p(x) p(y) dx dy

=

∫
x p(x) dx

∫
p(y) dy +

∫
p(x) dx

∫
y p(y) dy

= (mx) (1) + (1) (my) = mx +my.

4 Continue Problem3 to find variancesσ2
x andσ2

y and to see covarianceσxy = 0 :
∫ ∫

(x −mx)
2 p(x, y) dx dy =

∫
(x −mx)

2 p(x) dx

∫
p(y) dy = σ2

x

∫ ∫
(x−mx) (y−my) p(x, y) dx dy =

∫
(x−mx) p(x) dx

∫
(y−my) p(y) dy=(0) (0).

5 We are inverting a2 by 2 matrix using


 a b

c d



−1

=
1

ad− bc


 d −b

−c a


 :

V −1 =


 σ2

1 σ12

σ12 σ2
2



−1

=
1

σ2
1 σ

2
2 − σ2

12


 σ2

2 −σ12

−σ12 σ2
1


 = ρ =

σ12

σ1 σ2

1

σ2
1 σ

2
2(1−ρ2)


 σ2

2 −σ12

−σ12 σ2
1


 =

1

1−ρ2


 1/σ2

1 −ρ/σ1 σ2

−ρ/σ1 σ2 1/σ2
2



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6 The right hand side of̂xk+1 shows thegain factor 1/(k + 1) :

x̂k+
1

k + 1
(bk+1−x̂k)=

b1 + · · ·+ bk
k

+
1

k + 1

(
bk+1 −

b1 + · · ·+ bk
k

)
=

b1 + · · ·+ bk+1

k + 1

Check that each numberb1, b2, . . . , bk, bk+1 is correctly divided byk + 1 :

1

k
− 1

k + 1

1

k
=

1

k

(
k + 1 − 1

k + 1

)
=

1

k + 1
.

7 We are considering the case when all the measurementsb1, b2, . . . , bk+1 have the same

varianceσ2. We know that the correct variance of their average isWk+1 = σ2/(k+1).

We want to see how this answer comes from equation(18) when we have the correct

Wk = σ2/k from the previous step, and we update toWk+1 :

(18) says thatW−1
k+1 = W−1

k +AT
k+1 V

−1
k+1 Ak+1 =

k

σ2
+[1] [1/σ2] [1] =

k

σ2
+

1

σ2
=

k + 1

σ2
.

SoWk+1 = σ2/(k + 1) is correct at the new step (and forever by induction).

8 The three equations have variancesσ2, s2, σ2 and they havezero covariances. (This

makes the step-by-step Kalman filter possible.) We can divide the equations byσ, s, σ

to produceunit variances(which lead to ordinary unweighted least squares). We are

givenF = 1 : 


1/σ 0

−1/s 1/s

0 1/σ





 x0

x1


 =




b0/σ

0

b1/σ


 is ourAx = b.

The normal equation (now unweighted) isAT A x̂ = AT b :




1

σ2
+

1

s2
− 1

s2

− 1

s2
1

σ2
+

1

s2







x̂1

x̂2


 =




b0
σ2

b1
σ2


 .

The determinant of thisAT A is det =
1

σ4
+

2

σ2 s2
. The solution is

x̂1 =
1

det

(
b0
σ4

+
b0

σ2 s2
+

b1
σ2 s2

)
x̂2 =

1

det

(
b0

σ2 s2
+

b1
σ2 s2

+
b1
σ4

)
.
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9 With A = I anduT = vT = [1 2 3] we can use the direct formula forM−1 :

(I − uvT)−1 = I +
uvT

1− vTu
= I +

1

1− 14




1

2

3



[
1 2 3

]

=




1− 1
13

2
13

3
13

2
13 1− 4

13
6
13

3
13

6
13 1− 9

13


. Multiply b=




2

1

4


 to gety=




2

1

4


−

16

13




1

2

3


=

1

13




10

−19

4


 .

Instead of this formula for(I = uvT)−1, try steps1 and2 :

Step 1with A = I givesx = b andz = u.

Step 2givesy = b− vT u

13
u =




2

1

4


− 16

13




1

2

3


 as before.

10 We are asked to check thatMy = b using the update formula. Start with

My = (A− uvT)

(
x+

vT x

c
z

)

= Ax− u (vT x) +
vT xAz

c
− u (vTz) (vT x)

c

SinceAx = b we hope the other3 terms combine to give zero whenAz = u

uvT x

[
−1 +

1

c
− vTz

c

]
=

uvT x

c

[
−c+ 1− vT z

]
= 0 from the formula forc

11 Multiply columns times rowsto see that the newv changesATA to

[
AT v

]

 A

vT


 = ATA+ vvT

So adding the new row toA (and of course the new column toAT) has increasedAT A

by the rank one matrixvvT.
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The book is ending with matrix multiplication ! We could allow changes of rankr :

WhenA changes toM = A− UW−1V , its inverse changes to

M−1 = A−1 + A−1 U(W − V A−1 U)−1 V A−1.

This change has rankr whenWr×r andVr×n andUn×r all have rankr.
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