

TCP/IP Sockets in C#
Practical Guide for Programmers

The Morgan Kaufmann Practical Guides Series
Series Editor: Michael J. Donahoo

TCP/IP Sockets in C#: Practical Guide for Programmers
David Makofske, Michael J. Donahoo, and Kenneth L. Calvert

Java Cryptography Extensions: Practical Guide for Programmers
Jason Weiss

JSP: Practical Guide for Java Programmers
Robert J. Brunner

JSTL: Practical Guide for JSP Programmers
Sue Spielman

Java: Practical Guide for Programmers
Zbigniew M. Sikora

The Struts Framework: Practical Guide for Java Programmers
Sue Spielman

Multicast Sockets: Practical Guide for Programmers
David Makofske and Kevin Almeroth

TCP/IP Sockets in Java: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

TCP/IP Sockets in C: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

JDBC: Practical Guide for Java Programmers
Gregory D. Speegle

For further information on these books and for a list of forthcoming titles,

please visit our website at http://www.mkp.com/practical

TCP/IP Sockets in C#

Practical Guide for Programmers

David B. Makofske

Akamai Technologies

Michael J. Donahoo

Baylor University

Kenneth L. Calvert

University of Kentucky

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Senior Editor Rick Adams
Associate Editor Karyn Johnson
Publishing Services Manager Simon Crump
Project Manager Kyle Sarofeen
Cover Design Yvo Niezebos Design
Cover Image Getty Images
Composition Cepha Imaging Pvt. Ltd.
Copyeditor Harbour Fraser Hodder
Proofreader Jacqui Brownstein
Indexer Michael Ferreira
Interior printer Maple Press
Cover printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

©2004 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior
written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk.
You may also complete your request on-line via the Elsevier homepage (http://elsevier.com) by
selecting “Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted.

ISBN: 0-12-466051-7

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com

Printed in the United States of America

08 07 06 05 04 5 4 3 2 1

For Margie and Jacob, for their love and inspiration
–David

For my three girls: Lisa, Michaela, and Mackenzie
–Jeff

For my parents, Paul and Eleanor Calvert

–Ken

This Page Intentionally Left Blank

Contents

Preface ix

1 Introduction 1
1.1 Networks, Packets, and Protocols 1

1.2 About Addresses 4

1.3 About Names 5

1.4 Clients and Servers 5

1.5 What Is a Socket? 6

1.6 Exercises 7

2 Basic Sockets 9
2.1 Socket Addresses 9

2.2 Socket Implementation in .NET 15

2.3 TCP Sockets 16

2.4 UDP Sockets 29

2.5 The .NET Socket Class 37

2.6 Exercises 57

3 Sending and Receiving Messages 59
3.1 Encoding Information 61

3.2 Composing I/O Streams 65

3.3 Framing and Parsing 66

3.4 Implementing Wire Formats in C# 70

3.5 Wrapping Up 83

3.6 Exercises 84

vii

viii Contents ■

4 Beyond the Basics 85
4.1 Nonblocking I/O 85

4.2 Multiplexing 95

4.3 Threads 99

4.4 Asynchronous I/O 117

4.5 Multiple Recipients 131

4.6 Closing Connections 138

4.7 Wrapping Up 145

4.8 Exercises 146

5 Under the Hood 147
5.1 Buffering and TCP 149

5.2 Buffer Deadlock 152

5.3 Performance Implications 154

5.4 TCP Socket Life Cycle 155

5.5 Demultiplexing Demystified 165

5.6 Exercises 167

Appendix: Handling Socket Errors 169

Bibliography 171

Index 173

Preface

For years, college courses in computer networking were taught with little or no “hands on”

experience. For various reasons, including some good ones, instructors approached the

principles of computer networking primarily through equations, analyses, and abstract

descriptions of protocol stacks. Textbooks might include code, but it was unconnected to

anything students could get their hands on. Perhaps in an ideal world this would suffice,

but we believe that students learn better when they can see (and then build) concrete

examples of the principles at work. Fortunately, such examples abound today. The Internet

has become a part of everyday life, and access to its services is readily available to most

students (and their programs).

The Berkeley Sockets interface, known universally as “sockets” for short, is the de

facto standard application programming interface (API) for networking, spanning a wide

range of operating systems. The sockets API was designed to provide generic access to

interprocess communication services that might be implemented by whatever protocols

were supported on a particular platform—IPX, Appletalk, TCP/IP, and so on. As a conse-

quence of this generic approach the sockets API may appear dauntingly complicated at

first. But, in fact, the basics of network programming using the Internet (TCP/IP) proto-

cols are not difficult. The sockets interface has been around for a long time—at least in

“Internet time”—but it is likely to remain important for the foreseeable future.

We have written this book to improve the support for socket-based programming

exercises in our own networking courses. Although some networking texts deal with net-

work programming, we know of none that cover TCP/IP sockets. Excellent reference books

on TCP/IP socket programming exist, but they are too large and comprehensive to be con-

sidered as a supplement to a networking text. Our goal, therefore, is to provide a gentle

ix

x Preface ■

introduction, and a handy reference, that will allow students to dive right in without too

much handholding.

Enabling students to get their hands on real network services via the sockets interface

has several benefits. First, for a surprising number of people, socket programming is their

first exposure to concrete realizations of concepts previously seen only in the abstract.

Dealing with the very real consequences of messy details, such as the layout of data struc-

tures in memory, seems to trigger a kind of epiphany in some students, and this experience

has consequences far beyond the networking course. Second, we find that students who

understand how application programs use the services of TCP/IP generally have an easier

time grasping the principles of the underlying protocols that implement those services.

Finally, basic socket programming skills are a springboard to more advanced assignments,

which support learning about routing algorithms, multimedia protocols, medium access

control, and so on.

Intended Audience

This book is aimed primarily at students in introductory courses in computer networks,

either upper-level undergraduate or graduate. It is intended as a supplement, to be used

with a traditional textbook, that should explain the problems and principles of computer

networks. At the same time, we have tried to make the book reasonably self-contained

(except for the assumed background) so that it can also be used, for example, in courses

on operating systems or distributed computing. We have purposely limited the book’s

coverage in order to keep its price low enough to be reasonable for a supplementary text

for such a course. An additional target audience consists of practitioners who know some

C# and want to learn sockets. This book should take you far enough that you can start

experimenting and learning on your own.

We assume basic programming skills and experience with C# and Microsoft Windows.

You are expected to be conversant with C# concepts such as classes, methods, interfaces,

and basic inheritance. We assume that you have access to a Microsoft Windows OS that

can install and run the .NET Framework Software Development Kit (SDK)1 and has access

to the Internet (or some other TCP/IP network). The .NET SDK is a free download available

at www.microsoft.com/net. This book uses version 1.1 of the .NET Framework, although

the code should also work with version 1.0. Most of our examples involve compiling and

running programs from a DOS command line; we assume that you can deal with that,

although Microsoft Visual Studio may be used as well.

1If you prefer UNIX, there is also an open source implementation of the .NET development framework
called Mono in the works. See www.go-mono.com for details.

■ Preface xi

Approach

Chapter 1 provides a general overview of networking concepts. It is not, by any means, a

complete introduction but rather is intended to allow readers to synchronize with the con-

cepts and terminology used throughout the book. Chapter 2 introduces the mechanics of

simple clients and servers; the code in this chapter can serve as a starting point for a variety

of exercises. Chapter 3 covers the basics of message construction and parsing. The reader

who digests the first three chapters should in principle be able to implement a client and

server for a given (simple) application protocol. Chapter 4 then deals with techniques that

are necessary when building more sophisticated and robust clients and servers. Finally,

in keeping with our goal of illustrating principles through programming, Chapter 5 dis-

cusses the relationship between the programming constructs and the underlying protocol

implementations in somewhat more detail.

Our general approach introduces programming concepts through simple program

examples accompanied by line-by-line commentary that describes the purpose of every

part of the program. This lets you see the important objects and methods as they are used

in context. As you look at the code, you should be able to understand the purpose of each

and every line of code.

Our examples do not take advantage of all library facilities in the .NET framework.

The .NET library includes hundreds of classes that can be used for networked applications

that are beyond the scope of this book. True to its name, this book is about TCP/IP sockets

programming, and it maintains a tight focus on the socket-related classes of .NET. Like-

wise, we do not cover raw sockets programming or sockets programming using protocols

other than TCP/IP. We do not include the WebRequest and WebResponse classes, or any of

the System.Web classes. We believe that once you understand the principles, using these

convenience classes will be straightforward. The network-relevant classes that we do cover

include IPAddress, Dns, TcpClient, TcpListener, UdpClient, Socket, and their associated

enumeration and helper classes.

We include brief API summaries of the .NET classes discussed for convenience,

but these are not complete summaries. Also, since .NET is relatively new and evolving,

the reader is encouraged to utilize the full library reference on the Microsoft Developer

Network website at msdn.microsoft.com/library for detailed descriptions, examples, and

updates.

This book is not an introduction to C# or the .NET framework. We expect that the

reader is already acquainted with the language and basic .NET libraries (especially I/O), and

knows how to develop programs in C#. All the examples in this book are not necessarily

production-quality code. Although we strive for robustness, the primary goal of our code

examples is to educate. In order to avoid obscuring the principles with large amounts of

error-handling code, we have sacrificed some robustness for brevity and clarity. We do not

catch every exception that could occur, and in most cases we only catch exceptions that

are particular to a class we are describing or a specific example we are trying to illustrate.

Similarly, in order to avoid cluttering the examples with extraneous (nonsocket-

related programming) code, we have made them command-line based. While the book’s

xii Preface ■

website (www.mkp.com/practical/csharpsockets) contains an example of a GUI-enhanced

network application, we do not include it or explain it in the text.

Acknowledgments

We would like to thank all the people who helped make this book a reality. Despite the

book’s brevity, many hours went into reviewing the original proposal and the draft, and

the reviewers’ input has significantly shaped the final result.

First, thanks to those who meticulously reviewed the draft of the text and made

suggestions for improvement. These include (in alphabetical order): Durgaprasad Gorti,

Microsoft Corporation; Adarsh Khare, Microsoft Corporation; Mauro Ottaviani, Microsoft

Corporation; and Dev Subramanian, Chalmers University of Technology. Any errors that

remain are, of course, our responsibility. We are very interested in weeding out such errors

in future printings, so if you find one, please send email to any of us. We will maintain an

errata list on the book’s Web page.

Finally, we are grateful to the folks at Morgan Kaufmann, especially our editor Karyn

Johnson and project manager Mamata Reddy.

For Further Information

This book has a website (www.mkp.com/practical/csharpsockets) that contains additional

information, including all the source code presented in the book and errata. From time to

time, we may also place new material on the website. We encourage you to take advantage

of this resource, and to send us your suggestions for improvement of any aspect of this

book. You can send feedback via the website maintained by the publisher, or you can send

us email to the addresses below.

David B. Makofske david_makofske@yahoo.com

Michael J. Donahoo jeff_donahoo@baylor.edu

Kenneth L. Calvert calvert@netlab.uky.edu

c h a p t e r 1

Introduction

Millions of computers all over the world are now connected to the worldwide

network known as the Internet. The Internet enables programs running on computers thou-

sands of miles apart to communicate and exchange information. If you have a computer

connected to a network, you have undoubtedly used a Web browser—a typical program

that makes use of the Internet. What does such a program do to communicate with others

over a network? The answer varies with the application and the operating system (OS), but

a great many programs get access to network communication services through the “sock-

ets” application programming interface (API). The goal of this book is to get you started

writing programs that use the sockets API.

Before delving into the details of the API, it is worth taking a brief look at the big

picture of networks and protocols to see how an application programming interface for

TCP/IP fits in. Our goal here is not to teach you how networks and TCP/IP work—many fine

texts are available for that purpose [2, 4, 10, 15, 20]—but rather to introduce some basic

concepts and terminology.

1.1 Networks, Packets, and Protocols

A computer network consists of machines interconnected by communication channels.

We call these machines hosts and routers. Hosts are computers that run applications such

as your Web browser, the application programs running on hosts are really the users of

the network. Routers are machines whose job is to relay or forward information from

one communication channel to another. They may run programs but typically do not

run application programs. For our purposes, a communication channel is a means of

1

2 Chapter 1: Introduction ■

conveying sequences of bytes from one host to another; it may be a broadcast technology

like Ethernet, a dial-up modem connection, or something more sophisticated.

Routers are important simply because it is not practical to connect every host directly

to every other host. Instead, a few hosts connect to a router, which connects to other

routers, and so on to form the network. This arrangement lets each machine get by with a

relatively small number of communication channels; most hosts need only one. Programs

that exchange information over the network, however, do not interact directly with routers

and generally remain blissfully unaware of their existence.

By information we here mean a sequences of bytes that are constructed and inter-

preted by programs. In the context of computer networks these byte sequences are gener-

ally called packets. A packet contains control information that the network uses to do its

job and sometimes also includes user data. An example is information about the packet’s

destination. Routers use such control information to figure out how to forward each packet.

A protocol is an agreement about the packets exchanged by communicating programs

and what they mean. A protocol tells how packets are structured—for example, where the

destination information is located in the packet and how big it is—as well as how the

information is to be interpreted. A protocol is usually designed to solve a specific problem

using given capabilities. For example, the Hypertext Transfer Protocol (HTTP) solves the

problem of transferring hypertext objects between servers where they are stored and Web

browsers that make them available to human users.

Implementing a useful network requires that a large number of different problems be

solved. To keep things manageable and modular, different protocols are designed to solve

different sets of problems. TCP/IP is one such collection of solutions, sometimes called a

protocol suite. It happens to be the suite of protocols used in the Internet, but it can be

used in stand-alone private networks as well; henceforth when we say “the network,” we

mean any network that uses the TCP/IP protocol family. The main protocols in the TCP/IP

family are the Internet Protocol (IP), the Transmission Control Protocol (TCP), and the User

Datagram Protocol (UDP).

It turns out to be useful to organize protocols in a family into layers; TCP/IP and

virtually all other protocol families are organized this way. Figure 1.1 shows the relation-

ships among the protocols, applications, and the sockets API in the hosts and routers, as

well as the flow of data from one application (using TCP) to another. The boxes labeled TCP,

UDP, and IP represent implementations of those protocols. Such implementations typically

reside in the operating system of a host. Applications access the services provided by UDP

and TCP through the sockets API. The arrow depicts the flow of data from the application,

through the TCP and IP implementations, through the network, and back up through the

IP and TCP implementations at the other end.

In TCP/IP, the bottom layer consists of the underlying communication channels, such

as Ethernet or dial-up modem connections. Those channels are used by the network layer,

which deals with the problem of forwarding packets toward their destination (i.e., what

routers do). The single network layer protocol in the TCP/IP family is the Internet Protocol;

it solves the problem of making the sequence of channels and routers between any two

hosts look like a single host-to-host channel.

■ 1.1 Networks, Packets, and Protocols 3

Application

Socket

IP Channel

(e.g., Ethernet)

IP

RouterHost Host

UDP TCP

Channel

Application

Socket

IP

UDPTCP

Figure 1.1: A TCP/IP network.

The Internet Protocol provides a datagram service: Every packet is handled and deliv-

ered by the network independently, like telegrams or parcels sent via the postal system.

To make this work, each IP packet has to contain the address of its destination, just as every

package you mail is addressed to somebody. (We’ll say more about addresses shortly.)

Although most parcel delivery companies guarantee delivery of a package, IP is only a

best-effort protocol: It attempts to deliver each packet, but it can (and occasionally does)

lose, reorder, or duplicate packets in transit through the network.

The layer above IP is called the transport layer. It offers a choice between two

protocols: TCP and UDP. Each builds on the service provided by IP, but they do so in dif-

ferent ways to provide different kinds of channels, which are used by application protocols
with different needs. TCP and UDP have one function in common: addressing. Recall that

IP delivers packets to hosts; clearly, a finer granularity of addressing is needed to get a

packet to a particular application, perhaps one of many using the network in the same

host. Both TCP and UDP use addresses called port numbers so that applications within

hosts can be identified. They are called end-to-end transport protocols because they carry

data all the way from one program to another (whereas IP carries data from one host to

another).

TCP is designed to detect and recover from the losses, duplications, and other errors

that may occur in the host-to-host channel provided by IP. TCP provides a reliable
byte-stream channel, so that applications don’t have to deal with these problems. It

is a connection-oriented protocol: Before using it to communicate, two programs must

first establish a TCP connection, which involves completing an exchange of handshake
messages between the TCP implementations on the two communicating computers. Using

TCP is similar to file input/output (I/O). In fact, a file that is written by one program and

read by another is a reasonable mode of communication over a TCP connection. UDP,

on the other hand, does not attempt to recover from errors experienced by IP; it simply

extends the IP best-effort datagram service so that it works between applications programs

4 Chapter 1: Introduction ■

instead of between hosts. Thus, applications that use UDP must be prepared to deal with

losses, reordering, and so on.

1.2 About Addresses

When you mail a letter, you provide the address of the recipient in a form that the postal

service can understand. Before you can talk to somebody on the phone, you must supply

their number to the telephone system. In a similar way, before a program can communicate

with another program, it must tell the network where to find the other program. In TCP/IP,

it takes two pieces of information to identify a particular program: an Internet address,

used by IP, and a port number, the additional address interpreted by the transport protocol

(TCP or UDP).

Internet addresses are 32-bit binary numbers.1 In writing down Internet addresses

for human consumption (as opposed to using them inside applications), we typically show

them as a string of four decimal numbers separated by periods (e.g., 10.1.2.3); this is called

the dotted-quad notation. The four numbers in a dotted-quad string represent the contents

of the four bytes of the Internet address, thus each is a number between 0 and 255.

Technically, each Internet address refers to the connection between a host and an

underlying communication channel, such as a dial-up modem or Ethernet card. Because

each such network connection belongs to a single host, an Internet address identifies a

host as well as its connection to the network. However, because a host can have multi-

ple physical connections (interfaces) to the network, one host can have multiple Internet

addresses.

The port number in TCP or UDP is always interpreted relative to an Internet address.

Returning to our earlier analogies, a port number corresponds to a room number at a given

street address, say, that of a large building. The postal service uses the street address to

get the letter to a mailbox; whoever empties the mailbox is then responsible for getting

the letter to the proper room within the building. Or consider a company with an internal

telephone system: To speak to an individual in the company, you first dial the company’s

main number to connect to the internal telephone system, and then dial the extension

of the particular telephone of the individual you wish to speak with. In these analogies,

the Internet address is the street address or the company’s main number, whereas the

port corresponds to the room number or telephone extension. Port numbers are 16-bit

unsigned binary numbers, so each one is in the range of 1 to 65,535 (0 is reserved).

1Throughout this book the term Internet address refers to the addresses used with the current version
of IP, which is version 4 [11]. Because it is expected that a 32-bit address space will be inadequate for
future needs, a new version of IP has been defined [5]; it provides the same service but has much bigger
Internet addresses (128 bits). IPv6, as the new version is known, has not been widely deployed; the
sockets API will require some changes to deal with its much larger addresses [6]. The .NET framework
does support IPv6 addresses, but they are not covered in this book.

■ 1.3 About Names 5

1.3 About Names

Most likely you are accustomed to referring to hosts by name (e.g., host.example.com).

However, the Internet protocols deal with numerical addresses, not names. You should

understand that the use of names instead of addresses is a convenience feature that is

independent of the basic service provided by TCP/IP—you can write and use TCP/IP appli-

cations without ever using a name. When you use a name to identify a communication

endpoint, the system has to do some extra work to resolve the name into an address.

This extra step is often worth it, for a couple of reasons. First, names are generally

easier for humans to remember than dotted-quads. Second, names provide a level of indi-

rection, which insulates users from IP address changes. During the writing of this book, the

Web server for the publisher of this text, Morgan Kaufmann, changed Internet addresses

from 213.38.165.180 to 129.35.78.178. However, because we refer to that Web server

as www.mkp.com (clearly much easier to remember than 213.38.165.180), and because

the change is reflected in the system that maps names to addresses (www.mkp.com now

resolves to the new Internet address instead of 213.38.165.180), the change is transparent

to programs that use the name to access the Web server.

The name-resolution service can access information from a wide variety of sources.

Two of the primary sources are the Domain Name System (DNS) and local configura-

tion databases. The DNS [8] is a distributed database that maps domain names such as

www.mkp.com to Internet addresses and other information; the DNS protocol [9] allows

hosts connected to the Internet to retrieve information from that database using TCP

or UDP. Local configuration databases are generally OS-specific mechanisms for local

name-to-Internet address mappings. Microsoft Windows provides a hosts text file where

IP-to-domain-name mappings can be hard-coded or overridden. UNIX-based systems

typically have a file called /etc/hosts that does the same thing.

1.4 Clients and Servers

In our postal and telephone analogies, each communication is initiated by one party, who

sends a letter or dials a telephone call, while the other party responds to the initiator’s

contact by sending a return letter or picking up the phone and talking. Internet commu-

nication is similar. The terms client and server refer to these roles: The client program

initiates communication, while the server program waits passively for and then responds

to clients that contact it. Together, the client and server compose the application. The

terms client and server are descriptive of the typical situation in which the server makes a

particular capability—for example, a database service—available to any client that is able

to communicate with it.

Whether a program is acting as a client or server determines the general form of its

use of the sockets API to communicate with its peer . (The client is the peer of the server

and vice versa.) Beyond that, the client-server distinction is important because the client
needs to know the server’s address and port initially, but not vice versa. With the sockets

6 Chapter 1: Introduction ■

API, the server can, if necessary, learn the client’s address information when it receives

the initial communication from the client. This is analogous to a telephone call—in order

to be called, a person does not need to know the telephone number of the caller. As with

a telephone call, once the connection is established, the distinction between server and

client disappears.

How does a client find out a server’s IP address and port number? Usually, the client

knows the name of the server it wants, for example, from a Universal Resource Locator

(URL) such as http://www.mkp.com, and uses the name resolution service to learn the

corresponding Internet address.

Finding a server’s port number is a different story. In principle, servers can use any

port, but the client must be able to learn what it is. In the Internet, there is a convention of

assigning well-known port numbers to certain applications. The Internet Assigned Number

Authority (IANA) oversees this assignment. For example, port number 21 has been assigned

to the File Transfer Protocol. When you run an FTP client application, it tries to contact the

FTP server on that port by default. A list of all the assigned port numbers is maintained by

the numbering authority of the Internet (see www.iana.org/assignments/portnumbers).

There are also numerous standards, protocols, and proposals for directory services,

by which a client can query the services and locations available from servers from a direc-

tory. Of course, the client must know the address and port to contact the directory services

server on in order to find this information! Again, this is typically defined and published

as being at a “well-known” location for the intended clients.

1.5 What Is a Socket?

A socket is an abstraction through which an application may send and receive data, in

much the same way as an open file allows an application to read and write data to stable

storage. A socket allows an application to “plug in” to the network and communicate with

other applications that are also plugged in to the same network. Information written to

the socket by an application on one machine can be read by an application on a different

machine, and vice versa.

Different types of sockets correspond to different underlying protocol suites and

different stacks of protocols within a suite. This book deals only with the TCP/IP proto-

col suite. The main types of sockets in TCP/IP today are stream sockets and datagram
sockets. Stream sockets use TCP as the end-to-end protocol (with IP underneath) and thus

provide a reliable byte-stream service. Datagram sockets use UDP (again, end-to-end with

IP underneath) and thus provide a best-effort datagram service that applications can use to

send individual messages up to about 65,500 bytes in length. Stream and datagram sock-

ets are also supported by other protocol suites, but this book deals only with TCP stream

sockets and UDP datagram sockets. A TCP/IP socket is uniquely identified by an Internet

address, an end-to-end protocol (TCP or UDP), and a port number. As you proceed, you

will encounter several ways for a socket to become bound to an address.

■ 1.6 Exercises 7

Applications

Socket references

Sockets bound to ports

TCP sockets UDP sockets

TCP ports UDP ports
TCP UDP

IP

1 2 65535…

… …

… 1 2 65535… …

Figure 1.2: Sockets, protocols, and ports.

Figure 1.2 depicts the logical relationships among applications, socket abstractions,

protocols, and port numbers within a single host. Note that a single socket abstraction

can be referenced by multiple application programs. Each program that has a reference

(called a descriptor) to a particular socket can communicate through that socket. Earlier

we said that a port identifies an application on a host. Actually, a port identifies a socket

on a host. Figure 1.2 shows that multiple programs on a host can access the same socket.

In practice, separate programs that access the same socket would usually belong to the

same application (e.g., multiple copies of a Web server program), although in principle

they could belong to different applications.

1.6 Exercises

1. Can you think of a real-life example of communication that does not fit the client-

server model?

2. To how many different kinds of networks is your home connected? How many

support two-way communication?

3. IP is a best-effort protocol, requiring that information be broken down into data-

grams, which may be lost, duplicated, or reordered. TCP hides all of this, providing

a reliable service that takes and delivers an unbroken stream of bytes. How might

you go about providing TCP service on top of IP? Why would anybody use UDP when

TCP is available?

This Page Intentionally Left Blank

c h a p t e r 2

Basic Sockets

You are now ready to learn to write your own socket applications in C#. One of the

advantages of the C# programming language is its use of Microsoft’s .NET framework,

which provides a powerful library of APIs for programming. Among the class libraries pro-

vided are the System.Net and System.Net.Sockets namespaces, and most of this book is

dedicated to how to use the socket APIs provided there. In this chapter we begin by demon-

strating how C# applications identify network hosts. Then, we describe the creation of TCP

and UDP clients and servers. The .NET framework provides a clear distinction between

using TCP and UDP, defining a separate set of classes for both protocols, so we treat each

separately. Finally, we discuss the Socket class that is the underlying implementation of

all the higher level .NET socket classes.

2.1 Socket Addresses

IPv4 uses 32-bit binary addresses to identify communicating hosts. A client must specify

the IP address of the host running the server program when it initiates communication; the

network infrastructure uses the 32-bit destination address to route the client’s information

to the proper machine. Addresses can be specified in C# by their 32-bit long integer value or

by using a string that contains the dotted-quad representation of the numeric address (e.g.,

169.1.1.1). .NET encapsulates the IP addresses abstraction in the IPAddress class which can

take a long integer IP argument in its constructor, or process a string with the dotted-quad

representation of an IP address using its Parse() method. The Dns class also provides

a mechanism to look up, or resolve, names to IP addresses (e.g., server.example.com).

Since in the modern Internet it is not uncommon for a single server to resolve to multiple

9

10 Chapter 2: Basic Sockets ■

IP addresses or name aliases, the results are returned in a container class IPHostEntry,

which contains an array of one or more string host names and IPAddress class instances.

The Dns class has several methods for resolving IP addresses. The GetHostName()
method takes no arguments and returns a string containing the local host name. The

GetHostByName() and Resolve() methods are basically identical; they take a string argu-

ment containing the host name to be looked up and returns the IP address and host name

information for the supplied input in the form of an IPHostEntry class instance. The Get-
HostByAddress() method takes a string argument containing the dotted-quad string rep-

resentation of an IP address and also returns host information in an IPHostEntry instance.

Our first program example, IPAddressExample.cs, demonstrates the use of the Dns,

IPAddress, and IPHostEntry classes. The program takes a list of names or IP addresses as

command-line parameters and prints the name and an IP address of the local host, followed

by the names and IP addresses of the hosts specified on the command line.

IPAddressExample.cs

0 using System; // For String and Console
1 using System.Net; // For Dns, IPHostEntry, IPAddress
2 using System.Net.Sockets; // For SocketException
3

4 class IPAddressExample {
5

6 static void PrintHostInfo(String host) {
7

8 try {
9 IPHostEntry hostInfo;

10

11 // Attempt to resolve DNS for given host or address
12 hostInfo = Dns.Resolve(host);
13

14 // Display the primary host name
15 Console.WriteLine("\tCanonical Name: " + hostInfo.HostName);
16

17 // Display list of IP addresses for this host
18 Console.Write("\tIP Addresses: ");
19 foreach (IPAddress ipaddr in hostInfo.AddressList) {
20 Console.Write(ipaddr.ToString() + " ");
21 }
22 Console.WriteLine();
23

24 // Display list of alias names for this host
25 Console.Write("\tAliases: ");
26 foreach (String alias in hostInfo.Aliases) {

■ 2.1 Socket Addresses 11

27 Console.Write(alias + " ");
28 }
29 Console.WriteLine("\n");
30 } catch (Exception) {
31 Console.WriteLine("\tUnable to resolve host: " + host + "\n");
32 }
33 }
34

35 static void Main(string[] args) {
36

37 // Get and print local host info
38 try {
39 Console.WriteLine("Local Host:");
40 String localHostName = Dns.GetHostName();
41 Console.WriteLine("\tHost Name: " + localHostName);
42

43 PrintHostInfo(localHostName);
44 } catch (Exception) {
45 Console.WriteLine("Unable to resolve local host\n");
46 }
47

48 // Get and print info for hosts given on command line
49 foreach (String arg in args) {
50 Console.WriteLine(arg + ":");
51 PrintHostInfo(arg);
52 }
53 }
54 }

IPAddressExample.cs

1. PrintHostInfo(): look up host/address/alias info for the host name argument
and print it to the console: lines 6–33

■ Retrieve an IPHostEntry class instance for the specified host: lines 11–12

Call Dns.Resolve() with the host name argument. If successful, hostInfo will

reference an IPHostEntry class instance containing information for the specified

host. If the lookup fails, code execution will drop to the catch block on lines

30–32.

■ Print the canonical name: lines 14–15

DNS allows a host name to have one “canonical” or true name and zero or

more aliases. The canonical name is populated in the HostName property of the

IPHostEntry.

12 Chapter 2: Basic Sockets ■

■ Display the list of IP address(es): lines 17–22

Loop through all the IP address(es) contained in the AddressList property, which

is an array of IPAddress class instances.

■ Display the list of alias host names: lines 24–29

Loop through any host name aliases contained in the Aliases property, which is

an array of Strings. If a host name being looked up does not have any aliases, this

array will be empty.

2. Print information about the local host: lines 37–46

■ Get and print the local host name using Dns.GetHostName(): lines 37–41

Note that the GetHostName() method will only return the host name, not the fully-

qualified Internet DNS name.

■ Call PrintHostInfo() with the host name to retrieve and print all local host
info: line 43

■ Catch any exceptions getting the local host name: lines 44–46

3. Loop through all command-line arguments and call PrintHostInfo() for each
of them: lines 48–52

To use this application to find information about the local host and our publisher’s

Web server (www.mkp.com), do the following:

C:\> IPAddressExample www.mkp.com

Local Host:
Host Name: tractor
Canonical Name: tractor.farm.com
IP Addresses: 169.1.1.2
Aliases:

www.mkp.com:
Canonical Name: www.mkp.com
IP Addresses: 129.35.78.178
Aliases:

If we know the IP address of a host (e.g., 169.1.1.1), we find the name of the host by

C:\> IPAddressExample 169.1.1.1

Local Host:
Host Name: tractor
Canonical Name: tractor.farm.com
IP Addresses: 169.1.1.2
Aliases:

169.1.1.1:
Canonical Name: base.farm.com
IP Addresses: 169.1.1.1
Aliases: gateway.farm.com

■ 2.1 Socket Addresses 13

When the name service is not available for some reason—say, the program is running

on a machine that is not connected to any network—attempting to identify a host by name

may fail. Moreover, it may take a significant amount of time to do so, as the system tries

various ways to resolve the name to an IP address.1 It is therefore good to know that you

can always refer to a host using the IP address in dotted-quad notation. In any of our

examples, if a remote host is specified by name, the host running the example must be

configured to convert names to addresses, or the example won’t work. If you can ping

a host using one of its names (e.g., run the command “ping server.example.com”), then

the examples should work with names. If your ping test fails or the example hangs, try

specifying the host by IP address, which avoids the name-to-address conversion altogether.

IPAddress Summary2

Description

The IPAddress class contains the address of an interface on an IP network.

Selected Constructor

public IPAddress(long address);

Returns an IPAddress instance with the value of the supplied long argument.

Selected Methods

public override bool Equals(object comparand);

Compare two IPAddress instances and return true if they contain the same IP

address.

public static short HostToNetworkOrder(short);

public static int HostToNetworkOrder(int);

public static long HostToNetworkOrder(long);

public static short NetworkToHostOrder(short);

public static int NetworkToHostOrder(int);

1In Chapter 4 we discuss how asynchronous operations may be performed, which is also applicable
to Dns lookups.
2For each .NET networking class described in this text, we present only a summary of the primary
methods and properties and omit those whose use is beyond the scope of this text. As with every-
thing in .NET, the specification is a moving target. This information is included to provide an overall
picture of the .NET socket interface, not as a final authority. We encourage the reader to refer to the
API specification from www.msdn.microsoft.com as the current and definitive source.

14 Chapter 2: Basic Sockets ■

public static long NetworkToHostOrder(long);

Host-to-network and network-to-host ordering conversion methods (see Section

3.1.2).

public static IPAddress Parse(string address);

Convert a string in dotted quad notation to an IPAddress instance. Throws

ArgumentNullException, FormatException.

public override string ToString();

Returns the string dotted quad notation for the IPAddress instance.

Selected Fields

public static readonly IPAddress Any;

Contains a value of 0.0.0.0, any network interface.

public static readonly IPAddress Broadcast;

Contains a value of 255.255.255.255, all hosts on a subnet.

public static readonly IPAddress Loopback;

Contains a value of 127.0.0.1, loopback for the local host.

IPHostEntry Summary

Description

IPHostEntry is a container class returned by Dns class methods GetHostByName(),

GetHostByAddress() and Resolve(). The class contains Domain Name System (DNS)

information about a host, including host name, array of IP addresses, and array of

alias host names.

Selected Properties

public IPAddress[] AddressList {get; set;}
An array of IPAddress instances.

public string[] Aliases {get; set;}
An array of strings containing DNS alias host names.

public string HostName {get; set;}
A string containing the primary canonical host name.

■ 2.2 Socket Implementation in .NET 15

Dns Summary

Description

The Dns class provides a number of static methods to retrieve information about a

host name or IP address from the Domain Name System (DNS).

Selected Methods

public static IPHostEntry GetHostByAddress(IPAddress address);

Attempts to reverse lookup an IPAddress instance and provide an IPHostEntry
containing the host’s DNS information. Throws ArgumentNullException, Socket-
Exception, SecurityException.

public static IPHostEntry GetHostByAddress(string address);

Attempts to reverse lookup a string IP address in dotted-quad notation and

provide an IPHostEntry instance containing the host’s DNS information. Throws

ArgumentNullException, SocketException, FormatException, SecurityException.

public static IPHostEntry GetHostByName(string hostname);

Does a DNS lookup on the string host name argument and provides an IPHostEntry
instance containing the host’s DNS information. Throws ArgumentNullException,

SocketException, SecurityException.

public static string GetHostName();

Returns a string containing the host name of the local computer.

public static IPHostEntry Resolve(string hostname);

Does a DNS lookup on the string host name argument and provides an IPHostEntry
instance containing the host’s DNS information. Throws ArgumentNullException,

SocketException, SecurityException.

2.2 Socket Implementation in .NET

Before we begin describing the details of the .NET socket classes, it is useful to give a

brief overview and history of sockets on Microsoft Windows. Sockets was initially created

for the Berkeley Software Distribution (BSD) of UNIX. A version of sockets for Microsoft

Windows called WinSock 1.1 was initially released in 1992 and is currently on version 2.0.

With some minor differences, WinSock provides the standard sockets functions available

in the Berkeley sockets C interface (the C version of this book describes that interface in

detail [24]).

16 Chapter 2: Basic Sockets ■

TcpListener
Class

Socket Class

WinSock 2.0 Implementation

TcpClient
Class

UdpClient
Class.NET

Framework
Classes

Underlying
Implementation

Figure 2.1: Relationship of Socket classes.

In 2002 Microsoft released the standardized API framework known as .NET, which

provides a unified class library across all of the programming languages Microsoft offers.

Among the features of the library are higher level classes that hide much of the implemen-

tation detail and simplify many programming tasks. However, abstraction can sometimes

hide some of the flexibility and power of a lower level interface. In order to allow access

to the underlying sockets interface, Microsoft implemented a .NET Socket class, which is

a wrapper around the WinSock socket functions and has most of the versatility (and com-

plexity) of sockets interface exposed. Then three higher-level socket classes, TcpClient,

TcpListener, and UdpClient, were implemented by using the .NET Socket wrapper class.

In fact, these classes have a protected property that is an instance of the Socket class they

are using. Pictorially this can be represented as shown in Figure 2.1.

Why is this important to know? First, to clarify what we mean when we refer to a

“socket.” The word socket has come to mean many different things in network program-

ming, from an API to a class name or instance. In general when we refer to an uppercase

“Socket” we mean the .NET class, while a lowercase “socket” refers to a socket instance

using any of the .NET socket classes.

Second, the underlying implementation occasionally becomes apparent to the .NET

programmer. Sometimes the Socket class needs to be utilized to take advantage of

advanced functionality. Some components of the underlying WinSock implementation

are also still visible, such as the use of WinSock error codes, which are available via

the ErrorCode property of SocketException and can be used to determine exactly what

type of error has occurred. The WinSock error codes are discussed in more detail in the

Appendix.

2.3 TCP Sockets

The .NET framework provides two classes specifically for TCP: TcpClient and TcpListener.

These classes provide a higher level abstraction of the Socket class, but as we will see

■ 2.3 TCP Sockets 17

there are instances when advanced functionality is available only through direct use of the

Socket class.

An instance of any of these classes represents one end of a TCP connection. A TCP
connection is an abstract two-way channel whose ends are each identified by an IP address

and port number. As we will see, .NET uses the EndPoint class and its subclass IPEnd-
Point to abstract this concept. Before being used for communication, a TCP connection

must go through a setup phase, which starts with the client’s TCP sending a connection

request to the server’s TCP. An instance of TcpListener listens for TCP connection requests

and creates a new socket (in the form of a TcpClient or Socket instance) to handle each

incoming connection.

2.3.1 TCP Client

A TCP client initiates communication with a server that is passively waiting to be contacted.

The typical TCP client goes through three steps:

1. Construct an instance of TcpClient: a TCP connection can be created implicitly

in the constructor by specifying the remote host and port, or explicitly using the

Connect() method.

2. Communicate using the socket’s stream: A connected instance of TcpClient
contains a NetworkStream that can be used like any other .NET I/O stream.

3. Close the connection: Call the Close() method of TcpClient.

Our first TCP application, called TcpEchoClient.cs, is a client that communicates with an

echo server using TCP. An echo server simply repeats whatever it receives back to the

client. The string to be echoed is provided as a command-line argument to our client.

Many systems include an echo server for debugging and testing purposes. To test if the

standard echo server is running, try telnetting to port 7 (the default echo port) on the

server (e.g., at command line “telnet server.example.com 7” or use your telnet applica-

tion of choice). If not, you can run this client against the TcpEchoServer.cs server from

the next section.

TcpEchoClient.cs

0 using System; // For String, Int32, Console, ArgumentException
1 using System.Text; // For Encoding
2 using System.IO; // For IOException
3 using System.Net.Sockets; // For TcpClient, NetworkStream, SocketException
4

5 class TcpEchoClient {
6

18 Chapter 2: Basic Sockets ■

7 static void Main(string[] args) {
8

9 if ((args.Length < 2) || (args.Length > 3)) { // Test for correct # of args
10 throw new ArgumentException("Parameters: <Server> <Word> [<Port>]");
11 }
12

13 String server = args[0]; // Server name or IP address
14

15 // Convert input String to bytes
16 byte[] byteBuffer = Encoding.ASCII.GetBytes(args[1]);
17

18 // Use port argument if supplied, otherwise default to 7
19 int servPort = (args.Length == 3) ? Int32.Parse(args[2]) : 7;
20

21 TcpClient client = null;
22 NetworkStream netStream = null;
23

24 try {
25 // Create socket that is connected to server on specified port
26 client = new TcpClient(server, servPort);
27

28 Console.WriteLine("Connected to server... sending echo string");
29

30 netStream = client.GetStream();
31

32 // Send the encoded string to the server
33 netStream.Write(byteBuffer, 0, byteBuffer.Length);
34

35 Console.WriteLine("Sent {0} bytes to server...", byteBuffer.Length);
36

37 int totalBytesRcvd = 0; // Total bytes received so far
38 int bytesRcvd = 0; // Bytes received in last read
39

40 // Receive the same string back from the server
41 while (totalBytesRcvd < byteBuffer.Length) {
42 if ((bytesRcvd = netStream.Read(byteBuffer, totalBytesRcvd,
43 byteBuffer.Length - totalBytesRcvd)) == 0) {
44 Console.WriteLine("Connection closed prematurely.");
45 break;
46 }
47 totalBytesRcvd += bytesRcvd;
48 }
49

■ 2.3 TCP Sockets 19

50 Console.WriteLine("Received {0} bytes from server: {1}", totalBytesRcvd,
51 Encoding.ASCII.GetString(byteBuffer, 0, totalBytesRcvd));
52

53 } catch (Exception e) {
54 Console.WriteLine(e.Message);
55 } finally {
56 netStream.Close();
57 client.Close();
58 }
59 }
60 }

TcpEchoClient.cs

1. Application setup and parameter parsing: lines 9–22

■ Convert the echo string: lines 15–16

TCP sockets send and receive sequences of bytes. The static method Encoding.
ASCII.GetBytes() returns a byte array representation of the string argument

using the ASCII character set. .NET also provides encoding classes for Unicode

as well as other character sets.

■ Determine the port of the echo server: line 19

The default echo port is 7. We can specify the port with an optional third parameter,

which is converted from a string to an integer with Int32.Parse().

2. TCP socket creation: lines 25–28

The TcpClient constructor creates the socket and implicitly establishes a connection

to the specified server, identified by either name or IP address and a port number.

Note that the underlying TCP deals only with IP addresses. If a name is given, the

implementation uses DNS to resolve it to the corresponding address. If any error

occurs accessing the socket, the constructor throws a SocketException.

3. Get socket stream: line 30

Associated with each connected TcpClient socket instance is a NetworkStream, which

is a subclass of Stream. The stream classes provide an abstraction for a generic

view of a sequence of bytes. We send data over the socket by writing bytes to the

NetworkStream just as we would any other stream, and we receive by reading bytes

from the NetworkStream.

4. Send the string to the echo server: lines 32–33

The Write() method of NetworkStream transmits the given byte array over the con-

nection to the server. The arguments to Write() are (1) the byte buffer containing

the data to be sent, (2) the byte offset into the buffer where the data to be sent starts,

and (3) a total number of bytes to send.

20 Chapter 2: Basic Sockets ■

5. Receive the reply from the echo server: lines 40–48

Since we know the number of bytes to expect from the echo server, we can repeat-

edly receive bytes until we have received the same number of bytes we sent. This

particular form of Read() takes three parameters: (1) buffer to receive to, (2) byte

offset into the buffer where the first byte received should be placed, and (3) the

maximum number of bytes to be placed in the buffer. Read() blocks until some data

is available, reads up to the specified number of bytes, then returns the number of

bytes actually placed in the buffer (which may be less than the given maximum). The

loop simply fills up byteBuffer until we receive as many bytes as we sent. If the TCP

connection is closed by the other end, Read() returns 0. For the client, this indicates

that the server prematurely closed the socket.
Why not just a single read? TCP does not preserve Read() and Write() message

boundaries. That is, even though we sent the echo string with a single Write(), the

echo server may receive it in multiple chunks. Even if the echo string is handled in

one chunk by the echo server, the reply may still be broken into pieces by TCP. One

of the most common errors for beginners is the assumption that data sent by a single

Write() will always be received by a single Read().

6. Print echoed string: lines 50–51

To print the server’s response, we must convert the byte array to a string using the

static Encoding.ASCII.GetString() method.

7. Error handling: lines 53–54

Several types of exception could be thrown in this try block, including Socket-
Exception for the TcpClient constructor and IOException for the NetworkStream
Write() and Read() methods. By using the base Exception class, from which all

other exception classes are derived from, we catch whatever is thrown and print an

indication.

8. Close stream and socket: lines 55–58

The finally block of the try/catch will always be executed. Whether an error

occurred and was caught or the client has successfully finished receiving all of

the echoed data, the finally block is executed and closes the NetworkStream and

TcpClient.

We can communicate with an echo server named server.example.com with IP address

169.1.1.1 in either of the following ways:

C:\> TcpEchoClient server.example.com "Echo this!"
Connected to server... sending echo string
Sent 10 bytes to server...
Received 10 bytes from server: Echo this!

C:\> TcpEchoClient 169.1.1.1 "Echo this again!"
Connected to server... sending echo string
Sent 16 bytes to server...
Received 16 bytes from server: Echo this again!

■ 2.3 TCP Sockets 21

The above example assumes that either a default echo server or the TcpEchoServer

program from the next section is running to respond to the request. The running of the

TcpEchoServer program for the above requests would look like:

C:\> TcpEchoServer
Handling client - echoed 10 bytes.
Handling client - echoed 16 bytes.
∧C
C:\>

See TcpEchoClientGUI.cs on this book’s website (www.mkp.com/practical/

csharpsockets) for an implementation of the TCP echo client with a graphical interface.

TcpClient Summary

Description

TcpClient provides simple methods for connecting to, sending, and receiving data

over a TCP connection. The TcpClient method GetStream() provides access to a

NetworkStream to abstract the sending and receiving of data.

Constructors

public TcpClient();

public TcpClient(IPEndPoint localEP);

public TcpClient(string hostname, int port);
Creates a new instance of the TcpClient class. The TcpClient constructors have

optional arguments for a local interface to bind to (IPEndPoint), or the server to

connect to (string hostname/IP and integer port). If the server is not specified, you

must call Connect() before sending data. If the server is specified, the connect

is done implicitly. Throws ArgumentNullException, ArgumentOutOfRangeException,

SocketException.

Selected Methods

public void Close();

Closes the TCP connection. Note that when using a NetworkStream it is preferable to

close the NetworkStream that will implicitly close the underlying socket. Closing a

TcpClient does not free the resources of its NetworkStream.

public void Connect(IPEndPoint);

public void Connect(IPAddress address, int port);

22 Chapter 2: Basic Sockets ■

public void Connect(string host name, int port);
Connects to a remote host using the specified destination parameters. Throws

ArgumentNullException, ArgumentOutOfRangeException, SocketException, Object
DisposedException.

public NetworkStream GetStream();

Returns a NetworkStream instance used to send and receive data. Throws Invalid-
OperationException, ObjectDisposedException.

Selected Properties

protected Socket Client {get; set;}
Gets or sets the underlying Socket. Since Client is a protected property, it may only

be accessed by classes that extend TcpClient. This is useful for accessing socket

options that are not directly accessible from the TcpClient API directly.

EndPoint

Description

EndPoint is an abstract base class that represents a network connection point. The

IPEndPoint class derives from this class.

Constructor

protected EndPoint();

This constructor is called by derived class constructors.

Selected Methods

public virtual string ToString();

Returns a string representation of the current EndPoint.

IPEndPoint

Description

IPEndPoint represents a TCP/IP network endpoint as an IP address and a port number.

■ 2.3 TCP Sockets 23

Constructor

public IPEndPoint(long address, int port);

public IPEndPoint(IPAddress address, int port);
The constructor initializes a new instance of the IPEndPoint class with the specified

IP address (in either long or IPAddress form) and integer port number.

Selected Methods

public virtual string ToString();

Returns a string representation of the current IPEndPoint.

Selected Properties

public IPAddress Address {get; set;}
An IPAddress instance containing the IP address of the endpoint.

public int Port {get; set;}
An integer value representing the TCP or UDP port number of the endpoint. The port

must be in the range MinPort to MaxPort.

2.3.2 TCP Server

We now turn our attention to constructing a server. The server’s job is to set up an end-

point for clients to connect to and passively wait for connections. The typical TCP server

goes through two steps:

1. Construct a TcpListener instance, specifying the local address and port, and call

the Start() method. This socket listens for incoming connections on the specified

port.

2. Repeatedly:

■ Call the AcceptTcpClient() method of TcpListener to get the next incoming

client connection. Upon establishment of a new client connection, an instance of

TcpClient for the new connection is created and returned by the AcceptTcp-
Client() call.

■ Communicate with the client using the Read() and Write() methods of TcpClient’s

NetworkStream.

■ Close the new client socket connection and stream using the Close() methods of

NetworkStream and TcpClient.

Note that in C#, the TcpClient class is used to access a TCP connection, whether in

the client or the server. The same class can be used because the TCP protocol really makes

no distinction between client and server, especially once the connection is established.

24 Chapter 2: Basic Sockets ■

As an alternative to AcceptTcpClient(), the TcpListener class also has an Accept-
Socket() method that returns a Socket instance for the incoming client connection. The

Socket class is described in more detail later in Section 2.5.

Our next example, TcpEchoServer.cs, implements the echo service used by our client

program. The server is very simple. It runs forever, repeatedly accepting a connection,

receiving and echoing bytes until the connection is closed by the client, and then closing

the client socket.

TcpEchoServer.cs

0 using System; // For Console, Int32, ArgumentException, Environment
1 using System.Net; // For IPAddress
2 using System.Net.Sockets; // For TcpListener, TcpClient
3

4 class TcpEchoServer {
5

6 private const int BUFSIZE = 32; // Size of receive buffer
7

8 static void Main(string[] args) {
9

10 if (args.Length > 1) // Test for correct # of args
11 throw new ArgumentException("Parameters: [<Port>]");
12

13 int servPort = (args.Length == 1) ? Int32.Parse(args[0]): 7;
14

15 TcpListener listener = null;
16

17 try {
18 // Create a TCPListener to accept client connections
19 listener = new TcpListener(IPAddress.Any, servPort);
20 listener.Start();
21 } catch (SocketException se) {
22 Console.WriteLine(se.ErrorCode + ": " + se.Message);
23 Environment.Exit(se.ErrorCode);
24 }
25

26 byte[] rcvBuffer = new byte[BUFSIZE]; // Receive buffer
27 int bytesRcvd; // Received byte count
28

29 for (;;) { // Run forever, accepting and servicing connections
30

31 TcpClient client = null;
32 NetworkStream netStream = null;

■ 2.3 TCP Sockets 25

33

34 try {
35 client = listener.AcceptTcpClient(); // Get client connection
36 netStream = client.GetStream();
37 Console.Write("Handling client - ");
38

39 // Receive until client closes connection, indicated by 0 return value
40 int totalBytesEchoed = 0;
41 while ((bytesRcvd = netStream.Read(rcvBuffer, 0, rcvBuffer.Length)) > 0) {
42 netStream.Write(rcvBuffer, 0, bytesRcvd);
43 totalBytesEchoed += bytesRcvd;
44 }
45 Console.WriteLine("echoed {0} bytes.", totalBytesEchoed);
46

47 // Close the stream and socket. We are done with this client!
48 netStream.Close();
49 client.Close();
50

51 } catch (Exception e) {
52 Console.WriteLine(e.Message);
53 netStream.Close();
54 }
55 }
56 }
57 }

TcpEchoServer.cs

1. Application setup and parameter parsing: lines 10–15

2. Server socket creation: lines 17–24

listener is initialized with IPAddress.Any and the specified server port number.

IPAddress.Any is 0.0.0.0 and indicates that the listener will listen on any available

local interface (if you are running on a machine that is multihomed, this field can

be used to specify the interface to listen on). The TcpListener listens for client con-

nection requests on the port specified in the constructor. Be careful to use a port

that is not in use by another application, or a SocketException will be thrown (see

Chapter 5 for more details). The Start() method initiates the underlying socket,

binds it to the local endpoint, and begins listening for incoming connection attempts.

3. Loop forever, iteratively handling incoming connections: lines 29–53

■ Accept an incoming connection: line 35

The sole purpose of a TcpListener instance is to supply a new, connected

TcpClient instance for each new TCP connection. When the server is ready to

26 Chapter 2: Basic Sockets ■

handle a client, it calls AcceptTcpClient(), which blocks until an incoming con-

nection is made to the TcpListener’s port. AcceptTcpClient() then returns an

instance of TcpClient that is already connected to the remote socket and ready for

reading and writing (we also could have used the AcceptSocket() method instead).

■ Get NetworkStream: line 36

The TcpClient method GetStream() returns an instance of a NetworkStream, which

is used for reading and writing to its socket.

■ Receive and repeat data until the client closes: lines 39–45

The while loop repeatedly reads bytes from the NetworkStream and immediately

writes them back to the stream until the client closes the connection, which is

indicated by a return value of 0 from Read(). The Read() method takes a byte array,

an offset at which to begin placing bytes, and an integer indicating the maximum

number of bytes to be placed in the array. It blocks until data is available and

returns the number of bytes actually placed in the array (which may be less than

the specified maximum). If the other end closes the connection before any bytes

have been received, Read() returns 0.

The Write() method of NetworkStream similarly takes three parameters and

transmits the specified number of bytes from the given array, beginning at the

specified offset (in this case, 0). There is another form of Write() that only takes

a byte array argument and transmits all the bytes contained therein to the other

end of the TCP connection; if we had used that form, we might have transmited

bytes that were not received from the client!

Any parameter inconsistencies (e.g., offset or length greater than the actual

length of the bytes array) result in an exception being thrown.

■ Close the client stream and socket: lines 48–49

Close the NetworkStream and the TcpClient socket.

■ Exception handling: lines 51–54

A server should be robust enough to handle a malfunctioning or malicious client

without crashing. Any exception that occurs during processing is caught here and

written to the console. The NetworkStream and its underlying socket are closed to

clean up. Note that this catch block is within the for loop, so after handling the

exception the loop continues and another client can be serviced.

TcpListener Summary

Description

TcpListener listens for connections from TCP network clients. The constructor

takes the local interface and optionally the local port to listen on. The Start()
method begins listening for incoming connection requests. The AcceptTcpClient()
and AcceptSocket() methods accept incoming connections and return a TcpClient

■ 2.3 TCP Sockets 27

or Socket instance, respectively, that is already connected to the remote client and

ready for sending and receiving. The Stop() method stops listening for connections

and closes the TcpListener.

Constructors

public TcpListener(int port);
(obsoleted in 1.1 .NET SDK)

public TcpListener(IPEndPoint localEP);

public TcpListener(IPAddress address, int port);
The constructor has three forms: port only, IPEndPoint instance, or IPAddress and

port. When an address is specified it represents the local interface to listen on. Note

that starting in .NET 1.1, the local interface is required and the port-only constructor

is deprecated. Throws ArgumentNullException, ArgumentOutOfRangeException.

Selected Methods

public Socket AcceptSocket();

Accepts a pending connection request and returns a Socket used to send and receive

data. Throws InvalidOperationException.

public TcpClient AcceptTcpClient();

Accepts a pending connection request and returns a TcpClient used to send and

receive data. Throws InvalidOperationException.

public bool Pending();

Returns true if there are pending incoming connections that can be accepted. Throws

InvalidOperationException.

public void Start();

Start initializes the underlying socket, binds it, and begins listening for network

requests. Throws SocketException.

public void Stop();

Stops listening for incoming connections and closes the TcpListener. Any accepted

TcpClient or Socket instances should be closed separately. Throws SocketException.

Selected Properties

public EndPoint LocalEndpoint {get;}
Gets the underlying local bound EndPoint.

protected Socket Server {get;}
Gets the underlying network Socket. Since this is a protected property, it can only

be accessed by classes that extend TcpListener. This is useful for accessing socket

options that are not directly accessible from the TcpListener API.

28 Chapter 2: Basic Sockets ■

2.3.3 Streams

As illustrated by the preceding examples, the primary paradigm for I/O in the .NET frame-

work is the stream abstraction. A stream is simply an ordered sequence of bytes. .NET

streams support both reading and writing bytes to a stream. In our TCP client and server,

each TcpClient or TcpListener instance holds a NetworkStream instance. When we write

to the stream of a TcpClient, the bytes can (eventually) be read from the stream of the

TcpListener at the other end of the connection. The Socket and UdpClient classes use

byte arrays instead of streams to send and receive data. If there is an error reading or

writing, a NetworkStream will throw an IOException. See Section 3.2 for more details on

streams.

NetworkStream

Description

NetworkStream is a subclass of Stream, and provides the underlying stream of data

for network I/O.

Selected Methods

public virtual void Close();

The Close() method closes the NetworkStream and closes the underlying socket if it

owns it.

public abstract int Read(byte[] buffer, int offset, int length);

The Read() method reads data from the network stream into the byte buffer argu-

ment. The offset within the buffer and number of bytes to read are also specified.

Read() returns the number of bytes read. Throws ArgumentNullException, Argument-
Exception, IOException.

public abstract void Write(byte[] buffer, int offset, int length);

The Write() method sends the contents of a supplied byte buffer argument to the net-

work. An offset within the byte buffer and number of bytes to write are also supplied

as arguments. Throws ArgumentNullException, ArgumentException, IOException.

Selected Properties

public virtual bool DataAvailable { get; }

Returns true if data is available to read on the stream, false if there is no data

available to read.

■ 2.4 UDP Sockets 29

2.4 UDP Sockets

UDP provides an end-to-end service different from that of TCP. In fact, UDP performs only

two functions: (1) it adds another layer of addressing (ports) to that of IP, and (2) it detects

data corruption that may occur in transit and discards any corrupted messages. Because

of this simplicity, UDP sockets have some characteristics that are different from the TCP

sockets we saw earlier. For example, UDP sockets do not have to be connected before

being used. Where TCP is analogous to telephone communication, UDP is analogous to

communicating by mail: You do not have to “connect” before you send the package or

letter, but you do have to specify the destination address for each one. Similarly, each

message—called a datagram—carries its own address information and is independent of

all others. In receiving, a UDP socket is like a mailbox into which letters or packages from

many different sources can be placed. As soon as it is created, a UDP socket can be used

to send/receive messages to/from any address and to/from many different addresses in

succession.

Another difference between UDP sockets and TCP sockets is the way in which they

deal with message boundaries: UDP sockets preserve them. This makes receiving an appli-

cation message simpler, in some ways, than it is with TCP sockets (this is discussed further

in Section 2.4.3). A final difference is that the end-to-end transport service UDP provides its

best effort: There is no guarantee that a message sent via a UDP socket will arrive at its des-

tination, and messages can be delivered in a different order than they were sent (just like

letters sent through the mail). A program using UDP sockets must therefore be prepared

to deal with loss and reordering. (We’ll provide an example of this in Section 2.5.4.)

Given this additional burden, why would an application use UDP instead of TCP?

One reason is efficiency. If the application exchanges only a small amount of data—say, a

single request message from client to server and a single response message in the other

direction—TCP’s connection establishment phase at least doubles the number of messages

(and the number of round-trip delays) required for the communication. Another reason

is flexibility. When something other than a reliable byte-stream service is required, UDP

provides a minimal overhead platform on which to implement whatever is needed.

The .NET framework provides UDP sockets functionality using the class UdpClient,

or Socket for more advanced options. The UdpClient class allows for both sending and

receiving of UDP packets, and can be used to construct both a UDP client and server.

2.4.1 UDP Client

A UDP client begins by sending a datagram to a server that is passively waiting to be

contacted. The typical UDP client goes through three steps:

1. Construct an instance of UdpClient, optionally specifying the local address and port.

2. Communicate by sending and receiving datagrams (byte arrays) using the Send() and

Receive() methods of UdpClient.

3. When finished, deallocate the socket using the Close() method of UdpClient.

30 Chapter 2: Basic Sockets ■

Unlike a TcpClient, a UdpClient does not have to be constructed (or connected) with

a specific destination address. This illustrates one of the major differences between TCP

and UDP. A TCP socket is required to establish a connection with another TCP socket on

a specified host and port before any data can be exchanged, and, thereafter, it only com-

municates with that socket until it is closed. A UDP socket, on the other hand, is not

required to establish a connection before communication, and each datagram can be sent

and received from a different destination. The Connect() method of UdpClient does allow

the specification of the remote address and port, but its use is optional. Unlike the TCP

version of Connect(), the UDP version merely sets the default destination and does not

actually cause any connection-setup messages to be transmitted through the network.

Our UDP echo client, UdpEchoClient.cs, sends a datagram containing the string to

be echoed and prints whatever it receives back from the server. A UDP echo server simply

repeats each datagram that it receives back to the client. Of course, a UDP client only

communicates with a UDP server. Many systems include a UDP echo server for debugging

and testing purposes, or you can run the UDP echo server example from the next section.

UdpEchoClient.cs

0 using System; // For String, Int32, Console
1 using System.Text; // For Encoding
2 using System.Net; // For IPEndPoint
3 using System.Net.Sockets; // For UdpClient, SocketException
4

5 class UdpEchoClient {
6

7 static void Main(string[] args) {
8

9 if ((args.Length < 2) || (args.Length > 3)) { // Test for correct # of args
10 throw new System.ArgumentException("Parameters: <Server> <Word> [<Port>]");
11 }
12

13 String server = args[0]; // Server name or IP address
14

15 // Use port argument if supplied, otherwise default to 7
16 int servPort = (args.Length == 3) ? Int32.Parse(args[2]) : 7;
17

18 // Convert input String to an array of bytes
19 byte[] sendPacket = Encoding.ASCII.GetBytes(args[1]);
20

21 // Create a UdpClient instance
22 UdpClient client = new UdpClient();
23

■ 2.4 UDP Sockets 31

24 try {
25 // Send the echo string to the specified host and port
26 client.Send(sendPacket, sendPacket.Length, server, servPort);
27

28 Console.WriteLine("Sent {0} bytes to the server...", sendPacket.Length);
29

30 // This IPEndPoint instance will be populated with the remote sender’s
31 // endpoint information after the Receive() call
32 IPEndPoint remoteIPEndPoint = new IPEndPoint(IPAddress.Any, 0);
33

34 // Attempt echo reply receive
35 byte[] rcvPacket = client.Receive(ref remoteIPEndPoint);
36

37 Console.WriteLine("Received {0} bytes from {1}: {2}",
38 rcvPacket.Length, remoteIPEndPoint,
39 Encoding.ASCII.GetString(rcvPacket, 0, rcvPacket.Length));
40 } catch (SocketException se) {
41 Console.WriteLine(se.ErrorCode + ": " + se.Message);
42 }
43

44 client.Close();
45 }
46 }

UdpEchoClient.cs

1. Application setup and parameter parsing: lines 9–19

■ Convert argument to bytes: lines 17–19

2. UDP socket creation: lines 21–22

This instance of UdpClient can send datagrams to any UDP socket. The destination

host and port can be set in the constructor, in the Connect() call, or directly in the

Send() call. In this case we set it in the Send() call. If we specify a host name, it is

converted to an IP address for us.

3. Send the datagram and receive the response: lines 24–42

■ Send the datagram: lines 25–26

The Send() call takes the datagram byte array and the number of bytes to send

as arguments. Send() can also take optional arguments specifying the destina-

tion address and port (either as a string host name/IP and integer port, or as an

IPEndPoint instance). If the destination arguments are omitted, they must have

been specified in either the UdpClient constructor or the Connect() call. If you do

not include the destination arguments in the constructor or Connect(), you can

32 Chapter 2: Basic Sockets ■

make subsequent calls to Send() with different destinations. However, if you

do specify destination arguments in the constructor or Connect(), you cannot

override the destination in the Send(), and attempting to do so will generate an

InvalidOperationException.

■ Create a remote IP end point for receiving: lines 30–32

The IPEndPoint class specifies an address and port combination. This IPEndPoint
instance will be passed as a reference to the Receive() method, which will populate

it with the remote sender’s IP address and port information.

■ Handle datagram reception: lines 34–35

Receive() blocks until it receives a datagram. When it returns, the remoteIPEnd-
Point instance will contain the address and port information for the remote host

that sent the packet just received.

4. Print reception results: lines 37–39

5. Close the socket: line 44

We invoke the UDP client using the same parameters as used in the TCP client:

C:\> UdpEchoClient 169.1.1.2 "Echo this!"
Sent 10 bytes to the server...
Received 10 bytes from 169.1.1.2: Echo this!

One consequence of using UDP is that datagrams can be lost. In the case of our echo

protocol, either the echo request from the client or the echo reply from the server may

be lost in the network. Recall that our TCP echo client sends an echo string and then

blocks with a Read() waiting for a reply. If we try the same strategy with our UDP echo

client and the echo request datagram is lost, our client will block forever on Receive().

To avoid this problem, our client can implement a timeout on the blocking Receive()
call. In Section 2.5.4 we introduce UdpEchoClientTimeoutSocket.cs, which modifies

UdpEchoClient.cs to do just that.

2.4.2 UDP Server

Like a TCP server, a UDP server’s job is to set up a communication endpoint and passively

wait for the client to initiate the communication; however, since UDP is connectionless,

UDP communication is initiated by a datagram from the client, without going through

a connection setup as in TCP. This means receiving a datagram as a server is really no

different from receiving a datagram as a client. As a result, instead of separate classes

for a UDP client and server, the UdpClient class is used to implement the server as well as

the client.

The typical UDP server goes through four steps:

1. Construct an instance of UdpClient, specifying the local port. The server is now ready

to receive datagrams from any client.

■ 2.4 UDP Sockets 33

2. Receive a packet using the Receive() method of UdpClient. The Receive() method

takes a reference to an IPEndPoint instance as an argument, and when the call returns

the IPEndPoint contains the client’s address so we know where to send the reply.

3. Communicate by sending and receiving datagram packets using the Send() and

Receive() methods of UdpClient.

4. When finished, deallocate the socket using the Close() method of UdpClient.

Our next program example, UdpEchoServer.cs, implements the UDP version of the

echo server. The server is very simple: it loops forever, receiving datagrams and then

sending the same datagrams back to the client.

UdpEchoServer.cs

0 using System; // For Console, Int32, ArgumentException, Environment
1 using System.Net; // For IPEndPoint
2 using System.Net.Sockets; // For UdpClient, SocketException
3

4 class UdpEchoServer {
5

6 static void Main(string[] args) {
7

8 if (args.Length > 1) { // Test for correct # of args
9 throw new ArgumentException("Parameters: <Port>");

10 }
11

12 int servPort = (args.Length == 1) ? Int32.Parse(args[0]) : 7;
13

14 UdpClient client = null;
15

16 try {
17 // Create an instance of UdpClient on the port to listen on
18 client = new UdpClient(servPort);
19 } catch (SocketException se) {
20 Console.WriteLine(se.ErrorCode + ": " + se.Message);
21 Environment.Exit(se.ErrorCode);
22 }
23

24 // Create an IPEndPoint instance that will be passed as a reference
25 // to the Receive() call and be populated with the remote client info
26 IPEndPoint remoteIPEndPoint = new IPEndPoint(IPAddress.Any, 0);
27

28 for (;;) { // Run forever, receiving and echoing datagrams
29 try {

34 Chapter 2: Basic Sockets ■

30 // Receive a byte array with echo datagram packet contents
31 byte[] byteBuffer = client.Receive(ref remoteIPEndPoint);
32 Console.Write("Handling client at " + remoteIPEndPoint + " - ");
33

34 // Send an echo packet back to the client
35 client.Send(byteBuffer, byteBuffer.Length, remoteIPEndPoint);
36 Console.WriteLine("echoed {0} bytes.", byteBuffer.Length);
37 } catch (SocketException se) {
38 Console.WriteLine(se.ErrorCode + ": " + se.Message);
39 }
40 }
41 }
42 }

UdpEchoServer.cs

1. Application setup and parameter parsing: lines 8–14

UdpEchoServer takes a single optional parameter, the local port of the echo server

socket. The default port used is 7.

2. Create a UdpClient instance: lines 16–22

Unlike our UDP client program, a UDP server must explicitly set its local port to a num-

ber known by the client; otherwise, the client will not know the destination port for its

echo request datagram. This version of the constructor can throw a SocketException
if there is an error when accessing the socket or an ArgumentOutOfRangeException
if the port is not within the valid range.

3. Create an IPEndPoint instance: lines 24–26

The IPEndPoint class specifies an address and port combination. This IPEndPoint
instance will be passed as a reference to the Receive() method, which will populate

it with the remote sender’s IP address and port information.

4. Iteratively handle echo request datagrams: lines 28–40

The UDP server uses a single UdpClient (and hence a single underlying socket) for

all communication, unlike the TCP server which creates a new socket with every

successful AcceptTcpClient() or AcceptSocket().

■ Receive echo request: line 31

The Receive() method of UdpClient blocks until a datagram is received from a

client (unless a timeout is set). There is no connection, so each datagram may be

from a different sender. We receive the incoming packet into a byte array that will

also be used to send the echo reply. When the call to Receive() returns, the ref-

erence to the IPEndPoint instance is populated with the source’s (client’s) address

and port information.

■ 2.4 UDP Sockets 35

■ Send echo reply: line 35

byteBuffer already contains the echo string and remoteIPEndPoint already contains

the echo reply destination address and port, so the Send() method of UdpClient
can simply transmit the datagram previously received.

UdpClient

Description

Provides User Datagram Protocol (UDP) network services.

Selected Constructors

public UdpClient();

public UdpClient(int port);

public UdpClient(IPEndPoint localEP);

public UdpClient(string host name, int port);
Creates a new instance of the UdpClient class. The UdpClient constructor has

optional arguments for the port, a local interface to bind to (IPEndPoint), or the server

to connect to (string host name/IP and integer port). If the destination is not set in

the constructor, it must be set either in a Connect() call or in the Send() method.

Throws ArgumentNullException, ArgumentException, SocketException.

Selected Methods

public void Close();

Closes the UDP connection. Throws SocketException.

public void Connect(IPEndPoint endPoint);

public void Connect(IPAddress addr, int port);

public void Connect(string host name, int port);
Connect() sets the default destination for this UdpClient. This call is optional.

Throws ArgumentNullException, ArgumentOutOfRangeException, SocketException,

ObjectDisposedException.

public byte[] Receive(ref IPEndPoint remoteEP);

Returns a UDP datagram sent by a remote host as an byte array and populates the

IPEndPoint reference with the endpoint information for the sending remote host.

Throws SocketException, ObjectDisposedException.

public int Send(byte[] dgram, int length);

public int Send(byte[] dgram, int length, IPEndPoint endPoint);

36 Chapter 2: Basic Sockets ■

public int Send(byte[] dgram, int length, string host name, int port);
Sends a UDP datagram to a remote host. The datagram to send is specified by the

byte array argument and the number of bytes to send integer argument. Optional

arguments can be included to specify the datagram destination, either using an

IPEndPoint instance, or a string host name/IP address and integer port argument. If

no default destination has been specified by the UdpClient constructor or Connect()
method, the destination is not optional. If a default destination has been set in

the constructor or Connect(), you may not use different destination arguments

in the Send() call. Returns the number of bytes sent. Throws ArgumentException,

InvalidOperationException, SocketException, ObjectDisposedException.

Selected Properties

protected Socket Client {get; set;}
Gets or sets the underlying network socket. Since this is a protected property, it can

only be accessed by classes that extend UdpClient. This is useful for accessing socket

options that are not directly accessible from the UdpClient API.

2.4.3 Sending and Receiving with UDP Sockets

A subtle but important difference between TCP and UDP is that UDP preserves message

boundaries. Each call to UdpClient.Receive() returns data from at most one call to

UdpClient.Send(). Moreover, different calls to UdpClient.Receive() will never return

data from the same call to UdpClient.Send().

When a call to Write() on a TCP socket’s stream returns, all the caller knows is that

the data has been copied into a buffer for transmission; the data may or may not have

actually been transmitted yet (this is covered in more detail in Chapter 5). UDP, however,

does not provide recovery from network errors and, therefore, does not buffer data for

possible retransmission. This means that by the time a call to Send() returns, the message

has been passed to the underlying channel for transmission and is (or soon will be) on its

way out the door.

Between the time a message arrives from the network and the time its data is returned

via Read() or Receive(), the data is stored in a first-in, first-out (FIFO) queue of received

data. With a connected TCP socket, all received-but-not-yet-delivered bytes are treated

as one continuous sequence of bytes (see Chapter 5). For a UDP socket, however, the

received data may have come from different senders. A UDP socket’s received data is kept

in a queue of messages, each with associated information identifying its source. A call to

Receive() will never return more than one message. The maximum amount of data that

can be transmitted by a UdpClient is 65,507 bytes—the largest payload that can be carried

in a UDP datagram.

■ 2.5 The .NET Socket Class 37

2.5 The .NET Socket Class

The .NET Framework provides a Socket class that is a wrapper around the WinSock imple-

mentation. Since TcpClient, TcpListener, and UdpClient all utilize the Socket class for

their own implementations, Socket contains all the functionality of those classes, plus

much more. The Socket interface is a generic API that actually covers more than just IP,

and as such exploring all of the functionality it provides is beyond the scope of this book.

In this section we introduce its usage for TCP and UDP and walk through some common

cases where you might use it.

2.5.1 TCP Client with Socket

For a TCP client to use the Socket class, it will perform the following steps:

1. Call the Socket constructor: The constructor specifies the address type, socket

type, and protocol type.

2. Call the Socket Connect() method: Connect() takes an IPEndPoint argument that

represents the server to connect to.

3. Send and receive data: Using the Socket Send() and Receive() calls.

4. Close the socket: Using the Socket Close() method.

Here we present a version of the TcpEchoClient.cs program that uses the Socket
class instead of the TcpClient class.

TcpEchoClientSocket.cs

0 using System; // For String, Int32, Console, ArgumentException
1 using System.Text; // For Encoding
2 using System.IO; // For IOException
3 using System.Net.Sockets; // For Socket, SocketException
4 using System.Net; // For IPAddress, IPEndPoint
5

6 class TcpEchoClientSocket {
7

8 static void Main(string[] args) {
9

10 if ((args.Length < 2) || (args.Length > 3)) { // Test for correct # of args
11 throw new ArgumentException("Parameters: <Server> <Word> [<Port>]");
12 }
13

14 String server = args[0]; // Server name or IP address
15

38 Chapter 2: Basic Sockets ■

16 // Convert input String to bytes
17 byte[] byteBuffer = Encoding.ASCII.GetBytes(args[1]);
18

19 // Use port argument if supplied, otherwise default to 7
20 int servPort = (args.Length == 3) ? Int32.Parse(args[2]) : 7;
21

22 Socket sock = null;
23

24 try {
25 // Create a TCP socket instance
26 sock = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
27 ProtocolType.Tcp);
28

29 // Creates server IPEndPoint instance. We assume Resolve returns
30 // at least one address
31 IPEndPoint serverEndPoint = new IPEndPoint(Dns.Resolve(server).AddressList[0],

32 servPort);

33 // Connect the socket to server on specified port
34 sock.Connect(serverEndPoint);
35 Console.WriteLine("Connected to server... sending echo string");
36

37 // Send the encoded string to the server
38 sock.Send(byteBuffer, 0, byteBuffer.Length, SocketFlags.None);
39

40 Console.WriteLine("Sent {0} bytes to server...", byteBuffer.Length);
41

42 int totalBytesRcvd = 0; // Total bytes received so far
43 int bytesRcvd = 0; // Bytes received in last read
44

45 // Receive the same string back from the server
46 while (totalBytesRcvd < byteBuffer.Length) {
47 if ((bytesRcvd = sock.Receive(byteBuffer, totalBytesRcvd,
48 byteBuffer.Length - totalBytesRcvd, SocketFlags.None)) == 0) {
49 Console.WriteLine("Connection closed prematurely.");
50 break;
51 }
52 totalBytesRcvd += bytesRcvd;
53 }
54

55 Console.WriteLine("Received {0} bytes from server: {1}", totalBytesRcvd,

56 Encoding.ASCII.GetString(byteBuffer, 0, totalBytesRcvd));

57

58 } catch (Exception e) {

■ 2.5 The .NET Socket Class 39

59 Console.WriteLine(e.Message);
60 } finally {
61 sock.Close();
62 }
63 }
64 }

TcpEchoClientSocket.cs

1. Setup and parameter parsing: lines 10–22

2. TCP Socket constructor: lines 25–27

The Socket constructor takes three arguments:

■ The address family: Set to AddressFamily.InterNetwork for IP.

■ The socket type: Indicates stream or datagram semantics and is set to Socket-
Type.Stream for TCP or SocketType.Dgram for UDP.

■ The protocol type: Set to ProtocolType.Tcp or ProtocolType.Udp.

3. Connect to the server: lines 29–35

The Connect() method takes an IPEndPoint instance, which we have constructed

from the arguments to the program using IPAddress.Parse(). If the connection fails

a SocketException will be thrown.

4. Send the string to the echo server: lines 37–38

The Socket class has several Send() methods that take different combination of

parameters, always including a byte array containing the data to be transmitted.

Here we use a version that takes (1) the byte buffer containing the data to be sent,

(2) the byte offset into the buffer where the data to be sent starts, (3) a total number

of bytes to send, and (4) any socket flag settings. Socket flags are beyond the scope

of this book, and in this case are set to SocketFlags.None.

5. Receive the reply from the echo server: lines 45–53

Since we know the number of bytes to expect from the echo server, we can repeatedly

receive bytes until we have received the same number of bytes that we sent. The

Receive() method can be called in several forms; here we use the one that takes

four parameters: (1) buffer to receive to, (2) byte offset into the buffer where the

first byte received should be placed, (3) the maximum number of bytes to be placed

in the buffer, and (4) the socket flags parameter. The loop and data receive logic are

identical to those in the earlier TcpClient example.

6. Print echoed string: lines 55–56

7. Error handling and socket close: lines 58–62

40 Chapter 2: Basic Sockets ■

2.5.2 TCP Server with Socket

For a TCP server to use the Socket class, it will perform the following steps:

1. Call the Socket constructor: The constructor specifies the address type, socket

type, and protocol type.

2. Call the Socket Bind() method: Bind() associates the socket with a local address

and port number.

3. Call the Socket Listen() method: Listen() takes an integer argument represent-

ing the number of connections allowed to queue, and starts listening for incoming

connections.

4. Repeatedly:

■ Call the Socket Accept() method to accept an incoming connection: Accept()
takes no arguments and returns a Socket instance representing the remote client

socket.

■ Receive and send data: Using the accepted client Socket instance, use its

Receive() and Send() methods to transfer data.

■ Close the client socket: Using the Socket Close() method.

5. Close the server socket: Using the Socket Close() method.

Here we present a version of the TcpEchoServer.cs program that uses the Socket
class instead of the TcpListener and TcpClient classes.

TcpEchoServerSocket.cs

0 using System; // For Console, Int32, ArgumentException, Environment
1 using System.Net; // For IPAddress
2 using System.Net.Sockets; // For TcpListener, TcpClient
3

4 class TcpEchoServerSocket {
5

6 private const int BUFSIZE = 32; // Size of receive buffer
7 private const int BACKLOG = 5; // Outstanding connection queue max size
8

9 static void Main(string[] args) {
10

11 if (args.Length > 1) // Test for correct # of args
12 throw new ArgumentException("Parameters: [<Port>]");
13

14 int servPort = (args.Length == 1) ? Int32.Parse(args[0]): 7;
15

■ 2.5 The .NET Socket Class 41

16 Socket server = null;
17

18 try {
19 // Create a socket to accept client connections
20 server = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
21 ProtocolType.Tcp);
22

23 server.Bind(new IPEndPoint(IPAddress.Any, servPort));
24

25 server.Listen(BACKLOG);
26 } catch (SocketException se) {
27 Console.WriteLine(se.ErrorCode + ": " + se.Message);
28 Environment.Exit(se.ErrorCode);
29 }
30

31 byte[] rcvBuffer = new byte[BUFSIZE]; // Receive buffer
32 int bytesRcvd; // Received byte count
33

34 for (;;) { // Run forever, accepting and servicing connections
35

36 Socket client = null;
37

38 try {
39 client = server.Accept(); // Get client connection
40

41 Console.Write("Handling client at " + client.RemoteEndPoint + " - ");
42

43 // Receive until client closes connection, indicated by 0 return value
44 int totalBytesEchoed = 0;
45 while ((bytesRcvd = client.Receive(rcvBuffer, 0, rcvBuffer.Length,
46 SocketFlags.None)) > 0) {
47 client.Send(rcvBuffer, 0, bytesRcvd, SocketFlags.None);
48 totalBytesEchoed += bytesRcvd;
49 }
50 Console.WriteLine("echoed {0} bytes.", totalBytesEchoed);
51

52 client.Close(); // Close the socket. We are done with this client!
53

54 } catch (Exception e) {
55 Console.WriteLine(e.Message);
56 client.Close();
57 }
58 }

42 Chapter 2: Basic Sockets ■

59 }
60 }

TcpEchoServerSocket.cs

1. Application setup and parameter parsing: lines 11–16

2. Call the Socket constructor: lines 19–21

The Socket constructor takes three arguments:

■ The address family: Set to AddressFamily.InterNetwork for IP.

■ The socket type: Indicates stream or datagram semantics and is set to Socket-
Type.Stream for TCP or SocketType.Dgram for UDP.

■ The protocol type: Set to ProtocolType.Tcp or ProtocolType.Udp.

3. Bind the socket: line 23

The Bind() method is called with a IPEndPoint instance containing IPAddress.Any
(0.0.0.0) and the specified server port number. The bind assigns the socket a local

address and port and throws a SocketException if it fails to do so (e.g., if the local

endpoint is already in use).

4. Listen for incoming connections: line 25

The Listen() method causes the socket to begin handling incoming TCP connec-

tion requests and queuing them for acceptance by our program. It takes an integer

argument that specifies the backlog, which is the maximum number of outstanding

connections allowed in the queue. The valid values for the backlog are typically 1–5,

but may vary by system; check your documentation.

5. Loop forever, iteratively handling incoming connections: lines 34–58

■ Accept an incoming connection: line 39

The server Socket instance supplies new, connected client Socket instances for

each new TCP connection. When the server is ready to handle a client, it calls

Accept(), which blocks until an incoming connection is made to the server Socket’s

port. Accept() then returns an instance of Socket that is already connected to the

remote socket and ready for reading and writing.

■ Output the remote end point being serviced: line 41

One feature of Socket that is not available with TcpClient is the ability to access

the RemoteEndPoint property and determine the IP address and port of the client

connection.

■ Receive and repeat data until the client closes: lines 43–50

The while loop repeatedly reads bytes (when available) from the Socket and

immediately writes the same bytes back to the stream until the client closes the

connection. The loop and data transfer logic are identical to the TcpClient version.

■ 2.5 The .NET Socket Class 43

■ Close the client socket: line 52

■ Exception handling: lines 54–57

Socket

Description

The Socket class is a wrapper around the WinSock sockets API. Using a Socket
involves the following steps:

1. Create a Socket instance with the socket constructor.

2. If the Socket is a server, call Bind() to assign a local endpoint.

3. If the Socket is a client, call Connect() to connect to a remote endpoint.

4. If the Socket is a server, call Listen() to begin listening for connections, and call

Accept() to retrieve an incoming connection.

5. Use the Send() and Receive() methods to transfer data over TCP, or SendTo() and

ReceiveFrom() for UDP.

6. Call Shutdown() to disable the socket.

7. Call Close() to close the socket.

Constructor

public Socket(AddressFamily, SocketType, ProtocolType);

Creates a new instance of the Socket class. Each argument is specified by its own

enumeration class, AddressFamily, SocketType, and ProtocolType. For the purposes

of this book, the AddressFamily is set to InterNetwork, the SocketType is set to

Stream for TCP semantics or Dgram for UDP semantics, and the ProtocolType is set to

Tcp for TCP and Udp for UDP.

Selected Methods

public void Bind(EndPoint localEP);

Associates a Socket with a local endpoint. Throws ArgumentNullException, Socket-
Exception, ObjectDisposedException.

public void Close();

Closes a Socket connection.

public void Connect(EndPoint remoteEP);

Establishes a connection to a remote server. Throws ArgumentNullException, Socket-
Exception, ObjectDisposedException.

44 Chapter 2: Basic Sockets ■

public object GetSocketOption(SocketOptionLevel, SocketOptionName);

public void GetSocketOption(SocketOptionLevel, SocketOptionName, byte[]);

public byte[] GetSocketOption(SocketOptionLevel, SocketOptionName, int);

Returns the value of the specified Socket option in an object or in an array of bytes.

The complete list of properties available for SocketOptionLevel and SocketOption-
Name are detailed in their respective class descriptions following this class. Throws

SocketException, ObjectDisposedException.

public void Listen(int backlog);

Changes the Socket state to handle incoming TCP connections and queue them

to be accepted by the program. The backlog specifies the maximum number of

incoming connections that can be queued at any time. The normal backlog values

are 1–5 but vary by system; check your documentation. Throws SocketException,

ObjectDisposedException.

public bool Poll(int microseconds, SelectMode mode);

Checks the status of a Socket. The first argument specifies the number of micro-

seconds to wait for a response. A negative value indicates blocking indefinitely.

The status checked depends on the SelectMode enumeration argument. Select-
Mode.SelectRead checks for readability. SelectMode.SelectWrite checks for write-

ability. SelectMode.SelectError checks for the existence of an error.

public int Receive(byte[] buffer);

public int Receive(byte[] buffer, SocketFlags flags);

public int Receive(byte[] buffer, int length, SocketFlags flags);

public int Receive(byte[] buffer, int offset, int length, SocketFlags flags);

Receives data from the Socket into the byte buffer argument. Optional arguments

include SocketFlags, an integer number of bytes to receive, and an integer offset in

the buffer. Returns the number of bytes received. Throws ArgumentNullException,

ArgumentOutOfRangeException, SocketException, ObjectDisposedException.

public int ReceiveFrom(byte[] buffer, ref EndPoint remoteEP);

public int ReceiveFrom(byte[] buffer, SocketFlags flags, ref EndPoint remoteEP);

public int ReceiveFrom(byte[] buffer, int length, SocketFlags flags, ref EndPoint
remoteEP);

public int ReceiveFrom(byte[] buffer, int offset, int length, SocketFlags flags,

ref EndPoint localEP);

Receives a UDP datagram into the byte buffer argument and populates the End-
Point reference with the sender’s endpoint information. Optional arguments include

SocketFlags, an integer number of bytes to receive, and an integer offset in the

buffer. Returns the number of bytes received. Note that there is an important

difference between the byte buffer used to receive datagrams with a Socket and

a UdpClient. While the UdpClient returns a reference to preallocated buffer, the

■ 2.5 The .NET Socket Class 45

Socket class requires the buffer argument to be preallocated to the appropriate

size. If an attempt is made to receive more bytes into the buffer argument than

has been allocated, a SocketException will be thrown with the ErrorCode set to

10040 (WinSock constant WSAEMSGSIZE), and the Message set to “Message too long.”

Throws ArgumentNullException, ArgumentOutOfRangeException, SocketException,

ObjectDisposedException.

public static void Select(IList readableList, IList writeableList, IList errorList,
int microseconds);

Used to determine the status of one or more Socket instances. This method takes

between one and three IList container types holding Socket instances (lists not

passed should be set to null). What is checked for depends on the IList’s position

in the argument list. The Sockets in the first IList are checked for readabil-

ity. The Sockets in the second IList are checked for writeability. The Sockets

in the third IList are checked for errors. After completing, only the Socket
instances that meet the criteria will still be in the IList. The final argument is

the time in microseconds to wait for a response. Throws ArgumentNullException,

SocketException.

public int Send(byte[] buffer);

public int Send(byte[] buffer, SocketFlags flags);

public int Send(byte[] buffer, int length, SocketFlags flags);

public int Send(byte[] buffer, int offset, int length, SocketFlags flags);

Sends data to the Socket from the byte buffer argument. Optional arguments

include SocketFlags, an integer number of bytes to send, and an integer offset

in the buffer. Returns the number of bytes sent. Throws ArgumentNullException,

ArgumentOutOfRangeException, SocketException, ObjectDisposedException.

public int SendTo(byte[] buffer, EndPoint remoteEP);

public int SendTo(byte[] buffer, SocketFlags flags, EndPoint remoteEP);

public int SendTo(byte[] buffer, int length, SocketFlags flags, EndPoint remoteEP);

public int SendTo(byte[] buffer, int offset, int length, SocketFlags flags, EndPoint
remoteEP);

Sends a UDP datagram packet specified in the byte buffer argument to a specific

endpoint. Optional arguments include SocketFlags, an integer number of bytes

to send, and an integer offset in the buffer. Returns the number of bytes sent.

Throws ArgumentNullException, ArgumentOutOfRangeException, SocketException,

ObjectDisposedException.

public void SetSocketOption(SocketOptionLevel optionLevel, SocketOptionName
optionName, byte[] optionValue);

public void SetSocketOption(SocketOptionLevel optionLevel, SocketOptionName
optionName, int optionValue);

46 Chapter 2: Basic Sockets ■

public void SetSocketOption(SocketOptionLevel optionLevel, SocketOptionName
optionName, object optionValue);

Sets the specified socket option to the specified value. The complete list of prop-

erties available for SocketOptionLevel and SocketOptionName are detailed in their

respective class descriptions following this class. Throws ArgumentNullException,

SocketException, ObjectDisposedException.

public void Shutdown(SocketShutdown how);

Disables sends and/or receives on a Socket. The argument is a SocketShutdown
enumeration indicating what should be shutdown (Send, Receive, or Both). Throws

SocketException, ObjectDisposedException.

Selected Properties

public bool Connected {get;}
Gets a value indicating whether a Socket is connected to a remote resource as of the
most recent I/O operation.

public EndPoint LocalEndPoint {get;}
Gets the local endpoint that the Socket is bound to for communications.

public EndPoint RemoteEndPoint {get;}
Gets the remote endpoint that the Socket is using for communication.

SocketOptionLevel

Description

The SocketOptionLevel enumeration defines the level that a socket option should

be applied to. A SocketOptionLevel is input to the Socket.SetSocketOption() and

Socket.GetSocketOption() methods.

Members

IP Socket options apply to IP sockets.

Socket Socket options apply to the socket itself.

Tcp Socket options apply to TCP sockets.

Udp Socket options apply to UDP sockets.

■ 2.5 The .NET Socket Class 47

SocketOptionName

Description

The SocketOptionName enumeration defines socket option names for the Socket class

and is passed as input to the Socket.SetSocketOption() and Socket.GetSocket-
Option() methods. Socket options are described in more detail in Section 2.5.4,

but coverage of all of the socket options is beyond the scope of this book. Check

www.msdn.microsoft.com for more details on these options.

Members

See Table 2.1 for a list of available .NET socket options. Note that at the time this

book went to press there was not sufficient documentation to determine if all of these

socket options were fully supported and/or implemented. Check the MSDN library at

www.msdn.microsoft.com/library for the latest information.

SocketFlags

Description

The SocketFlags enumeration provides the valid values for advanced socket flags

and is an optional input to the Socket data transfer methods. If you need to use a

Socket method that requires a socket flag argument but don’t need any flags set, use

SocketFlags.None. See Section 2.5.5 for more on socket flags.

Members

DontRoute Send without using routing tables.

MaxIOVectorLength Provides a standard value for the number of

WSABUF structures used to send and receive data.

None Use no flags for this call.

OutOfBand Process out-of-band data.

Partial Partial send or receive for message.

Peek Peek at incoming message.

4
8

C
h

a
p

te
r

2
:

B
a

s
ic

S
o

c
k

e
ts

■

SocketOptionName Type Values Description

SocketOptionLevel.Socket

AcceptConnection Boolean 0, 1 Socket has called Listen(). Get only.
Broadcast Boolean 0, 1 Broadcast messages allowed.
Debug Boolean 0, 1 Record debugging information (if available).
DontLinger Boolean 0, 1 Close socket without waiting for confir-

mation.
DontRoute Boolean 0, 1 For multihomed hosts, send using the speci-

fied outgoing interface instead of routing.
Error Int32 WinSock error code Get and clear the socket error code (see

Appendix). Get only.
ExclusiveAddressUse Boolean 0, 1 Enables a socket to be bound for exclusive

access.
KeepAlive Boolean 0, 1 Keep-alive messages enabled (if imple-

mented by the protocol).
Linger LingerOption 0, 1; seconds Time to delay Close() return waiting for

confirmation.
MaxConnections Int32 max size Maximum queue length that can be specified

by Socket.Listen(). Get only.
OutOfBandInline Boolean 0, 1 Receives out-of-band data in the normal data

stream.
ReceiveBuffer Int32 bytes Bytes in the socket receive buffer.
ReceiveLowWater Int32 bytes Minimum number of bytes that will cause

Receive() to return.
ReceiveTimeout Int32 milliseconds Receive timeout.
ReuseAddress Boolean 0, 1 Binding allowed (under certain conditions) to

an address or port already in use.
SendBuffer Int32 bytes Bytes in the socket send buffer.
SendLowWater Int32 bytes Minimum bytes to send.
SendTimeout Int32 milliseconds Send timeout.
Type Int32 SocketType Get socket type. Get only.

SocketOptionLevel.Tcp

BsdUrgent Boolean 0, 1 Urgent data as defined in RFC-1122.
Expedited Boolean 0, 1 Expedited data as defined in RFC-1122.
NoDelay Boolean 0, 1 Disallow delay for data merging (Nagle’s

algorithm).

■
2

.5
T

h
e

.N
E

T
S
o

c
k

e
t

C
la

s
s

4
9

SocketOptionLevel.Udp

ChecksumCoverage Boolean 0, 1 Get/set UDP checksum coverage.
NoChecksum Boolean 0, 1 UDP datagrams sent with checksum set to

zero.

SocketOptionLevel.IP

AddMembership MulticastOption group address, interface Add a multicast group membership.
Set only.

AddSourceMembership IPAddress group address Join a multicast source group. Set only.
BlockSource Boolean 0, 1 Block data from a multicast source. Set only.
DontFragment Boolean 0, 1 Do not fragment IP datagrams.
DropMembership MulticastOption group address, interface Drop a multicast group membership.

Set only.
DropSourceMembership IPAddress group address Drop a multicast source group. Set only.
HeaderIncluded Boolean 0, 1 Application is providing the IP header for

outgoing datagrams.
IPOptions Byte[] IP options Specifies IP options to be inserted into out-

going datagrams.
IpTimeToLive Int32 0–255 Set the IP header time-to-live field.
MulticastInterface Byte[] interface Set the interface for outgoing multicast

packets.
MulticastLoopback Boolean 0, 1 IP multicast loopback.
MulticastTimeToLive Int32 0–255 IP multicast time to live.
PacketInformation Byte[] packet info Return information about received packets.

Get only.
TypeOfService Int32 SocketType Change the IP header type of service field.
UnblockSource Boolean 0, 1 Unblock a previously blocked multicast

source.
UseLoopback Boolean 0, 1 Bypass hardware when possible.

Table 2.1: Socket Options

50 Chapter 2: Basic Sockets ■

SocketException

Description

SocketException is a subclass of Exception that is thrown when a socket error occurs.

Selected Properties

public override int ErrorCode {get;}
The ErrorCode property contains the error number of the error that has occurred.

This is extremely useful since a SocketException can be thrown for many different

reasons, and you often need to distinguish which situation has occurred in order

to handle it properly. The error number corresponds to the underlying WinSock 2

(Windows implementation of sockets) error codes. See Appendix for more details.

public virtual string Message {get;}
Contains the human-readable text description of the error that has occurred.

2.5.3 TcpListener AcceptSocket()

Notice that in TcpEchoServer.cs we don’t report the IP address of the client connec-

tion. If you look through the API for TcpClient, you’ll notice that there is no way to

directly access this information. It certainly would be nice to have the server report the

IP addresses/ports of its clients. In TcpEchoServerSocket.cs you can see that the Socket
class gives you access to this information in the RemoteEndPoint property.

The TcpListener class provides an alternative accept call to give you access to this

client information. The AcceptSocket() method of TcpListener works identically to the

AcceptTcpClient() method except that it returns a client Socket instance instead of a

client TcpClient instance. Once we obtain the client Socket instance, the remote connec-

tion’s IP address and port are available via the RemoteEndPoint property. The client Socket
is then used just as we have seen in our Socket examples. It does not use a stream class

but uses the Socket Send() and Receive() methods to transfer byte arrays. The code in

the for loop of TcpEchoServer.cs can be rewritten to use Socket as follows:

for (;;) { // Run forever, accepting and servicing connections

Socket sock = null;

try {
// Get client connection as a Socket
sock = listener.AcceptSocket();

■ 2.5 The .NET Socket Class 51

// Socket property RemoteEndPoint contains the client’s address
// and port:
Console.Write("Handling client at " + sock.RemoteEndPoint + " - ");

// Receive until client closes connection, indicated by 0 return value
// Use the Socket methods Receive() and Send()
int totalBytesEchoed = 0;
while ((bytesRcvd = sock.Receive(rcvBuffer, 0, rcvBuffer.Length,

SocketFlags.None)) > 0) {
sock.Send(rcvBuffer, 0, bytesRcvd, SocketFlags.None);
totalBytesEchoed += bytesRcvd;

}
Console.WriteLine("echoed {0} bytes.", totalBytesRcvd);

sock.Close(); // Close the socket, we are done with this client!
} catch (Exception e) {

Console.WriteLine(e.Message);
sock.Close();

}
}

This code turns out to be very similar to our TcpClient version. The primary

differences are:

■ TcpListener’s AcceptSocket() method is called instead of AcceptTcpClient().

■ The RemoteEndPoint property of the client Socket returns an instance of an EndPoint
containing the address of the client. Used in a Write() call, this is converted into a

string representation of the IP address and port.

■ No NetworkStream is used; the Socket’s Send() and Receive() methods are called

instead.

■ We call Close() on the client Socket instead of the NetworkStream and TcpClient.

2.5.4 Socket Options

The TCP/IP protocol developers spent a good deal of time thinking about the default behav-

iors that would satisfy most applications. (If you doubt this, read RFCs 1122 [27] and 1123

[28], which describe in excruciating detail the recommended behaviors—based on years

of experience—for implementations of the TCP/IP protocols.) For most applications, the

designers did a good job; however, it is seldom the case that “one size fits all” really fits all.

For just such situations, sockets allows many of its default behaviors to be changed, and

these behaviors are called socket options. In .NET the level of access to socket options is

determined by the class you are using. With instances of TcpListener and UdpClient, you

are stuck with the default behaviors. The TcpClient class has a subset of socket options

accessible as public properties, listed in Table 2.2.

52 Chapter 2: Basic Sockets ■

TcpClient Property Description

LingerState Gets or sets information about the sockets linger time.
NoDelay Gets or sets a value that disables a delay when send or receive buffers

are not full.
ReceiveBufferSize Gets or sets the size of the receive buffer.
ReceiveTimeout Gets or sets the amount of time a TcpClient will wait to receive data

once a read operation is initiated.
SendBufferSize Gets or sets the size of the send buffer.
SendTimeout Gets or sets the amount of time a TcpClient will wait for a send

operation to complete successfully.

Table 2.2: Socket Options Available via the Public Properties of the TcpClient Class

For access to all of the available socket options you need to use the Socket class.

The Socket class methods GetSocketOption() and SetSocketOption() provide the get

and set capabilities for the option. These methods are overloaded to accommodate the

data types of the different options, but in all cases they take a socket option name and

a socket option level. The socket option name is the name of the option to get/set,

and its valid values are provided in the enumeration class SocketOptionName. The full

list of all SocketOptionName values is displayed in the SocketOptionName class summary

on Table 2.1. Discussing all of these options is beyond the scope of this book. Check

Microsoft’s documentation at www.msdn.microsoft.com for more details. The socket

option level is the scope of the option to get/set, such as socket-level, TCP-level, or

IP-level. The valid socket option level values are provided in the enumeration class

SocketOptionLevel.

The only mechanism to get or set socket options for higher level classes (beyond

those exposed in the TcpClient properties) is to access the underlying Socket using a

protected property. Since the property is protected, it is only accessible by extending the

class. In the future we expect that the more common socket options will be added using

public properties and accessor methods to the higher level socket classes.

In UdpEchoClient.cs in Section 2.4.1 we discussed the need to provide a timeout

on the Receive() call to prevent hanging indefinitely when a UDP server did not respond

or packets were lost. The SocketOptionName.ReceiveTimeout option provides just this

functionality. Here we present a modified version of the UDP echo client that illustrates

setting a socket option. The modified UDP client uses the ReceiveTimeout socket option

to specify a maximum amount of time to block on Receive(), after which it tries again

by resending the echo request datagram. Our new echo client performs the following

steps:

1. Send the echo string to the server.

2. Block on Receive() for up to three seconds, starting over (up to five times) if the

reply is not received before the timeout.

3. Terminate the client.

■ 2.5 The .NET Socket Class 53

Since the timeout limit is only available with the Socket class we have two options:

code the entire client using the Socket class, or use UdpClient and retrieve the underlying

Socket instance when we need to set the timeout. Since the UdpClient.Client property

that allows you to access the underlying Socket instance is a protected property, it is

not directly accessible unless you created a derived class of UdpClient. For the purposes

of illustrating the use of the Socket class for UDP, we have chosen the former approach

here.

UdpEchoClientTimeoutSocket.cs

0 using System; // For String, Int32, Boolean, Console
1 using System.Text; // For Encoding
2 using System.Net; // For EndPoint, IPEndPoint
3 using System.Net.Sockets; // For Socket, SocketOptionName, SocketOptionLevel
4

5 class UdpEchoClientTimeout {
6

7 private const int TIMEOUT = 3000; // Resend timeout (milliseconds)
8 private const int MAXTRIES = 5; // Maximum retransmissions
9

10 static void Main(string[] args) {
11

12 if ((args.Length < 2) || (args.Length > 3)) { // Test for correct # of args
13 throw new ArgumentException("Parameters: <Server> <Word> [<Port>]");
14 }
15

16 String server = args[0]; // Server name or IP address
17

18 // Use port argument if supplied, otherwise default to 7
19 int servPort = (args.Length == 3) ? Int32.Parse(args[2]) : 7;
20

21 // Create socket that is connected to server on specified port
22 Socket sock = new Socket(AddressFamily.InterNetwork,
23 SocketType.Dgram, ProtocolType.Udp);
24

25 // Set the receive timeout for this socket
26 sock.SetSocketOption(SocketOptionLevel.Socket,
27 SocketOptionName.ReceiveTimeout, TIMEOUT);
28

29 IPEndPoint remoteIPEndPoint = new
30 IPEndPoint(Dns.Resolve(server).AddressList[0], servPort);
31 EndPoint remoteEndPoint = (EndPoint)remoteIPEndPoint;

54 Chapter 2: Basic Sockets ■

32

33 // Convert input String to a packet of bytes

34 byte[] sendPacket = Encoding.ASCII.GetBytes(args[1]);

35 byte[] rcvPacket = new byte[sendPacket.Length];

36

37 int tries = 0; // Packets may be lost, so we have to keep trying

38 Boolean receivedResponse = false;

39

40 do {

41 sock.SendTo(sendPacket, remoteEndPoint); // Send the echo string

42

43 Console.WriteLine("Sent {0} bytes to the server...", sendPacket.Length);

44

45 try {

46 // Attempt echo reply receive

47 sock.ReceiveFrom(rcvPacket, ref remoteEndPoint);

48 receivedResponse = true;

49 } catch (SocketException se) {

50 tries++;

51 if (se.ErrorCode == 10060) // WSAETIMEDOUT: Connection timed out

52 Console.WriteLine("Timed out, {0} more tries...", (MAXTRIES - tries));

53 else // We encountered an error other than a timeout, output error message

54 Console.WriteLine(se.ErrorCode + ": " + se.Message);

55 }

56 } while ((!receivedResponse) && (tries < MAXTRIES));

57

58 if (receivedResponse)

59 Console.WriteLine("Received {0} bytes from {1}: {2}",

60 rcvPacket.Length, remoteEndPoint,

61 Encoding.ASCII.GetString(rcvPacket, 0, rcvPacket.Length));

62 else

63 Console.WriteLine("No response - – giving up.");

64

65 sock.Close();

66 }

67 }

UdpEchoClientTimeoutSocket.cs

■ 2.5 The .NET Socket Class 55

1. Application setup and parameter parsing: lines 12–19

2. UDP socket creation: lines 21–23

The Socket constructor takes three arguments:

■ The address family: Set to AddressFamily.InterNetwork for IP.

■ The socket type: Indicates stream or datagram semantics and is set to Socket-
Type.Dgram for UDP.

■ The protocol type: Set to ProtocolType.Udp.

3. Set the socket timeout: lines 25–27

The timeout for a datagram socket controls the maximum amount of time (in

milliseconds) that a call to Receive() will block. The socket option level is Socket-
OptionLevel.Socket. The SetSocketOption() method with the argument Socket-
OptionName.ReceiveTimeout is used to set the receiving timeout. The third argument

is the timeout duration, which we set to three seconds (3000 milliseconds). Note that

timeouts are not precise: the call may block for more than the specified time (but not

less).

4. Create the destination address structure: lines 29–31

The destination argument data structure is an instance of the class EndPoint. In this

case, we create an instance of the subclass IPEndPoint, which contains methods

that will resolve our IP addresses for us, and then cast it to the EndPoint class. In

order to resolve any host name that was input, we first call Dns.Resolve(). We then

use the first IPAddress instance returned by that call as the input to the IPEndPoint
constructor, along with the port number from the command line.

5. Create datagram to send: lines 33–34

Convert the argument to a byte array.

6. Create datagram to receive: line 35

To create a datagram for receiving, we only need to specify a byte array to hold the

datagram data. In this case we know the exact size of the packet that we are expecting,

which is the same size as the packet we sent.

7. Send the datagram: lines 37–56

The Socket class uses UDP specific methods for sending and receiving called

SendTo() and ReceiveFrom(). Since datagrams may be lost, we must be prepared

to retransmit the datagram. We loop sending and attempting a receive of the echo

reply up to five times.

■ Send the datagram: line 41

The Socket class uses the SendTo() method for transmitting the datagram to the

address and port specified in the specified EndPoint.

■ Handle datagram reception: lines 45–56

ReceiveFrom() blocks until it either receives a datagram or the timer expires.

Timer expiration is indicated by a SocketException with the ErrorCode property

set to 10060 with a Message of “connection timed out” (see the Appendix for more

56 Chapter 2: Basic Sockets ■

on ErrorCode). If the timer expires, we increment the send attempt count (tries) and

start over. After the maximum number of tries, the while loop exits without receiv-

ing the datagram. If Receive() succeeds, we set the loop flag receivedResponse to

true, causing the loop to exit.

8. Print reception results: lines 58–63

If we received a datagram, receivedResponse is true, and we can print the datagram

data.

9. Close the socket: line 65

2.5.5 Socket Flags

The SocketFlags enumeration provides some additional ways to alter the default behav-

ior of individual Send()/SendTo() and Receive()/ReceiveFrom() calls. To use socket

flags the appropriate flag enumeration is simply passed as an argument to the send

or receive method. Although it is beyond the scope of this book to describe all the

socket flags available (see page 47 for a list), we present a simple code example here for

SocketFlags.Peek.

Peek allows you to view the contents of the next Receive()/ ReceiveFrom() without

actually dequeuing the results from the network-system buffer. What this means is that

you can create a copy of the contents of the next read, but the subsequent read will return

the same bytes again.3 In theory this can be used to check the contents of the next read

and have the application make a decision on what to do based on that advance knowledge.

In practice, this is extremely inefficient (and, indeed, not always reliable [22]), and it is

almost always better to read the contents first and decide what to do with them afterwards.

However, we have included a code snippet here to illustrate the use of SocketFlags:

Socket s = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);

// Bind and/or Connect, create buffer
:::

// Peek at the data without dequeuing it from the network buffer
int len = s.Receive(buf, 0, buf.Length, SocketFlags.Peek);

// This Receive will return (at least) the same data as the prior
// Receive, but this time it will be dequeued from the network buffer
len = s.Receive(buf, 0, buf.Length, SocketFlags.None);

3In fact, if more bytes have been received over the network since the peek, the subsequent read might
return more data than the peek. The point is that unlike a nonpeek read, the bytes returned were not
removed from the buffer and are still available to be read again.

■ 2.6 Exercises 57

See TcpEchoPeekClient.cs on the book’s website (www.mtp.com/practical/
csharpsockets) for an implementation of the echo client that peeks at the echo reply prior

to dequeuing it.

2.6 Exercises

1. For TcpEchoServer.cs, we explicitly specify the port to the socket in the constructor.

We said that a socket must have a port for communication, yet we do not specify a

port in TcpEchoClient.cs. How is the echo client’s socket assigned a port?

2. When you make a phone call, it is usually the callee that answers with “Hello.”

What changes to our client and server example would be needed to implement this?

3. What happens if a TCP server never calls an accept method (Accept(), Accept-
Socket(), or AcceptTcpClient())? What happens if a TCP client sends data on a

socket that has not yet been accepted at the server?

4. Servers are supposed to run for a long time without stopping—therefore, they must

be designed to provide good service no matter what their clients do. Examine the

server in the examples (TcpEchoServer.cs and UdpEchoServer.cs) and list anything

you can think of that a client might do to cause it to give poor service to other clients.

Suggest improvements to fix the problems that you find.

5. Modify TcpEchoServer.cs to read and write only a single byte at a time, sleeping one

second between each byte. Verify that TcpEchoClient.cs requires multiples reads to

successfully receive the entire echo string, even though it sent the echo string with

one Write().

6. Modify TcpEchoServer.cs to read and write a single byte and then close the socket.

What happens when the TcpEchoClient sends a multibyte string to this server?

What is happening?

7. Modify UdpEchoServer.cs so that it only echoes every other datagram it receives.

Verify that UdpEchoClientTimeoutSocket.cs retransmits datagrams until it either

receives a reply or exceeds the number of retries.

8. Verify experimentally the size of the largest message you can send and receive using

UDP.

9. While UdpEchoServer.cs explicitly specifies its local port in the constructor, we do

not specify the local port in UdpEchoClientTimeoutSocket.cs. How is the UDP echo

client’s socket given a port number? (Hint: The answer is different than the answer

for TCP.)

This Page Intentionally Left Blank

c h a p t e r 3

Sending and Receiving Messages

When writing programs to communicate via sockets, you will generally be imple-

menting an application protocol of some sort. Typically you use sockets because your

program needs to provide information to, or use information provided by, another

program. There is no magic: Sender and receiver must agree on how this information

will be encoded, who sends what information when, and how the communication will be

terminated. In our echo example, the application protocol is trivial: neither the client’s nor

the server’s behavior is affected by the contents of the bytes they exchange. Because most

applications require that the behaviors of client and server depend upon the information
they exchange, application protocols are usually more complicated.

The TCP/IP protocols transport bytes of user data without examining or modifying

them. This allows applications great flexibility in how they encode their information for

transmission. For various reasons, most application protocols are defined in terms of

discrete messages made up of sequences of fields. Each field contains a specific piece

of information encoded as a sequence of bits. The application protocol specifies exactly

how these sequences of bits are to be formatted by the sender and interpreted, or parsed,

by the receiver so that the latter can extract the meaning of each field. About the only

constraint imposed by TCP/IP is that information must be sent and received in chunks

whose length in bits is a multiple of eight. From now on, then, we consider messages to

be sequences of bytes. Given this, it may be helpful to think of a transmitted message as

a sequence of numbers, each between 0 and 255 inclusive (that being the range of binary

values that can be encoded in 8 bits—1 byte).

As a concrete example for this chapter, let’s consider the problem of transferring

price quote information between vendors and buyers. A simple quote for some quantity

59

60 Chapter 3: Sending and Receiving Messages ■

of a particular item might include the following information:

Item number: A large integer identifying the item

Item description: A text string describing the item

Unit price: The cost per item in cents

Quantity: The number of units offered at that price

Discounted?: Whether the price includes a discount

In stock?: Whether the item is in stock

We collect this information in a class ItemQuote.cs. For convenience in viewing the infor-

mation in our program examples, we include a ToString() method. Throughout this

chapter, the variable item refers to an instance of ItemQuote.

ItemQuote.cs

0 using System; // For String and Boolean
1

2 public class ItemQuote {
3

4 public long itemNumber; // Item identification number
5 public String itemDescription; // String description of item
6 public int quantity; // Number of items in quote (always >= 1)
7 public int unitPrice; // Price (in cents) per item
8 public Boolean discounted; // Price reflect a discount?
9 public Boolean inStock; // Item(s) ready to ship?

10

11 public ItemQuote() {}
12

13 public ItemQuote(long itemNumber, String itemDescription,
14 int quantity, int unitPrice, Boolean discounted, Boolean inStock) {
15 this.itemNumber = itemNumber;
16 this.itemDescription = itemDescription;
17 this.quantity = quantity;
18 this.unitPrice = unitPrice;
19 this.discounted = discounted;
20 this.inStock = inStock;
21 }
22

23 public override String ToString() {
24 String EOLN = "\n";
25 String value = "Item# = " + itemNumber + EOLN +
26 "Description = " + itemDescription + EOLN +

■ 3.1 Encoding Information 61

27 "Quantity = " + quantity + EOLN +
28 "Price (each) = " + unitPrice + EOLN +
29 "Total Price = " + (quantity ∗ unitPrice);
30

31 if (discounted)
32 value += " (discounted)";
33 if (inStock)
34 value += EOLN + "In Stock" + EOLN;
35 else
36 value += EOLN + "Out of Stock" + EOLN;
37

38 return value;
39 }
40 }

ItemQuote.cs

3.1 Encoding Information

What if a client program needs to obtain quote information from a vendor program? The

two programs must agree on how the information contained in the ItemQuote will be

represented as a sequence of bytes “on the wire”—sent over a TCP connection or carried

in a UDP datagram. (Note that everything in this chapter also applies if the “wire” is a file

that is written by one program and read by another.) In our example, the information to

be represented consists of integers, Booleans, and a character string.

Transmitting information via the network in the .NET framework requires that it be

written to a NetworkStream (of a TcpClient or TcpListener) or written in a byte array to

a Socket or UdpClient. What this means is that the only data types to which these oper-

ations can be applied are bytes and arrays of bytes. As a strongly typed language, C#

requires that other types—String, int, and so on—be explicitly converted to these trans-

mittable types. Fortunately, the language has a number of built-in facilities that make such

conversions more convenient. Before dealing with the specifics of our example, however,

we focus on some basic concepts of representing information as sequences of bytes for

transmission.

3.1.1 Text

Old-fashioned text—strings of printable (displayable) characters—is perhaps the most

common form of information representation. When the information to be transmitted is

natural language, text is the most natural representation. Text is convenient for other

62 Chapter 3: Sending and Receiving Messages ■

forms of information because humans can easily deal with it when printed or displayed;

numbers, for example, can be represented as strings of decimal digits.

To send text, the string of characters is translated into a sequence of bytes according

to a character set. The canonical example of a character encoding system is the venerable

American Standard Code for Information Interchange (ASCII), which defines a one-to-one

mapping between a set of the most commonly used printable characters in English and

binary values. For example, in ASCII the digit 0 is represented by the byte value 48, 1 by

49, and so on up to 9, which is represented by the byte value 57. ASCII is adequate for

applications that only need to exchange English text. As the economy becomes increasingly

globalized, however, applications need to deal with other languages, including many that

use characters for which ASCII has no encoding, and even some (e.g., Chinese) that use

more than 256 characters and thus require more than 1 byte per character to encode.

Encodings for the world’s languages are defined by companies and by standards bodies.

Unicode is the most widely recognized such character encoding; it is standardized by the

International Organization for Standardization (ISO).

Fortunately, the .NET framework provides good support for internationalization.

.NET provides classes that can be used to encode text into ASCII, Unicode, or several

variants of Unicode (UTF-7 and UTF-8). Standard Unicode defines a 16-bit (2-byte) code

for each character and thus supports a much larger set of characters than ASCII. In fact,

the Unicode standard currently defines codes for over 49,000 characters and covers “the

principal written languages and symbol systems of the world” [23]. .NET supports a num-

ber of additional encodings as well, and provides a clean separation between its internal

representation and the encoding used when characters are input or output. The default

encoding for C# may vary depending on regional operating system settings but is usu-

ally UTF-8, which supports the entire Unicode character set. (UTF-8, also known as USC

Transformation Format 8-bit form, encodes characters in 8 bits when possible to save

space, utilizing 16 bits only when necessary.) The default encoding is referenced via

System.Text.Encoding.Default.

The System.Text encoding classes provide several mechanisms for converting

between different character sets. The ASCIIEncoding, UnicodeEncoding, UTF7Encoding,

and UTF8-Encoding classes all provide GetBytes() and GetString() methods to convert

from String to byte array or vice versa in the specified encoding. The Encoding class also

contains static versions of some character set classes (ASCII and Unicode) that contain the

same methods. The GetBytes() method returns the sequence of bytes that represent the

given string in encoding of the class used. Similarly, the GetString() method of encod-

ing classes takes a byte array and returns a String instance containing the sequence of

characters represented by the byte sequence according to the invoked encoding class.

Suppose the value of item.itemNumber is 123456. Using ASCII, that part of the string

representation of item produced by ToString() would be encoded as

105 116 101 109 35 61 49 50 51 52 53 54

'i' 't' 'e' 'm' '#' '=' '1' '2' '3' '4' '5' '6'

■ 3.1 Encoding Information 63

Using the “ISO8859_1” encoding would produce the same sequence of byte values, because

the International Standard 8859-1 encoding (which is also known as ISO Latin 1) is an

extension of ASCII: It maps the characters of the ASCII set to the same values as ASCII.

However, if we used the North American version of IBM’s Extended Binary Coded Decimal
Interchange Code (EBCDIC), the result would be rather different:

137 163 133 148 123 126 241 242 243 244 245 246

'i' '6''t' 'e' 'm' '#' '=' '1' '2' '3' '4' '5'

If we used Unicode, the result would use 2 bytes per character, with 1 byte containing

zero and the other byte containing the same value as with ASCII. Obviously, the primary

requirement in dealing with character encodings is that the sender and receiver must agree

on the code to be used.

3.1.2 Binary Numbers

Transmitting large numbers as text strings is not very efficient. Each character in the digit

string has one of only 10 values, which can be represented using, on average, less than

4 bits per digit. Yet the standard character codes invariably use at least 8 bits per char-

acter. Moreover, it is inconvenient to perform arithmetic computation and comparisons

with numbers encoded as strings. For example, a receiving program computing the total

cost of a quote (quantity times unit price) will generally need to convert both amounts

to the local computer’s native (binary) integer representation before the computation can

be performed. For a more compact and computation-friendly encoding, we can transmit

the values of the integers in our data as binary values. To send binary integers as byte

sequences, the sender and receiver need to agree on several things:

■ Integer size: How many bits are used to represent the integer? The sizes of C#’s integer

types are fixed by the language definition—shorts are 2 bytes, ints are 4, longs are

8—so a C# sender and receiver only need to agree on the primitive type to be used.

(Communicating with a non-C# application may be more complex.) The size of an

integer type, along with the encoding (signed/unsigned, see below), determines the

maximum and minimum values that can be represented using that type.

■ Byte order: Are the bytes of the binary representation written to the stream (or placed

in the byte array) from left to right or right to left? If the most significant byte is

transmitted first and the least significant byte is transmitted last, that’s the so-called

big-endian order. Little-endian is, of course, just the opposite.

■ Signed or unsigned: Signed integers are usually transmitted in two’s-complement
representation. For k-bit numbers, the two’s-complement encoding of the negative

integer −n, 1 ≤ n ≤ 2k−1, is the binary value of 2k − n; and the nonnegative integer

p, 0 ≤ p ≤ 2k−1 − 1, is encoded simply by the k-bit binary value of p. Thus, given k

64 Chapter 3: Sending and Receiving Messages ■

bits, two’s complement can represent values in the range −2k−1 through 2k−1 −1, and

the most significant bit (msb) tells whether the value is positive (msb = 0) or negative

(msb = 1). On the other hand, a k-bit unsigned integer can encode values in the range

0 through 2k − 1 directly.

Consider again the itemNumber. It is a long, so its binary representation is 64 bits

(8 bytes). If its value is 12345654321 and the encoding is big-endian, the 8 bytes sent

would be (with the byte on the left transmitted first):

0 223 219 188 490 0 2

If, on the other hand, the value was sent in little-endian order, the transmitted byte values

would be:

0222321918849 00

If the sender uses big-endian when the receiver is expecting little-endian, the receiver will

end up with an itemNumber of 3583981154337816576! Most network protocols specify

big-endian byte order; in fact it is sometimes called network byte order . However, Intel-,

AMD-, and Alpha-based architectures (which are the primary architectures used by the

Microsoft Windows operating system) are by default little-endian order. If your program

will only be communicating with other C# programs on Windows operating systems, this

may not a problem. However, if you are communicating with a program using another

hardware architecture, or written in another language (e.g., Java, which uses big-endian

byte order by default), byte order can become an issue. For this reason, it is always good

form to convert outgoing multibyte binary numbers to big-endian, and incoming multibyte

binary numbers from big-endian to “local” format. This conversion capability is provided

in the .NET framework by both the IPAddress class static methods NetworkToHostOrder()
and HostToNetworkOrder(), and constructor options in the UnicodeEncoding class.

Note that the most significant bit of the 64-bit binary value of 12345654321 is 0,

so its signed (two’s-complement) and unsigned representations are the same. More gen-

erally, the distinction between k-bit signed and unsigned values is irrelevant for values

that lie in the range 0 through 2k−1 − 1. However, protocols often use unsigned integers;

C# does provide support for unsigned integers, however, that support is not considered

CLR (Common Language Runtime) compliant. The .NET CLR was designed to provide

language portability, and therefore is restricted to using the least common denominator

of its supported languages, which does not include unsigned types. There is no immediate

drawback to using the non-CLR compliant unsigned types, other than possible cross-

language integration issues (particularly with Java/J++, which do not define unsigned

numbers as base types).

As with strings, .NET provides mechanisms to turn primitive integer types into

sequences of bytes and vice versa. In particular, the BinaryWriter class has a Write()

■ 3.2 Composing I/O Streams 65

method that is overloaded to accept different type arguments, including short, int, and

long. These methods allow those types to be written out directly in two’s-complement

representation (explicit encoding needs to be specified in the BinaryWriter constructor

or manual conversion methods need to be invoked to convert the values to big-endian).

Similarly, the BinaryReader class has methods ReadInt32() (for int), ReadInt16() (for

short) and ReadInt64() (for long). The next section describes some ways to compose

instances of these classes.

3.2 Composing I/O Streams

The .NET framework’s stream classes can be composed to provide powerful encoding and

decoding facilities. For example, we can wrap the NetworkStream of a TcpClient instance in

a BufferedStream instance to improve performance by buffering bytes temporarily and

flushing them to the underlying channel all at once. We can then wrap that instance in a

BinaryWriter to send primitive data types. We would code this composition as follows:

TcpClient client = new TcpClient(server, port);
BinaryWriter out = new BinaryWriter(new BufferedStream(client.GetStream()));

Figure 3.1 demonstrates this composition. Here, we write our primitive data values, one

by one, to BinaryWriter, which writes the binary data to BufferedStream, which buffers

the data from the three writes, and then writes once to the socket NetworkStream, which

controls writing to the network. We create a identical composition with a BinaryReader on

the other endpoint to efficiently receive primitive data types.

A complete description of the .NET I/O API is beyond the scope of this text; however,

Table 3.1 provides a list of some of the relevant .NET I/O classes as a starting point for

exploiting its capabilities.

NetworkStream

NetworkStream

BufferedStream

BufferedStreamBinaryReader

BinaryWriter

ReadDouble()

ReadInt32()

ReadInt16()

Write((double)3.14)

Write((int)343)

Write((short)800)

Network

14 bytes

14 bytes

3.14
343
800

3.14
343
800

3.14 (8 bytes)
343 (4 bytes)
800 (2 bytes)

3.14 (8 bytes)
343 (4 bytes)
800 (2 bytes)

14 bytes

14 bytes

Figure 3.1: Stream composition.

66 Chapter 3: Sending and Receiving Messages ■

I/O Class Function

BufferedStream Performs buffering for I/O optimization.
BinaryReader/BinaryWriter Handles read/write for primitive data types.
MemoryStream Creates streams that have memory as a backing store, and

can be used in place of temporary buffers and files.
Stream Abstract base class of all streams.
StreamReader/StreamWriter Read and write character input/output to/from a stream in

a specified encoding.
StringReader/StringWriter Read and write character input/output to/from a string in a

specified encoding.
TextReader/TextWriter Abstract base class for reading and writing character

input/output. Base class of StreamReader/Writer and
StringReader/Writer.

Table 3.1: .NET I/O Classes

3.3 Framing and Parsing

Converting data to wire format is, of course, only half the story; the original information

must be recovered at the receiver from the transmitted sequence of bytes. Application

protocols typically deal with discrete messages, which are viewed as collections of fields.

Framing refers to the problem of enabling the receiver to locate the beginning and end

of the message in the stream and of the fields within the message. Whether information

is encoded as text, as multibyte binary numbers, or as some combination of the two,

the application protocol must enable the receiver of a message to determine when it has

received all of the message and to parse it into fields.

If the fields in a message all have fixed sizes and the message is made up of a fixed

number of fields, then the size of the message is known in advance and the receiver can

simply read the expected number of bytes into a byte[] buffer. This technique was used

in TCPEchoClient.cs, where we knew the number of bytes to expect from the server.

However, when some field (and/or the whole message) can vary in length, as with the

itemDescription in our example, we do not know beforehand how many bytes to read.

Marking the end of the message is easy in the special case of the last message to be

sent on a TCP connection: the sender simply closes the sending side of the connection

(using Shutdown(SocketShutdown.Send)1 or Close()) after sending the message. After the

receiver reads the last byte of the message, it receives an end-of-stream indication (i.e.,

Read() returns 0), and thus can tell that it has as much of the message as there will ever be.

The same principle applies to the last field in a message sent as a UDP datagram packet.

1The Shutdown() method is only available in .NET in the Socket class. See Section 4.6 for a mechanism
to utilize this functionality for .NET’s higher level socket classes as well.

■ 3.3 Framing and Parsing 67

In all other cases, the message itself must contain additional framing information

enabling the receiver to parse the field/message. This information typically takes one of

the following forms:

■ Delimiter : The end of the variable-length field or message is indicated by a unique
marker, an explicit byte sequence that immediately follows, but does not occur in,

the data.

■ Explicit length: The variable-length field or message is preceded by a (fixed-size)

length field that tells how many bytes it contains.

The delimiter-based approach is often used with variable-length text: A particular

character or sequence of characters is defined to mark the end of the field. If the entire

message consists of text, it is straightforward to read in characters using an instance of

a TextReader (which handles the byte-to-character translation), looking for the delimiter

sequence, and returning the character string preceding it.

Unfortunately, the TextReader classes do not support reading binary data. Moreover,

the relationship between the number of bytes read from the underlying NetworkStream
and the number of characters read from the TextReader is unspecified, especially with

multibyte encodings. When a message uses a combination of the two framing methods

mentioned above, with some explicit-length-delimited fields and others using character

markers, this can create problems.

The class Framer, defined below, allows NetworkStream to be parsed as a sequence

of fields delimited by specific byte patterns. The static method Framer.nextToken() reads

bytes from the given Stream until it encounters the given sequence of bytes or the stream

ends. All bytes read up to that point are then returned in a new byte array. If the end of

the stream is encountered before any data is read, null is returned. The delimiter can be

different for each call to nextToken(), and the method is completely independent of any

encoding.

A couple of words of caution are in order here. First, nextToken() is terribly ineffi-

cient; for real applications, a more efficient pattern-matching algorithm should be used.

Second, when using Framer.nextToken() with text-based message formats, the caller must

convert the delimiter from a character string to a byte array and the returned byte array

to a character string. In this case the character encoding needs to distribute over concate-

nation, so that it doesn’t matter whether a string is converted to bytes all at once or a little

bit at a time.

To make this precise, let E() represent an encoding—that is, a function that maps

character sequences to byte sequences. Let a and b be sequences of characters, so E(a)

denotes the sequence of bytes that is the result of encoding a. Let “+” denote con-

catenation of sequences, so a + b is the sequence consisting of a followed by b. This

explicit-conversion approach (as opposed to parsing the message as a character stream)

should only be used with encodings that have the property that E(a + b) = E(a) + E(b); other-

wise, the results may be unexpected. Although most encodings supported in .NET have

this property, some do not. In particular, the big- and little-endian versions of Unicode

68 Chapter 3: Sending and Receiving Messages ■

encode a String by first outputting a byte-order indicator (the 2-byte sequence 254–255

for big-endian, and 255–254 for little-endian), followed by the 16-bit Unicode value of each

character in the String, in the indicated byte order. Thus, the encoding of “Big fox” using

big-endian Unicode with a byte-order marker is as follows:

254 255 0 66 0 105 0 103 0 032 111102 00 120

[mark] 'B' 'i' 'g' ' ' 'f' 'o' 'x'

The encoding, on the other hand, of “Big” concatenated with the encoding of “fox,” using

the same encoding, is as follows:

254 254255 2550 66 0 105 0 103 0 032 111102 00 120

[mark] 'x'[mark]'B' 'i' 'g' ' ' 'f' 'o'

Using either of these encodings to convert the delimiter results in a byte sequence

that begins with the byte-order marker. The encodings BigEndianUnicode and Unicode
(little-endian) omit the byte-order marker, and the UnicodeEncoding class omits it unless

specified otherwise in the constructor, so they are suitable for use with Framer.
nextToken().

Framer.cs

0 using System; // For Boolean
1 using System.IO; // For Stream
2

3 public class Framer {
4

5 public static byte[] nextToken(Stream input, byte[] delimiter) {
6 int nextByte;
7

8 // If the stream has already ended, return null
9 if ((nextByte = input.ReadByte()) == -1)

10 return null;
11

12 MemoryStream tokenBuffer = new MemoryStream();
13 do {
14 tokenBuffer.WriteByte((byte)nextByte);
15 byte[] currentToken = tokenBuffer.ToArray();
16 if (endsWith(currentToken, delimiter)) {

■ 3.3 Framing and Parsing 69

17 int tokenLength = currentToken.Length - delimiter.Length;

18 byte[] token = new byte[tokenLength];

19 Array.Copy(currentToken, 0, token, 0, tokenLength);

20 return token;

21 }

22 } while ((nextByte = input.ReadByte()) != -1); // Stop on EOS

23 return tokenBuffer.ToArray(); // Received at least one byte

24 }

25

26 // Returns true if value ends with the bytes in the suffix

27 private static Boolean endsWith(byte[] value, byte[] suffix) {

28 if (value.Length < suffix.Length)

29 return false;

30

31 for (int offset=1; offset <= suffix.Length; offset++)

32 if (value[value.Length - offset] != suffix[suffix.Length - offset])

33 return false;

34

35 return true;

36 }

37 }

Framer.cs

1. nextToken(): lines 5–24

Read from input stream until delimiter or end-of-stream.

■ Test for end-of-stream: lines 8–10

If the input stream is already at end-of-stream, return null.

■ Create a buffer to hold the bytes of the token: line 12

We use a MemoryStream to collect the data byte by byte. The MemoryStream class

allows a byte array to be handled like a stream of bytes.

■ Put the last byte read into the buffer: line 14

■ Get a byte array containing the input so far: line 15

It is very inefficient to create a new byte array on each iteration, but it is simple.

■ Check whether the delimiter is a suffix of the current token: lines 16–21

If so, create a new byte array containing the bytes read so far, minus the delimiter

suffix, and return it.

■ Get next byte: line 22

■ Return the current token on end-of-stream: line 23

70 Chapter 3: Sending and Receiving Messages ■

2. endsWith(): lines 26–36

■ Compare lengths: lines 28–29

The candidate sequence must be at least as long as the delimiter to be a match.

■ Compare bytes, return false on any difference: lines 31–33

Compare the last suffix.Length bytes of the token to the delimiter.

■ If no difference, return true: line 35

3.4 Implementing Wire Formats in C#

To emphasize the fact that the same information can be represented “on the wire” in differ-

ent ways, we define an interface ItemQuoteEncoder, which has a single method that takes

an ItemQuote instance and converts it to a byte[] that can be written to a NetworkStream
or sent as is for datagrams or direct Sockets.

ItemQuoteEncoder.cs

0 public interface ItemQuoteEncoder {
1 byte[] encode(ItemQuote item);
2 }

ItemQuoteEncoder.cs

The specification of the corresponding decoding functionality is given by the

ItemQuoteDecoder interface, which has methods for parsing messages received via streams

or in byte arrays used for UDP packets. Each method performs the same function: extract-

ing the information for one message and returning an ItemQuote instance containing the

information.

ItemQuoteDecoder.cs

0 using System.IO; // For Stream
1

2 public interface ItemQuoteDecoder {
3 ItemQuote decode(Stream source);
4 ItemQuote decode(byte[] packet);
5 }

ItemQuoteDecoder.cs

Sections 3.4.1 and 3.4.2 present two different implementations for these interfaces: one

using a text representation, the other, a hybrid encoding.

■ 3.4 Implementing Wire Formats in C# 71

3.4.1 Text-Oriented Representation

Clearly we can represent the ItemQuote information as text. One possibility is simply to

transmit the output of the ToString() method using a suitable character encoding. To

simplify parsing, the approach in this section uses a different representation, in which

the values of itemNumber, itemDescription, and so on are transmitted as a sequence of

delimited text fields. The sequence of fields is as follows:

〈Item Number〉 〈Description〉 〈Quantity〉 〈Price〉 〈Discount?〉 〈In Stock?〉
The Item Number field (and the other integer-valued fields, Quantity and Price) contain

a sequence of decimal-digit characters followed by a space character (the delimiter). The

Description field is just the description text. However, because the text itself may include

the space character, we have to use a different delimiter; we choose the newline character,

represented as \n in C#, as the delimiter for this field.

Boolean values can be encoded in several different ways. Although a single-byte

Boolean is one of the overloaded arguments in the BinaryWriter Write() method, in order

to keep our wire format slightly more language agnostic (and to allow it to communicate

with the Java versions of these programs [25]) we opted not to use it. Another possibility is

to include the string “true” or the string “false,” according to the value of the variable. A

more compact approach (and the one used here) is to encode both values (discounted and

inStock) in a single field; the field contains the character ‘d’ if discounted is true, indicating

that the item is discounted, and the character ‘s’ if inStock is true, indicating that the item

is in stock. The absence of a character indicates that the corresponding Boolean is false,

so this field may be empty. Again, a different delimiter (\n) is used for this final field, to

make it slightly easier to recognize the end of the message even when this field is empty.

A quote for 23 units of item number 12345, which has the description “AAA Battery” and

a price of $14.45, and which is both in stock and discounted, would be represented as

12345 AAA Battery\n23 1445 ds\n

Constants needed by both the encoder and the decoder are defined in the ItemQuote-
TextConst interface, which defines “ascii” as the default encoding (we could just as easily

have used any other encoding as the default) and 1024 as the maximum length (in bytes)

of an encoded message. Limiting the length of an encoded message limits the flexibility of

the protocol, but it also provides for sanity checks by the receiver.

ItemQuoteTextConst.cs

0 using System; // For String
1

2 public class ItemQuoteTextConst {
3 public static readonly String DEFAULT_CHAR_ENC = "ascii";
4 public static readonly int MAX_WIRE_LENGTH = 1024;
5 }

ItemQuoteTextConst.cs

72 Chapter 3: Sending and Receiving Messages ■

ItemQuoteEncoderText implements the text encoding.

ItemQuoteEncoderText.cs

0 using System; // For String, Activator

1 using System.IO; // For IOException

2 using System.Text; // For Encoding

3

4 public class ItemQuoteEncoderText : ItemQuoteEncoder {

5

6 public Encoding encoding; // Character encoding

7

8 public ItemQuoteEncoderText() : this(ItemQuoteTextConst.DEFAULT_CHAR_ENC) {

9 }

10

11 public ItemQuoteEncoderText(string encodingDesc) {

12 encoding = Encoding.GetEncoding(encodingDesc);

13 }

14

15 public byte[] encode(ItemQuote item) {

16

17 String EncodedString = item.itemNumber + " ";

18 if (item.itemDescription.IndexOf(’\n’) != -1)

19 throw new IOException("Invalid description (contains newline)");

20 EncodedString = EncodedString + item.itemDescription + "\n";

21 EncodedString = EncodedString + item.quantity + " ";

22 EncodedString = EncodedString + item.unitPrice + " ";

23

24 if (item.discounted)

25 EncodedString = EncodedString + "d"; // Only include ’d’ if discounted

26 if (item.inStock)

27 EncodedString = EncodedString + "s"; // Only include ’s’ if in stock

28 EncodedString = EncodedString + "\n";

29

30 if (EncodedString.Length > ItemQuoteTextConst.MAX_WIRE_LENGTH)

31 throw new IOException("Encoded length too long");

32

33 byte[] buf = encoding.GetBytes(EncodedString);
34

■ 3.4 Implementing Wire Formats in C# 73

35 return buf;
36

37 }
38 }

ItemQuoteEncoderText.cs

1. Constructors: lines 8–13

If no encoding is explicitly specified, we use the default encoding specified in the con-

stant interface. The Encoding class method GetEncoding() takes a string argument

that specifies the encoding to use, in this case the default is the constant “ascii” from

ItemQuoteTextConst.cs.

2. encode() method: lines 15–37

■ Write the first integer, followed by a space delimiter: line 17

■ Check for delimiter: lines 18–19

Make sure that the field delimiter is not contained in the field itself. If it is, throw

an exception.

■ Output itemDescription and other integers: lines 20–22

■ Write the flag characters if the Booleans are true: lines 24–27

■ Write the delimiter for the flag field: line 28

■ Validate that the encoded length is within the maximum size limit:
lines 30–31

■ Convert the encoded string from the given encoding to a byte array: line 33

■ Return the byte array: line 35

The decoding class ItemQuoteDecoderText simply inverts the encoding process.

ItemQuoteDecoderText.cs

0 using System; // For String, Activator
1 using System.Text; // For Encoding
2 using System.IO; // For Stream
3

4 public class ItemQuoteDecoderText : ItemQuoteDecoder {
5

6 public Encoding encoding; // Character encoding
7

8 public ItemQuoteDecoderText() : this (ItemQuoteTextConst.DEFAULT_CHAR_ENC) {
9 }

74 Chapter 3: Sending and Receiving Messages ■

10

11 public ItemQuoteDecoderText(String encodingDesc) {
12 encoding = Encoding.GetEncoding(encodingDesc);
13 }
14

15 public ItemQuote decode(Stream wire) {
16 String itemNo, description, quant, price, flags;
17

18 byte[] space = encoding.GetBytes(" ");
19 byte[] newline = encoding.GetBytes("\n");
20

21 itemNo = encoding.GetString(Framer.nextToken(wire, space));
22 description = encoding.GetString(Framer.nextToken(wire, newline));
23 quant = encoding.GetString(Framer.nextToken(wire, space));
24 price = encoding.GetString(Framer.nextToken(wire, space));
25 flags = encoding.GetString(Framer.nextToken(wire, newline));
26

27 return new ItemQuote(Int64.Parse(itemNo), description,
28 Int32.Parse(quant),
29 Int32.Parse(price),
30 (flags.IndexOf(’d’) != -1),
31 (flags.IndexOf(’s’) != -1));
32 }
33

34 public ItemQuote decode(byte[] packet) {
35 Stream payload = new MemoryStream(packet, 0, packet.Length, false);
36 return decode(payload);
37 }
38 }

ItemQuoteDecoderText.cs

1. Variables and constructors: lines 6–13

■ Encoding: line 6

The encoding used in the decoder must be the same as in the encoder!

■ Constructors: lines 8–13

If no encoding is given at construction time, the default defined in ItemQuote-
TextConst is used.

2. Stream decode(): lines 15–32

■ Convert delimiters: lines 18–19

We get the encoded form of the delimiters ahead of time, for efficiency.

■ 3.4 Implementing Wire Formats in C# 75

■ Call the nextToken() method for each field: lines 21–25

For each field, we call Framer.nextToken() with the appropriate delimiter and

convert the result according to the specified encoding.

■ Construct ItemQuote: lines 27–31

Convert to native types using the wrapper conversion methods and test for the

presence of the flag characters in the last field.

3. Byte array decode(): lines 34–37

For UDP packets, convert the byte array to a stream, and then call the stream decode()
method.

3.4.2 Combined Data Representation

Our next encoding represents the integers of the ItemQuote as fixed-size, binary numbers:

itemNumber as 64 bits, and quantity and unitPrice as 32 bits. It encodes the Boolean values

as flag bits, which occupy the smallest possible space in an encoded message. Also, the

variable-length string itemDescription is encoded in a field with an explicit length indica-

tion. The binary encoding and decoding share coding constants in the ItemQuoteBinConst
interface.

ItemQuoteBinConst.cs

0 using System; // For String
1

2 public class ItemQuoteBinConst {
3 public static readonly String DEFAULT_CHAR_ENC = "ascii";
4

5 public static readonly byte DISCOUNT_FLAG = 1 << 7;
6 public static readonly byte IN_STOCK_FLAG = 1 << 0;
7 public static readonly int MAX_DESC_LEN = 255;
8 public static readonly int MAX_WIRE_LENGTH = 1024;
9 }

ItemQuoteBinConst.cs

ItemQuoteEncoderBin implements the binary encoding.

ItemQuoteEncoderBin.cs

0 using System; // For String, Activator
1 using System.IO; // For BinaryWriter
2 using System.Text; // For Encoding
3 using System.Net; // For IPAddress

76 Chapter 3: Sending and Receiving Messages ■

4

5 public class ItemQuoteEncoderBin : ItemQuoteEncoder {
6

7 public Encoding encoding; // Character encoding
8

9 public ItemQuoteEncoderBin() : this (ItemQuoteBinConst.DEFAULT_CHAR_ENC) {
10 }
11

12 public ItemQuoteEncoderBin(String encodingDesc) {
13 encoding = Encoding.GetEncoding(encodingDesc);
14 }
15

16 public byte[] encode(ItemQuote item) {
17

18 MemoryStream mem = new MemoryStream();
19 BinaryWriter output = new BinaryWriter(new BufferedStream(mem));
20

21 output.Write(IPAddress.HostToNetworkOrder(item.itemNumber));
22 output.Write(IPAddress.HostToNetworkOrder(item.quantity));
23 output.Write(IPAddress.HostToNetworkOrder(item.unitPrice));
24

25 byte flags = 0;
26 if (item.discounted)
27 flags |= ItemQuoteBinConst.DISCOUNT_FLAG;
28 if (item.inStock)
29 flags |= ItemQuoteBinConst.IN_STOCK_FLAG;
30 output.Write(flags);
31

32 byte[] encodedDesc = encoding.GetBytes(item.itemDescription);
33 if (encodedDesc.Length > ItemQuoteBinConst.MAX_DESC_LEN)
34 throw new IOException("Item Description exceeds encoded length limit");
35 output.Write((byte)encodedDesc.Length);
36 output.Write(encodedDesc);
37

38 output.Flush();
39

40 return mem.ToArray();
41 }
42 }

ItemQuoteEncoderBin.cs

■ 3.4 Implementing Wire Formats in C# 77

1. Constants, variables, and constructors: lines 7–14

2. encode(): lines 16–41

■ Set up Output: lines 18–19

A MemoryStream collects the bytes of the encoded message. Encapsulating the

MemoryStream in a BinaryWriter allows the use of its methods for writing binary

integers.

■ Write integers: lines 21–23

The Write() method is overloaded to write all of the basic C# data types. The static

IPAddress.HostToNetworkOrder() method converts each integer to big-endian

order, and is also overloaded to accept longs, ints, and shorts, and returns the

same size integer as it was passed.

■ Write Booleans as flags: lines 25–30

Encode each Boolean using a single bit in a flag byte. Initialize the flag byte to 0,

then set the appropriate bits to 1, if either discounted or inStock is true. (The bits

are defined in the ItemQuoteBinConst interface to be the most and least significant

bits of the byte, respectively.) Write the byte to the stream.

■ Convert description string to bytes: line 32

Convert the text to bytes in the specified encoding.

■ Check description length: lines 33–34

We are going to use an explicit length encoding for the string, with a single byte

giving the length. The biggest value that byte can contain is 255 bytes, so the

length of the encoded string must not exceed 255 bytes. If it does, we throw an

exception.

■ Write encoded string: lines 35–36

Write the length of the encoded string, followed by the bytes in the buffer.

■ Flush output stream, return bytes: line 38

Ensure that all bytes are flushed from the MemoryStream to the underlying byte

buffer.

■ Return the byte array to be sent: line 40

ItemQuoteDecoderBin implements the corresponding decoder function.

ItemQuoteDecoderBin.cs

0 using System; // For String, Activator
1 using System.IO; // For Stream
2 using System.Text; // For Encoding
3 using System.Net; // For IPAddress
4

5 public class ItemQuoteDecoderBin : ItemQuoteDecoder {
6

78 Chapter 3: Sending and Receiving Messages ■

7 public Encoding encoding; // Character encoding
8

9 public ItemQuoteDecoderBin() : this (ItemQuoteTextConst.DEFAULT_CHAR_ENC) {
10 }
11

12 public ItemQuoteDecoderBin(String encodingDesc) {
13 encoding = Encoding.GetEncoding(encodingDesc);
14 }
15

16 public ItemQuote decode(Stream wire) {
17 BinaryReader src = new BinaryReader(new BufferedStream(wire));
18

19 long itemNumber = IPAddress.NetworkToHostOrder(src.ReadInt64());
20 int quantity = IPAddress.NetworkToHostOrder(src.ReadInt32());
21 int unitPrice = IPAddress.NetworkToHostOrder(src.ReadInt32());
22 byte flags = src.ReadByte();
23

24 int stringLength = src.Read(); // Returns an unsigned byte as an int
25 if (stringLength == -1)
26 throw new EndOfStreamException();
27 byte[] stringBuf = new byte[stringLength];
28 src.Read(stringBuf, 0, stringLength);
29 String itemDesc = encoding.GetString(stringBuf);
30

31 return new ItemQuote(itemNumber,itemDesc, quantity, unitPrice,
32 ((flags & ItemQuoteBinConst.DISCOUNT_FLAG) == ItemQuoteBinConst.DISCOUNT_FLAG),

33 ((flags & ItemQuoteBinConst.IN_STOCK_FLAG) == ItemQuoteBinConst.IN_STOCK_FLAG));

34 }
35

36 public ItemQuote decode(byte[] packet) {
37 Stream payload = new MemoryStream(packet, 0, packet.Length, false);
38 return decode(payload);
39 }
40 }

ItemQuoteDecoderBin.cs

1. Constants, variables, and constructors: lines 7–14

2. Stream decode: lines 16–34

■ 3.4 Implementing Wire Formats in C# 79

■ Wrap the input Stream: line 17

Using the given Stream, construct a BinaryReader so we can make use of the methods

readInt64(), readInt32(), and readByte() for reading binary data types from the

input.

■ Read integers: lines 19–21

Read the integers back in the same order in which they were written out. The

readInt64() method reads 8 bytes (64 bits) and constructs a (signed) long. The

readInt32() method reads 4 bytes and constructs a (signed) int. The static method

IPAddress.NetworkToHostOrder() converts from big-endian (network) byte order-

ing to the host’s native byte ordering; if the native ordering is big-endian, the data

is returned unmodified. Either will throw an EndOfStreamException if the stream

ends before the requisite number of bytes is read.

■ Read flag byte: line 22

The flag byte is next; the values of the individual bits will be checked later.

■ Read string length: lines 24–26

The next byte contains the length of the encoded string. Note that we use the Read()
method, which returns the contents of the next byte read as an integer between 0

and 255, and that we read it into an int.

■ Allocate buffer and read encoded string: lines 27–29

Once we know how long the encoded string is, we allocate a buffer and call

Read() specifying the expected number of bytes. Read() will throw an EndOfStream-
Exception if the stream ends before the buffer is filled. Note the advantage of

the length-prefixed String representation: bytes do not have to be interpreted as

characters until you have them all.

■ Check flags: lines 32–33

The expressions used as parameters in the call to the constructor illustrate the stan-

dard method of checking whether a particular bit is set (equal to 1) in an integer type.

3. Byte array decode: lines 36–39

Simply wrap the packet’s byte array in a MemoryStream and pass to the stream-decoding

method.

3.4.3 Sending and Receiving

The encodings presented above can be used with both the NetworkStreams of .NET’s

TcpClient and TcpListener, and with the byte arrays of the UdpClient class. We show

the TCP usage first.

SendTcp.cs

0 using System; // For String, Console, ArgumentException
1 using System.Net.Sockets; // For TcpClient, NetworkStream
2

80 Chapter 3: Sending and Receiving Messages ■

3 class SendTcp {
4

5 static void Main(string[] args) {
6

7 if (args.Length != 2) // Test for correct # of args
8 throw new ArgumentException("Parameters: <Destination> <Port>");
9

10 String server = args[0]; // Destination address
11 int servPort = Int32.Parse(args[1]); // Destination port
12

13 // Create socket that is connected to server on specified port
14 TcpClient client = new TcpClient(server, servPort);
15 NetworkStream netStream = client.GetStream();
16

17 ItemQuote quote = new ItemQuote(1234567890987654L, "5mm Super Widgets",
18 1000, 12999, true, false);
19

20 // Send text-encoded quote
21 ItemQuoteEncoderText coder = new ItemQuoteEncoderText();
22 byte[] codedQuote = coder.encode(quote);
23 Console.WriteLine("Sending Text-Encoded Quote (" +
24 codedQuote.Length + " bytes): ");
25 Console.WriteLine(quote);
26

27 netStream.Write(codedQuote, 0, codedQuote.Length);
28

29 // Receive binary-encoded quote
30 ItemQuoteDecoder decoder = new ItemQuoteDecoderBin();
31 ItemQuote receivedQuote = decoder.decode(client.GetStream());
32 Console.WriteLine("Received Binary-Encode Quote:");
33 Console.WriteLine(receivedQuote);
34

35 netStream.Close();
36 client.Close();
37 }
38 }

SendTcp.cs

1. TcpClient setup: lines 13–15

2. Send using text encoding: lines 20–27

3. Receive using binary encoding: lines 29–33

■ 3.4 Implementing Wire Formats in C# 81

RecvTcp.cs

0 using System; // For Console, Int32, ArgumentException
1 using System.Net; // For IPAddress
2 using System.Net.Sockets; // For TcpListener, TcpClient
3

4 class RecvTcp {
5

6 static void Main(string[] args) {
7

8 if (args.Length != 1) // Test for correct # of args
9 throw new ArgumentException("Parameters: <Port>");

10

11 int port = Int32.Parse(args[0]);
12

13 // Create a TCPListener to accept client connections
14 TcpListener listener = new TcpListener(IPAddress.Any, port);
15 listener.Start();
16

17 TcpClient client = listener.AcceptTcpClient(); // Get client connection
18

19 // Receive text-encoded quote
20 ItemQuoteDecoder decoder = new ItemQuoteDecoderText();
21 ItemQuote quote = decoder.decode(client.GetStream());
22 Console.WriteLine("Received Text-Encoded Quote:");
23 Console.WriteLine(quote);
24

25 // Repeat quote with binary-encoding, adding 10 cents to the price
26 ItemQuoteEncoder encoder = new ItemQuoteEncoderBin();
27 quote.unitPrice += 10; // Add 10 cents to unit price
28 Console.WriteLine("Sending (binary)...");
29 byte[] bytesToSend = encoder.encode(quote);
30 client.GetStream().Write(bytesToSend, 0, bytesToSend.Length);
31

32 client.Close();
33 listener.Stop();
34 }
35 }

RecvTcp.cs

1. TcpListener setup: lines 13–15

2. Accept client connection: line 17

82 Chapter 3: Sending and Receiving Messages ■

3. Receive and print out a text-encoded message: lines 19–23

4. Send a binary-encoded message: lines 25–30

Note that before sending, we add 10 cents to the unit price given in the original

message.

To demonstrate the use of the encoding and decoding classes with datagrams, we

include a simple UDP sender and receiver. Since this is very similar to the TCP code, we do

not include any code description.

SendUdp.cs

0 using System; // For String, Int32, ArgumentException
1 using System.Net.Sockets; // For UdpClient
2

3 class SendUdp {
4

5 static void Main(string[] args) {
6

7 if (args.Length != 2 && args.Length != 3) // Test for correct # of args
8 throw new ArgumentException("Parameter(s): <Destination>" +
9 " <Port> [<encoding]");

10

11 String server = args[0]; // Server name or IP address
12 int destPort = Int32.Parse(args[1]); // Destination port
13

14 ItemQuote quote = new ItemQuote(1234567890987654L, "5mm Super Widgets",
15 1000, 12999, true, false);
16

17 UdpClient client = new UdpClient(); // UDP socket for sending
18

19 ItemQuoteEncoder encoder = (args.Length == 3 ?
20 new ItemQuoteEncoderText(args[2]) :
21 new ItemQuoteEncoderText());
22

23 byte[] codedQuote = encoder.encode(quote);
24

25 client.Send(codedQuote, codedQuote.Length, server, destPort);
26

27 client.Close();
28 }
29 }

SendUdp.cs

■ 3.5 Wrapping Up 83

RecvUdp.cs

0 using System; // For Int32, ArgumentException
1 using System.Net; // For IPEndPoint
2 using System.Net.Sockets; // For UdpClient
3

4 class RecvUdp {
5

6 static void Main(string[] args) {
7

8 if (args.Length != 1 && args.Length != 2) // Test for correct # of args
9 throw new ArgumentException("Parameter(s): <Port> [<encoding>]");

10

11 int port = Int32.Parse(args[0]); // Receiving Port
12

13 UdpClient client = new UdpClient(port); // UDP socket for receiving
14

15 byte[] packet = new byte[ItemQuoteTextConst.MAX_WIRE_LENGTH];
16 IPEndPoint remoteIPEndPoint = new IPEndPoint(IPAddress.Any, port);
17

18 packet = client.Receive(ref remoteIPEndPoint);
19

20 ItemQuoteDecoderText decoder = (args.Length == 2 ? // Which encoding
21 new ItemQuoteDecoderText(args[1]) :
22 new ItemQuoteDecoderText());
23

24 ItemQuote quote = decoder.decode(packet);
25 Console.WriteLine(quote);
26

27 client.Close();
28 }
29 }

RecvUdp.cs

3.5 Wrapping Up

We have seen how C# data types can be encoded in different ways and how messages

can be constructed from various types of information. You may be aware that the

.NET framework includes serialization capabilities: The System.Xml.Serializable and

84 Chapter 3: Sending and Receiving Messages ■

System.Runtime.Serialization.Formatters name spaces contain classes that support

writing a C# class instance to an XML (eXtensible Markup Language) file, binary format,

or SOAP (Simple Object Access Protocol) message suitable for sending over a network

connection. Once at the remote host, the file can be deserialized into a instance of that

object. Similarly, the System.Runtime.Remoting name space allows the ability to create a

remote proxy object that a client can use to invoke methods on a server’s object. It might

seem that having these interfaces available would eliminate the need for what we have

described in this chapter, and that is true to some extent. However, it is not always the

case for several reasons.

First, the encoded forms produced by Serializable may not be very efficient. They

may include information that is meaningless outside the context of the Common Language

Runtime (CLR), and may also incur overhead to provide flexibility that may not be needed.

Second, Serializable and Remoting cannot be used when a different wire format has

already been specified—for example, by a standardized protocol. And finally, custom-

designed classes have to provide their own implementations of the serialization interfaces

anyway.

A basic tenet of good protocol design is that the protocol should constrain the imple-

mentor as little as possible and should minimize assumptions about the platform on

which the protocol will be implemented. We therefore avoid the use of Serializable and

Remoting in this book, and instead use more direct encoding and decoding methods.

3.6 Exercises

1. What happens if the Encoder uses a different encoding than the Decoder?

2. Rewrite the binary encoder so that the Item Description is terminated by “\r\n”

instead of being length encoded. Use Send/RecvTcp to test this new encoding.

3. The nextToken() method of Framer assumes that either the delimiter or an end-of-

stream (EoS) terminates a token; however, finding the EoS may be an error in some

protocols. Rewrite nextToken() to include a second Boolean parameter. If the param-

eter value is true, then the EoS terminates a token without error; otherwise, the EoS

generates an error.

4. Using the code provided on the website of the Java version of this book ([25],

www.mkp.com/practical/javasockets), run a C# receiver and a Java sender, and

vice versa. Verify that the contents are sent and received properly. Try removing

the NetworkToHostOrdering() and HostToNetworkOrdering() method calls and

rerunning the experiment.

c h a p t e r 4

Beyond the Basics

The client and server examples in Chapter 2 demonstrate the basic model for

programming with sockets in C#. The next step is to apply these concepts in vari-

ous programming models, such as nonblocking I/O, threading, asynchronous I/O, and

multicasting.

4.1 Nonblocking I/O

Socket I/O calls may block for several reasons. Data input methods Read(), Receive(),

and ReceiveFrom() block if data is not available. Data output methods Write(), Send(),

or SendTo() may block if there is not sufficient space to buffer the transmitted data.

The Accept(), AcceptSocket(), and AcceptTcpClient() methods of the Socket and

TcpListener classes all block until a connection has been established (see Section 5.4).

Meanwhile, long round-trip times, high error rate connections, and slow (or deceased)

servers may cause connection establishment to take a long time. In all of these cases, the

method returns only after the request has been satisfied. Of course, a blocking method call

halts the execution of the application. And we have not even considered the possibility

of a buggy or malicious application on the other end of the connection!

What about a program that has other tasks to perform while waiting for call comple-

tion (e.g., updating the “busy” cursor or responding to user requests)? These programs

may have no time to wait on a blocked method call. Or what about lost UDP datagrams?

Fortunately, several mechanisms are available for avoiding unwanted blocking behaviors.

We deal with three here: (1) I/O status prechecking, (2) blocking timeout calls, and (3) non-

blocking sockets. Table 4.1 summarizes the techniques according to the type of socket you

are using. Later, we’ll look at a fourth method, called asynchronous I/O, where instead

85

86 Chapter 4: Beyond the Basics ■

I/O Operation Socket Type Blocking Avoidance Options

Accepting a Socket 1. Set the socket to nonblocking before calling
new connection Accept().

2. Call Poll() or Select() on the socket before calling
Accept().

TcpListener 1. Only call AcceptSocket() or AcceptTcpClient() if
Pending() returns true.

Making a Socket 1. Set the socket to nonblocking before calling
new connection Connect().

2. Call Poll() or Select() on the socket before calling
Connect().

Send Socket 1. Set the socket to nonblocking before calling Send() or
SendTo().

2. Call Poll() or Select() on the socket before calling
Send() or SendTo().

3. Set the SendTimeout socket option before calling Send()
or SendTo().

TcpClient 1. Set the SendTimeout property before calling Write() on
the network stream.

Receive Socket 1. Set the socket to nonblocking before calling Receive()
or ReceiveFrom().

2. Call Poll() or Select() on the socket before calling
Receive() or ReceiveFrom().

3. Set the ReceiveTimeout socket option before calling
Receive() or ReceiveFrom().

4. Only call Receive() or ReceiveFrom() if property
Available > 0.

TcpClient 1. Set the ReceiveTimeout property before calling Read()
on the network stream.

2. Only call Read() on the TcpClient’s network stream if
the DataAvailable property is true. (The Length
property is not supported for NetworkStream.)

Table 4.1: Blocking Avoidance Mechanisms

of blocking, an I/O call immediately returns and agrees to notify you later when it has

completed.

4.1.1 I/O Status Prechecking

One way to avoid blocking behavior is not to make calls that will block. How is this

achieved? For some of the I/O calls that can block, we can precheck the I/O status to

■ 4.1 Nonblocking I/O 87

see if I/O would block. If the precheck indicates that the call would not block, we can pro-

ceed with the call knowing that the operation will complete immediately. If the precheck

indicates that the call would block, then other processing can be done and another check

can be done later.

When reading data with a TcpClient this can be achieved by checking the DataAvail-
able property of the associated NetworkStream, which returns true if there is data to be

read and false if there is not.

TcpClient client = new TcpClient(server, port);
NetworkStream netstream = client.GetStream();
:::

if (netstream.DataAvailable) {
int len = netstream.Read(buf, 0, buf.Length);

} else {
// No data available, do other processing

}

A TcpListener can precheck if there are any connections pending before calling

AcceptTcpClient() or AcceptSocket() using the Pending() method. Pending() returns

true if there are connections pending, false if there are not.

TcpListener listener = new TcpListener(ipaddr, port);
listener.Start();
:::

if (listener.Pending()) {
// Connections are pending, process them
TcpClient client = listener.AcceptTcpClient();

:::

} else {
Console.WriteLine("No connections pending at this time.");

}

With the Socket class the availability of data to read can be prechecked using the

Available property, which is of type int. Available always contains the number of bytes

received from the network but not yet read; thus, if Available is greater than zero, a read

operation will not block.

Socket sock = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);

sock.Connect(serverEndPoint);
:::

if (sock.Available > 0) {
// We have data to read
sock.Receive(buf, buf.Length, 0);

:::

88 Chapter 4: Beyond the Basics ■

} else {
Console.WriteLine("No data available to read at this time.");

}

The Poll() method of the Socket class also allows prechecking, among other

features, and is discussed in the next section.

4.1.2 Blocking Calls with Timeout

In the previous section we demonstrated how to check if a call would block prior to exe-

cuting it. Sometimes, however, we may actually need to know that some I/O event has not
happened for a certain time period. For example, in Chapter 2 we saw UdpEchoClientTime-
outSocket.cs, where the client sends a datagram to the server and then waits to receive a

response. If a datagram is not received before the timer expires, ReceiveFrom() unblocks

to allow the client to handle the datagram loss. Utilizing socket options, the Socket class

supports setting a bound on the maximum time (in milliseconds) to block on sending or

receiving data, using the SocketOption.SendTimeout and SocketOption.ReceiveTimeout
properties.

Socket sock = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);

:::

sock.SetSocketOption(SocketOptionLevel.Socket,
SocketOptionName.SendTimeout,
3000); // Set a 3 second timeout on Send()/SendTo()

If you are using the TcpClient class, it contains the SendTimeout and ReceiveTimeout
properties which can be set or retrieved.

TcpClient client = new TcpClient(server, port);
:::

client.ReceiveTimeout = 5000; // Set a 5 second timeout on Read()

In both cases if the specified time elapses before the method returns, a Socket-
Exception is thrown with the Socket’s ErrorCode property set to 10060 (connection timed

out).

The Poll() method of Socket offers more functionality. Poll() takes two options:

an integer number of microseconds (not milliseconds) to wait for a response, and a mode
that indicates what type of operation we are waiting for. The wait time can be negative,

indicating an indefinite wait time (basically, a block). The wait time can also be zero,

which allows Poll() to be used for prechecking. The mode is set to one of the SelectMode
enumeration values SelectRead, SelectWrite, or SelectError, depending on what we are

checking for. Poll() returns true if the socket has an operation pending for the requested

mode, or false if it does not.

■ 4.1 Nonblocking I/O 89

// Block for 1 second waiting for data to read or incoming connections
if (sock.Poll(1000000, SelectMode.SelectRead)) {

// Socket has data to read or an incoming connection
} else {

// No data to read or incoming connections
}

In general, polling is considered very inefficient because it requires repeated calls

to check status. This is sometimes called “busy waiting,” because it involves continu-

ously looping back to check for events that probably happen infrequently (at least in

relation to the number of checks made). Some ways to avoid polling are discussed later

in this chapter, including using the Socket method Select(), which allows blocking

on multiple sockets at once (Section 4.2), threads (Section 4.3), and asynchronous I/O

(Section 4.4).

A Write() or Send() call blocks until the last byte written is copied into the TCP

implementation’s local buffer; if the available buffer space is smaller than the size of

the write, some data must be successfully transferred to the other end of the connection

before the call will return (see Section 5.1 for details). Thus, the amount of time that

a large data send may block is controlled by the receiving application. Therefore, any

protocol that sends a large enough amount of data over a socket instance can block for

an unlimited amount of time. (See Section 5.2 for further discussion on the consequences

of this.)

Establishing a Socket connection to a specified host and port will block until either

the connection is established, the connection is refused, or a system-imposed timeout

occurs. The system-imposed timeout is long (on the order of minutes), and C# does not

provide any means of shortening it.

Suppose we want to implement the echo server with a limit on the amount of time

taken to service each client. That is, we define a target, TIMELIMIT, and implement the server

in such a way that after TIMELIMIT milliseconds, the server instance is terminated.

One approach simply has the server instance keep track of the amount of the remain-

ing time, and use the send and receive timeout settings described above to ensure

that reads and writes do not block for longer than that time. TcpEchoServerTimeout.cs
implements this approach.

TcpEchoServerTimeout.cs

0 using System; // For Console, Int32, ArgumentException, Environment
1 using System.Net; // For IPAddress
2 using System.Net.Sockets; // For TcpListener, TcpClient
3

4 class TcpEchoServerTimeout {
5

6 private const int BUFSIZE = 32; // Size of receive buffer

90 Chapter 4: Beyond the Basics ■

7 private const int BACKLOG = 5; // Outstanding conn queue max size
8 private const int TIMELIMIT = 10000; // Default time limit (ms)
9

10 static void Main(string[] args) {
11

12 if (args.Length > 1) // Test for correct # of args
13 throw new ArgumentException("Parameters: [<Port>]");
14

15 int servPort = (args.Length == 1) ? Int32.Parse(args[0]): 7;
16

17 Socket server = null;
18

19 try {
20 // Create a socket to accept client connections
21 server = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
22 ProtocolType.Tcp);
23

24 server.Bind(new IPEndPoint(IPAddress.Any, servPort));
25

26 server.Listen(BACKLOG);
27 } catch (SocketException se) {
28 Console.WriteLine(se.ErrorCode + ": " + se.Message);
29 Environment.Exit(se.ErrorCode);
30 }
31

32 byte[] rcvBuffer = new byte[BUFSIZE]; // Receive buffer
33 int bytesRcvd; // Received byte count
34 int totalBytesEchoed = 0; // Total bytes sent
35

36 for (;;) { // Run forever, accepting and servicing connections
37

38 Socket client = null;
39

40 try {
41

42 client = server.Accept(); // Get client connection
43

44 DateTime starttime = DateTime.Now;
45

46 // Set the ReceiveTimeout
47 client.SetSocketOption(SocketOptionLevel.Socket,
48 SocketOptionName.ReceiveTimeout,
49 TIMELIMIT);

■ 4.1 Nonblocking I/O 91

50

51 Console.Write("Handling client at " + client.RemoteEndPoint + " - ");
52

53 // Receive until client closes connection, indicated by 0 return value
54 totalBytesEchoed = 0;
55 while ((bytesRcvd = client.Receive(rcvBuffer, 0, rcvBuffer.Length,
56 SocketFlags.None)) > 0) {
57 client.Send(rcvBuffer, 0, bytesRcvd, SocketFlags.None);
58 totalBytesEchoed += bytesRcvd;
59

60 // Check elapsed time
61 TimeSpan elapsed = DateTime.Now - starttime;
62 if (TIMELIMIT - elapsed.TotalMilliseconds < 0) {
63 Console.WriteLine("Aborting client, timelimit " + TIMELIMIT +
64 "ms exceeded; echoed " + totalBytesEchoed + " bytes");
65 client.Close();
66 throw new SocketException(10060);
67 }
68

69 // Set the ReceiveTimeout
70 client.SetSocketOption(SocketOptionLevel.Socket,
71 SocketOptionName.ReceiveTimeout,
72 (int)(TIMELIMIT - elapsed.TotalMilliseconds));
73 }
74 Console.WriteLine("echoed {0} bytes.", totalBytesEchoed);
75

76 client.Close(); // Close the socket. We are done with this client!
77

78 } catch (SocketException se) {
79 if (se.ErrorCode == 10060) { // WSAETIMEDOUT: Connection timed out
80 Console.WriteLine("Aborting client, timelimit " + TIMELIMIT +
81 "ms exceeded; echoed " + totalBytesEchoed + " bytes");
82 } else {
83 Console.WriteLine(se.ErrorCode + ": " + se.Message);
84 }
85 client.Close();

86 }

87 }

88 }

89 }

TcpEchoServerTimeout.cs

92 Chapter 4: Beyond the Basics ■

1. Argument parsing and setup: lines 12–17

2. Create socket, call Bind() and Listen: lines 19–30

3. Main server loop: lines 36–87

■ Accept client connection: line 42

■ Record start time: line 44

■ Set initial timeout: lines 46–47

Set the initial Receive() timeout to the TIMELIMIT since minimal time should not

have elapsed yet.

■ Receive loop: lines 55–73

Receive data and send echo reply. After each receive and send, update and check

the elapsed time and abort if necessary. To abort we throw the same exception

a timeout during the Receive() would throw, which is a SocketException with

ErrorCode 10060. If we have not exceeded our timeout after the data transfer, reset

the Receive() timeout based on our new elapsed time before we loop around to

receive more data.

■ Successful completion: lines 74–76

If we successfully echo all the bytes within the timelimit, output the echoed byte

length and close the client socket.

■ Exception handling: lines 78–86

If we hit a timeout limit, output the appropriate message. Close the client socket

and allow the receive loop to continue and handle more clients.

4.1.3 Nonblocking Sockets

One solution to the problem of undesirable blocking is to change the behavior of the socket

so that all calls are nonblocking. For such a socket, if a requested operation can be com-

pleted immediately the call’s return will succeed. If the requested operation cannot be

completed immediately, it throws a SocketException with the ErrorCode property set to

10035 with a Message of “Operation would block.” The standard approach is to catch this

exception, continue with processing, and try again later.

The Socket class contains a Blocking property that, when set to false, causes all

methods on that socket that would normally block until their operation completed to

no longer block. Like polling, nonblocking sockets typically involve some busy-waiting

and are not very efficient. Better methods to implement this are discussed with Select()
(Section 4.2), threads (Section 4.3), and asynchronous I/O (Section 4.4)

Here we present a version of the TcpEchoClient.cs program from Chapter 2 that

has been modified to use a nonblocking socket. An alternative version that utilizes the

Poll() method instead is also available on the book’s website (www.mkp.com/practical/

csharpsockets).

■ 4.1 Nonblocking I/O 93

TcpNBEchoClient.cs

0 using System; // For String, Environment
1 using System.Text; // For Encoding
2 using System.IO; // For IOException
3 using System.Net; // For IPEndPoint, Dns
4 using System.Net.Sockets; // For TcpClient, NetworkStream, SocketException
5 using System.Threading; // For Thread.Sleep
6

7 public class TcpNBEchoClient {
8

9 static void Main(string[] args) {
10

11 if ((args.Length < 2) || (args.Length > 3)) // Test for correct # of args
12 throw new ArgumentException("Parameters: <Server> <Word> [<Port>]");
13

14 String server = args[0]; // Server name or IP address
15

16 // Convert input String to bytes
17 byte[] byteBuffer = Encoding.ASCII.GetBytes(args[1]);
18

19 // Use port argument if supplied, otherwise default to 7
20 int servPort = (args.Length == 3) ? Int32.Parse(args[2]) : 7;
21

22 // Create Socket and connect
23 Socket sock = null;
24 try {
25 sock = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
26 ProtocolType.Tcp);
27

28 sock.Connect(new IPEndPoint(Dns.Resolve(server).AddressList[0], servPort));
29 } catch (Exception e) {
30 Console.WriteLine(e.Message);
31 Environment.Exit(-1);
32 }
33

34 // Receive the same string back from the server
35 int totalBytesSent = 0; // Total bytes sent so far
36 int totalBytesRcvd = 0; // Total bytes received so far
37

38 // Make sock a nonblocking Socket
39 sock.Blocking = false;
40

94 Chapter 4: Beyond the Basics ■

41 // Loop until all bytes have been echoed by server
42 while (totalBytesRcvd < byteBuffer.Length) {
43

44 // Send the encoded string to the server
45 if (totalBytesSent < byteBuffer.Length) {
46 try {
47 totalBytesSent += sock.Send(byteBuffer, totalBytesSent,
48 byteBuffer.Length - totalBytesSent,
49 SocketFlags.None);
50 Console.WriteLine("Sent a total of {0} bytes to server...", totalBytesSent);

51

52 } catch (SocketException se) {
53 if (se.ErrorCode == 10035) {//WSAEWOULDBLOCK: Resource temporarily unavailable

54 Console.WriteLine("Temporarily unable to send, will retry again later.");

55 } else {
56 Console.WriteLine(se.ErrorCode + ": " + se.Message);
57 sock.Close();
58 Environment.Exit(se.ErrorCode);
59 }
60 }
61 }
62

63 try {
64 int bytesRcvd = 0;
65 if ((bytesRcvd = sock.Receive(byteBuffer, totalBytesRcvd,
66 byteBuffer.Length - totalBytesRcvd,
67 SocketFlags.None)) == 0) {
68 Console.WriteLine("Connection closed prematurely.");
69 break;
70 }
71 totalBytesRcvd += bytesRcvd;
72 } catch (SocketException se) {
73 if (se.ErrorCode == 10035) // WSAEWOULDBLOCK: Resource temporarily unavailable

74 continue;
75 else {
76 Console.WriteLine(se.ErrorCode + ": " + se.Message);
77 break;
78 }
79 }
80 doThing();
81 }
82 Console.WriteLine("Received {0} bytes from server: {1}", totalBytesRcvd,
83 Encoding.ASCII.GetString(byteBuffer, 0, totalBytesRcvd));

■ 4.2 Multiplexing 95

84

85 sock.Close();
86 }
87

88 static void doThing() {
89 Console.Write(".");
90 Thread.Sleep(2000);
91 }
92 }

TcpNBEchoClient.cs

1. Setup and argument parsing: lines 11–20

2. Socket and IPEndPoint setup: lines 22–32

Create a Socket instance, create an IPEndPoint instance for the server from the

command-line parameters, and connect to the server.

3. Set Blocking to false: lines 38–39

4. Main loop: lines 41–81

■ Loop until all bytes sent have been echoed: line 42

■ Send bytes to server: lines 44–50

In case all bytes cannot be sent in one send, continue trying to send until the

number of bytes sent matches the send byte buffer size.

■ Handle exceptions: lines 52–60

If we get a SocketException with an ErrorCode of 10035, the send would have

blocked. This is not necessarily a fatal error, so we output an informational

message and allow the loop to continue.

■ Receive echo reply: lines 63–79

Attempt to do a Receive() in nonblocking mode. If there is no data to receive, a

SocketException is thrown with ErrorCode set to 10035. As per normal Receive()
semantics, a Receive() return of 0 indicates that the remote server has closed the

connection. Other processing is simulated here by method doThing().

5. Output echo reply and close socket: lines 82–86

4.2 Multiplexing

4.2.1 The Socket Select() Method

Our programs so far have dealt with I/O over a single channel; each version of our echo

server deals with only one client connection at a time. However, it is often the case that

96 Chapter 4: Beyond the Basics ■

an application needs the ability to do I/O on multiple channels simultaneously. For exam-

ple, we might want to provide echo service on several ports at once. The problem with

this becomes clear as soon as you consider what happens after the server creates and

binds a socket to each port. It is ready to Accept() connections, but which socket to

choose? A call to Accept() or Receive() on one socket may block, causing established

connections to another socket to wait unnecessarily. This problem can be solved using

nonblocking sockets, but in that case the server ends up continually polling the sockets,

which is wasteful. We would like to let the server block until some socket is ready for I/O.

Fortunately the socket API provides a way to do this. With the static Socket Select()
method, a program can specify a list of sockets to check for pending I/O; Select() sus-

pends the program until one or more of the sockets in the list becomes ready to perform

I/O. The list is modified to only include those Socket instances that are ready.

Select() takes four arguments, the first three of which are lists of Sockets, and the

fourth of which is a time in microseconds (not milliseconds) indicating how long to wait.

A negative value on the wait time indicates an indefinite wait period. The socket lists can be

any class that implements the IList interface (this includes ArrayList, used in our exam-

ple). The lists represent what event you are waiting for; in order, they represent checking

read readiness, write readiness, and error existence. The lists should be populated with

references to the Socket instances prior to call. When the call completes, the lists will

contain only the Socket references that meet that list’s criteria (readability, writability, or

error existence). If you don’t want to check for all these conditions in a single Select()
call, you can pass null for up to two of the lists.

Let’s reconsider the problem of running the echo service on multiple ports. If we

create a socket for each port, we could list those Sockets in an ArrayList. A call to

Select(), given such a list, would suspend the program until an echo request arrives for

at least one of our sockets. We could then handle the connection setup and echo for that

particular socket. Our next example, TcpEchoServerSelect.cs, implements this model.

The server runs on three ports: 8080, 8081, and 8082.

TcpEchoServerSelectSocket.cs

0 using System; // For Console, Int32, ArgumentException, Environment
1 using System.Net; // For IPAddress
2 using System.Collections; // For ArrayList
3 using System.Net.Sockets; // For Socket, SocketException
4

5 class TcpEchoServerSelectSocket {
6

7 private const int BUFSIZE = 32; // Size of receive buffer
8 private const int BACKLOG = 5; // Outstanding conn queue max size
9 private const int SERVER1_PORT = 8080; // Port for second echo server

10 private const int SERVER2_PORT = 8081; // Port for second echo server

■ 4.2 Multiplexing 97

11 private const int SERVER3_PORT = 8082; // Port for third echo server
12 private const int SELECT_WAIT_TIME = 1000; // Microsecs for Select() to wait
13

14 static void Main(string[] args) {
15

16 Socket server1 = null;
17 Socket server2 = null;
18 Socket server3 = null;
19

20 try {
21 // Create a socket to accept client connections
22 server1 = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
23 ProtocolType.Tcp);
24 server2 = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
25 ProtocolType.Tcp);
26 server3 = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
27 ProtocolType.Tcp);
28

29 server1.Bind(new IPEndPoint(IPAddress.Any, SERVER1_PORT));
30 server2.Bind(new IPEndPoint(IPAddress.Any, SERVER2_PORT));
31 server3.Bind(new IPEndPoint(IPAddress.Any, SERVER3_PORT));
32

33 server1.Listen(BACKLOG);
34 server2.Listen(BACKLOG);
35 server3.Listen(BACKLOG);
36 } catch (SocketException se) {
37 Console.WriteLine(se.ErrorCode + ": " + se.Message);
38 Environment.Exit(se.ErrorCode);
39 }
40

41 byte[] rcvBuffer = new byte[BUFSIZE]; // Receive buffer
42 int bytesRcvd; // Received byte count
43

44 for (;;) { // Run forever, accepting and servicing connections
45

46 Socket client = null;
47

48 // Create an array list of all three sockets
49 ArrayList acceptList = new ArrayList();
50 acceptList.Add(server1);
51 acceptList.Add(server2);
52 acceptList.Add(server3);
53

98 Chapter 4: Beyond the Basics ■

54 try {
55

56 // The Select call will check readable status of each socket
57 // in the list
58 Socket.Select(acceptList, null, null, SELECT_WAIT_TIME);
59

60 // The acceptList will now contain ONLY the server sockets with
61 // pending connections:
62 for (int i=0; i < acceptList.Count; i++) {
63 client = ((Socket)acceptList[i]).Accept(); // Get client connection
64

65 IPEndPoint localEP = (IPEndPoint)((Socket)acceptList[i]).LocalEndPoint;

66 Console.Write("Server port " + localEP.Port);

67 Console.Write(" - handling client at " + client.RemoteEndPoint + " - ");

68

69 // Receive until client closes connection, indicated by 0 return value

70 int totalBytesEchoed = 0;
71 while ((bytesRcvd = client.Receive(rcvBuffer, 0, rcvBuffer.Length,
72 SocketFlags.None)) > 0) {
73 client.Send(rcvBuffer, 0, bytesRcvd, SocketFlags.None);
74 totalBytesEchoed += bytesRcvd;
75 }
76 Console.WriteLine("echoed {0} bytes.", totalBytesEchoed);
77

78 client.Close(); // Close the socket. We are done with this client!
79 }
80

81 } catch (Exception e) {
82 Console.WriteLine(e.Message);
83 client.Close();
84 }
85 }
86 }
87 }

TcpEchoServerSelectSocket.cs

1. Constant definition: lines 7–12

Define the three ports the echo server will respond to.

2. Create, bind, and listen on all three socket ports: lines 20–39

All of these calls are nonblocking by default.

■ 4.3 Threads 99

3. Main server loop: lines 44–85

■ Put the socket instances into an ArrayList: lines 48–52

■ Select(): lines 56–58

Use the ArrayList of sockets as input to the Select() call. As the first input the

sockets in the array will be checked for incoming connections, and any sockets

without connections will be removed from the list.

■ Loop through and process incoming connections: lines 60–79

From this point on the processing is the same as in our previous examples. Each

socket in the array has its Accept() method called to retrieve the client Socket.

The client socket’s Receive() and Send() methods are called to read and echo the

data, and the socket is closed when complete.

4.3 Threads

In the preceding section we demonstrated how to use the nonblocking I/O features of

.NET to run other code while waiting on socket operations. There are two main drawbacks

to this nonblocking approach. First, polling for completion of socket methods is fairly

inefficient. If you don’t poll soon enough, time is lost after the socket operation completes.

If you poll too soon, the operation will not be ready and you’ll either have to block or check

back again later.

Second, the number of connections that can be handled concurrently is limited. If a

client connects while another is already being serviced, the server will not echo the new

client’s data until it has finished with the current client, although the new client will be

able to send data as soon as it connects. This type of server is known as an iterative server .

Iterative servers handle clients sequentially, finishing with one client before servicing the

next. They work best for applications where each client requires a small, bounded amount

of server connection time; however, if the time to handle a client can be long, the wait

experienced by subsequent clients may be unacceptable.

To demonstrate the problem, add a 10-second sleep using Thread.Sleep(10000)1

after the TcpClient connect call in TcpEchoClient.cs and experiment with several clients

simultaneously accessing the TCP echo server. Here the sleep operation simulates an

operation that takes significant time, such as slow file or network I/O. Note that a new

client must wait for all already-connected clients to complete before it gets service.

What we need is some way for each connection to proceed independently, without

interfering with other connections. That is where implementing threads comes in. Thread

programming is a very complex topic in itself and beyond the scope of this book, but for

our purposes you can conceptually think of threads as portions of code that can execute

concurrently. This allows one “thread of execution” to block on an operation while another

thread continues to run.

1You will need to add “using System.Threading;” at the beginning of the program.

100 Chapter 4: Beyond the Basics ■

The .NET API provides System.Threading class library for implementing threads. The

.NET threading capabilities are very flexible and allow a program to handle many network

connections simultaneously. Using threads, a single application can work on several tasks

concurrently. In our echo server, we can give responsibility for each client to an indepen-

dently executing thread. All of the examples we have seen so far consist of a single thread,

which simply executes the Main() method. In this section we describe two approaches to

coding concurrent servers, namely, thread-per-client, where a new thread is spawned to

handle each client connection, and thread pool, where a fixed, prespawned set of threads

work together to handle client connections.

To create a new thread in C# you create a new instance of the Thread class, which

as its argument takes a delegate method that will operate in its own thread. This thread

delegate is represented by the ThreadStart class, which takes the method to be run as its

argument. Once the Thread has been instantiated, the Start() method is called to begin

execution on that thread. For example, if you have created a method called runMyThread(),

the code to create and start the code running as its own thread would be:

using System.Threading;
:::

// Create a ThreadStart instance using your method as a delegate:
ThreadStart methodDelegate = new ThreadStart(runMyThread);

// Create a Thread instance using your delegate method:
Thread t = new Thread(methodDelegate);

// Start the thread
t.Start();

The new thread does not begin execution until its Start() method is invoked. When

the Start() method of an instance of Thread is invoked, the CLR causes the specified

method to be executed in a new thread, concurrently with all others. Meanwhile, the

original thread returns from its call to Start() and continues its execution independently.

(Note that directly calling the method without passing it to a Thread via a delegate has the

normal procedure-call semantics: the method is executed in the caller’s thread.) The exact

interleaving of thread execution is determined by several factors, including the implemen-

tation of the CLR, the load, the underlying OS, and the host configuration. For example,

on a uniprocessor system, threads share the processor sequentially; on a multiprocessor

system, multiple threads from the same application can run simultaneously on different

processors.

Note that the method delegate cannot take any arguments or return a value. Luckily,

there are mechanisms to circumvent both of these limitations. To pass arguments into

a Thread instance while maintaining data encapsulation, you could break your separate

thread code into its own class. For example, suppose you want to pass an instance of

TcpClient into your runMyThread() method. You could create a new class (e.g., MyThread-
Class) that contained the runMyThread() method, and pass the TcpClient instance into

■ 4.3 Threads 101

the class constructor. Then when you use a Thread to start the runMyThread() method,

it can access the TcpClient instance via a local variable.

To get data back from a Thread instance you need to set up a callback delegate

method. The Thread instance will then invoke this callback method to pass the data back.

The details of setting up a callback method are beyond the scope of this book; check the

MSDN library under System.Threading for more details.

We illustrate the approach of passing data to a Thread in a simple example that runs

a method of class instance MyThreadClass in its own thread. The method repeatedly prints

a greeting to the system output stream. The string greeting is passed as a parameter to

the class constructor, where it is stored as a class instance variable and accessed by the

thread when it is invoked.

ThreadExample.cs

0 using System; // For String
1 using System.Threading; // For Thread
2

3 class MyThreadClass {
4 // Class that takes a String greeting as input, then outputs that
5 // greeting to the console 10 times in its own thread with a random
6 // interval between each greeting.
7

8 private const int RANDOM_SLEEP_MAX = 500; // Max random milliseconds to sleep
9 private const int LOOP_COUNT = 10; // Number of times to print message

10

11 private String greeting; // Message to print to console
12

13 public MyThreadClass(String greeting) {
14 this.greeting = greeting;
15 }
16

17 public void runMyThread() {
18 Random rand = new Random();
19

20 for (int x=0; x < LOOP_COUNT; x++) {
21 Console.WriteLine("Thread-" + Thread.CurrentThread.GetHashCode() + ": " +
22 greeting);
23 try {
24 // Sleep 0 to RANDOM_SLEEP_MAX milliseconds
25 Thread.Sleep(rand.Next(RANDOM_SLEEP_MAX));
26 } catch (ThreadInterruptedException) {} // Will not happen
27 }

102 Chapter 4: Beyond the Basics ■

28 }
29 }
30

31 class ThreadExample {
32

33 static void Main(string[] args) {
34

35 MyThreadClass mtc1 = new MyThreadClass("Hello");
36 new Thread(new ThreadStart(mtc1.runMyThread)).Start();
37

38 MyThreadClass mtc2 = new MyThreadClass("Aloha");
39 new Thread(new ThreadStart(mtc2.runMyThread)).Start();
40

41 MyThreadClass mtc3 = new MyThreadClass("Ciao");
42 new Thread(new ThreadStart(mtc3.runMyThread)).Start();
43 }
44 }

ThreadExample.cs

1. MyThreadClass: lines 3–29

In order to pass state to the method we will be running as its own thread, we put the

method in its own class, and pass the state variables in the class constructor. In this

case the state is the string greeting to be printed.

■ Constructor: lines 13–15

Each instance of ThreadExample contains its own greeting string.

■ Initialize an instance of Random(): line 18

Used to generate a random number of sleep times.

■ for loop: line 20

Loop 10 times.

■ Print the thread id and instance greeting: lines 21–22

The static method Thread.CurrentThread.GetHashCode() returns a unique id

reference to the thread from which it is called.

■ Suspend thread: lines 24–26

After printing its instance’s greeting message, each thread sleeps for a random

amount of time (between 0 and 500 milliseconds) by calling the static method

Thread.Sleep(), which takes the number of milliseconds to sleep as a parameter.

The rand.Next(500) call returns a random int between 0 and 500. Thread.Sleep()
can be interrupted by another thread, in which case ThreadInterruptedException
is thrown. Our example does not include an interrupt call, so the exception will

not happen in this application.

■ 4.3 Threads 103

2. Main(): lines 33–43

Each of the three groupings of statements in Main() does the following: (1) creates

a new instance of MyThreadClass with a different greeting string; (2) passes the

runMyThread() method of the new instance to the constructor of ThreadStart;

(3) passes the ThreadStart instance to the constructor of Thread; and (4) calls the

new Thread instance’s Start() method. Each thread independently executes the

runMyThread() method of ThreadExample, while the Main() thread terminates.

Upon execution, an interleaving of the three greeting messages is printed to the

console. The exact interleaving of the numbers depends upon the factors mentioned

earlier.

4.3.1 Server Protocol

Since the two server approaches we are going to describe (thread-per-client and thread

pool) are independent of the particular client-server protocol, we want to be able to use

the same protocol code for both. In order to make the protocol used easily extensible, the

protocol classes will implement the IProtocol interface, defined in IProtocol.cs. This

simple interface has only one method, handleclient(), which has no arguments and a

void return type.

IProtocol.cs

0 public interface IProtocol {
1 void handleclient();
2 }

IProtocol.cs

The code for the echo protocol is given in the class EchoProtocol, which encapsu-

lates the implementation of the server side of the echo protocol. The idea is that the

server creates a separate instance of EchoProtocol for each connection, and protocol

execution begins when handleclient() is called on an instance. The code in handle-
client() is almost identical to the connection handling code in TcpEchoServer.cs, except

that a logging capability (described shortly) has been added. We can create a thread that

independently executes handleclient(), or we can invoke handleclient() directly.

EchoProtocol.cs

0 using System.Collections; // For ArrayList
1 using System.Threading; // For Thread
2 using System.Net.Sockets; // For Socket

104 Chapter 4: Beyond the Basics ■

3

4 class EchoProtocol : IProtocol {
5 public const int BUFSIZE = 32; // Byte size of IO buffer
6

7 private Socket clntSock; // Connection socket
8 private ILogger logger; // Logging facility
9

10 public EchoProtocol(Socket clntSock, ILogger logger) {
11 this.clntSock = clntSock;
12 this.logger = logger;
13 }
14

15 public void handleclient() {
16 ArrayList entry = new ArrayList();
17 entry.Add("Client address and port = " + clntSock.RemoteEndPoint);
18 entry.Add("Thread = " + Thread.CurrentThread.GetHashCode());
19

20 try {
21 // Receive until client closes connection, indicated by a SocketException
22 int recvMsgSize; // Size of received message
23 int totalBytesEchoed = 0; // Bytes received from client
24 byte[] rcvBuffer = new byte[BUFSIZE]; // Receive buffer
25

26 // Receive untl client closes connection, indicated by 0 return code
27 try {
28 while ((recvMsgSize = clntSock.Receive(rcvBuffer, 0, rcvBuffer.Length,
29 SocketFlags.None)) > 0) {
30 clntSock.Send(rcvBuffer, 0, recvMsgSize, SocketFlags.None);
31 totalBytesEchoed += recvMsgSize;
32 }
33 } catch (SocketException se) {
34 entry.Add(se.ErrorCode + ": " + se.Message);
35 }
36

37 entry.Add("Client finished; echoed " + totalBytesEchoed + " bytes.");
38 } catch (SocketException se) {
39 entry.Add(se.ErrorCode + ": " + se.Message);
40 }
41

42 clntSock.Close();
43

44 logger.writeEntry(entry);

■ 4.3 Threads 105

45 }
46 }

EchoProtocol.cs

1. Member variables and constructor: lines 5–13

Each instance of EchoProtocol contains a client socket for the connection and a

reference to the logger.

2. handleclient(): lines 15–45

Handle a single client:

■ Write the client and thread information to the log: lines 16–18

ArrayList is a dynamically sized container of Objects. The Add() method of

ArrayList inserts the specified object at the end of the list. In this case, the

inserted object is a String. Each element of the ArrayList represents a line of

output to the logger.

■ Execute the echo protocol: lines 20–42

■ Write the elements (one per line) of the ArrayList instance to the logger:
line 44

The logger allows for synchronized reporting of thread creation and client comple-

tion, so that entries from different threads are not interleaved. This facility is defined by

the ILogger interface, which has methods for writing strings or object collections.

ILogger.cs

0 using System; // For String
1 using System.Collections; // For ArrayList
2

3 public interface ILogger {
4 void writeEntry(ArrayList entry); // Write list of lines
5 void writeEntry(String entry); // Write single line
6 }

ILogger.cs

writeEntry() logs the given string or object collection. How it is logged depends on

the implementation. One possibility is to send the log messages to the console.

ConsoleLogger.cs

0 using System; // For String
1 using System.Collections; // For ArrayList

106 Chapter 4: Beyond the Basics ■

2 using System.Threading; // For Mutex
3

4 class ConsoleLogger : ILogger {
5 private static Mutex mutex = new Mutex();
6

7 public void writeEntry(ArrayList entry) {
8 mutex.WaitOne();
9

10 IEnumerator line = entry.GetEnumerator();
11 while (line.MoveNext())
12 Console.WriteLine(line.Current);
13

14 Console.WriteLine();
15

16 mutex.ReleaseMutex();
17 }
18

19 public void writeEntry(String entry) {
20 mutex.WaitOne();
21

22 Console.WriteLine(entry);
23 Console.WriteLine();
24

25 mutex.ReleaseMutex();
26 }
27 }

ConsoleLogger.cs

Another possibility is to write the log messages to a file specified in the constructor,

as in the following example.

FileLogger.cs

0 using System; // For String
1 using System.IO; // For StreamWriter
2 using System.Threading; // For Mutex
3 using System.Collections; // For ArrayList
4

5 class FileLogger : ILogger {
6 private static Mutex mutex = new Mutex();
7

■ 4.3 Threads 107

8 private StreamWriter output; // Log file

9

10 public FileLogger(String filename) {

11 // Create log file

12 output = new StreamWriter(filename, true);

13 }

14

15 public void writeEntry(ArrayList entry) {

16 mutex.WaitOne();

17

18 IEnumerator line = entry.GetEnumerator();

19 while (line.MoveNext())

20 output.WriteLine(line.Current);

21 output.WriteLine();

22 output.Flush();

23

24 mutex.ReleaseMutex();

25 }

26

27 public void writeEntry(String entry) {

28 mutex.WaitOne();

29

30 output.WriteLine(entry);

31 output.WriteLine();

32 output.Flush();

33

34 mutex.ReleaseMutex();

35 }

36 }

FileLogger.cs

In each example the System.Threading.Mutex class is used to guarantee that only one

thread is writing at one time.

We are now ready to introduce some different approaches to concurrent servers.

4.3.2 Thread-per-Client

In a thread-per-client server, a new thread is created to handle each connection. The

server executes a loop that runs forever, listening for connections on a specified port

108 Chapter 4: Beyond the Basics ■

and repeatedly accepting an incoming connection from a client, and then spawning a new

thread to handle that connection.

TcpEchoServerThread.cs implements the thread-per-client architecture. It is very

similar to the iterative server, using a single indefinite loop to receive and process client

requests. The main difference is that it creates a thread to handle the connection instead

of handling it directly.

TcpEchoServerThread.cs

0 using System; // For Int32, ArgumentException
1 using System.Threading; // For Thread
2 using System.Net; // For IPAddress
3 using System.Net.Sockets; // For TcpListener, Socket
4

5 class TcpEchoServerThread {
6

7 static void Main(string[] args) {
8

9 if (args.Length != 1) // Test for correct # of args
10 throw new ArgumentException("Parameter(s): <Port>");
11

12 int echoServPort = Int32.Parse(args[0]); // Server port
13

14 // Create a TcpListener socket to accept client connection requests
15 TcpListener listener = new TcpListener(IPAddress.Any, echoServPort);
16

17 ILogger logger = new ConsoleLogger(); // Log messages to console
18

19 listener.Start();
20

21 // Run forever, accepting and spawning threads to service each connection
22 for (;;) {
23 try {
24 Socket clntSock = listener.AcceptSocket(); // Block waiting for connection

25 EchoProtocol protocol = new EchoProtocol(clntSock, logger);
26 Thread thread = new Thread(new ThreadStart(protocol.handleclient));
27 thread.Start();
28 logger.writeEntry("Created and started Thread = " + thread.GetHashCode());

29 } catch (System.IO.IOException e) {
30 logger.writeEntry("Exception = " + e.Message);
31 }
32 }

■ 4.3 Threads 109

33 /* NOT REACHED */
34 }
35 }

TcpEchoServerThread.cs

1. Parameter parsing and server socket/logger creation: lines 9–19

2. Loop forever, handling incoming connections: lines 21–33

■ Accept an incoming connection: line 24

■ Create a protocol instance to handle new connection: line 25

Each connection gets its own instance of EchoProtocol. Each instance maintains

the state of its particular connection. The echo protocol has little internal state,

but more sophisticated protocols may require substantial amounts of state.

■ Create, start, and log a new thread for the connection: lines 26–28

Since EchoProtocol implements a method suitable for execution as a thread

(handleclient() in this case, a method that takes no parameters and returns

void), we can give our new instance’s thread method to the ThreadStart con-

structor, which in turn is passed to the Thread constructor. The new thread will

execute the handleclient() method of EchoProtocol when Start() is invoked.

The GetHashCode() method of the static Thread.CurrentThread property returns

a unique id number for the new thread.

■ Handle exception from AcceptSocket(): lines 29–31

If some I/O error occurs, AcceptSocket() throws a SocketException. In our earlier

iterative echo server (TcpEchoServer.cs), the exception is not handled, and such

an error terminates the server. Here we handle the exception by logging the error

and continuing execution.

4.3.3 Factoring the Server

Our threaded server does what we want it to, but the code is not very reusable or extensi-

ble. First, the echo protocol is hard-coded in the server. What if we want an HTTP server

instead? We could write an HTTPProtocol and replace the instantiation of EchoProtocol in

Main(); however, we would have to revise Main() and have a separate main class for each

different protocol that we implement.

We want to be able to instantiate a protocol instance of the appropriate type for

each connection without knowing any specifics about the protocol, including the name

of a constructor. This problem—instantiating an object without knowing details about its

type—arises frequently in object-oriented programming, and there is a standard solution:

use a factory. A factory object supplies instances of a particular class, hiding the details

of how the instance is created, such as what constructor is used.

110 Chapter 4: Beyond the Basics ■

For our protocol factory, we define the IProtocolFactory interface to have a single

method, createProtocol(), which takes Socket and ILogger instances as arguments and

returns an instance implementing the desired protocol. Our protocols will all implement

the handleclient() method, so we can run them as their own Thread to execute the pro-

tocol for that connection. Thus, our protocol factory returns instances that implement the

handleclient() method:

IProtocolFactory.cs

0 using System.Net.Sockets; // For Socket
1

2 public interface IProtocolFactory {
3 IProtocol createProtocol(Socket clntSock, ILogger logger);
4 }

IProtocolFactory.cs

We now need to implement a protocol factory for the echo protocol. The factory class

is simple. All it does is return a new instance of EchoProtocol whenever createProtocol()
is called.

EchoProtocolFactory.cs

0 using System.Net.Sockets; // For Socket
1

2 public class EchoProtocolFactory : IProtocolFactory {
3 public EchoProtocolFactory() {}
4

5 public IProtocol createProtocol(Socket clntSock, ILogger logger) {
6 return new EchoProtocol(clntSock, logger);
7 }
8 }

EchoProtocolFactory.cs

We have factored out some of the details of protocol instance creation from our

server, so that the various iterative and concurrent servers can reuse the protocol code.

However, the server approach (iterative, thread-per-client, etc.) is still hard-coded in

Main(). These server approaches deal with how to dispatch each connection to the appro-

priate handling mechanism. To provide greater extensibility, we want to factor out the

dispatching model from the Main() of TcpEchoServerThread.cs so that we can use any

■ 4.3 Threads 111

dispatching model with any protocol. Since we have many potential dispatching mod-

els, we define the IDispatcher interface to hide the particulars of the threading strategy

from the rest of the server code. It contains a single method, startDispatching(), which

tells the dispatcher to start handling clients accepted via the given TcpListener, creating

protocol instances using the given IProtocolFactory, and logging via the given ILogger.

IDispatcher.cs

0 using System.Net.Sockets; // For TcpListener
1

2 public interface IDispatcher {
3 void startDispatching(TcpListener listener, ILogger logger,
4 IProtocolFactory protoFactory);
5 }

IDispatcher.cs

To implement the thread-per-client dispatcher, we simply pull the for loop from

Main() in TcpEchoServerThread.cs into the startDispatching() method of the new dis-

patcher. The only other change we need to make is to use the protocol factory instead of

instantiating a particular protocol.

ThreadPerDispatcher.cs

0 using System.Net.Sockets; // For TcpListener, Socket
1 using System.Threading; // For Thread
2

3 class ThreadPerDispatcher : IDispatcher {
4

5 public void startDispatching(TcpListener listener, ILogger logger,
6 IProtocolFactory protoFactory) {
7

8 // Run forever, accepting and spawning threads to service each connection
9

10 for (;;) {
11 try {
12 listener.Start();
13 Socket clntSock = listener.AcceptSocket(); // Block waiting for connection

14 IProtocol protocol = protoFactory.createProtocol(clntSock, logger);
15 Thread thread = new Thread(new ThreadStart(protocol.handleclient));
16 thread.Start();
17 logger.writeEntry("Created and started Thread = " + thread.GetHashCode());

112 Chapter 4: Beyond the Basics ■

18 } catch (System.IO.IOException e) {
19 logger.writeEntry("Exception = " + e.Message);
20 }
21 }
22 /* NOT REACHED */
23 }
24 }

ThreadPerDispatcher.cs

We demonstrate the use of this dispatcher and protocol factory in ThreadMain.cs,

which we introduce after discussing the thread-pool approach to dispatching.

4.3.4 Thread Pool

Every new thread consumes system resources; spawning a thread takes CPU cycles and

each thread has its own data structures (e.g., stacks) that consume system memory. In

addition, the scheduling and context switching among threads creates extra work. As the

number of threads increases, more and more system resources are consumed by thread

overhead. Eventually, the system is spending more time dealing with thread management

than with servicing connections. At that point, adding an additional thread may actually

increase client service time.

We can avoid this problem by limiting the total number of threads and reusing threads.

Instead of spawning a new thread for each connection, the server creates a thread pool on

startup by spawning a fixed number of threads. When a new client connection arrives at the

server, it is assigned to a thread from the pool. When the thread finishes with the client, it

returns to the pool, ready to handle another request. Connection requests that arrive when

all threads in the pool are busy are queued to be serviced by the next available thread.

Like the thread-per-client server, a thread-pool server begins by creating a Tcp-
Listener. Then it spawns N threads, each of which loops forever, accepting connections

from the (shared) TcpListener instance. When multiple threads simultaneously call

AcceptSocket() on the same TcpListener instance, they all block until a connection is

established. Then the system selects one thread, and the Socket instance for the new con-

nection is returned only in that thread. The other threads remain blocked until the next

connection is established and another lucky winner is chosen.

Since each thread in the pool loops forever, processing connections one by one, a

thread-pool server is really a set of iterative servers. Unlike the thread-per-client server,

a thread-pool thread does not terminate when it finishes with a client. Instead, it starts

over again, blocking on AcceptSocket().

A thread pool is simply a different model for dispatching connection requests, so

all we really need to do is write another dispatcher. PoolDispatcher.cs implements our

thread-pool dispatcher. To see how the thread-pool server would be implemented without

■ 4.3 Threads 113

dispatchers and protocol factories, see TCPEchoServerPool.cs on the book’s website

(www.mkp.com/practical/csharpsockets).

PoolDispatcher.cs

0 using System.Threading; // For Thread
1 using System.Net.Sockets; // For TcpListener
2

3 class PoolDispatcher : IDispatcher {
4

5 private const int NUMTHREADS = 8; // Default thread pool size
6

7 private int numThreads; // Number of threads in pool
8

9 public PoolDispatcher() {
10 this.numThreads = NUMTHREADS;
11 }
12

13 public PoolDispatcher(int numThreads) {
14 this.numThreads = numThreads;
15 }
16

17 public void startDispatching(TcpListener listener, ILogger logger,
18 IProtocolFactory protoFactory) {
19 // Create N threads, each running an iterative server
20 for (int i = 0; i < numThreads; i++) {
21 DispatchLoop dl = new DispatchLoop(listener, logger, protoFactory);
22 Thread thread = new Thread(new ThreadStart(dl.rundispatcher));
23 thread.Start();
24 logger.writeEntry("Created and started Thread = " + thread.GetHashCode());
25 }
26 }
27 }
28

29 class DispatchLoop {
30

31 TcpListener listener;
32 ILogger logger;
33 IProtocolFactory protoFactory;
34

35 public DispatchLoop(TcpListener listener, ILogger logger,
36 IProtocolFactory protoFactory) {
37 this.listener = listener;

114 Chapter 4: Beyond the Basics ■

38 this.logger = logger;
39 this.protoFactory = protoFactory;
40 }
41

42 public void rundispatcher() {
43 // Run forever, accepting and handling each connection
44 for (;;) {
45 try {
46 Socket clntSock = listener.AcceptSocket(); // Block waiting for connection

47 IProtocol protocol = protoFactory.createProtocol(clntSock, logger);
48 protocol.handleclient();
49 } catch (SocketException se) {
50 logger.writeEntry("Exception = " + se.Message);
51 }
52 }
53 }
54 }

PoolDispatcher.cs

1. PoolDispatcher(): lines 9–15

The thread-pool solution needs an additional piece of information: the number of

threads in the pool. We need to provide this information to the instance before the

thread pool is constructed. We could pass the number of threads to the constructor,

but this limits our options because the constructor interface varies by dispatcher.

We allow the option to pass the number of threads in the constructor, but if none is

passed, a default of 8 is used.

2. startDispatching(): lines 17–26

■ Spawn N threads to execute instances of DispatchLoop: lines 17–26

For each loop iteration, an instance of the DispatchLoop class is instantiated with

a constructor that takes a TcpListener, a ILogger, and a IProtocolFactory. The

rundispatcher() method of the DispatchLoop is then run as its own thread. When

the Start() method is called, the thread executes the rundispatcher() method of

the DispatchLoop class. The rundispatcher() method in turn runs the protocol,

which implements an iterative server.

3. DispatchLoop class: lines 29–54

The constructor stores copies of the TcpListener, ILogger, and IProtocolFactory.

The rundispatcher() method loops forever, executing:

■ Accept an incoming connection: line 46

Since there are N threads executing rundispatcher(), up to N threads can

be blocked on listener’s AcceptSocket(), waiting for an incoming connection.

■ 4.3 Threads 115

The system ensures that only one thread gets a Socket for any particular con-

nection. If no threads are blocked on AcceptSocket() when a client connection is

established, the new connection is queued until the next call to AcceptSocket()
(see Section 5.4.1).

■ Create a protocol instance to handle new connection: line 47

■ Run the protocol for the connection: line 48

■ Handle exception from AcceptSocket(): lines 49–51

Since threads are reused, the thread-pool solution only pays the overhead of thread

creation N times, irrespective of the total number of client connections. Since we control

the maximum number of simultaneously executing threads, we can control scheduling

overhead. Spawning too many threads is not good either, as each additional thread con-

sumes resources and can overload an operating system. Of course, if we spawn too few

threads, we can still have clients waiting a long time for service; therefore, the size of the

thread pool should be tuned so that client connection time is minimized.

The Main() of ThreadMain.cs demonstrates how to use either the thread-per-client

or thread-pool server. This application takes three parameters: (1) the port number for the

server, (2) the protocol name (use “Echo” for the echo protocol), and (3) the dispatcher name

(use “ThreadPer” or “Pool” for the thread-per-client and thread-pool servers, respectively).

The number of threads for the thread pool defaults to 8.

C:\> ThreadMain 5000 Echo Pool

ThreadMain.cs

0 using System; // For String, Int32, Activator
1 using System.Net; // For IPAddress
2 using System.Net.Sockets; // For TcpListener
3

4 class ThreadMain {
5

6 static void Main(string[] args) {
7

8 if (args.Length != 3) // Test for correct # of args
9 throw new ArgumentException("Parameter(s): [<Optional properties>]"

10 + " <Port> <Protocol> <Dispatcher>");
11

12 int servPort = Int32.Parse(args[0]); // Server Port
13 String protocolName = args[1]; // Protocol name
14 String dispatcherName = args[2]; // Dispatcher name
15

16 TcpListener listener = new TcpListener(IPAddress.Any, servPort);

116 Chapter 4: Beyond the Basics ■

17 listener.Start();
18

19 ILogger logger = new ConsoleLogger(); // Log messages to console
20

21 System.Runtime.Remoting.ObjectHandle objHandle =
22 Activator.CreateInstance(null, protocolName + "ProtocolFactory");
23 IProtocolFactory protoFactory = (IProtocolFactory)objHandle.Unwrap();
24

25 objHandle = Activator.CreateInstance(null, dispatcherName + "Dispatcher");
26 IDispatcher dispatcher = (IDispatcher)objHandle.Unwrap();
27

28 dispatcher.startDispatching(listener, logger, protoFactory);
29 /* NOT REACHED */
30 }
31 }

ThreadMain.cs

1. Application setup and parameter parsing: lines 8–14

2. Create TcpListener and logger: lines 16–19

3. Instantiate a protocol factory: lines 21–23

The protocol name is passed as the second parameter. We adopt the naming con-

vention of <ProtocolName>ProtocolFactory for the class name of the factory for

the protocol name <ProtocolName>. For example, if the second parameter is “Echo,”

the corresponding protocol factory is EchoProtocolFactory. The static method

Activator.CreateInstance() takes the name of a class and returns an Object-
Handle object. The Unwrap() method of ObjectHandle creates a new instance of the

class (casting to the proper type is required; in this case we use the IProtocol-
Factory interface). protoFactory refers to this new instance of the specified protocol

factory.

4. Instantiate a dispatcher: lines 25–26

The dispatcher name is passed as the third parameter. We adopt the naming con-

vention of <DispatcherType>Dispatcher for the class name of the dispatcher of type

<DispatcherType>. For example, if the third parameter is “ThreadPer,” the corre-

sponding dispatcher is ThreadPerDispatcher. dispatcher refers to the new instance

of the specified dispatcher.

5. Start dispatching clients: line 28

ThreadMain.cs makes it easy to use other protocols and dispatchers. The book’s

website (www.mkp.com/practical/csharpsockets) contains some additional examples.

■ 4.4 Asynchronous I/O 117

4.4 Asynchronous I/O

The .NET framework provides a number of predefined network class methods that exe-

cute asynchronously. This allows code execution in the calling code to proceed while

the I/O method waits to unblock. What’s actually happening is that the asynchronous

method is being executed in its own thread, except the details of setting up, data

passing, and starting the thread are done for you. The calling code has three options

to determine when the I/O call is completed: (1) it can specify a callback method to

be invoked on completion; (2) it can poll periodically to see if the method has com-

pleted; or (3) after it has completed its asynchronous tasks, it can block waiting for

completion.

The .NET framework is extremely flexible in how it provides asynchronous API

capabilities. First, its library classes provide predefined nonblocking versions of meth-

ods for many different types of I/O, not just network calls. There are nonblocking

versions of calls for network I/O, stream I/O, file I/O, even DNS lookups. Second,

the .NET framework provides a mechanism for building an asynchronous version of

any method, even user-defined methods. The latter is beyond the scope of this

book, but in this section we will examine some of the existing asynchronous network

methods.

An asynchronous I/O call is broken up into a begin call that is used to initiate

the operation, and an end call that is used to retrieve the results of the call after it has

completed. The begin call uses the same method name as the blocking version with the

word Begin prepended to it. Likewise, the end call uses the same method name as the

blocking version with the word End prepended to it. Begin and end operations are intended

to be symmetrical, and each call to a begin method should be matched (at some point)

with an end method call. Failure to do so in a long-running program creates an accumu-

lation of state maintenance for the uncompleted asynchronous calls . . . in other words, a

memory leak!

Let’s look at some concrete examples. The NetworkStream class contains asyn-

chronous versions of its Write() and Read() methods, implemented as BeginWrite(),

EndWrite(), BeginRead(), and EndRead(). Let’s take a look at these methods and examine

how they relate to their blocking counterparts.

The BeginRead() and BeginWrite() methods take two additional arguments and have

a different return type:

public override IAsyncResult BeginRead(byte[] buffer, int offset, int size,

AsyncCallback callback, object state);

public override IAsyncResult BeginWrite(byte[] buffer, int offset, int count,
AsyncCallback callback, object state);

The two additional arguments are an instance of AsyncCallback and an instance of

object, which can be any C# class instance (predefined or user-defined). The AsyncCall-
back class is a delegate that specifies the callback method to invoke when the asynchronous

option is complete. This class can be instantiated simply by passing it the name of the

118 Chapter 4: Beyond the Basics ■

method for the callback:

AsyncCallback ac = new AsyncCallback(myMethodToCall);
:::

public static void myMethodToCall(IAsyncResult result) {
// callback code goes here

}

If no callback method is required, this argument can be null (although remember that

the end method must be invoked somewhere). The callback method itself must have the

signature public static void <callbackMethodName>(IAsyncResult). The IAsyncResult
class will be discussed in a moment.

The object argument is simply a way to convey user-defined information from the

caller to the callback. This information could be the NetworkStream or socket class instance

itself, or a user-defined class that includes both the NetworkStream, the byte buffer being

used, and anything else to which the application callback method needs access.

The BeginRead() and BeginWrite() methods also have a different return type: an

IAsyncResult instance. The IAsyncResult represents the status of the asynchronous

operation and can be used to poll or block on the return of that operation. If you decide

to block waiting for the operation to complete, the IAsyncResult’s AsyncWaitHandle
property contains a method called WaitOne(). Invoking this method will block until the

corresponding end method is called.

Once the asynchronous operation completes, the callback method is invoked. The

callback method receives an IAsyncResult instance as an argument, which has a property

called AsyncState that will contain an object. This object is the same object that was

passed to the begin method, and needs to be cast to its original type before being used.

The IAsyncResult instance is also used as the argument to the end call. The end call

completes the symmetry of the call and returns the result of the call. That result is the

exact same value that the synchronous version of the call would have returned.

public override int EndRead(IAsyncResult asyncResult);

public override void EndWrite(IAsyncResult asyncResult);

As an example let’s assume that BeginRead() is called on a NetworkStream instance,

and in addition to the usual arguments passed a callback method (new AsyncCall-
back(myCallback)) and the read byte buffer as the state. The EndRead() call will return

the number of bytes read from the NetworkStream, the same as a synchronous call to

Read() would have.

public static void myCallback(IAsyncResult result) {
byte[] buffer = (byte[])result.AsyncState;
int bytesRead = EndRead(result);
Console.WriteLine("Got {0} bytes of: {1}", bytesread, buffer);

}

■ 4.4 Asynchronous I/O 119

Once you understand the differences between the synchronous and asynchronous

versions of one method, the basic concepts can be extrapolated to cover the entire .NET

asynchronous API. In summary, it involves:

1. Begin Method: The begin call takes (in addition to the arguments in the syn-

chronous version of the method) an AsyncCallback instance specifying the callback

method and an object containing any user-defined state. The begin call returns an

IAsyncResult that can be used to poll or block on the call’s return.

2. Callback State: The callback method is passed the state (the begin call’s object
argument) stored in the AsyncState property of the IAsyncResult instance.

3. End Method: The end method call takes as an argument the IAsyncResult instance

returned by the callback invocation, and returns the value that the synchronous

version of the call would have returned.

Figure 4.1 shows a pictorial depiction of how a BeginSend() call executes.

Table 4.2 lists some of the .NET classes used in this book that have asynchronous

methods (this is not a complete list of all asynchronous methods .NET provides).

Main Thread

New Thread

Create Socket

Connect

Call BeginSend
Send occurs
concurrently

Other Processing
Continues

Send Completes

SendCallBack

Call EndSend

Send
Callback

is invoked

EndSend returns the number of bytes
sent if Send was successful, or throws a
SocketException if it was unsuccessful

Figure 4.1: Asynchronous Send() example.

120 Chapter 4: Beyond the Basics ■

Class Asynchronous Method API

Dns BeginGetHostByName()/EndGetHostByName()
BeginResolve()/EndResolve()

FileStream BeginRead()/EndRead()
BeginWrite()/EndWrite()

NetworkStream BeginRead()/EndRead()
BeginWrite()/EndWrite()

Socket BeginAccept()/EndAccept()
BeginConnect()/EndConnect()
BeginReceive()/EndReceive()
BeginReceiveFrom()/EndReceiveFrom()
BeginSend()/EndSend()
BeginSendTo()/EndSendTo()

Stream BeginRead()/EndRead()
BeginWrite()/EndWrite()

Table 4.2: Selected .NET Asynchronous Methods

Its time to look at some examples. Below we implement versions of TcpEchoClient
and TcpEchoServer from Chapter 2 using the asynchronous API. The assumption in both

cases is that the program has other operations it needs to be performing while blocking

on the various network calls. To simulate that we added a simple doOtherStuff() method,

which just loops five times, printing output and sleeping.

You will also note that the number of asynchronous methods defined for the Socket
class is significantly more than what is defined for NetworkStream. In order to demon-

strate the contrast between the two, the echo client uses the TcpClient class with a

NetworkStream, and the echo server uses the Socket class.

TcpEchoClientAsync.cs

0 using System; // For String, IAsyncResult, ArgumentException

1 using System.Text; // For Encoding

2 using System.Net.Sockets; // For TcpClient, NetworkStream

3 using System.Threading; // For ManualResetEvent

4

5 class ClientState {

6 // Object to contain client state, including the network stream

7 // and the send/recv buffer

■ 4.4 Asynchronous I/O 121

8

9 private byte[] byteBuffer;
10 private NetworkStream netStream;
11 private StringBuilder echoResponse;
12 private int totalBytesRcvd = 0; // Total bytes received so far
13

14 public ClientState(NetworkStream netStream, byte[] byteBuffer) {
15 this.netStream = netStream;
16 this.byteBuffer = byteBuffer;
17 echoResponse = new StringBuilder();
18 }
19

20 public NetworkStream NetStream {
21 get {
22 return netStream;
23 }
24 }
25

26 public byte[] ByteBuffer {
27 set {
28 byteBuffer = value;
29 }
30 get {
31 return byteBuffer;
32 }
33 }
34

35 public void AppendResponse(String response) {
36 echoResponse.Append(response);
37 }
38 public String EchoResponse {
39 get {
40 return echoResponse.ToString();
41 }
42 }
43

44 public void AddToTotalBytes(int count) {
45 totalBytesRcvd += count;
46 }
47 public int TotalBytes {
48 get {
49 return totalBytesRcvd;
50 }

122 Chapter 4: Beyond the Basics ■

51 }
52 }
53

54 class TcpEchoClientAsync {
55

56 // A manual event signal we will trigger when all reads are complete:
57 public static ManualResetEvent ReadDone = new ManualResetEvent(false);
58

59 static void Main(string[] args) {
60

61 if ((args.Length < 2) || (args.Length > 3)) { // Test for correct # of args
62 throw new ArgumentException("Parameters: <Server> <Word> [<Port>]");
63 }
64

65 String server = args[0]; // Server name or IP address
66

67 // Use port argument if supplied, otherwise default to 7
68 int servPort = (args.Length == 3) ? Int32.Parse(args[2]) : 7;
69

70 Console.WriteLine("Thread {0} ({1}) - Main()",
71 Thread.CurrentThread.GetHashCode(),
72 Thread.CurrentThread.ThreadState);
73 // Create TcpClient that is connected to server on specified port
74 TcpClient client = new TcpClient();
75

76 client.Connect(server, servPort);
77 Console.WriteLine("Thread {0} ({1}) - Main(): connected to server",
78 Thread.CurrentThread.GetHashCode(),
79 Thread.CurrentThread.ThreadState);
80

81 NetworkStream netStream = client.GetStream();
82 ClientState cs = new ClientState(netStream,
83 Encoding.ASCII.GetBytes(args[1]));
84 // Send the encoded string to the server
85 IAsyncResult result = netStream.BeginWrite(cs.ByteBuffer, 0,
86 cs.ByteBuffer.Length,
87 new AsyncCallback(WriteCallback),
88 cs);
89

90 doOtherStuff();
91

92 result.AsyncWaitHandle.WaitOne(); // block until EndWrite is called
93

■ 4.4 Asynchronous I/O 123

94 // Receive the same string back from the server
95 result = netStream.BeginRead(cs.ByteBuffer, cs.TotalBytes,
96 cs.ByteBuffer.Length - cs.TotalBytes,
97 new AsyncCallback(ReadCallback), cs);
98

99 doOtherStuff();
100

101 ReadDone.WaitOne(); // Block until ReadDone is manually set
102

103 netStream.Close(); // Close the stream
104 client.Close(); // Close the socket
105 }
106

107 public static void doOtherStuff() {
108 for (int x=1; x<=5; x++) {
109 Console.WriteLine("Thread {0} ({1}) - doOtherStuff(): {2}...",
110 Thread.CurrentThread.GetHashCode(),
111 Thread.CurrentThread.ThreadState, x);
112 Thread.Sleep(1000);
113 }
114 }
115

116 public static void WriteCallback(IAsyncResult asyncResult) {
117

118 ClientState cs = (ClientState) asyncResult.AsyncState;
119

120 cs.NetStream.EndWrite(asyncResult);
121 Console.WriteLine("Thread {0} ({1}) - WriteCallback(): Sent {2} bytes...",
122 Thread.CurrentThread.GetHashCode(),
123 Thread.CurrentThread.ThreadState, cs.ByteBuffer.Length);
124 }
125

126 public static void ReadCallback(IAsyncResult asyncResult) {
127

128 ClientState cs = (ClientState) asyncResult.AsyncState;
129

130 int bytesRcvd = cs.NetStream.EndRead(asyncResult);
131

132 cs.AddToTotalBytes(bytesRcvd);
133 cs.AppendResponse(Encoding.ASCII.GetString(cs.ByteBuffer, 0, bytesRcvd));
134

135 if (cs.TotalBytes < cs.ByteBuffer.Length) {
136 Console.WriteLine("Thread {0} ({1}) - ReadCallback(): Received {2} bytes...",

124 Chapter 4: Beyond the Basics ■

137 Thread.CurrentThread.GetHashCode(),

138 Thread.CurrentThread.ThreadState, bytesRcvd);

139 cs.NetStream.BeginRead(cs.ByteBuffer, cs.TotalBytes,

140 cs.ByteBuffer.Length - cs.TotalBytes,

141 new AsyncCallback(ReadCallback), cs.NetStream);

142 } else {

143 Console.WriteLine("Thread {0} ({1}) - ReadCallback():

144 Received {2} total " + "bytes: {3}",

145 Thread.CurrentThread.GetHashCode(),

146 Thread.CurrentThread.ThreadState, cs.TotalBytes,

147 cs.EchoResponse);

148 ReadDone.Set(); // Signal read complete event

149 }

150 }

151 }

TcpEchoClientAsync.cs

1. ClientState class: lines 5–52

The ClientState class is used to store the send/receive buffer, NetworkStream,

the echo response, and a total byte count. It is used to pass state to the callback

methods.

2. Argument parsing: lines 61–68

3. Print state, TcpClient creation and setup: lines 70–79

Create a TcpClient instance and connect to the remote server.

4. Store state in ClientState instance: lines 81–82

Create a ClientState instance and store the network stream and command-line

input bytes to be sent.

5. Call BeginWrite: lines 84–88

Call BeginWrite() with the standard Write() arguments plus a user-defined call-

back method of WriteCallback() (wrapped in an AsyncCallback delegate instance)

and a state object reference to the user-defined ClientState.

6. Perform asynchronous processing, then block: lines 90–92

Call doOtherStuff() to simulate asynchronous processing, then use the Async-
WaitHandle property of the IAsyncResult to call WaitOne(), which blocks until

EndWrite() is called.

■ 4.4 Asynchronous I/O 125

7. Call BeginRead: lines 94–97

Call BeginRead() with the standard Read() arguments plus a user-defined callback

method of ReadCallback() (wrapped in an AsyncCallback delegate instance) and a

state object reference to the user-defined ClientState.

8. Perform asynchronous processing, then block: lines 99–101

Call doOtherStuff() to simulate asynchronous processing, then use the Manual-
ResetEvent class instance ReadDone to call WaitOne(), which blocks until Read-
Done() has been set. Note that we cannot use the IAsyncResult from the BeginRead()
in this case, because that would unblock us after the first read, and we may have

multiple reads.

9. Close the stream and socket: lines 103–104

10. doOtherStuff(): lines 107–114

Simulate other processing by writing some output in a loop with Thread.Sleep()
prolonging the intervals slightly.

11. WriteCallback(): lines 116–124

■ Retrieve the state object: lines 118

The write callback state object was a ClientState instance, so store it as

a local variable by casting the IAsyncResult instance property AsyncState as a

ClientState.

■ EndWrite(): line 120

Call the EndWrite() method to complete the operation.

■ Output the number of bytes sent: lines 121–123

12. ReadCallback(): lines 126–150

■ Retrieve the state object: lines 128–130

The read callback state object was a ClientState instance, so store it as a

local variable by casting the IAsyncResult instance property AsyncState as

a ClientState. Create local variables where convenient.

■ Issue another BeginRead(): lines 135–142

If the length of the response is less than the expected response, issue another

BeginRead() to get the remaining bytes.

■ Output the echo response: lines 143–148

If all bytes have been received, output the echo response.

■ Trigger ManualResetEvent: line 149

Manually trigger the ReadDone ManualResetEvent so we can unblock if we are

blocking on read completion.

TcpEchoServerAsync.cs

0 using System; // For Console, IAsyncResult, ArgumentException
1 using System.Net; // For IPEndPoint

126 Chapter 4: Beyond the Basics ■

2 using System.Net.Sockets; // For Socket
3 using System.Threading; // For ManualResetEvent
4

5 class ClientState {
6 // Object to contain client state, including the client socket
7 // and the receive buffer
8

9 private const int BUFSIZE = 32; // Size of receive buffer
10 private byte[] rcvBuffer;
11 private Socket clntSock;
12

13 public ClientState(Socket clntSock) {
14 this.clntSock = clntSock;
15 rcvBuffer = new byte[BUFSIZE]; // Receive buffer
16 }
17

18 public byte[] RcvBuffer {
19 get {
20 return rcvBuffer;
21 }
22 }
23

24 public Socket ClntSock {
25 get {
26 return clntSock;
27 }
28 }
29 }
30

31 class TcpEchoServerAsync {
32

33 private const int BACKLOG = 5; // Outstanding connection queue max size
34

35 static void Main(string[] args) {
36

37 if (args.Length != 1) // Test for correct # of args
38 throw new ArgumentException("Parameters: <Port>");
39

40 int servPort = Int32.Parse(args[0]);
41

42 // Create a Socket to accept client connections
43 Socket servSock = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
44 ProtocolType.Tcp);

■ 4.4 Asynchronous I/O 127

45

46 servSock.Bind(new IPEndPoint(IPAddress.Any, servPort));
47 servSock.Listen(BACKLOG);
48

49 for (;;) { // Run forever, accepting and servicing connections
50 Console.WriteLine("Thread {0} ({1}) - Main(): calling BeginAccept()",
51 Thread.CurrentThread.GetHashCode(),
52 Thread.CurrentThread.ThreadState);
53

54 IAsyncResult result = servSock.BeginAccept(new AsyncCallback(AcceptCallback),

55 servSock);
56 doOtherStuff();
57

58 // Wait for the EndAccept before issuing a new BeginAccept
59 result.AsyncWaitHandle.WaitOne();
60 }
61 }
62

63 public static void doOtherStuff() {
64 for (int x=1; x<=5; x++) {
65 Console.WriteLine("Thread {0} ({1}) - doOtherStuff(): {2}...",
66 Thread.CurrentThread.GetHashCode(),
67 Thread.CurrentThread.ThreadState, x);
68 Thread.Sleep(1000);
69 }
70 }
71

72 public static void AcceptCallback(IAsyncResult asyncResult) {
73

74 Socket servSock = (Socket) asyncResult.AsyncState;
75 Socket clntSock = null;
76

77 try {
78

79 clntSock = servSock.EndAccept(asyncResult);
80

81 Console.WriteLine("Thread {0} ({1}) - AcceptCallback(): handling client at {2}",

82 Thread.CurrentThread.GetHashCode(),
83 Thread.CurrentThread.ThreadState,
84 clntSock.RemoteEndPoint);
85

86 ClientState cs = new ClientState(clntSock);
87

128 Chapter 4: Beyond the Basics ■

88 clntSock.BeginReceive(cs.RcvBuffer, 0, cs.RcvBuffer.Length, SocketFlags.None,

89 new AsyncCallback(ReceiveCallback), cs);
90 } catch (SocketException se) {
91 Console.WriteLine(se.ErrorCode + ": " + se.Message);
92 clntSock.Close();
93 }
94 }
95

96 public static void ReceiveCallback(IAsyncResult asyncResult) {
97

98 ClientState cs = (ClientState) asyncResult.AsyncState;
99

100 try {
101

102 int recvMsgSize = cs.ClntSock.EndReceive(asyncResult);
103

104 if (recvMsgSize > 0) {
105 Console.WriteLine("Thread {0} ({1}) - ReceiveCallback(): received {2} bytes",

106 Thread.CurrentThread.GetHashCode(),
107 Thread.CurrentThread.ThreadState,
108 recvMsgSize);
109

110 cs.ClntSock.BeginSend(cs.RcvBuffer, 0, recvMsgSize, SocketFlags.None,
111 new AsyncCallback(SendCallback), cs);
112 } else {
113 cs.ClntSock.Close();
114 }
115 } catch (SocketException se) {
116 Console.WriteLine(se.ErrorCode + ": " + se.Message);
117 cs.ClntSock.Close();
118 }
119 }

120

121 public static void SendCallback(IAsyncResult asyncResult) {
122 ClientState cs = (ClientState) asyncResult.AsyncState;

123

124 try {

125

126 int bytesSent = cs.ClntSock.EndSend(asyncResult);

127

128 Console.WriteLine("Thread {0} ({1}) - SendCallback(): sent {2} bytes",
129 Thread.CurrentThread.GetHashCode(),

■ 4.4 Asynchronous I/O 129

130 Thread.CurrentThread.ThreadState,

131 bytesSent);

132

133 cs.ClntSock.BeginReceive(cs.RcvBuffer, 0, cs.RcvBuffer.Length,

134 SocketFlags.None, new AsyncCallback(ReceiveCallback), cs);

135 } catch (SocketException se) {

136 Console.WriteLine(se.ErrorCode + ": " + se.Message);

137 cs.ClntSock.Close();

138 }

139 }

140 }

TcpEchoServerAsync.cs

1. ClientState class: lines 5–29

The ClientState class is used to store the receive buffer and client Socket, and is

used to pass state to the callback methods.

2. Argument parsing: lines 37–40

The server port is the only argument.

3. Socket creation and setup: lines 42–47

Bind and listen on the newly created socket.

4. Main loop: lines 49–60

Loop forever performing:

■ Output current thread information: lines 50–52

Include the thread number by calling Thread.CurrentThread.GetHashCode() and

the thread state (running or background) by accessing the property Thread.
CurrentThread.ThreadState.

■ Asynchronous accept call: lines 54–55

Call BeginAccept() with a user-defined callback method of AcceptCallback()
(wrapped in an AsyncCallback delegate instance) and a state object reference to

the server Socket. Store the returned IAsyncResult so we can block on it later.

■ Perform other processing: line 56

Call the method doOtherStuff() to continue main code execution asynchronously.

■ Block waiting for the accept to complete: lines 58–59

Once we have finished our asynchronous processing, we don’t want to call

accept an indefinite amount of times if nothing is happening. Wait until the End-
Accept() call is executed by calling the WaitOne() method on the IAsyncResult’s

AsyncWaitHandle.

130 Chapter 4: Beyond the Basics ■

5. doOtherStuff(): lines 63–70

Simulate other processing by writing some output in a loop with Thread.Sleep()
prolonging the intervals slightly.

6. AcceptCallback(): lines 72–94

■ Retrieve the state object: line 74

The accept callback state object was the server socket, so store the server socket

as a local variable by casting the IAsyncResult instance property AsyncState as a

Socket.

■ Call EndAccept(): line 79

The EndAccept() call returns the client Socket instance.

■ Output the thread state and client connection: lines 81–84

Output the thread number and state and the client that we have connected.

■ Create a ClientState instance: line 86

In preparation for calling our next asynchronous method, instantiate our user-

defined state object.

■ Call BeginReceive(): lines 88–89

Call BeginReceive() with the standard Receive() arguments, plus a user-defined

callback method of ReceiveCallback() (wrapped in an AsyncCallback delegate

instance) and a state object reference to the user-defined ClientState.

■ Catch exceptions: lines 90–92

Since a server should be robust, catch any exceptions that occur on this client

connection, and close the client socket and continue if they occur.

7. ReceiveCallback(): lines 96–119

■ Retrieve the state object: lines 98

The receive callback state object was the ClientState instance, so store it as

a local variable by casting the IAsyncResult instance property AsyncState as a

ClientState.

■ Call EndReceive(): line 102

The EndReceive() call returns the bytes received.

■ Output the bytes received: lines 105–108

If the bytes received were greater than zero, output the bytes returned to the

console. If the bytes received is equal to zero, we are done, so close the client

socket and drop out of the method.

■ Call BeginSend(): lines 110–111

Call BeginSend() with the standard Send() arguments plus a user-defined callback

method of SendCallback() (wrapped in an AsyncCallback delegate instance) and

a state object reference to the user-defined ClientState.

■ Catch exceptions: lines 115–118

Since a server should be robust, catch any exceptions that occur on this client

connection, and close the client socket and continue if they occur.

■ 4.5 Multiple Recipients 131

8. SendCallback(): lines 121–139

■ Retrieve the state object: lines 122

The send callback state object was the ClientState instance, so store it as a

local variable by casting the IAsyncResult instance property AsyncState as a

ClientState.

■ Call EndSend(): line 126

The EndSend() call returns the bytes sent.

■ Output the bytes sent: lines 128–131

Output the number of bytes sent to the console.

■ Call BeginReceive(): lines 133–134

Since there may be more bytes to receive (until we get a bytes received value

of zero), recursively call BeginReceive() again. The arguments are the same—

the Receive() arguments plus a user-defined callback method of SendCallback()
(wrapped in an AsyncCallback delegate instance) and a state object reference to

the user-defined ClientState.

■ Catch exceptions: lines 135–138

Since a server should be robust, catch any exceptions that occur on this client

connection, and close the client socket and continue if they occur.

A final option for handling asynchronous call completion is polling. As we have

seen, polling involves having the main thread periodically check in with the asynchronous

operation to see if it is completed. This can be achieved with the IsCompleted property of

the IAsyncResult class:

:::

IAsyncResult result = netStream.BeginRead(buffer, 0, buffer.Length,
new AsyncCallback(myMethod),
myStateObject);

for (;;) {
if (result.isCompleted) {

// handle read here
}
// do other work here
:::

}

As mentioned earlier, polling is typically not very efficient. Callbacks are usually the

preferred method of handling asynchronous method completion.

4.5 Multiple Recipients

So far all of our sockets have dealt with communication between exactly two entities,

usually a server and a client. Such one-to-one communication is sometimes called unicast.

132 Chapter 4: Beyond the Basics ■

Some information is of interest to multiple recipients. In such cases, we could unicast a

copy of the data to each recipient, but this may be very inefficient. Unicasting multiple

copies over a single network connection wastes bandwidth by sending the same infor-

mation multiple times. In fact, if we want to send data at a fixed rate, the bandwidth of

our network connection defines a hard limit on the number of receivers we can support.

For example, if our video server sends 1Mbps streams and its network connection is only

3Mbps (a healthy connection rate), we can only support three simultaneous users.

Fortunately, networks provide a way to use bandwidth more efficiently. Instead of

making the sender responsible for duplicating packets, we can give this job to the network.

In our video server example, we send a single copy of the stream across the server’s con-

nection to the network, which then duplicates the data only when appropriate. With this

model of duplication, the server uses only 1Mbps across its connection to the network,

irrespective of the number of clients.

There are two types of one-to-many service: broadcast and multicast. With broadcast,

all hosts on the (local) network receive a copy of the message. With multicast, the message

is sent to a multicast address, and the network delivers it only to those hosts that have

indicated that they want to receive messages sent to that address. In general, only UDP

sockets are allowed to broadcast or multicast.

4.5.1 Broadcast

Broadcasting UDP datagrams is similar to unicasting datagrams, except that a broadcast
address is used instead of a regular (unicast) IP address. The local broadcast address

(255.255.255.255) sends the message to every host on the same broadcast network. Local

broadcast messages are never forwarded by routers. A host on an Ethernet network can

send a message to all other hosts on that same Ethernet, but the message will not be for-

warded by a router. IP also specifies directed broadcast addresses, which allow broadcasts

to all hosts on a specified network; however, since most Internet routers do not forward

directed broadcasts, we do not deal with them here.

There is no networkwide broadcast address that can be used to send a message to

all hosts. To see why, consider the impact of a broadcast to every host on the Internet.

Sending a single datagram would result in a very, very large number of packet duplica-

tions by the routers, and bandwidth would be consumed on each and every network. The

consequences of misuse (malicious or accidental) are too great, so the designers of IP left

such an Internet-wide broadcast facility out on purpose.

Even so, local broadcast can be very useful. Often, it is used in state exchange for

network games where the players are all on the same local (broadcast) network. In C#, the

code for unicasting and broadcasting is the same. To play with broadcasting applications,

simply run SendUdp.cs using a broadcast destination address.2 Run RecvUdp.cs as you did

before (except that you can run several receivers at one time).

2Note that some operating systems require setting SocketOptionName.Broadcast to true before
broadcasting is allowed, or an exception will be thrown. This is most likely if you are running .NET
on a UNIX-based machine using Mono.

■ 4.5 Multiple Recipients 133

4.5.2 Multicast

As with broadcast, the main difference between multicast and unicast is the form of the

address. A multicast address identifies a set of receivers. The designers of IP allocated a

range of the address space (from 224.0.0.0 to 239.255.255.255) dedicated to multicast.

With the exception of a few reserved multicast addresses, a sender can send datagrams

addressed to any address in this range. In C#, multicast applications generally commu-

nicate using an instance of Socket or UdpClient. It is important to understand that a

multicast socket is actually a UDP socket with some extra multicast-specific attributes

that can be controlled. Our next example implements the multicast version of SendUdp.cs
(see page 82). First we show the code for the helper class MCIPAddress.cs, which allows

us to validate multicast IP addresses.

MCIPAddress.cs

0 using System; // For String
1

2 public class MCIPAddress {
3 public static Boolean isValid(String ip) {
4 try {
5 int octet1 = Int32.Parse(ip.Split(new Char[]{’.’}, 4)[0]);
6 if ((octet1 >= 224) && (octet1 <= 239)) return true;
7 } catch (Exception) {}
8 return false;
9 }

10 }

MCIPAddress.cs

The MCIPAddress class has a static isValid() method that simply validates that the

string dotted-quad notation IP passed to it is in the valid range. We simply isolate the first

octet of the IP address, convert it to an integer, and validate its value.

SendUDPMulticast.cs

0 using System; // For Int32, ArgumentException
1 using System.Net; // For IPAddress, IPEndpoint
2 using System.Net.Sockets; // For Socket and associated classes
3

4 public class SendUdpMulticast {
5

6 public static void Main(string[] args) {
7

134 Chapter 4: Beyond the Basics ■

8 if ((args.Length < 2) || (args.Length > 3)) // Test for correct # of args
9 throw new ArgumentException(

10 "Parameter(s): <Multicast Addr> <Port> [<TTL>]");
11

12 IPAddress destAddr = IPAddress.Parse(args[0]); // Destination address
13

14 if (! MCIPAddress.isValid(args[0]))
15 throw new ArgumentException("Valid MC addr: 224.0.0.0 - 239.255.255.255");
16

17 int destPort = Int32.Parse(args[1]); // Destination port
18

19 int TTL; // Time to live for datagram
20 if (args.Length == 3)
21 TTL = Int32.Parse(args[2]);
22 else
23 TTL = 1; // Default TTL
24

25 ItemQuote quote = new ItemQuote(1234567890987654L, "5mm Super Widgets",
26 1000, 12999, true, false);
27

28 Socket sock = new Socket(AddressFamily.InterNetwork,
29 SocketType.Dgram,
30 ProtocolType.Udp); // Multicast socket to sending
31

32 // Set the Time to Live
33 sock.SetSocketOption(SocketOptionLevel.IP,
34 SocketOptionName.MulticastTimeToLive,
35 TTL);
36

37 ItemQuoteEncoderText encoder = new ItemQuoteEncoderText(); // Text encoding
38 byte[] codedQuote = encoder.encode(quote);
39

40 // Create an IP endpoint class instance
41 IPEndPoint ipep = new IPEndPoint(destAddr, destPort);
42

43 // Create and send a packet
44 sock.SendTo(codedQuote, 0, codedQuote.Length, SocketFlags.None, ipep);
45

46 sock.Close();
47 }
48 }

SendUDPMulticast.cs

■ 4.5 Multiple Recipients 135

The only significant differences between our unicast and multicast senders are that

(1) we verify that the given address is multicast, and (2) we set the initial Time To Live

(TTL) value for the multicast datagram. Every IP datagram contains a TTL, initialized to

some default value and decremented (usually by one) by each router that forwards the

packet. When the TTL reaches zero, the packet is discarded. By setting the initial value

of the TTL, we limit the distance that a packet can travel from the sender.3 For the

Socket class the TTL is set using the SetSocketOption() method with the SocketOption-
Name.MulticastTimeToLive option. The UdpClient class can set the TTL by calling the

JoinMulticastGroup() method with the optional TTL argument (this is a slightly odd API,

since joining multicast groups is really only required for receiving, not sending).

Unlike broadcast, where receivers don’t have to do anything special to receive broad-

cast packets, with multicast the network delivers the message only to a specific set of

hosts, namely those that have indicated a desire to receive them. This set of receivers,

called a multicast group, is identified by a shared multicast (or group) address. Receivers

need some mechanism to notify the network of their interest in receiving data sent to a

particular multicast address, so that the network can forward packets to them. This noti-

fication is called joining a group or adding a membership. To stop packets from a group

being delivered, a corresponding notification to leave the group or drop the membership is

sent. Closing a socket implicitly causes joined groups to be left (provided no other socket

is still a member of the group). The group notifications are accomplished with the Socket
class by using the SetSocketOption() method with the SocketOptionName.AddMembership
and SocketOptionName.DropMembership options. The argument to the SetSocketOption()
method is an instance of MulticastOption, which contains the IP address of the multicast

group to add or drop. The UdpClient class can join multicast groups using the Join-
MulticastGroup() method and drop them with the DropMulticastGroup() method. Our

multicast receiver joins a specified group, receives and prints a single multicast message

from that group, leaves the group, and exits.

RecvUdpMulticast.cs

0 using System; // For Console, Int32, ArgumentException
1 using System.Net; // For IPAddress, EndPoinit, IPEndPoint
2 using System.Net.Sockets; // For Socket and associated classes
3

4 public class RecvUdpMulticast {
5

6 public static void Main(string[] args) {

3The rules for multicast TTL are actually not quite so simple. It is not necessarily the case that a
packet with TTL = 4 can travel four hops from the sender; however, it will not travel more than four
hops.

136 Chapter 4: Beyond the Basics ■

7

8 if (args.Length != 2) // Test for correct # of args
9 throw new ArgumentException("Parameter(s): <Multicast Addr> <Port>");

10

11 IPAddress address = IPAddress.Parse(args[0]); // Multicast address
12

13 if (! MCIPAddress.isValid(args[0]))
14 throw new ArgumentException("Valid MC addr: 224.0.0.0 - 239.255.255.255");
15

16 int port = Int32.Parse(args[1]); // Multicast port
17

18 Socket sock = new Socket(AddressFamily.InterNetwork, SocketType.Dgram,
19 ProtocolType.Udp); // Multicast receiving socket
20

21 // Set the reuse address option
22 sock.SetSocketOption(SocketOptionLevel.Socket,
23 SocketOptionName.ReuseAddress, 1);
24

25 // Create an IPEndPoint and bind to it
26 IPEndPoint ipep = new IPEndPoint(IPAddress.Any, port);
27 sock.Bind(ipep);
28

29 // Add membership in the multicast group
30 sock.SetSocketOption(SocketOptionLevel.IP,
31 SocketOptionName.AddMembership,
32 new MulticastOption(address, IPAddress.Any));
33

34 IPEndPoint receivePoint = new IPEndPoint(IPAddress.Any, 0);
35 EndPoint tempReceivePoint = (EndPoint)receivePoint;
36

37 // Create and receive a datagram
38 byte[] packet = new byte[ItemQuoteTextConst.MAX_WIRE_LENGTH];
39 int length = sock.ReceiveFrom(packet, 0, ItemQuoteTextConst.MAX_WIRE_LENGTH,
40 SocketFlags.None, ref tempReceivePoint);
41

42 ItemQuoteDecoderText decoder = new ItemQuoteDecoderText(); // Text decoding
43 ItemQuote quote = decoder.decode(packet);
44 Console.WriteLine(quote);
45

46 // Drop membership in the multicast group
47 sock.SetSocketOption(SocketOptionLevel.IP,
48 SocketOptionName.DropMembership,
49 new MulticastOption(address, IPAddress.Any));

■ 4.5 Multiple Recipients 137

50 sock.Close();
51 }
52 }

RecvUdpMulticast.cs

The two significant differences between our multicast and unicast receivers is that

the multicast receiver must join the multicast group by supplying the desired multicast

address and set the address reuse option. The setting of the address reuse option is

optional, but without it you will be unable to have two simultaneous multicast receivers

on the same host.

Multicast datagrams can, in fact, be sent from a Socket or UdpClient by simply using

a multicast address. In this case the TTL defaults to 1. You can test this by using SendUdp.cs
(see page 82) to send to the multicast receiver. A multicast receiver, on the other hand,

must use multicast-specific code in order to join the multicast group.

The decision to use broadcast or multicast depends on several factors, including

the network location of receivers and the knowledge of the communicating parties. The

scope of a broadcast on the Internet is restricted to a local broadcast network, placing

severe restrictions on the location of the broadcast receivers. Multicast communication

may include receivers anywhere in the network,4 so multicast has the advantage that it can

cover a distributed set of receivers. The disadvantage of IP multicast is that receivers must

know the address of a multicast group to join. Knowledge of an address is not required

to receive broadcast. In some contexts, this makes broadcast a better mechanism than

multicast for discovery. All hosts can receive broadcast by default, so it is simple to ask

all hosts on a single network a question like “Where’s the printer?”

UDP unicast, multicast, and broadcast are all implemented using an underlying UDP

socket. The semantics of most implementations are such that a UDP datagram will be

delivered to all sockets bound to the destination port of the packet. That is, a UDP Socket
or UdpClient instance bound to a local port X (with local address not specified, i.e., an

IPAddress.Any wild card), on a host with address Y will receive any UDP datagram destined

for port X that is (1) unicast with destination address Y, (2) multicast to a group that any
application on Y has joined, or (3) broadcast where it can reach host Y. A receiver can

use Connect() to limit the datagram source address and port. Also, a unicast UDP socket

instance can specify the local unicast address, which prevents delivery of multicast and

broadcast packets. See Section 5.5 for details on datagram demultiplexing. For more details

on implementing multicast applications, see the Multicast Sockets book in the Practical

Guide series [26].

4At the time of writing of this book, there are severe limitations on who can receive multicast traffic
on the Internet; however, multicast availability should improve over time. Multicast should work if
the sender and receivers are on the same LAN segment.

138 Chapter 4: Beyond the Basics ■

4.6 Closing Connections

You’ve probably never given much thought to who closes a connection. In phone conversa-

tions, either side can start the process of terminating the call. It typically goes something

like this:

“Well, I guess I’d better go.”

“OK. Bye.”

“Bye.”

Network protocols, on the other hand, are typically very specific about who “closes”

first. In the echo protocol, Figure 4.2(a), the server dutifully echoes everything the client

sends. When the client is finished, it calls Close(). After the server has received and echoed

all of the data sent before the client’s call to Close(), its read operation returns a 0, indi-

cating that the client is finished. The server then calls Close() on its socket. The close is

a critical part of the protocol because without it the server doesn’t know when the client

is finished sending characters to echo. In HTTP, Figure 4.2(b), it’s the server that initi-

ates the connection close. Here, the client sends a request (“GET”) to the server, and the

server responds by sending a header (normally starting with “200 OK”), followed by the

requested file. Since the client does not know the size of the file, the server must indicate

the end-of-file by closing the socket.5

Calling Close() on a Socket terminates both directions (input and output) of data

flow. (Section 5.4.2 provides a more detailed description of TCP connection termination.)

Once an endpoint (client or server) closes the socket, it can no longer send or receive
data. This means that Close() can only be used to signal the other end when the caller

is completely finished communicating. In the echo protocol, once the server receives the

"To Be"

E
ch

o
cl

ie
nt

"To Be"

"Or Not To Be"

"Or Not To Be"

Closed

Closed

E
ch

o
se

rv
er

"Get/Guide.html …"

W
eb

 b
ro

w
se

r "200 OK …

<HTML> …

… </HTML>"

(a) (b)

Closed

Closed

H
T

T
P

 s
er

ve
r

Figure 4.2: Echo (a) and HTTP (b) protocol termination.

5Note that HTTP does provide an application-level mechanism to determine the end of file, the
Content-Length header field, but this header is not required on an HTTP response. A robust client
should be prepared to handle responses without it.

■ 4.6 Closing Connections 139

close from the client, it immediately closes. In effect, the client close indicates that the

communication is completed. Basic HTTP works the same way, except that the server is

the terminator.6

Let’s consider a different protocol. Suppose you want a transcoding server that takes

a stream of bytes in Unicode, converts them to UTF-8, and sends the UTF-8 stream back

to the client. Which endpoint should close the connection? Since the stream of bytes from

the client is arbitrarily long, the client needs to close the connection so that the server

knows when the stream of bytes to be encoded ends. When should the client call Close()?

If the client calls Close() on the socket immediately after it sends the last byte of data, it

will not be able to receive the last bytes of UTF-8 data. Perhaps the client could wait until

it receives all of the UTF-8 data before it closes, as the echo protocol does. Unfortunately,

neither the server nor the client knows how many bytes to expect since UTF-8 encoding is

of variable length (see Section 3.1.1), so this will not work either. What is needed is a way

to tell the other end of the connection “I am through sending,” without losing the ability

to receive.

Fortunately, sockets provide a way to do this. The Shutdown() method of Socket
allows the I/O streams to be closed independently. The Shutdown() method takes as an

argument an instance of the SocketShutdown enumeration, which can have the values Send,

Receive, or Both. After a call to Shutdown(SocketShutdown.Receive), the socket can no

longer receive input. Any undelivered data is silently discarded, and any attempt to read

from the socket will generate a SocketException. After Shutdown(SocketShutdown.Send) is

called on a Socket, no more data may be sent on the socket. Attempts to write to the stream

also throw a SocketException. Any data written before the call to Shutdown(SocketShut-
down.Send) may be read by the remote socket. After this, a read on the input stream of

the remote socket will return 0. An application calling Shutdown(SocketShutdown.Send)
can continue to read from the socket and, similarly, data can be written after calling

Shutdown(SocketShutdown.Receive).

In the Transcode protocol (see Figure 4.3), the client writes the Unicode bytes, clos-

ing the output stream using Shutdown(SocketShutdown.Send) when finished sending, and

reads the UTF-8 byte stream from the server. The server repeatedly reads the Unicode

data and writes the UTF-8 data until the client performs a shutdown, causing the server

read to return 0, indicating an end-of-stream. The server then closes the connection

and exits. After the client calls Shutdown(SocketShutdown.Send), it needs to read any

remaining UTF-8 bytes from the server.

Our client, TranscodeClient.cs, implements the client side of the Transcode pro-

tocol. The Unicode bytes are read from the file specified on the command line, and the

UTF-8 bytes are written to a new file. If the Unicode filename is “data,” the UTF-8 file

name is “data.ut8.” Note that this implementation works for small files, but that there is

a flaw that causes deadlock for large files. (We discuss and correct this shortcoming in

Section 5.2.)

6More sophisticated features of HTTP, such as persistent connections, are quite common today and
operate differently.

140 Chapter 4: Beyond the Basics ■

Tr
an

sc
od

eS
er

ve
r

Tr
an

sc
od

eC
lie

nt

<unencoded bytes>

<unencoded bytes>

<encoded bytes>

Shutdown

<encoded bytes>

Closed

Figure 4.3: Transcode Server protocol termination.

As we mentioned earlier, some advanced functionality is available only in the Socket
class and not the higher level socket classes like TcpClient. The Shutdown() method of

the Socket class is an example of a feature that is not directly accessible in the TcpClient
class. However, the TcpClient class does give us access to its underlying Socket instance

through its protected Socket property. Since the property is protected, it can only be

accessed by extending the original TcpClient class. We have decided to illustrate this

technique here by extending the TcpClient class to access the Socket method Shutdown().

We have created the TcpClientShutdown class in order to do this.

TcpClientShutdown.cs

0 using System; // For String
1 using System.Net; // For IPEndPoint, EndPoint
2 using System.Net.Sockets; // For TcpClient, SocketShutdown
3

4 class TcpClientShutdown : TcpClient {
5

6 public TcpClientShutdown():base() {}
7 public TcpClientShutdown(IPEndPoint localEP):base(localEP) {}
8 public TcpClientShutdown(String server, int port):base(server, port) {}
9

10 public void Shutdown(SocketShutdown ss) {
11 // Invoke the Shutdown method on the underlying socket
12 this.Client.Shutdown(ss);
13 }

■ 4.6 Closing Connections 141

14 public EndPoint GetRemoteEndPoint() {
15 // Return the RemoteEndPoint from the underlying socket
16 return this.Client.RemoteEndPoint;
17 }
18 }

TcpClientShutdown.cs

1. Extend the TcpClient class: line 4

2. Extend the constructors: lines 6–8

Extending the constructors with the base keyword is required. Additional constructor

logic can also be added but is not required.

3. Shutdown(): lines 10–13

The new user-defined Shutdown() method invokes the Socket method of the same

name by using the Client property.

4. GetRemoteEndPoint(): lines 14–17

The new user-defined GetRemoteEndPoint() method retrieves the RemoteEndPoint
property from the underlying Socket by using the Client property.

TranscodeClient.cs

0 using System; // For String, Int32, Console, ArgumentException
1 using System.IO; // For FileStream
2 using System.Net.Sockets; // For NetworkStream, TcpClient
3

4 public class TranscodeClient {
5

6 private const int BUFSIZE = 256; // Size of read buffer
7

8 private static NetworkStream netStream;
9 private static FileStream fileIn;

10 private static TcpClientShutdown client;
11

12 public static void Main(string[] args) {
13

14 if (args.Length != 3) // Test for correct # of args
15 throw new ArgumentException("Parameter(s): <Server> <Port> <File>");
16

17 String server = args[0]; // Server name or IP address
18 int port = Int32.Parse(args[1]); // Server port
19 String filename = args[2]; // File to read data from

142 Chapter 4: Beyond the Basics ■

20

21 // Open input and output file (named <input>.ut8)
22 fileIn = new FileStream(filename, FileMode.Open, FileAccess.Read);
23 FileStream fileOut = new FileStream(filename + ".ut8", FileMode.Create);
24

25 // Create TcpClient connected to server on specified port
26 client = new TcpClientShutdown();
27 client.Connect(server, port);
28

29 // Send nonencoded byte stream to server
30 netStream = client.GetStream();
31 sendBytes();
32

33 // Receive encoded byte stream from server
34 int bytesRead; // Number of bytes read
35 byte[] buffer = new byte[BUFSIZE]; // Byte buffer
36 while ((bytesRead = netStream.Read(buffer, 0, buffer.Length)) > 0) {
37 fileOut.Write(buffer, 0, bytesRead);
38 Console.Write("R"); // Reading progress indicator
39 }
40

41 Console.WriteLine(); // End progress indicator line
42

43 netStream.Close(); // Close the stream
44 client.Close(); // Close the socket
45 fileIn.Close(); // Close input file
46 fileOut.Close(); // Close output file
47 }
48

49 private static void sendBytes() {
50 int bytesRead; // Number of bytes read
51 BufferedStream fileInBuf = new BufferedStream(fileIn);
52 byte[] buffer = new byte[BUFSIZE]; // Byte buffer
53 while ((bytesRead = fileInBuf.Read(buffer, 0, buffer.Length)) > 0) {
54 netStream.Write(buffer, 0, bytesRead);
55 Console.Write("W"); // Writing progress indicator
56 }
57 client.Shutdown(SocketShutdown.Send); // Done sending
58 }
59 }

TranscodeClient.cs

■ 4.6 Closing Connections 143

1. Application setup and parameter parsing: lines 14–19

2. Create socket and open files: lines 21–30

Using the TcpClientShutdown class to allow us access to the underlying Socket
methods and properties.

3. Invoke sendBytes() to transmit bytes: line 31

4. Receive the UTF-8 data stream: lines 33–39

The while loop receives the UTF-8 data stream and writes the bytes to the output file

until an end-of-stream is signaled by a 0 from Read().

5. Close socket and streams: lines 43–46

6. sendBytes(): lines 49–58

Given a socket connected to a Transcode server and the file input stream, read all of

the Unicode bytes from the file and write them to the socket network stream.

■ Set up input file buffered stream: lines 50–52

■ Send Unicode bytes to Transcode server: lines 53–56

The while loop reads from the input stream (in this case from a buffered file stream)

and repeats the bytes to the socket network stream until end-of-file, indicated by

0 from Read(). Each write is indicated by a “W” printed to the console.

■ Shut down the socket output stream: line 57

After reading and sending all of the bytes from the input file, shut down the output

stream, notifying the server that the client is finished sending. The close will cause

a 0 return from Read() on the server.

To implement the Transcode server, we simply write a server-side conversion pro-

tocol using the static UTF-8 Encoding class. The server receives the Unicode bytes from

the client, converts them to UTF-8, and writes them back to the client.

TranscodeServer.cs

0 using System; // For String, Int32, Console
1 using System.Text; // For Encoding
2 using System.Net; // For IPAddress
3 using System.Net.Sockets; // For TcpListener, TcpClient, NetworkStream
4

5 public class TranscodeServer {
6

7 public static readonly int BUFSIZE = 1024; // Size of read buffer
8

9 public static void Main(string[] args) {
10

11 if (args.Length != 1) // Test for correct # of args
12 throw new ArgumentException("Parameter(s): <Port>");

144 Chapter 4: Beyond the Basics ■

13

14 int servPort = Int32.Parse(args[0]); // Server port
15

16 // Create a TcpListener to accept client connection requests
17 TcpListener listener = new TcpListener(IPAddress.Any, servPort);
18 listener.Start();
19

20 byte[] buffer = new byte[BUFSIZE]; // Allocate read/write buffer
21 int bytesRead; // Number of bytes read
22 for (;;) { // Run forever, accepting and servicing connections
23 // Wait for client to connect, then create a new TcpClient
24 TcpClient client = listener.AcceptTcpClient();
25

26 Console.WriteLine("\nHandling client...");
27

28 // Get the input and output streams from socket
29 NetworkStream netStream = client.GetStream();
30

31 int totalBytesRead = 0;
32 int totalBytesWritten = 0;
33

34 Decoder uniDecoder = Encoding.Unicode.GetDecoder();
35 Char[] chars = null;
36

37 // Receive until client closes connection, indicated by 0 return
38 while ((bytesRead = netStream.Read(buffer, 0, buffer.Length)) > 0) {
39 totalBytesRead += bytesRead;
40

41 // Convert the incoming bytes to Unicode char array
42 int charCount = uniDecoder.GetCharCount(buffer, 0, bytesRead);
43 chars = new Char[charCount];
44 int charsDecodedCount = uniDecoder.GetChars(buffer, 0, bytesRead, chars, 0);
45

46 // Convert the Unicode char array to UTF8 bytes
47 int byteCount = Encoding.UTF8.GetByteCount(chars, 0, charsDecodedCount);
48 byte[] outputBuffer = new byte[byteCount];
49 Encoding.UTF8.GetBytes(chars, 0, charsDecodedCount, outputBuffer, 0);
50

51 // Send UTF8 bytes back to client
52 netStream.Write(outputBuffer, 0, outputBuffer.Length);
53 totalBytesWritten += outputBuffer.Length;
54 }
55

■ 4.7 Wrapping Up 145

56 Console.WriteLine("Total bytes read: {0}", totalBytesRead);
57 Console.WriteLine("Total bytes written: {0}", totalBytesWritten);
58 Console.WriteLine("Closing client connection...");
59

60 netStream.Close(); // Close the stream
61 client.Close(); // Close the socket
62 }
63 /* NOT REACHED */
64 }
65 }

TranscodeServer.cs

1. Parameter parsing and socket setup: lines 11–18

2. Accept a connection and get the stream: lines 24–29

3. Initialize byte counters and encodings: lines 31–35

4. Loop until end of stream, performing: lines 37–54

■ Read network stream into buffer: line 38

Read up to the maximum buffer size bytes until 0 is returned indicating the

Shutdown(SocketShutdown.Send) call was invoked by the client.

■ Increment total bytes read: line 39

■ Convert Unicode to UTF-8: lines 41–48

Note that we are receiving data in the multibyte format (Unicode) over a medium

that does not preserve message boundaries (TCP). This means that it is possible

that a given read contains an odd number of bytes, creating an incomplete Unicode

character at the end. Luckily, .NET provides a class for just such a situation. The

Decoder class keeps state from one call to the next. Therefore if a call to GetChars()
ends with an incomplete character, the bytes for that incomplete character are

stored and added to the beginning of the next input to GetChars(). This allows us

to process the stream data correctly regardless of where the message boundaries

fall.

■ Write the UTF-8 bytes out of the network stream: line 52

■ Increment total bytes written: line 53

5. Output results: lines 56–58

6. Close stream and socket: lines 60–61

4.7 Wrapping Up

We have discussed some of the ways .NET provides access to advanced features of the

sockets API, and how built-in features such as threads can be used with socket programs.

146 Chapter 4: Beyond the Basics ■

In addition to these facilities, .NET provides several mechanisms that operate on top of

TCP or UDP and attempt to hide the complexity of protocol development. For example,

Remoting allows .NET objects on different hosts to invoke one another’s methods as if

the objects all reside locally. Many other standard .NET library mechanisms exist, pro-

viding an amazing range of services. These mechanisms are beyond the scope of this

book; however, we encourage you to look at the the Microsoft Developer Network site at

www.msdn.microsoft.com for descriptions and code examples for some of these libraries.

4.8 Exercises

1. State precisely the conditions under which an iterative server is preferable to a

multiprocessing server.

2. Would you ever need to implement a timeout in a client or server that uses TCP?

3. How can you determine the minimum and maximum allowable sizes for a socket’s

send and receive buffers? Determine the minimums for your system.

4. Write an iterative dispatcher using the dispatching framework from this chapter.

5. Write the server side of a random-number server using the protocol factory frame-

work from this chapter. The client will connect and send the upper bound, B, on the

random number to the server. The server should return a random number between

1 and B, inclusive. All numbers should be specified in binary format as 4-byte,

two’s-complement, big-endian integers.

6. Modify TcpEchoClient.cs so that it closes its output side of the connection before

attempting to receive any echoed data.

7. Modify TcpEchoServerAsync.cs so that it polls for the accept to be completed after

each sleep in the doOtherStuff() method (instead of waiting until each method call

completes).

8. Modify some of the existing programs to implement asynchronous DNS lookups and

asynchronous Connect().

c h a p t e r 5

Under the Hood

Some of the subtleties of network programming are difficult to grasp without some

understanding of the data structures associated with the socket implementation and cer-

tain details of how the underlying protocols work. This is especially true of TCP sockets

(i.e., instances of TcpClient, TcpListener, or a TCP instance of Socket). This chapter

describes some of what goes on in the runtime implementation when you create and use

an instance of Socket or one of the higher level TCP classes that utilize sockets. Unless

specifically stated otherwise, references to the behavior of the Socket class in this chapter

also apply to TcpClient and TcpListener classes, which create Socket instances “under the

hood.” (The initial discussion and Section 5.2 apply as well to UdpClient). However, most

of this chapter focuses on TCP sockets, that is, a TCP instance of Socket (whether used

directly or indirectly via a higher level class). Please note that this description covers only

the normal sequence of events and glosses over many details. Nevertheless, we believe

that even this basic level of understanding is helpful. Readers who want the full story are

referred to the TCP specification [12] or to one of the more comprehensive treatises on the

subject [3, 20, 22].

Figure 5.1 is a simplified view of some of the information associated with a Socket
instance. The classes are supported by an underlying implementation that is provided by

the CLR and/or the platform on which it is running (i.e., the “socket layer” of the Windows

operating system). Operations on the C# objects are translated into manipulations of this

underlying abstraction. In this chapter, “Socket” refers generically to one of the classes

in Figure 5.1, while “socket” refers to the underlying abstraction, whether it is provided

by an underlying OS or the CLR implementation itself (e.g., in an embedded system). It is

important to note that other (possibly non-C#/.NET) programs running on the same host

may be using the network via the underlying socket abstraction and thus competing with

C# Socket instances for resources such as ports.

147

148 Chapter 5: Under the Hood ■

Closed

Local port

Local IP

Remote port

Remote IP

Underlying socket structure

N
et

w
or

kS
tr

ea
m

 /
by

te
 a

rr
ay

N
et

w
or

kS
tr

ea
m

 /
by

te
 a

rr
ay

SendQ

RecvQ

To network

Socket, TcpClient,
TcpListener, or

UdpClient instance

A
pp

lic
at

io
n

pr
og

ra
m

U
nd

er
ly

in
g

im
pl

em
en

ta
tio

n

Figure 5.1: Data structures associated with a socket.

■ 5.1 Buffering and TCP 149

By “socket structure” here we mean the collection of data structures in the underlying

implementation (of both the CLR and TCP/IP, but primarily the latter) that contain the

information associated with a particular Socket instance. For example, the socket structure

contains, among other information:

■ The local and remote Internet addresses and port numbers associated with the socket.

The local Internet address (labeled “Local IP” in Figure 5.1) is one of those assigned

to the local host; the local port is set at Socket creation time. The remote address and

port identify the remote socket, if any, to which the local socket is connected. We

will say more about how and when these values are determined shortly (Section 5.5

contains a concise summary).

■ A FIFO queue of received data waiting to be delivered and a queue for data waiting

to be transmitted.

■ For a TCP socket, additional protocol state information relevant to the opening and

closing TCP handshakes. In Figure 5.1, the state is “Closed”; all sockets start out in

the Closed state.

Knowing that these data structures exist and how they are affected by the underlying

protocols is useful because they control various aspects of the behavior of the various

Socket objects. For example, because TCP provides a reliable byte-stream service, a copy

of any data written to a TcpClient’s NetworkStream must be kept until it has been success-

fully received at the other end of the connection. Writing data to the network stream does

not imply that the data has actually been sent, only that it has been copied into the local

buffer. Even Flush()ing a NetworkStream doesn’t guarantee that anything goes over the

wire immediately. (This is also true for a byte array sent to a Socket instance.) Moreover,

the nature of the byte-stream service means that message boundaries are not preserved in

the network stream. As we saw in Section 3.3, this complicates the process of receiving and

parsing for some protocols. On the other hand, with a UdpClient, packets are not buffered

for retransmission, and by the time a call to the Send() method returns, the data has been

given to the network subsystem for transmission. If the network subsystem cannot handle

the message for some reason, the packet is silently dropped (but this is rare).

The next three sections deal with some of the subtleties of sending and receiving with

TCP’s byte-stream service. Then, Section 5.4 considers the connection establishment and

termination of the TCP protocol. Finally, Section 5.5 discusses the process of matching

incoming packets to sockets and the rules about binding to port numbers.

5.1 Buffering and TCP

As a programmer, the most important thing to remember when using a TCP socket is this:

You cannot assume any correspondence between writes to the output network
stream at one end of the connection and reads from the input network stream at the
other end.

150 Chapter 5: Under the Hood ■

In particular, data passed in a single invocation of the output network stream’s Write()
method at the sender can be spread across multiple invocations of the input network

stream’s Read() method at the other end; and a single Read() may return data passed in

multiple Write()s. To see this, consider a program that does the following:

byte[] buffer0 = new byte[1000];
byte[] buffer1 = new byte[2000];
byte[] buffer2 = new byte[5000];
:::

TcpClient client = new TcpClient();
client.Connect(destAddr, destPort);
NetworkStream out = client.GetStream();
:::

out.Write(buffer0);
:::

out.Write(buffer1);
:::

out.Write(buffer2);
:::

out.Close();

where the ellipses represent code that sets up the data in the buffers but contains no

other calls to out.Write(). Throughout this discussion, “in” refers to the incoming Net-
workStream of the receiver’s Socket, and “out” refers to the outgoing NetworkStream of the

sender’s Socket.

This TCP connection transfers 8000 bytes to the receiver. The way these 8000 bytes

are grouped for delivery at the receiving end of the connection depends on the timing

between the out.Write()s and in.Read()s at the two ends of the connection—as well as

the size of the buffers provided to the in.Read() calls.

We can think of the sequence of all bytes sent (in one direction) on a TCP connection

up to a particular instant in time as being divided into three FIFO queues:

1. SendQ : Bytes buffered in the underlying implementation at the sender that have

been written to the output network stream but not yet successfully transmitted to

the receiving host.

2. RecvQ : Bytes buffered in the underlying implementation at the receiver waiting to

be delivered to the receiving program—that is, read from the input network stream.

3. Delivered: Bytes already read from the input network stream by the receiver.

A call to out.Write() at the sender appends bytes to SendQ. The TCP protocol is responsi-

ble for moving bytes—in order—from SendQ to RecvQ. It is important to realize that this

transfer cannot be controlled or directly observed by the user program, and that it occurs

in chunks whose sizes are more or less independent of the size of the buffers passed

■ 5.1 Buffering and TCP 151

in Write()s. Bytes are moved from RecvQ to Delivered as they are read from the Socket’s

NetworkStream (or byte array) by the receiving program; the size of the transferred chunks

depends on the amount of data in RecvQ and the size of the buffer given to Read().

Figure 5.2 shows one possible state of the three queues after the three out.Write()s

in the example above, but before any in.Read()s at the other end. The different shad-

ing patterns denote bytes passed in the three different invocations of Write() shown in

Figure 5.2.

Now suppose the receiver calls Read() with a byte array of size 2000. The Read()
call will move all of the 1500 bytes present in the waiting-for-delivery (RecvQ) queue into

the byte array and return the value 1500. Note that this data includes bytes passed in both

the first and second calls to Write(). At some time later, after TCP has completed transfer

of more data, the three partitions might be in the state shown in Figure 5.3.

If the receiver now calls Read() with a buffer of size 4000, that many bytes will be

moved from the waiting-for-delivery (RecvQ) queue to the already-delivered (Delivered)

23send() 12TCP protocol

Receiving implementation Receiving program

6500 bytes 1500 bytes

SendQ RecvQ

recv()

0 bytes

Delivered

Sending implementation

1

2

3

First write (1000 bytes)

Second write (2000 bytes)

Third write (5000 bytes)

Figure 5.2: State of the three queues after three writes.

12233

Receiving implementation Receiving program

500 bytes 6000 bytes

SendQ RecvQ

1500 bytes

Delivered

Sending implementation

1

2

3

First write (1000 bytes)

Second write (2000 bytes)

Third write (5000 bytes)

Figure 5.3: After first read().

152 Chapter 5: Under the Hood ■

12333

Receiving implementation Receiving program

500 bytes 2000 bytes

SendQ RecvQ

5500 bytes

Delivered

Sending implementation

1

2

3

First write (1000 bytes)

Second write (2000 bytes)

Third write (5000 bytes)

Figure 5.4: After another Read().

queue; this includes the remaining 1500 bytes from the second Write(), plus the first

2500 bytes from the third Write(). The resulting state of the queues is shown in Figure 5.4.

The number of bytes returned by the next call to Read() depends on the size of

the buffer and the timing of the transfer of data over the network from the send-side

socket/TCP implementation to the receive-side implementation. The movement of data

from the SendQ to the RecvQ buffer has important implications for the design of appli-

cation protocols. We have already encountered the need to parse messages as they are

received via a Socket when in-band delimiters are used for framing (see Section 3.3). In

the following sections, we consider two more subtle ramifications.

5.2 Buffer Deadlock

Application protocols have to be designed with some care to avoid deadlock—that is, a

state in which each peer is blocked waiting for the other to do something. For example,

it is pretty obvious that if both client and server try to do a blocking receive immediately

after a connection is established, deadlock will result. Deadlock can also occur in less

immediate ways.

The buffers SendQ and RecvQ in the implementation have limits on their capacity.

Although the actual amount of memory they use may grow and shrink dynamically, a hard

limit is necessary to prevent all of the system’s memory from being gobbled up by a single

TCP connection under control of a misbehaving program. Because these buffers are finite,

they can fill up, and it is this fact, coupled with TCP’s flow control mechanism, that leads

to the possibility of another form of deadlock.

Once RecvQ is full, the TCP flow control mechanism kicks in and prevents the transfer

of any bytes from the sending host’s SendQ , until space becomes available in RecvQ as a

result of the receiver calling the input network stream’s Read() method. (The purpose of

the flow control mechanism is to ensure that the sender does not transmit more data than

the receiving system can handle.) A sending program can continue to call send until SendQ

■ 5.2 Buffer Deadlock 153

is full; however, once SendQ is full, a call to out.Write() will block until space becomes

available, that is, until some bytes are transferred to the receiving socket’s RecvQ. If RecvQ
is also full, everything stops until the receiving program calls in.Read() and some bytes

are transferred to Delivered.

Let’s assume that the sizes of SendQ and RecvQ are SQS and RQS, respectively.

A write() call with a byte array of size n such that n > SQS will not return until at least

n−SQS bytes have been transferred to RecvQ at the receiving host. If n exceeds (SQS+RQS),

Write() cannot return until after the receiving program has read at least n−(SQS + RQS)

bytes from the input network stream. If the receiving program does not call Read(), a

large Send() may not complete successfully. In particular, if both ends of the connec-

tion invoke their respective output network streams’ Write() method simultaneously with

buffers greater than SQS + RQS, deadlock will result: neither write will ever complete, and

both programs will remain blocked forever.

As a concrete example, consider a connection between a program on Host A and

a program on Host B. Assume SQS and RQS are 500 at both A and B. Figure 5.5 shows

what happens when both programs try to send 1500 bytes at the same time. The first 500

bytes of data in the program at Host A have been transferred to the other end; another

500 bytes have been copied into SendQ at Host A. The remaining 500 bytes cannot be

sent—and therefore out.Write() will not return—until space frees up in RecvQ at Host B.

Unfortunately, the same situation holds in the program at Host B. Therefore, neither

program’s Write() call will ever complete.

The moral of the story: Design the protocol carefully to avoid sending large quantities
of data simultaneously in both directions.

Can this really happen? Let’s review the Transcode conversion protocol example in

Section 4.6. Try running the Transcode client with a large file. The precise definition of

To be sent

To be sent SendQ

SendQDelivered

Program

RecvQ

RecvQ Delivered

Host A Host B

send(s,buffer,1500,0); send(s,buffer,1500,0);

Implementation ProgramImplementation

Figure 5.5: Deadlock due to simultaneous Write()s to output network streams at opposite ends of

the connection.

154 Chapter 5: Under the Hood ■

“large” here depends on your system, but a file that exceeds 2MB should do nicely. For each

read/write, the client prints an “R”/“W” to the console. If both the versions of the file are

large enough (the UTF-8 version will be at a minimum half the size of the Unicode bytes

sent by the client), your client will print a series of “Ws” and then stop without terminating

or printing any “Rs.”

Why does this happen? The program TranscodeClient.cs sends all of the Unicode

data to the server before it attempts to read anything from the encoded stream. The server,

on the other hand, simply reads the Unicode byte sequence and writes the UTF-8 sequence

back to the client. Consider the case where SendQ and RecvQ for both client and server

hold 500 bytes each and the client sends a 10,000-byte Unicode file. Let’s assume that

the file has no characters requiring double byte representation, so we know we will be

sending half the number of bytes back. After the client sends 2000 bytes, the server will

eventually have read them all and sent back 1000 bytes, and the client’s RecvQ and the

server’s SendQ will both be full. After the client sends another 1000 bytes and the server

reads them, the server’s subsequent attempt to write will block. When the client sends the

next 1000 bytes, the client’s SendQ and the server’s RecvQ will both fill up. The next client

write will block, creating deadlock.

How do we solve this problem? The easiest solution is to execute the client writing

and reading loop in separate threads. One thread repeatedly reads a buffer of Unicode

bytes from a file and sends them to the server until the end of the file is reached, whereupon

it calls Shutdown(SocketShutdown.Send) on the socket. The other thread repeatedly reads

a buffer of UTF-8 bytes from the server and writes them to the output file, until the input

network stream ends (i.e., the server closes the socket). When one thread blocks, the other

thread can proceed independently. We can easily modify our client to follow this approach

by putting the call to SendBytes() in TranscodeClient.cs inside a thread as follows:

Thread thread = new Thread(new ThreadStart(sendBytes));
thread.Start();

See TranscodeClientNoDeadlock.cs on the book’s website (www.mkp.com/practical/

csharpsockets) for the complete example of solving this problem with threads. Can we

also solve this problem without using threads? To guarantee deadlock avoidance in a

single threaded solution, we need nonblocking writes. Nonblocking writes are available

via the Socket Blocking property or using the Socket BeginSend()/EndSend() methods or

the NetworkStream BeginRead()/EndRead() methods.

5.3 Performance Implications

The TCP implementation’s need to copy user data into SendQ for potential retransmission

also has implications for performance. In particular, the sizes of the SendQ and RecvQ
buffers affect the throughput achievable over a TCP connection. Throughput refers to

the rate at which bytes of user data from the sender are made available to the receiving

program; in programs that transfer a large amount of data, we want to maximize this rate.

■ 5.4 TCP Socket Life Cycle 155

In the absence of network capacity or other limitations, bigger buffers generally result in

higher throughput.

The reason for this has to do with the cost of transferring data into and out of the

buffers in the underlying implementation. If you want to transfer n bytes of data (where n

is large), it is generally much more efficient to call Write() once with a buffer of size n than

it is to call it n times with a single byte.1 However, if you call Write() with a size parameter

that is much larger than SQS, the system has to transfer the data from the user address

space in SQS -sized chunks. That is, the socket implementation fills up the SendQ buffer,

waits for data to be transferred out of it by the TCP protocol, refills SendQ , waits some

more, and so on. Each time the socket implementation has to wait for data to be removed

from SendQ , some time is wasted in the form of overhead (a context switch occurs). This

overhead is comparable to that incurred by a completely new call to Write(). Thus, the

effective size of a call to Write() is limited by the actual SQS. For reading from the Network-
Stream/Socket, the same principle applies: however large the buffer we give to Read(), it

will be copied out in chunks no larger than RQS, with overhead incurred between chunks.

If you are writing a program for which throughput is an important performance

metric, you will want to change the send and receive buffer sizes using the Set-
SocketOption() methods of Socket with SocketOptionName.SendBufferSize and Socket-
OptionName.ReceiveBufferSize, or the SendBufferSize and ReceiveBufferSize() public

properties of TcpClient. Although there is always a system-imposed maximum size for

each buffer, it is typically significantly larger than the default on modern systems. Remem-

ber that these considerations apply only if your program needs to send an amount of

data significantly larger than the buffer size, all at once. Note also that these factors may

make little difference if the program deals with some higher-level stream derived from the

Socket’s basic network stream (say, by using it to create an instance of BufferedStream or

BinaryWriter), which may perform its own internal buffering or add other overhead.

5.4 TCP Socket Life Cycle

When a new instance of the Socket class is connected—either via one of the Connect() calls

or by calling one the Accept() methods of a Socket or TcpListener—it can immediately

be used for sending and receiving data. That is, when the instance is returned, it is already

connected to a remote peer and the opening TCP message exchange, or handshake, has

been completed by the implementation.

Let us therefore consider in more detail how the underlying structure gets to and

from the connected, or “Established,” state; as you’ll see later (in Section 5.4.2), these

details affect the definition of reliability and the ability to create a Socket bound to a

particular port.

1The same thing generally applies to reading data from the Socket, although calling Read()/Receive()
with a larger buffer does not guarantee that more data will be returned.

156 Chapter 5: Under the Hood ■

5.4.1 Connecting

The relationship between an invocation of a TCP client connection (whether by TcpClient
constructor, TcpClient.Connect(), or Socket.Connect()) and the protocol events asso-

ciated with connection establishment at the client are illustrated in Figure 5.6. In this

and the remaining figures in this section, the large arrows depict external events that

cause the underlying socket structures to change state. Events that occur in the applica-

tion program—that is, method calls and returns—are shown in the upper part of the figure;

events such as message arrivals are shown in the lower part of the figure. Time proceeds

left to right in these figures. The client’s Internet address is depicted as A.B.C.D, while the

server’s is W.X.Y.Z; the server’s port number is Q.

When the client calls the TcpClient constructor with the server’s Internet address,

W.X.Y.Z, and port, Q, the underlying implementation creates a socket instance; it is initially

in the Closed state. If the client did not specify the local address and port number in the

constructor call, a local port number (P), not already in use by another TCP socket, is chosen

by the implementation. The local Internet address is also assigned; if not explicitly speci-

fied, the address of the network interface through which packets will be sent to the server

is used. The implementation copies the local and remote addresses and ports into the

underlying socket structure, and initiates the TCP connection establishment handshake.

The TCP opening handshake is known as a 3-way handshake because it typically

involves three messages: a connection request from client to server, an acknowledgment

from server to client, and another acknowledgment from client back to server. The client

TCP considers the connection to be established as soon as it receives the acknowledgment

from the server. In the normal case, this happens quickly. However, the Internet is a best-

effort network, and either the client’s initial message or the server’s response can get lost.

For this reason, the TCP implementation retransmits handshake messages multiple times,

at increasing intervals. If the client TCP does not receive a response from the server after

some time, it times out and gives up. In this case the constructor throws a SocketException
with the ErrorCode property set to 10060 (connection timed out). The connection timeout

is generally long (by default 20 seconds on Microsoft Windows), and thus it can take some

time for a TcpClient() constructor to fail. If the server is not accepting connections—say,

if there is no program associated with the given port at the destination—the server-side

TCP will send a rejection message instead of an acknowledgment, and the constructor will

throw a SocketException almost immediately, with the ErrorCode property set to 10061

(connection refused).

The sequence of events at the server side is rather different; we describe it in

Figures 5.7, 5.8, and 5.9. The server first creates an instance of TcpListener/Socket asso-

ciated with its well-known port (here, Q). The socket implementation creates an underlying

socket structure for the new TcpListener/Socket instance, and fills in Q as the local port

and the special wildcard address (“∗” in the figures, IPAddress.Any in C#) for the local

IP address. (The server may also specify a local IP address in the constructor, but typically

it does not. In case the server host has more than one IP address, not specifying the local

address allows the socket to receive connections addressed to any of the server host’s

■
5

.4
T

C
P

S
o

c
k

e
t

L
ife

C
y

c
le

1
5

7

Send
connection
request to

server

Create
structure

Blocks

Call TcpClient.Connect(W.X.Y.Z, Q)

A
pp

lic
at

io
n

pr
og

ra
m

U
nd

er
ly

in
g

im
pl

em
en

ta
tio

n

Local port

Closed

Remote port

Local IP

Remote IP

Local port

Connecting

P

W.X.Y.Z

Q

A.B.C.D

Remote port

Local IP

Remote IP

Local port

Established

P

W.X.Y.Z

Q

A.B.C.D

Remote port

Local IP

Remote IP

Fill in
local and
remote
address

Handshake
completes

Call Socket.Connect(W.X.Y.Z, Q)

Call new TcpClient(W.X.Y.Z, Q)

Returns instance

Figure 5.6: Client-side connection establishment.

158 Chapter 5: Under the Hood ■

Create
structure

Returns instance

Call TcpListener

(IPAddress.Any, Q)

A
pp

lic
at

io
n

pr
og

ra
m

U
nd

er
ly

in
g

im
pl

em
en

ta
tio

n

Local port

Closed

Remote port

Local IP

Remote IP

Local port

Listening

Q

*

*

*

Remote port

Local IP

Remote IP

Fill in
local port,
set state

Call Start()

Call Socket.Bind

(new EPEndPoint

(IPAddress.Any, Q)) Call Listen()

Returns instance

Figure 5.7: Server-side socket setup.

addresses.) After the call to Start() for TcpListener or Listen() for Socket, the state of

the socket is set to “Listening,” indicating that it is ready to accept incoming connection

requests addressed to its port. This sequence is depicted in Figure 5.7.

The server can make the accept call (Accept() for Socket or either AcceptSocket() or

AcceptTcpClient() for TcpListener, which will all be referred to collectively as Accept∗()
from here on) blocks until the TCP opening handshake has been completed with some client

and a new connection has been established. We therefore focus in Figure 5.8 on the events

that occur in the TCP implementation when a client connection request arrives. Note that

everything depicted in this figure happens “under the covers,” in the TCP implementation.

When the request for a connection arrives from the client, a new socket structure is

created for the connection. The new socket’s addresses are filled in based on the arriving

packet: the packet’s destination Internet address and port (W.X.Y.Z and Q, respectively)

become the local Internet address and port; the packet’s source address and port (A.B.C.D

and P) become the remote Internet address and port. Note that the local port number of

the new socket is always the same as that of the TcpListener. The new socket’s state is set

to “Connecting,” and it is added to a list of not-quite-connected sockets associated with

■
5

.4
T

C
P

S
o

c
k

e
t

L
ife

C
y

c
le

1
5

9

Create new structure and
continue handshake

U
nd

er
ly

in
g

im
pl

em
en

ta
tio

n
Incoming

connection
request

from
A.B.C.D/P

T
cp

Li
st

en
er

/S
oc

ke
t

S
tr

uc
tu

re
A

ss
oc

ia
te

d
S

oc
ke

t/
T

cp
C

lie
nt

 S
tr

uc
tu

re

Handshake
completes

Local port

Established

Q

A.B.C.D

P

W.X.Y.ZLocal IP

Remote IP

Remote port

Local port

Connecting

Q

A.B.C.D

P

W.X.Y.ZLocal IP

Remote IP

Remote port

ListeningListening

Local port

Listening

Q

*

*

*Local IP

Remote IP

Remote port

Local port Q

*

*

*Local IP

Remote IP

Remote port

Local port Q

*

*

*Local IP

Remote IP

Remote port

Figure 5.8: Incoming connection request processing.

160 Chapter 5: Under the Hood ■

the socket structure of the TcpListener. Note that the TcpListener itself does not change

state, nor does any of its address information change.

In addition to creating a new underlying socket structure, the server-side TCP imple-

mentation sends an acknowledging TCP handshake message back to the client. However,

the server TCP does not consider the handshake complete until the third message of the

3-way handshake is received from the client. When that message eventually arrives, the

new structure’s state is set to “Established,” and it is then (and only then) moved to a list

of socket structures associated with the TcpListener structure, which represent estab-

lished connections ready to be Accept∗()ed via the TcpListener. (If the third handshake

message fails to arrive, eventually the “Connecting” structure is deleted.)

Now we can consider (in Figure 5.9) what happens when the server program calls the

TcpListener/ Socket’s Accept∗() method. The call unblocks as soon as there is something

in its associated list of socket structures for new connections. (Note that this list may

already be nonempty when Accept∗() is called.) At that time, one of the new connection

structures is removed from the list, and an instance of Socket or TcpClient is created for

it and returned as the result of the Accept∗().

It is important to note that each structure in the TcpListener’s associated list repre-

sents a fully established TCP connection with a client at the other end. Indeed, the client

can send data as soon as it receives the second message of the opening handshake—which

may be long before the server calls Accept∗() to get a Socket instance for it.

5.4.2 Closing a TCP Connection

TCP has a graceful close mechanism that allows applications to terminate a connection

without having to worry about loss of data that might still be in transit. The mechanism

is also designed to allow data transfers in each direction to be terminated independently,

as in the encoding example of Section 4.6. It works like this: the application indicates

that it is finished sending data on a connected socket by calling Close() or by calling

Shutdown(SocketShutdown.Send). At that point, the underlying TCP implementation first

transmits any data remaining in SendQ (subject to available space in RecvQ at the other

end), and then sends a closing TCP handshake message to the other end. This closing hand-

shake message can be thought of as an end-of-transmission marker: it tells the receiving

TCP that no more bytes will be placed in RecvQ. (Note that the closing handshake message

itself is not passed to the receiving application, but that its position in the byte stream

is indicated by Read() returning 0.) The closing TCP waits for an acknowledgment of its

closing handshake message, which indicates that all data sent on the connection made it

safely to RecvQ. Once that acknowledgment is received, the connection is “Half closed.” It

is not completely closed until a symmetric handshake happens in the other direction—that

is, until both ends have indicated that they have no more data to send.

The closing event sequence in TCP can happen in two ways: either one application

calls Close() (or Shutdown(SocketShutdown.Send)) and completes its closing handshake

before the other calls Close(), or both call Close() simultaneously, so that their closing

handshake messages cross in the network. Figure 5.10 shows the sequence of events in

■
5

.4
T

C
P

S
o

c
k

e
t

L
ife

C
y

c
le

1
6

1

U
nd

er
ly

in
g

im
pl

em
en

ta
tio

n

Events of
Figure 5.8

T
cp

Li
st

en
er

/S
oc

ke
t

S
tr

uc
tu

re
A

ss
oc

ia
te

d
S

oc
ke

t/
T

cp
C

lie
nt

 S
tr

uc
tu

re

Local port

Connecting

Q

A.B.C.D

P

W.X.Y.ZLocal IP

Remote IP

Remote port

Local port

Listening

Q

*

*

*Local IP

Remote IP

Remote port

Local port

Listening

Q

*

*

*Local IP

Remote IP

Remote port

Local port

Listening

Q

*

*

*Local IP

Remote IP

Remote port

Returns Socket or TcpClient
instance for this structure

Blocks until new
connection is established

Call Accept(), AcceptSocket() or
AcceptTcpClient()

A
pp

lic
at

io
n

P
ro

gr
am

Figure 5.9: Accept∗() processing.

1
6

2
C

h
a

p
te

r
5

:
U

n
d

e
r

th
e

H
o

o
d

■

U
nd

er
ly

in
g

im
pl

em
en

ta
tio

n

Local port

Time-Wait

Q

A.B.C.D

P

W.X.Y.Z

Local IP

Remote IP

Remote port

Returns immediately

Call Close()or
Shutdown(SocketShutdown.Send)

A
pp

lic
at

io
n

P
ro

gr
am

Close
handshake
initiated by
remote
completesLocal port

Established

Q

A.B.C.D

P

W.X.Y.Z

Local IP

Remote IP

Remote port

Local port

Closing

Q

A.B.C.D

P

W.X.Y.Z

Local IP

Remote IP

Remote port

Local port

Half closed

Q

A.B.C.D

P

W.X.Y.Z

Local IP

Remote IP

Remote port

Start
close
handshake

Close
handshake
completes

Figure 5.10: Closing a TCP connection first.

■ 5.4 TCP Socket Life Cycle 163

the implementation when the application invokes Close() before the other end closes. The

closing handshake message is sent, the state of the socket structure is set to “Closing,” and

the call returns. After this point, further reads and writes on the Socket are disallowed

(they throw an exception). When the acknowledgment for the close handshake is received,

the state changes to “Half closed,” where it remains until the other end’s close handshake

message is received. Note that if the remote endpoint goes away while the connection is in

this state, the local underlying structure will stay around indefinitely. When the other end’s

close handshake message arrives, an acknowledgment is sent and the state is changed to

“Time-Wait.” Although the corresponding Socket instance in the application program may

have long since vanished, the associated underlying structure continues to exist in the

implementation for a minute or more; the reasons for this are discussed on page 164.

Figure 5.11 shows the simpler sequence of events at the endpoint that does not close

first. When the closing handshake message arrives, an acknowledgment is sent immedi-

ately, and the connection state becomes “Close-Wait.” At this point, we are just waiting for

the application to invoke the Socket’s Close() method. When it does, the final close hand-

shake is initiated and the underlying socket structure is deallocated, although references

to its original Socket instance may persist in the C# program.

In view of the fact that both Close() and Shutdown(SocketShutdown.Send) return

without waiting for the closing handshake to complete, you may wonder how the sender

U
nd

er
ly

in
g

im
pl

em
en

ta
tio

n

Local port

Close-Wait

P

W.X.Y.Z

Q

A.B.C.DLocal IP

Remote IP

Remote port

Local port

Established

P

W.X.Y.Z

Q

A.B.C.DLocal IP

Remote IP

Remote port

Returns immediately

Call Close()

A
pp

lic
at

io
n

P
ro

gr
am

Close
handshake
initiated by
remote
completes Finish close handshake,

delete structure

Figure 5.11: Closing after the other end closes.

164 Chapter 5: Under the Hood ■

can be assured that sent data has actually made it to the receiving program (i.e., to

Delivered). In fact, it is possible for an application to call Close() or Shutdown(Socket-
Shutdown.Send) and have it complete successfully (i.e., not throw an exception) while
there is still data in SendQ. If either end of the connection then crashes before the data

makes it to RecvQ , data may be lost without the sending application knowing about it.

The best solution is to design the application protocol so that the side that calls

Close() first does so only after receiving application-level assurance that its data was

received. For example, when our TCPEchoClient program receives the echoed copy of the

data it sent, there should be nothing more in transit in either direction, so it is safe to

close the connection.

.NET does provide a way to modify the behavior of the Socket’s Close() method,

namely by modifying the linger option. The linger option is accessed by either using

the LingerState property of TcpClient class, or by Socket’s Get/SetSocketOption()
methods. In both cases the LingerOption class is used to control how long Close() waits

for the closing handshake to complete before returning. The LingerOption class takes two

parameters: a Boolean that indicates whether to wait, and an integer specifying the number

of seconds to wait before giving up. That is, when a timeout is specified via LingerOption,

Close() blocks until the closing handshake is completed, or until the specified amount of

time passes.

Here is an example of setting the socket option:

sock.SetSocketOption(SocketOptionLevel.Socket,
SocketOptionName.Linger,
(object)new LingerOption(true, 10));

Here is an example of setting the TcpClient public LingerState property:

client.LingerState = new LingerOption(true, 10);

At the time of this writing, however, Close() provides no indication that the closing

handshake failed to complete, even if the timelimit set by the LingerOption expires before

the closing sequence completes. In other words, using the LingerOption may provide

additional time, but does not provide any additional confirmation to the application in

current implementations.

The final subtlety of closing a TCP connection revolves around the need for the Time-

Wait state. The TCP specification requires that when a connection terminates, at least

one of the sockets persists in the Time-Wait state for a period of time after both closing

handshakes complete. This requirement is motivated by the possibility of messages being

delayed in the network. If both ends’ underlying structures go away as soon as both clos-

ing handshakes complete, and a new connection is immediately established between the

same pair of socket addresses, a message from the previous connection, which happened

to be delayed in the network, could arrive just after the new connection is established.

Because it would contain the same source and destination addresses, the old message

could be mistaken for a message belonging to the new connection, and its data might

(incorrectly) be delivered to the application.

■ 5.5 Demultiplexing Demystified 165

Unlikely though this scenario may be, TCP employs multiple mechanisms to prevent

it, including the Time-Wait state. The Time-Wait state ensures that every TCP connection

ends with a quiet time, during which no data is sent. The quiet time is supposed to be

equal to twice the maximum amount of time a packet can remain in the network. Thus, by

the time a connection goes away completely (i.e., the socket structure leaves the Time-Wait

state and is deallocated) and clears the way for a new connection between the same pair of

addresses, no messages from the old instance can still be in the network. In practice, the

length of the quiet time is implementation dependent, because there is no real mechanism

that limits how long a packet can be delayed by the network. Values in use range from

4 minutes down to 30 seconds or even shorter (4 minutes is the default on Microsoft

Windows).

The most important consequence of Time-Wait is that as long as the underlying

socket structure exists, no other socket is permitted to be associated with the same local

port. In particular, any attempt to create a Socket instance using that port will throw a

SocketException with a ErrorCode of 10048 (address already in use).

5.5 Demultiplexing Demystified

The fact that different sockets on the same machine can have the same local address and

port number is implicit in the preceding discussions. For example, on a machine with

only one IP address, every new Socket or TcpClient instance Accept()ed via a server

Socket or TcpListener will have the same local port number as the server socket. Clearly

the process of deciding to which socket an incoming packet should be delivered—that is,

the demultiplexing process—involves looking at more than just the packet’s destination

address and port. Otherwise there could be ambiguity about which socket an incoming

packet is intended for. The process of matching an incoming packet to a socket is actually

the same for both TCP and UDP, and can be summarized by the following points:

■ The local port in the socket structure must match the destination port number in the

incoming packet.

■ Any address fields in the socket structure that contain the wildcard value (∗) are

considered to match any value in the corresponding field in the packet.

■ If there is more than one socket structure that matches an incoming packet for all

four address fields, the one that matches using the fewest wildcards gets the packet.

For example, consider a host with two IP addresses, 10.1.2.3 and 192.168.3.2, and

with a subset of its active TCP socket structures, as shown in Figure 5.12. The struc-

ture labeled 0 is associated with a TcpListener and has port 99 with a wildcard local

address. Socket structure 1 is also for a TcpListener on the same port, but with the local

IP address 10.1.2.3 specified (so it will only accept connection requests to that address).

Structure 2 is for a connection that was accepted via the TcpListener for structure 0, and

thus has the same local port number, but also has its local and remote Internet addresses

166 Chapter 5: Under the Hood ■

Local port 99

*

*

*

Listening

Local IP

Remote port

Remote IP

Local port 99

10.1.2.3

*

*

Listening

Local IP

Remote port

Remote IP

Local port 99

192.168.3.2

30001

172.16.1.9

Established

0 1 2

Local IP

Remote port

Remote IP

Local port 1025

10.1.2.3

25

10.5.5.8

Established

Local IP

Remote port

Remote IP

…

Figure 5.12: Demultiplexing with multiple matching sockets.

filled in. Other sockets belong to other active connections. Now consider a packet with

source IP address 172.16.1.10, source port 56789, destination IP address 10.1.2.3, and

destination port 99. It will be delivered to the socket associated with structure 1, because

that one matches with the fewest wildcards.

When a program attempts to create a socket with a particular local port number, the

existing sockets are checked to make sure that no socket is already using that local port.

A Socket Bind() will throw an exception if any socket matches the local port and local IP

address (if any) specified. This can cause problems in the following scenario:

1. A client program creates a Socket with a specific local port number, say, P, and uses

it to communicate with a server.

2. The client closes the Socket, and the underlying structure goes into the Time-Wait

state.

3. The client program terminates and is immediately restarted.

If the new incarnation of the client attempts to use the same local port number, the Socket
constructor will throw an SocketException with an ErrorCode of 10048 (address already

in use), because of the other structure in the Time-Wait state.2 One way to circumvent

this problem is to wait until the underlying structure leaves the Time-Wait state. However,

.NET also permits overriding this behavior by setting the ReuseAddress socket option, but

this is only accessible via the Socket class and not any of the higher level classes:

sock.SetSocketOption(SocketOptionLevel.Socket,
SocketOptionName.ReuseAddress, 1);

So what determines the local/foreign address/port? For a TcpListener, all construc-

tors require that the local port be specified. The local address may be specified to the

constructor; otherwise, the local address is the wildcard (∗) address. The foreign address

2Another scenario that does not require a convergence of several events to encounter this problem
is several multicast receiver clients running on the same host.

■ 5.6 Exercises 167

and port for a TcpListener are always wildcards. For a TcpClient, all constructors require

specification of the foreign address and port. The local address and/or port may be spec-

ified to the constructor.3 Otherwise, the local address is the address of the network

interface through which the connection to the server is established, and the local port

is a randomly selected, unused port number greater than 1023. For a Socket or TcpClient
instance returned by an Accept(), AcceptSocket(), or AcceptTcpClient() call, the local

address is the destination address from the initial handshake message from the client,

the local port is the local port of the server (Socket or TcpListener), and the foreign

address/port is the local address/port of the client. For a UdpClient, the local address

and/or port may be specified to the constructor. Otherwise, the local address is the wild-

card address, and the local port is a randomly selected, unused port number greater

than 1023. The foreign address and port are initially both wildcards and remain that way

unless the Connect() method is invoked to specify particular values.

5.6 Exercises

1. The TCP protocol is designed so that simultaneous connection attempts will succeed.

That is, if an application using port P and Internet address W.X.Y.Z attempts to con-

nect to address A.B.C.D, port Q, at the same time as an application using the same

address and port tries to connect to W.X.Y.Z, port P, they will end up connected to

each other. Can this be made to happen when the programs use the sockets API?

2. The first example of “buffer deadlock” in this chapter involves the programs on both

ends of a connection trying to send large messages. However, this is not necessary

for deadlock. How could the TCPEchoClient from Chapter 2 be made to deadlock

when it connects to the TCPEchoServer from that chapter?

3. Write a version of UnicodeClientNoDeadlock using nonblocking writes (BeginSend()
and EndSend()).

3This is true for the higher level .NET socket classes but not for the .NET Socket class itself.

This Page Intentionally Left Blank

a p p e n d i x

Handling Socket Errors

Most of the socket constructors and methods in the .NET library can throw a Socket-
Exception. Unlike some other exception classes in the .NET library, the SocketException
class is fairly generic and requires some additional work to find out what type of error

occurred. SocketException contains two useful properties, Message and ErrorCode. The

Message property contains a human-readable error message. The ErrorCode property con-

tains a WinSock error code from the underlying implementation, and can be used to trap

and handle very specific error conditions.

Table A.1 lists the WinSock error codes that can be retrieved from the ErrorCode
property. The Error Name field is the header constant used with WinSock. These constants

are not accessible within C#, but it is useful to know the constant names because they

are often referenced in WinSock documentation. This table is just a quick reference for

convenience; you should refer to the Microsoft documentation on WinSock error codes at

www.msdn.microsoft.com for more detailed information.

Error Name Value Description

WSAEINTR 10004 Interrupted function call.
WSAEACCES 10013 Permission denied.
WSAEFAULT 10014 Bad address.
WSAEINVAL 10022 Invalid argument.
WSAEMFILE 10024 Too many open files.
WSAEWOULDBLOCK 10035 Resource temporarily unavailable.
WSAEINPROGRESS 10036 Operation now in progress.
WSAEALREADY 10037 Operation already in progress.

Table A.1: Continued

169

170 Appendix: Handling Socket Errors ■

Error Name Value Description

WSAENOTSOCK 10038 Socket operation on nonsocket.
WSAEDESTADDRREQ 10039 Destination address required.
WSAEMSGSIZE 10040 Message too long.
WSAEPROTOTYPE 10041 Protocol wrong type for socket.
WSAENOPROTOOPT 10042 Bad protocol option.
WSAEPROTONOSUPPORT 10043 Protocol not supported.
WSAESOCKTNOSUPPORT 10044 Socket type not supported.
WSAEOPNOTSUPP 10045 Operation not supported.
WSAEPFNOSUPPORT 10046 Protocol family not supported.
WSAEAFNOSUPPORT 10047 Address family not supported by protocol family.
WSAEADDRINUSE 10048 Address already in use.
WSAEADDRNOTAVAIL 10049 Cannot assign requested address.
WSAENETDOWN 10050 Network is down.
WSAENETUNREACH 10051 Network is unreachable.
WSAENETRESET 10052 Network dropped connection on reset.
WSAECONNABORTED 10053 Software caused connection abort.
WSAECONNRESET 10054 Connection reset by peer.
WSAENOBUFS 10055 No buffer space available.
WSAEISCONN 10056 Socket is already connected.
WSAENOTCONN 10057 Socket is not connected.
WSAESHUTDOWN 10058 Cannot send after socket shutdown.
WSAETIMEDOUT 10060 Connection timed out.
WSAECONNREFUSED 10061 Connection refused.
WSAEHOSTDOWN 10064 Host is down.
WSAEHOSTUNREACH 10065 No route to host.
WSAEPROCLIM 10067 Too many processes.
WSASYSNOTREADY 10091 Network subsystem is unavailable.
WSAVERNOTSUPPORTED 10092 Winsock.dll version out of range.
WSANOTINITIALIZED 10093 Successful WSAStartup not yet performed.
WSAEDISCON 10101 Graceful shutdown in progress.
WSATYPE_NOT_FOUND 10109 Class type not found.
WSAHOST_NOT_FOUND 11001 Host not found.
WSATRY_AGAIN 11002 Nonauthoritative host not found.
WSANO_RECOVERY 11003 This is a nonrecoverable error.
WSANO_DATA 11004 Valid name, no data record of requested type.
WSA_INVALID_HANDLE OS dependent Specified event object handle is invalid.
WSA_INVALID_PARAMETER OS dependent One or more parameters are invalid.
WSA_IO_INCOMPLETE OS dependent Overlapped I/O event object not in signaled state.
WSA_IO_PENDING OS dependent Overlapped operations will complete later.
WSA_NOT_ENOUGH_MEMORY OS dependent Insufficient memory available.
WSA_OPERATION_ABORTED OS dependent Overlapped operation aborted.
WSAINVALIDPROCTABLE OS dependent Invalid procedure table from service provider.
WSAINVALIDPROVIDER OS dependent Invalid service provider version number.
WSAPROVIDERFAILEDINIT OS dependent Unable to initialize a service provider.
WSASYSCALLFAILURE OS dependent System call failure.

Table A.1: WinSock Error Codes

Bibliography

[1] Case, J. D., Fedor, M., and Schoffstall, M. L. “Simple Network Management Protocol

(SNMP).” Internet Request for Comments 1157, May 1990.

[2] Comer, Douglas E. Internetworking with TCP/IP, volume 1, Principles, Protocols, and
Architecture (third edition). Upper Saddle River, NJ: Prentice-Hall, 1995.

[3] Comer, Douglas E., and Stevens, David L. Internetworking with TCP/IP, volume 2,

Design, Implementation, and Internals (third edition). Upper Saddle River, NJ:

Prentice-Hall, 1999.

[4] Comer, Douglas E., and Stevens, David L. Internetworking with TCP/IP, volume 3,

Client-Server Programming and Applications (BSD version, second edition). Upper

Saddle River, NJ: Prentice-Hall, 1996.

[5] Deering, S., and Hinden, R. “Internet Protocol, Version 6 (IPv6) Specification.” Internet

Request for Comments 2460, December 1998.

[6] Gilligan, R., Thomson, S., Bound, J., and Stevens, W. “Basic Socket Interface

Extensions for IPv6.” Internet Request for Comments 2553, March 1999.

[7] International Organization for Standardization. Basic Encoding Information Process-
ing Systems: Open Systems Interconnection—Specification of Abstract Syntax Notation
One (ASN.1). International Standard 8824, December 1987.

[8] Mockapetris, Paul. “Domain Names: Concepts and Facilities.” Internet Request for

Comments 1034, November 1987.

[9] Mockapetris, Paul. “Domain Names: Implementation and Specification.” Internet

Request for Comments 1035, November 1987.

171

172 Bibliography ■

[10] Peterson, Larry L., and Davie, Bruce S. Computer Networks: A Systems Approach
(second edition). San Francisco: Morgan Kaufmann, 2000.

[11] Postel, John. “Internet Protocol.” Internet Request for Comments 791, September

1981.

[12] Postel, John. “Transmission Control Protocol.” Internet Request for Comments 793,

September 1981.

[13] Postel, John. “User Datagram Protocol.” Internet Request for Comments 768, August

1980.

[14] Steedman, Douglas. Abstract Syntax Notation One (ASN.1): The Tutorial and Refer-
ence. London, U.K.: Technology Appraisals, 1990.

[15] Stevens, W. Richard. TCP/IP Illustrated, volume 1, The Protocols. Reading, MA:

Addison-Wesley, 1994.

[16] Stevens, W. Richard. UNIX Network Programming: Networking APIs: Sockets and XTI
(second edition). Upper Saddle River, NJ: Prentice-Hall, 1997.

[17] Sun Microsystems, Incorporated. “External Data Representation Standard.” Internet

Request for Comments 1014, June 1987.

[18] Sun Microsystems, Incorporated. “Network File System Protocol Specification.”

Internet Request for Comments 1094, March 1989.

[19] Sun Microsystems, Incorporated. “Network File System Protocol Version 3 Specifica-

tion.” Internet Request for Comments 1813, June 1995.

[20] Wright, Gary R., and Stevens, W. Richard. TCP/IP Illustrated, volume 2, The
Implementation. Reading, MA: Addison-Wesley, 1995.

[21] Krowczyk, A., Kumar, V., Laghari, N., Mungale, A., Nagel, C., Parker, T., and

Sivakumar, S. .NET Network Programming. Birmingham, U.K.: Wrox Press Ltd, 2002.

[22] Quinn, B., and Shute, D. Windows Sockets Network Programming. Reading, MA:

Addison-Wesley, 1995.

[23] The Unicode Consortium. The Unicode Standard, Version 3. Reading, MA: Addison-

Wesley, Longman, 2000.

[24] Donahoo, M., and Calvert, K. TCP/IP Sockets in C: Practical Guide for Programmers.

San Francisco: Morgan Kaufmann, 2001.

[25] Calvert, K., and Donahoo, M. TCP/IP Sockets in Java: Practical Guide for Programmers.

San Francisco: Morgan Kaufmann, 2002.

[26] Makofske, D., and Almeroth, K. Multicast Sockets: Practical Guide for Programmers.

San Francisco: Morgan Kaufmann, 2002.

[27] Braden, R. “Requirements for Internet Hosts—Communications Layers.” Internet

Request for Comments 1122, October 1989.

[28] Braden, R. “Requirements for Internet Hosts—Application and Support.” Internet

Request for Comments 1123, October 1989.

Index

A
Addresses

definition of, 3–4
destination, 9
directed broadcast, 132
sockets, 9–15

ANSII, 62
Application, 5
Application programming

interface
asynchronous, 119
description of, 16

Application protocols, 3, 59
Asynchronous I/O, 117–131

B
Binary numbers, 63–65
BinaryWriter, 64–65
Blocking calls with timeout,

88–92
Boolean values, 71
Broadcast, 132
Buffer, 20
Buffer deadlock, 152–154
Buffering, 149–152
Bytes

definition of, 61
order of, 63

C
Callback, 117
Clients

description of, 5–6
TCP, 17–23
UDP, 29–32

Closing connections
description of, 138–145
TCP, 160–165

Communication channel, 1–2
Connection-oriented

protocol, 3
ConsoleLogger, 105–106

D
Datagram service, 3
Datagram sockets, 6
Deadlock, 152–154
Delegate, 117
Delimiter, 67
Demultiplexing, 165–167
Descriptor, 7
Destination address, 9
Directory services, 6
DNS, see Domain name system
Dns class, 9–10
Domain name system, 5
Domain names, 5
Dotted-quad notation, 4

E
EBCDIC, 63
EchoProtocol, 103–105
EchoProtocolFactory,

110–111

Encoding of information
binary numbers, 63–65
description of, 61
framing, 66–70
parsing, 66–70
text, 61–63

End call, 117
End-to-end transport

protocols, 3
Errors, sockets, 169–170
Extended Binary Coded

Decimal Interchange
Code, 63

F
Factoring of servers, 109–112
Factory object, 109
Fields, 59
FileLogger, 106–107
First-in, first-out queue, 36
Framer, 68–70
Framing, 66–70

H
Handshake messages, 3
Hosts

definition of, 1–2
names of, 5

Hypertext Transfer Protocol, 2

I
IDispatcher, 111

173

174 Index ■

ILogger, 105
Information encoding

binary numbers, 63–65
description of, 61
framing, 66–70
parsing, 66–70
text, 61–63

Integers
signed, 63
size of, 63

Internet address, 4
I/O

asynchronous, 117–131
nonblocking, 85–95
status prechecking, 86–88
streams, 65–66

IPAddressExample.cs, 10–15
IProtocol, 103
IProtocolFactory, 110
ItemQuote, 60–61
ItemQuoteBinConst, 75–77
ItemQuoteDecoder, 70
ItemQuoteDecoderBin, 77–79
ItemQuoteDecoderText, 73–74
ItemQuoteEncoder, 70
ItemQuoteEncoderText, 72–73
ItemQuoteTextConst, 71–72
Iterative server, 99

L
Layers

definition of, 2
network, 2
transport, 3

M
MCIPAddress, 133
Messages, 59
Microseconds, 88
Mode, 88
Multicast

definition of, 132–133
receivers, 137
senders, 135

Multicast group, 135
Multiplexing, 95–99

N
Names, 5
.NET

description of, 9

encoding of information,
62

I/O streams, 65–66
serialization capabilities

of, 83–84

socket implementation in,
15–16

Network byte order, 63
Network layer, 2

Nonblocking I/O, 85–95
Nonblocking sockets, 92–95

P
Packets, 2

Parsing, 66–70
Peer, 5

Polling, 89
PoolDispatcher, 113–115
Port number, 4

Port numbers, 3, 6
Protocol(s)

application, 3
connection-oriented, 3

definition of, 2
layers of, 2

organizing of, 2
Protocol suite, 2

R
RecvQ, 150–152, 155

RecvTcp, 81–82
RecvUdp, 83
RecvUDPMulticast, 135–137

Routers
definition of, 1

function of, 2

S
SendQ, 150, 152, 155
SendTcp, 79–81

SendUdp, 82
SendUDPMulticast, 133–135

Serializable, 84
Serialization, 83–84

Servers
construction of, 23–27
description of, 5–6

factoring of, 109–112
iterative, 99

TCP, 23–27, 40–50

thread-per-client,
107–109

UDP, 32–36
Signed integers, 63
Socket(s)

addresses, 9–15
closing of, 138–145
data structures associated

with, 148f
datagram, 6
definition of, 6, 16
demultiplexing with,

165–167
errors, 169–170
in .NET, 15–16
nonblocking, 92–95
schematic diagram of, 7f
server-side, 157f
stream, 6
structure of, 149
TCP, see TCP sockets
types of, 6
UDP, see UDP sockets

Socket, 43–46
Socket flags, 56–57
Socket options, 51–56
SocketException, 50
SocketFlags, 47
SocketOptionLevel, 46,

48–49
SocketOptionName, 47
SocketSelect(), 95–99
Stream(s)

description of, 28
I/O, 65–66

Stream sockets, 6
System.Runtime.Serializable,

84
System.Text, 62
System.Xml.Serializable,

83–84

T
TCP client

connecting of, 156–160
description of, 17–23
with socket, 37–39

TCP connection, 17
TCP server

description of, 23–27
with socket, 40–50

■ Index 175

TCP sockets

buffering, 149–152

closing of, 160–165

description of, 16–17

life cycle of, 155–165

performance of, 154–155

UDP sockets vs., 29

TcpClient, 16, 21–23

TcpClientShutdown, 140–141

TcpEchoClient, 17–23

TcpEchoClientAsync, 120–125

TcpEchoClientSocket, 37–39

TcpEchoServer, 24–26

TcpEchoServerAsync, 125–131

TcpEchoServerSelectSocket,
96–99

TcpEchoServerSocket, 40–50

TcpEchoServerThread,
108–109

TcpEchoServerTimeout, 89–92

TcpListener, 16, 26–27

TcpListenerAcceptSocket,
50–51

TcpNBEchoClient, 93–95

Text, 61–63

Text-oriented representation,
71

TextReader, 67
Thread(s)

deadlock avoidance, 154
description of, 99–103
thread-per-client servers,

107–109
Thread pool, 112–116
ThreadExample, 101–103
ThreadMain, 115–116
ThreadPerDispatcher,

111–112
3-way handshake, 156
Timeout, blocking calls with,

88–92
TranscodeClient, 141–143
TranscodeServer, 143–145
Transport layer, 3

U
UDP client, 29–32
UDP servers, 32–36
UDP sockets

description of, 29
receiving with, 36

sending with, 36

TCP sockets vs., 29

UdpClient, 35–36

UdpEchoClient, 30–32, 52

UdpEchoClientTimeoutSocket,
53–56

UdpEchoServer, 33–35

Unicast

definition of, 131

receivers, 137

senders, 135

Universal resource locator, 6

URL, see Universal resource
locator

W
Wire formats

combined data
representation, 75–79

description of, 70–75

sending and receiving,
79–83

X
XML, 84

	TCP/IP Sockets in C# Practical Guide for Programmers
	Copyright Page
	Contents
	Preface
	Chapter 1. Introduction
	1.1 Networks, Packets, and Protocols
	1.2 About Addresses
	1.3 About Names
	1.4 Clients and Servers
	1.5 What Is a Socket?
	1.6 Exercises

	Chapter 2. Basic Sockets
	2.1 Socket Addresses
	2.2 Socket Implementation in .NET
	2.3 TCP Sockets
	2.4 UDP Sockets
	2.5 The .NET Socket Class
	2.6 Exercises

	Chapter 3. Sending and Receiving Messages
	3.1 Encoding Information
	3.2 Composing I/O Streams
	3.3 Framing and Parsing
	3.4 Implementing Wire Formats in C#
	3.5 Wrapping Up
	3.6 Exercises

	Chapter 4. Beyond the Basics
	4.1 Nonblocking I/O
	4.2 Multiplexing
	4.3 Threads
	4.4 Asynchronous I/O
	4.5 Multiple Recipients
	4.6 Closing Connections
	4.7 Wrapping Up
	4.8 Exercises

	Chapter 5. Under the Hood
	5.1 Buffering and TCP
	5.2 Buffer Deadlock
	5.3 Performance Implications
	5.4 TCP Socket Life Cycle
	5.5 Demultiplexing Demystified
	5.6 Exercises

	Appendix: Handling Socket Errors
	Bibliography
	Index

