EMBEDDED TECHNOLOGY ™

D) o

ELSEVIER

Emhedded Systems
Architecture

A Comprehensive Guide for Engineers
and Programmers

P - Wt

= =
Tammy Noergaard |

Foreword hy Jack Ganssle

e

CD-ROM included- Contains design and instructional tools

L

Newnes

Embedded Systems Architecture

This Page Intentionally Left Blank

Embedded Systems Architecture

A Comprehensive Guide for Engineers and Programmers

By
Tammy Noergaard

= AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON
c NEW YORK e OXFORD e PARIS ¢ SAN DIEGO
“ﬁ SAN FRANCISCO e SINGAPORE ¢ SYDNEY ¢ TOKYO

ELSEVIER Newnes is an imprint of Elsevier Newnes

Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2005, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.
Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions @elsevier.com.uk. You may also complete your request on-line via
the Elsevier homepage (http://elsevier.com), by selecting “Customer Support” and then

“Obtaining Permissions.”

o0 Recognizing the importance of preserving what has been written,
Elsevier prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
(Application submitted.)

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 0-7506-7792-9

For information on all Newnes publications
visit our Web site at www.books.elsevier.com

04 0506 070809 10987654321

Printed in the United States of America

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID q,phe Foundation

Dedication

To the engineer and man I respect and admire the most,
my father,
Dr. AIM. Zied

This Page Intentionally Left Blank

Contents

0T = oY o Xi
ACKNOWIEdgMENTS.......coiiiiiiiie i xiii
About the AUthOr ... s Xiv
Section I: Introduction to Embedded Systems............cccccvvvvvmmririvsennsssssennnnns 1
Chapter 1: A Systems Engineering Approach to Embedded Systems Design....... 5
1.1 What Is an Embedded SYStem?c.cooiiiiiiieiiieeiieeeieesee ettt 5
1.2 Embedded Systems DESIZN.....cccueiiiiiiiiiiieiieeie ettt 7
1.3 An Introduction to Embedded Systems Archit€Cturec.eceevvervieriiiriinnenniencienienienns 9
1.4 Why Is the Architecture of an Embedded System Important?..........c.cccoceviiniiniincnnenne. 11
1.5 The Embedded Systems Modelcooeiiiiiiiiiiiieeeeeeeeeeeeeee e 12
1.6 SUMIMATY ...ttt ettt ettt e e it e st e st e e bt e ebaeebeeesabeesanes 13
Chapter 1 ProbIemIS.cooiiiiiiiiiiieieet ettt sttt ettt es 15
Chapter 2: Know Your Standardscccccceeeeeiimiiecccccsseeeeeesssss s sssssssessssesssssssnnes 17
2.1 An Overview of Programming Languages and Examples of Their Standards................... 30
2.2 Standards and NetWOTKING.........cveeeviiirieerieerieerteeeieeeieeeieeeateeeeesreeseeeessseessseessseesnseeas 46
2.3 Multiple Standards-Based Device Example: Digital Television (DTV)cccceeeevveneenen. 65
2.4 SUIMIMATY ...eeeitieeiiee ettt et ettt ettt e st e st e s bt e eabte e beeeate e bteeenbeeeabeesabeeenbeeenbaeesseennseenanes 67
Chapter 2 ProDIEIMIS. ...c..eiiiiiiiiiieeieeeete ettt sttt ettt et nee s 69
Section Il: Embedded HardWareccccccvevvummmrsisumemisssnsssssssssnssssssessssssenns 73
Chapter 3: Embedded Hardware Building Blocks and the Embedded Board......77
3.1 Lesson One on Hardware: Learn to Read a Schematic!ccccooieviiniiniinininccncenen. 77
3.2 The Embedded Board and the von Neumann Model..........c..ccocoevieiiininniinieniinicceen. 82
3.3 Powering the HardwWare...........cccccooiiiiiiiiiiiiiiieccceceee e 87
3.4 Basic Hardware Materials: Conductors, Insulators, and Semiconductors...........c..cccueeu.ee. 89
3.5 Common Passive Components on Boards and in Chips: Resistors, Capacitors,

AN INAUCTOTS. ...ttt et ettt et e ite e s e e sabee s 93
3.6 Semiconductors and the Active Building Blocks of Processors and Memory................. 101
3.7 Putting It All Together: The Integrated Circuit (IC)cccevoiiriiiiiiiniiiniiieeeeeeeeee 117
38 SUMIMIATY ..ottt st sttt st e e s eae 121
Chapter 3 PrODICINIS.......c.uiiiiieiiie ettt ettt ettt e et e e snaeesabeessbeesnbeeenseeennneennseenns 122

vii

Contents

Chapter 4: Embedded ProCessors..........ccccurrmrriinnsmmesissssmsssssssmssssssssns s sssssmsssssssnes 129
4.1 ISA Architecture MOEIScccueieiuiieiiieciieeeieeeiee ettt e e ebe e ereeeaaeesaseenes 131
4.2 Internal ProcesSOr DESIZNccc.uiiiuiiiiiiiiiieiiteeiee ettt ettt ettt e et e e 145
4.3 Processor PerfOrmancecoceoiiiiiiiiiiiiiiiecee e 203
4.4 Reading a Processor’s DatashEetcc.oeouieuieiiieiieiieieet e 206
4.5 SUMIMATY ...ttt ettt ettt ettt ettt et et s et e et et eat e e bt et e eateeateeateeaneeareeas 218
Chapter 4 PrODIEIMScc.eeiiiiiieie ettt ettt ettt ettt 219
Chapter 5: BOArd MEMOIYcccccceeriiiismeersssssneesssssssesssssssssssssssssesssssnsessssssnsesssssnnes 223
5.1 Read-Only Memory (ROM)coocuiiiiiiiiiieie ettt ettt et et seae e e e 227
5.2 Random-Access Memory (RAM).....cc.couiiiiiiiiiieiieeee ettt 232
5.3 AUXIHATY MEMOTY ...couviiiiiiieiiiiiiieeet ettt ettt et et 242
5.4 Memory Management of External MEemOTYc.cccccuvrriieriiireiiieeie e eee e 247
5.5 Board Memory and Performance.............coceeueeiiriiiieiiieeiceieeeee e 249
5.0 SUIMIMATY ...ttt et ettt ettt ettt s bt et et e et eateeaneeaneeaneeaaeeaneeaneeas 250
Chapter 5 PrODICINIS.....c.viiiiiiiiie ettt ettt et e ettt e et e st e e snbeeenseeesaeesnneenns 251
Chapter 6: Board 1/0 (INpUt/OULPUL)cummmerrirriccccceeeerrr e e e s cssssne e e e e e e smmnnees 253
6.1 Managing Data: Serial vs. Parallel I/Occccooiiiiiiiiiiiii e 257
6.2 Interfacing the I/O COMPONENLSoeervrreriiierireriieeiieeteeeteeeieeeieeeseaeessaeessaeeseseesnseesnnes 277
6.3 1/0 and PerfOrmManCe...........cccuieeiieieiiieiieeiie ettt ettt ve e e eeteeebe e e taeessaeessseessseeennas 280
6.4 SUMIMATY ...ttt ettt sttt ettt st et st sae e st saeesaeesanesanenae 282
Chapter 6 ProDIEMS. ...cc..iiiiiiiiieeieee ettt ettt e 283
Chapter 7: BOard BUSES........ccccuuceeeerisssmeessssssnssssssssssssssssssessssssssssssssnssssssssnsesssssnnes 287
7.1 Bus Arbitration and TIiMINGccccveeriieiiieniieeiie ettt sbeeebeeeeeessaeeesanee e 289
7.2 Integrating the Bus with Other Board COmpONEents.........c..coeeceevverereerieneneereeneneenenne 299
7.3 BUS PerfOrmMaNCEe.cuvviiiiiiiiieiiiie ettt ettt ee e e e e e e e e easaeeeenseas 300
T4 SUIMIMIATY ...ttt ettt ettt ettt st st e bt et e eateeate et e sateeateeaaeeateeaeeeas 301
Chapter 7 PrODIEMIScc.eiiiiiiieie ettt ettt et ettt et et 302
Section Ill: Embedded Software Introduction..............cccccocevevmnvccnnsirennns 307
Chapter 8: DEVICE DIVErSciiiueeiiiimre s sssssss s sssssss s ssss s s ssss s s sssns s sasnnns 311
8.1 Example 1: Device Drivers for Interrupt-Handlingcccoeeveveiiniineiieeieeeeeeee, 315
8.2 Example 2: Memory Device DIIVETSccccueiiiiiiiiiiieiieeieseesee st 332
8.3 Example 3: On-board Bus Device DIIVETSccceevviiiiiiieiiiieieeeieeeiee et 351
8.4 Board I/0 Driver EXamMPIEsccooviieiiieiiieeiie ettt ettt stee e eeae e 358
8.5 SUIMMATY ..ottt st ettt ettt et 379
Chapter 8 PrODICIMNISeiiiiiiiie ettt et ettt ettt et e st esbeeebeeesaeeenaseenes 380
Chapter 9: Embedded Operating SysStems.........cccccrvirismrrnnsssmnensssssns s ssns s ssssnnes 383
0.1 WRAL IS @ PrOCESST c.eviiiieiiieeeeete ettt ettt e e e et e e et e e e nrbeeeensbaeeesasaaeeennseas 388
9.2 Multitasking and Process Managementc.eeeeueeerueeeriieenieesieeeieesieeeieeeieeeneeeesneeenes 390
9.3 MemOry ManageImMENL.cccuivuiiiiiiiiiieiieie ettt ettt e eas 421

Contents

9.4 1/O and File System Managementcoceeeuieieriiriieriienieeieeeeeeeeie et e eee e ene e 435
9.5 OS Standards Example: POSIX (Portable Operating System Interface)............cccceeuee. 437
9.6 OS Performance GUIAEIINES.cocueiiiiiiiiieieeieeeee e 439
9.7 OSes and Board Support Packages (BSPS)....ccc.coviiiiiiiiiiiiiiiecieceeeee e 440
0.8 SUIMIMATY ...ttt ettt et ettt ettt ettt et et eteeateeateeas 441
Chapter 9 PrODIEMISc..eiiiiiieeie ettt et et ettt et e 442
Chapter 10: Middleware and Application Software...........cccoeiiomiriciiiicnicinnenes 445
10.1 What Is MIddIEWare?ooouiiiiiiiiieeieeieeeee ettt ettt 445
10.2 What IS an APPIICAtIONTeiiiiiieiieieee ettt ettt st s 447
10.3 Middleware EXAMPLES.......ccccuiieiiiiriieiiieiiieeite ettt ettt ettt et e sbeeeseae e 447
10.4 Application Layer Software EXamplesccccueeeiiiiiieriiieiiieeiee et eiee e 484
TO.5 SUMIMATY ..ottt st s st st s s 498
Chapter 10 ProbIems..........coouiiiiiiiiiiiiiiiceeeeet ettt et 499
Section IV: Putting It All Together: Design and Development................. 505
Chapter 11: Defining the System—Creating the Architecture and
Documenting the DeSIgNccuccccieriiisrr e smrr s s 509
11.1 Creating an Embedded System Archit€Cturecoceevuieviieiiiniieniieniieiieieeieeieeiens 510
Stage 1: Have a Solid Technical Foundationcccoccveiiiiniiiiiiiniiiecie e 511
Stage 2: Know the ABCs (Architecture Business Cycles) of Embedded Systems.......... 512
Stage 3: Define the Architectural Patterns and Reference Modelscccccocveciiiicnienn. 523
Stage 4: Define the Architectural StruCtUIes.ccovveriiriiriiiriiiceeec e 530
Stage 5: Document the ATChItECTUTEcouiiiiiiiiiiiiciie et 533
Stage 6: Analyze and Evaluate the Architectureocoeoviieniiiiiiiiiiicieeee 535
11,2 SUIMIMIATY .ttt ettt ettt et ettt ettt ettt et et e et eateenaeeaneeas 537
Chapter 11 ProbDIEMS.couiiiiiiieieee ettt et ettt e 538
Chapter 12: The Final Phases of Embedded Design: Implementation
=g e I =T] o 541
12.1 Implementing the DESIZN.....c..eeiiieiiiiiiieeiie et e e e e et eeeaeeseaeessneees 541
12.1.1 The Main Software Utility Tool: Writing Code in an Editor or IDE................... 542
12.1.2 Computer-Aided Design (CAD) and the Hardwarecccccevirveniinninncnncns 543
12.1.3 Translation Tools—Preprocessors, Interpreters, Compilers, and Linkers 545
12.1.4 Debug@ing TOOLScocuiiiiiiieie ettt ettt ettt et et e 548
12.1.5 System BOOt-UP...cocuiooiiiiiiiiiiiiiceiteeeeetcee ettt 555
12.2 Quality Assurance and Testing of the Designcccceeveriiiniiiiiiiniiiceceeceeeee 563
12.3 Conclusion: Maintaining the Embedded System and Beyond............c.ccccoooiiiininine 566
Chapter 12 ProbIemmS...c.ueiiiiiiiieeie ettt ettt et ettt et e st e st essbeeebeeseaeeenaeeenes 567
Appendix A: Projects and EXerciSes.......ccccurerrirrssmrrisssssesnssssnsssssssssssssssssssssssssnes 571
SECHION T PrOJECES ...ttt s 574
SECHION LI PrOJECES c..viieueiieiiieeiiteete ettt ettt ettt e et e st e e teeesaee e taeesaeeenaeesnseeennes 578

Contents

SeCtioN III PIOJECES. ...couviiiiiiiiiiiiieeeeeeee ettt s 586
SECHION IV PIOJECES ..eeneiieiiieeiiieeiee ettt ettt ettt e et e e tee et e e taeetaeesnaeeenseeennes 589
Appendix B: Schematic SymboOls.........ccccoiiiiiiiiiiciirircer e 594
Appendix C: Acronyms and Abbreviations..........ccccciiiiiiinniinn s 601
APPENIX D: GIOSSAIY ...ceeriiiieerriissnrrrssssssrrsssssssessssssssessssssssssssssnsessssssnsesssssnssssssnns 610
3 Ve L= S 627
What's on the CD-ROM.........ccceiiiiimmmmiiisnrrssnnes 640

Foreword

When Tammy Noergaard first told me she wanted to write a soup-to-nuts book about building
embedded systems I tried to dissuade her. This field is so vast, requiring insight into electron-
ics, logic circuits, computer design, software engineering, C, assembly, and far more. But as
we talked she showed me how the industry’s literature lacks a definitive work on the subject. I
warned her of the immensity of the project.

A year and many discussions later Fedex arrived with the review copy of this book. At over
700 pages it’s appropriately twice the size of almost any other opus on the subject. The book
you’re holding truly is “A Comprehensive Guide for Engineers and Programmers.” Sure, the
minutia of programming a PIC’s timer might have been left out, but the scope is vast and
important.

Tammy starts with the first principles of electronics and advances through software to the ex-
pensive end-phase of maintenance. She treats hardware and software as an integrated whole,
which sort of defines the nature of embedded systems. Ironically, though, developers are in-
creasingly specialized. More than a few software folks haven’t a clue about transistors while
too many EEs can’t accurately define middleware. I fear readers may skip those chapters that
don’t immediately pertain to the project at hand.

Resist any such temptation, gentle reader! Become a true master, an embedded sage, by
broadening your horizons to cover all aspects of this fascinating field. We engineers are
professionals; you and I know this in our hearts. Yet true professionals are those who learn
new things, who apply newly evolving technologies to solve problems. Consider doctors:

the discovery and production of penicillin in the 1940s changed the profession of medicine
forever. Any doc who ignored this new technology, who continued to practice using only the
skills learned in college, was suddenly rendered a butcher. Software and hardware developers
are faced with the same situation. C wasn’t taught when I went to school. The FPGA hadn’t
been invented. GOTOs were still just fine, thank you. We learned to program microprocessors
in machine code using primitive toolchains. Today—well, we know how much has changed.

The rate of change is increasing; change’s first derivative is an ever-escalating positive num-
ber. Professional developers will read this book from cover to cover, and will constantly seek
out other sources of information. If you’re not at least surfing through a half dozen techni-
cal magazines a month and reading a handful of books like this per year, then it won’t take a
Cretaceous asteroid to make you a dinosaur.

Xi

Foreword

Some of this book might surprise you. Ten pages about reading datasheets? Fact is, datasheets
are dense formal compilations of contractual material. The vendor promises the part will do

x as long as we use it in an agreed-on manner. Violate any of perhaps thousands of specifica-
tions and the part will either not work or will be unreliable. With some parts dissipating 100
watts or more, even such arcana as thermal characteristics are as important as the device’s
instruction set.

Tammy’s generous use of examples elucidates the more obscure points. Engineering—wheth-
er hardware or software—is the art of building things and solving problems. The academics
can work with dry theory; we practicing developers often learn best by seeing how something
works. So the chapter on device drivers does explain the intricacies of building these often-
complex bits of code, but couples the explanation to a wealth of real-world examples.

Finally, Tammy’s words about the Architecture Business Cycle of embedded systems resonate
strongly with me. We don’t build these things just to have a good time (though we sure hope
to have one along the way), but to solve important business problems. Every decision we
make has business implications. Use too little horsepower and development costs skyrocket—
sometimes to the point of making the project unviable. A poor analysis of the problem that
leads you to toss in an excess of Flash might drive costs unacceptably high. Select a compo-
nent (hardware or software) from a failing company and your outfit may share in the vendor’s
demise.

Enjoy this book, and futureproof your career at the same time.

—Jack Ganssle

Xii

Acknowledgments

My greatest debt in creating this book goes to the reviewers, who I hope will be pleasantly
surprised to see how many of their suggestions have been incorporated into the book. They
include Dr. Al M. Zied, both of my brothers (especially my younger brother who also pro-
vided me the inspiration to write this book in the first place), Jack Ganssle, Dr. Volker Enders,
Dr. Stefan Frank, Dr. Karl Mathia, and Steve Bailey.

Thank you to my publisher Elsevier, specifically to my editor Carol Lewis and the rest of
“my” Elsevier team for their hard work and dedication in making this book a reality.

I would also like to acknowledge my mentor when I was with Sony Electronics, Kazuhisa
Maruoka, who patiently trained me to design televisions and gave me such a strong founda-
tion upon which to grow, as well as my manager at Sony Electronics, Satoshi Ishiguro, who
took a chance and hired me. My journey in the embedded systems field that has led me to
writing this book began with the great people I worked with at Sony in Japan and in San
Diego.

A very special thanks to my family for their support, which allowed me to write this book,
and without whose support and encouragement I could never have completed it. To my
husband, Christian, thank you for giving me the happiest days of my life, and the opportu-
nity and encouragement to realize this book. For my beautiful baby girl Mia, thank you for
being so patient with your Mama while I did my writing—always gifting me with endless
smiles, hugs, and kisses when I really needed them. Thank you, Mom, for the times you flew
out from Belgium, and thanks to my sister Mandy for flying up from Southern California, to
help me at home so I could finish my writing, and for encouraging me every step of the way.
Finally, a special thanks to Verénica Cervantes Gaona for taking such good care of Mia so
that I could have the time and focus to write. I am very grateful for the quality time you spent
with her.

xiii

About the Author

Tammy Noergaard is uniquely qualified to write about all aspects of embedded systems
architecture. Since beginning her embedded systems career in 1995, she has had wide experi-
ence in product development, system design and integration, operations, sales, marketing, and
training. She has design experience using many hardware platforms, operating systems, and
languages. Noergaard worked for Sony as a lead software engineer developing and testing
embedded software for analog TVs, and also managed and trained new embedded engi-
neers and programmers. The televisions that she helped to develop were critically acclaimed
and rated #1 in Consumer Reports magazines. At Wind River she was the liaison engineer
between developmental engineers and customers to provide design expertise, systems con-
figuration, systems integration, and training for Wind River embedded software (OS, Java,
device drivers, etc.) and all associated hardware for a variety of embedded systems in the
Consumer Electronic market. Most recently she was a Field Engineering Specialist and Con-
sultant with Esmertec North America, providing project management, system design, system
integration, system configuration, support and expertise for various embedded Java systems
using Jbed in everything from control systems to medical devices to digital TVs. Noergaard
has lectured to engineering classes at the University of California at Berkeley and Stanford,
the Embedded Internet Conference, and the Java User’s Group in San Jose, among others.

Xiv

SECTION

|

Introduction to
Embedded Systems

This Page Intentionally Left Blank

Introduction to Embedded Systems

The field of embedded systems is wide and varied, and it is difficult to pin down exact defi-
nitions or descriptions. However, Chapter 1 introduces a useful model that can be applied
to any embedded system. This model is introduced as a means for the reader to understand
the major components that make up different types of electronic devices, regardless of their
complexity or differences. Chapter 2 introduces and defines the common standards adhered to
when building an embedded system. Because this book is an overview of embedded systems
architecture, covering every possible standards-based component that could be implemented is
beyond its scope. Therefore, significant examples of current standards-based components were
selected, such as networking and Java, to demonstrate how standards define major components
in an embedded system. The intention is for the reader to be able to use the methodology
behind the model, standards, and real-world examples to understand any embedded system,
and to be able to apply any other standard to an embedded system’s design.

This Page Intentionally Left Blank

CHAPTER 1

A Systems Engineering Approach
to Embedded Systems Design

In This Chapter

Define embedded system

Introduce the design process

Define an embedded systems architecture
Discuss the impact of architecture

Summarize the remaining sections of the book

1.1 What Is an Embedded System?

An embedded system is an applied computer system, as distinguished from other types of com-
puter systems such as personal computers (PCs) or supercomputers. However, you will find
that the definition of “embedded system” is fluid and difficult to pin down, as it constantly
evolves with advances in technology and dramatic decreases in the cost of implementing vari-
ous hardware and software components. In recent years, the field has outgrown many of its
traditional descriptions. Because the reader will likely encounter some of these descriptions
and definitions, it is important to understand the reasoning behind them and why they may

or may not be accurate today, and to be able to discuss them knowledgeably. Following are a
few of the more common descriptions of an embedded system:

Embedded systems are more limited in hardware and/or software functionality than
a personal computer (PC). This holds true for a significant subset of the embed-

ded systems family of computer systems. In terms of hardware limitations, this can
mean limitations in processing performance, power consumption, memory, hardware
functionality, and so forth. In software, this typically means limitations relative to a
PC—fewer applications, scaled-down applications, no operating system (OS) or a
limited OS, or less abstraction-level code. However, this definition is only partially
true today as boards and software typically found in PCs of past and present have
been repackaged into more complex embedded system designs.

An embedded system is designed to perform a dedicated function. Most embedded
devices are primarily designed for one specific function. However, we now see
devices such as personal data assistant (PDA)/cell phone hybrids, which are embed-
ded systems designed to be able to do a variety of primary functions. Also, the latest
digital TVs include interactive applications that perform a wide variety of general

5

Chapter 1

functions unrelated to the “TV” function but just as important, such as e-mail, web
browsing, and games.

An embedded system is a computer system with higher quality and reliability require-
ments than other types of computer systems. Some families of embedded devices
have a very high threshold of quality and reliability requirements. For example, if a
car’s engine controller crashes while driving on a busy freeway or a critical medical
device malfunctions during surgery, very serious problems result. However, there are
also embedded devices, such as TVs, games, and cell phones, in which a malfunction
is an inconvenience but not usually a life-threatening situation.

Some devices that are called embedded systems, such as PDAs or web pads, are not
really embedded systems. There is some discussion as to whether or not computer
systems that meet some, but not all of the traditional embedded system definitions are
actually embedded systems or something else. Some feel that the designation of these
more complex designs, such as PDAs, as embedded systems is driven by nontechnical
marketing and sales professionals, rather than engineers. In reality, embedded engi-
neers are divided as to whether these designs are or are not embedded systems, even
though currently these systems are often discussed as such among these same design-
ers. Whether or not the traditional embedded definitions should continue to evolve, or
a new field of computer systems be designated to include these more complex systems
will ultimately be determined by others in the industry. For now, since there is no new
industry-supported field of computer systems designated for designs that fall in between
the traditional embedded system and the general-purpose PC systems, this book
supports the evolutionary view of embedded systems that encompasses these types of
computer system designs.

Electronic devices in just about every engineering market segment are classified as embedded
systems (see Table 1-1). In short, outside of being “types of computer systems,” the only spe-
cific characterization that continues to hold true for the wide spectrum of embedded system
devices is that there is no single definition reflecting them all.

Table 1-1: Examples of embedded systems and their markets [

Market Embedded Device

Automotive Ignition System

Engine Control

Brake System (i.e., Antilock Braking System)
Consumer Electronics Digital and Analog Televisions

Set-Top Boxes (DVDs, VCRs, Cable Boxes, etc.)
Personal Data Assistants (PDAs)

Kitchen Appliances (Refrigerators, Toasters, Microwave Ovens)
Automobiles

Toys/Games

Telephones/Cell Phones/Pagers

Cameras

Global Positioning Systems (GPS)

A Systems Engineering Approach to Embedded Systems Design

Table 1-1: Examples of embedded systems and their markets """ (continued)

Market Embedded Device
Industrial Control Robotics and Control Systems (Manufacturing)
Medical Infusion Pumps

Dialysis Machines

Prosthetic Devices
Cardiac Monitors
Networking Routers

Hubs

Gateways

Office Automation Fax Machine
Photocopier
Printers

Monitors
Scanners

1.2 Embedded Systems Design

When approaching embedded systems architecture design from a systems engineering point
of view, several models can be applied to describe the cycle of embedded system design.
Most of these models are based upon one or some combination of the following development
models:!*!

The big-bang model, in which there is essentially no planning or processes in place
before and during the development of a system.

The code-and-fix model, in which product requirements are defined but no formal
processes are in place before the start of development.

The waterfall model, in which there is a process for developing a system in steps,
where results of one step flow into the next step.

The spiral model, in which there is a process for developing a system in steps, and
throughout the various steps, feedback is obtained and incorporated back into the
process.

This book supports the model shown in Figure 1-1, which I refer to as the Embedded Sys-
tems Design and Development Lifecycle Model. This model is based on a combination of the
popular waterfall and spiral industry models.!"?’ When T investigated and analyzed the many
successful embedded projects that I have been a part of or had detailed knowledge about over
the years, and analyzed the failed projects or those that ran into many difficulties meeting
technical and/or business requirements, I concluded that the successful projects contained at
least one common factor that the problem projects lacked. This factor is the process shown

in Figure 1-1, and this is why I introduce this model as an important tool in understanding an
embedded system’s design process.

As shown in Figure 1-1, the embedded system design and development process is divided into
four phases: creating the architecture, implementing the architecture, testing the system, and

7

Chapter 1

Boduct <—|

Concept

Reliminar y Analysis <—|

of Reg irements

Creation of
I—b Architecture Design

=

Develop dsio n of

’—> Architecture —

Incorprat e Deliver dfsio n of
Feedback Architecture

Review and Obtain

Feedback —
| Rase 1: Creating the ~Architecture | Deliver Final dsio n
of Architecture
| Rase 2: Imp ementing the Architecture | 1
l—b Develod mje ment]
| Rase 3: Testing the § stem | the § stem
Incorprat e
Feedback l

| Rase 4: Mhtaining the § stem |
| Review and Test the
$ stem

Deliver and Mntain
the § stem

Figure 1-1: Embedded Systems Design and Development Lifecycle Model 1'%

maintaining the system. Most of this book is dedicated to discussing phase 1, and the rest of
this chapter is dedicated to discussing why so much of this book has been devoted to creating
an embedded system’s architecture.

Within this text, phase 1 is defined as being made up of six stages: having a strong techni-
cal foundation (stage 1), understanding the Architectural Business Cycle (stage 2), defining
the architectural patterns and models (stage 3), defining the architectural structures (stage 4),
documenting the architecture (stage 5), and analyzing and reviewing the architecture (stage
6)!3. Chapters 2—10 focus on providing a strong technical foundation for understanding the
major components of an embedded system design. Chapter 11 discusses the remaining stages
of phase 1, and Chapter 12 introduces the last three phases.

A Systems Engineering Approach to Embedded Systems Design

1.3 An Introduction to Embedded Systems Architecture

The architecture of an embedded system is an abstraction of the embedded device, meaning
that it is a generalization of the system that typically doesn’t show detailed implementation
information such as software source code or hardware circuit design. At the architectural
level, the hardware and software components in an embedded system are instead represented
as some composition of interacting elements. Elements are representations of hardware and/or
software whose implementation details have been abstracted out, leaving only behavioral

and inter-relationship information. Architectural elements can be internally integrated within
the embedded device, or exist externally to the embedded system and interact with internal
elements. In short, an embedded architecture includes elements of the embedded system, ele-
ments interacting with an embedded system, the properties of each of the individual elements,
and the interactive relationships between the elements.

Architecture-level information is physically represented in the form of structures. A structure
is one possible representation of the architecture, containing its own set of represented ele-
ments, properties, and inter-relationship information. A structure is therefore a “snapshot” of
the system’s hardware and software at design time and/or at run-time, given a particular envi-
ronment and a given set of elements. Since it is very difficult for one “snapshot” to capture all
the complexities of a system, an architecture is typically made up of more than one structure.
All structures within an architecture are inherently related to each other, and it is the sum of
all these structures that is the embedded architecture of a device. Table 1-2 summarizes some
of the most common structures that can make up embedded architectures, and shows gener-
ally what the elements of a particular structure represent and how these elements interrelate.
While Table 1-2 introduces concepts to be defined and discussed later, it also demonstrates
the wide variety of architectural structures available to represent an embedded system. Ar-
chitectures and their structures—how they interrelate, how to create an architecture, and so
on—will be discussed in more detail in Chapter 11.

Chapter 1

Table 1-2: Examples of architectural structures 14

Structure Types*

Definition

Module

Elements (referred to as modules) are defined as the different functional components
(the essential hardware and/or software that the system needs to function correctly)
within an embedded device. Marketing and sales architectural diagrams are typically
represented as modular structures, since software or hardware is typically packaged for
sale as modules (i.e., an operating system, a processor, a JVM, and so on).

Uses (also referred to as
subsystem and component)

A type of modular structure representing system at runtime in which modules are
inter-related by their usages (what module uses what other module, for example).

(also referred to as generalization)

Layers A type of Uses structure in which modules are organized in layers (i.e., hierarchical) in
which modules in higher layers use (require) modules of lower layers.
Kernel Structure presents modules that use modules (services) of an operating system kernel
or are manipulated by the kernel.
Channel Structure presents modules sequentially, showing the module transformations through
Architecture their usages.
Virtual Structure presents modules that use modules of a virtual machine.
Machine
Decomposition A type of modular structure in which some modules are actually subunits (decom-
posed units) of other modules, and inter-relations are indicated as such. Typically used
to determine resource allocation, project management (planning), data management
(encapsulation, privitization, etc.).
Class This is a type of modular structure representing software and in which modules are re-

ferred to as classes, and inter-relationships are defined according to the object-oriented
approach in which classes are inheriting from other classes, or are actual instances of a
parent class (for example). Useful in designing systems with similar foundations.

Component and
Connector

These structures are composed of elements that are either components (main hw/sw
processing units, such as processors, a Java Virtual Machine, etc.) or connectors
(communication mechanism that inter-connects components, such as a hw bus, or sw
OS messages, etc.).

Client/Server
(also referred to as distribution)

Structure of system at runtime where components are clients or servers (or objects),
and connectors are the mechanisms used (protocols, messages, packets, etc.) used to
intercommunicate between clients and servers (or objects).

Process
(also referred to as communicating processes)

This structure is a SW structure of a system containing an operating system. Com-
ponents are processes and/or threads (see Chapter 9 on OSes), and their connecters
are the inter-process communication mechanisms (shared data, pipes, etc.) Useful for
analyzing scheduling and performance.

Concurrency and Resource

This structure is a runtime snap shot of a system containing an OS, and in which
components are connected via threads running in parallel (see Chapter 9, Operating
Systems). Essentially, this structure is used for resource management and to determine
if there are any problems with shared resources, as well as to determine what sw can
be executed in parallel.

Interrupt

Structure represents the interrupt handling mec in system.

Scheduling (EDF,
priority, round-
robin)

Structure represents the task scheduling mechanism of threads demonstrating the
fairness of the OS scheduler.

Memory

This runtime representation is of memory and data components with the memory al-
location and deallocation (connector) schemes—essentially the memory management
scheme of the system.

Garbage
Collection

This structure represents the garbage allocation scheme (more in Chapter 2).

Allocation

This structure represents the memory allocation scheme of the system (static or
dynamic, size, and so on).

Safety and Reliability

This structure is of the system at runtime in which redundant components (hw and
sw elements) and their intercommunication mechanisms demonstrate the reliability
and safety of a system in the event of problems (its ability to recover from a variety
of problems).

Allocation

A structure representing relationships between sw and/or hw elements, and external
elements in various environments.

Work Assignment

This structure assigns module responsibility to various development and design teams.
Typically used in project management.

Implementation

This is a sw structure indicating where the sw is located on the development system’s
file system.

Deployment

This structure is of the system at runtime where elements in this structure are hw and
sw, and the relationship between elements are where the sw maps to in the hardware
(resides, migrates to, etc).

* Note that in many cases the terms “architecture” and “structure” (one snapshot) are sometimes used inter-

changeably, and this will be the case in this book.

10

A Systems Engineering Approach to Embedded Systems Design

1.4 Why Is the Architecture of an Embedded System Important?

This book uses an architectural systems engineering approach to embedded systems because
it is one of the most powerful tools that can be used to understand an embedded systems
design or to resolve challenges faced when designing a new system. The most common of
these challenges include:

defining and capturing the design of a system
cost limitations
determining a system’s integrity, such as reliability and safety

working within the confines of available elemental functionality
(i.e., processing power, memory, battery life, etc.)

marketability and sellability
deterministic requirements

In short, an embedded systems architecture can be used to resolve these challenges early in

a project. Without defining or knowing any of the internal implementation details, the archi-
tecture of an embedded device can be the first tool to be analyzed and used as a high-level
blueprint defining the infrastructure of a design, possible design options, and design con-
straints. What makes the architectural approach so powerful is its ability to informally and
quickly communicate a design to a variety of people with or without technical backgrounds,
even acting as a foundation in planning the project or actually designing a device. Because

it clearly outlines the requirements of the system, an architecture can act as a solid basis for
analyzing and testing the quality of a device and its performance under various circumstances.
Furthermore, if understood, created, and leveraged correctly, an architecture can be used to
accurately estimate and reduce costs through its demonstration of the risks involved in imple-
menting the various elements, allowing for the mitigation of these risks. Finally, the various
structures of an architecture can then be leveraged for designing future products with similar
characteristics, thus allowing design knowledge to be reused, and leading to a decrease of
future design and development costs.

By using the architectural approach in this book, I hope to relay to the reader that defining
and understanding the architecture of an embedded system is an essential component of
good system design. This is because, in addition to the benefits listed above:

1. Every embedded system has an architecture, whether it is or is not documented,
because every embedded system is composed of interacting elements (whether hard-
ware or software). An architecture by definition is a set of representations of those
elements and their relationships. Rather than having a faulty and costly architecture
forced on you by not taking the time to define an architecture before starting develop-
ment, take control of the design by defining the architecture first.

2. Because an embedded architecture captures various views, which are representa-
tions of the system, it is a useful tool in understanding all of the major elements, why
each component is there, and why the elements behave the way they do. None of the

11

Chapter 1

elements within an embedded system works in a vacuum. Every element within a
device interacts with some other element in some fashion. Furthermore, externally
visible characteristics of elements may differ given a different set of other elements to
work with. Without understanding the “whys” behind an element’s provided function-
ality, performance, and so on, it would be difficult to determine how the system would
behave under a variety of circumstances in the real world.

Even if the architectural structures are rough and informal, it is still better than nothing. As

long as the architecture conveys in some way the critical components of a design and their re-
lationships to each other, it can provide project members with key information about whether
the device can meet its requirements, and how such a system can be constructed successfully.

1.5 The Embedded Systems Model

Within the scope of this book, a variety of architectural structures are used to introduce
technical concepts and fundamentals of an embedded system. I also introduce emerging
architectural tools (i.e., reference models) used as the foundation for these architectural struc-
tures. At the highest level, the primary architectural tool used to introduce the major elements
located within an embedded system design is what I will refer to as the Embedded Systems
Model, shown in Figure 1-2.

Application Software Layer
(Optional)

System Software Layer
(Optional)

Hardware Layer
(Required)

Figure 1-2: Embedded Systems Model

What the Embedded Systems Model indicates is that all embedded systems share one simi-
larity at the highest level; that is, they all have at least one layer (hardware) or all layers
(hardware, system software and application software) into which all components fall. The
hardware layer contains all the major physical components located on an embedded board,
whereas the system and application software layers contain all of the software located on and
being processed by the embedded system.

This reference model is essentially a layered (modular) representation of an embedded
systems architecture from which a modular architectural structure can be derived. Regard-
less of the differences between the devices shown in Table 1-1, it is possible to understand
the architecture of all of these systems by visualizing and grouping the components within
these devices as layers. While the concept of layering isn’t unique to embedded system
design (architectures are relevant to all computer systems, and an embedded system is a type

12

A Systems Engineering Approach to Embedded Systems Design

of computer system), it is a useful tool in visualizing the possible combinations of hundreds,
if not thousands, of hardware and software components that can be used in designing an
embedded system. In general, I selected this modular representation of embedded systems
architecture as the primary structure for this book for two main reasons:

1. The visual representation of the main elements and their associated functions. The
layered approach allows readers to visualize the various components of an embedded
system and their interrelationship.

2. Modular architectural representations are typically the structures leveraged to
structure the entire embedded project. This is mainly because the various modules
(elements) within this type of structure are usually functionally independent. These
elements also have a higher degree of interaction, thus separating these types of ele-
ments into layers improves the structural organization of the system without the risk
of oversimplifying complex interactions or overlooking required functionality.

Sections 2 and 3 of this book define the major modules that fall into the layers of the Embed-
ded Systems Model, essentially outlining the major components that can be found in most
embedded systems. Section 4 then puts these layers together from a design and development
viewpoint, demonstrating to the reader how to apply the technical concepts covered in previ-
ous chapters along with the architectural process introduced in this chapter. Throughout this
book, real-world suggestions and examples are provided to present a pragmatic view of the
technical theories, and as the key teaching tool of embedded concepts. As you read these vari-
ous examples, in order to gain the maximum benefits from this text and to be able to apply the
information provided to future embedded projects, I recommend that the reader note:

the patterns that all these various examples follow, by mapping them not only to
the technical concepts introduced in the section, but ultimately to the higher-level
architectural representations. These patterns are what can be universally applied to
understand or design any embedded system, regardless of the embedded system de-
sign being analyzed.

where the information came from. This is because valuable information on embed-
ded systems design can be gathered from a variety of sources, including the internet,
articles from embedded magazines, the Embedded Systems Conference, data sheets,
user manuals, programming manuals, and schematics—to name just a few.

1.6 Summary

This chapter began by defining what an embedded system is, including in the definition the
most complex and recent innovations in the market. It then defined what an embedded sys-
tems architecture is in terms of the sum of the various representations (structures) of a system.
This chapter also introduced why the architectural approach is used as the approach to intro-
ducing embedded concepts in this book, because it presents a clear visual of what the system
is, or could be, composed of and how these elements function. In addition, this approach can
provide early indicators into what may and may not work in a system, and possibly improve
the integrity of a system and lower costs via reusability.

13

Chapter 1

The next chapter contains the first real-world examples of the book in reference to how indus-
try standards play into an embedded design. Its purpose is to show the importance of knowing
and understanding the standards associated with a particular device, and leveraging these
standards to understand or create an architecture.

14

Chapter 1 Problems

Name three traditional or not-so-traditional definitions of embedded systems.

In what ways do traditional assumptions apply and not apply to more recent complex
embedded designs? Give four examples.

[T/F] Embedded systems are all:

monQw»>

[a]

[b]

medical devices.
computer systems.
very reliable.

All of the above.
None of the above.

Name and describe five different markets under which embedded systems
commonly fall.
Provide examples of four devices in each market.

Name and describe the four development models which most embedded projects are
based upon.

[a]
[b]
[c]
[d]

What is the Embedded Systems Design and Development Lifecycle Model [draw it]?
What development models is this model based upon?

How many phases are in this model?

Name and describe each of its phases.

Which of the stages below is not part of creating an architecture, phase 1 of the
Embedded Systems Design and Development Lifecycle Model?

monNw»>

Understanding the architecture business cycle.
Documenting the architecture.

Maintaining the embedded system.

Having a strong technical foundation.

None of the above.

Name five challenges commonly faced when designing an embedded system.

What is the architecture of an embedded system?

15

Chapter 1

10. [T/F] Every embedded system has an architecture.

11.

12.
13.
14.

15.

16.
17.

18.

[a]
[b]

What is an element of the embedded system architecture?
Give four examples of architectural elements.

What is an architectural structure?

Name and define five types of structures.

[a]
[b]

[a]
(b]
[c]
[d]

Name at least three challenges in designing embedded systems.
How can an architecture resolve these challenges?

What is the Embedded Systems Model?

What structural approach does the Embedded Systems Model take?
Draw and define the layers of this model.

Why is this model introduced?

Why is a modular architectural representation useful?

All of the major elements within an embedded system fall under:

monw»>

The Hardware Layer.

The System Software Layer.

The Application Software Layer.

The Hardware, System Software, and Application Software Layers.
A or D, depending on the device.

Name six sources that can be used to gather embedded systems design information.

16

CHAPTER 2

Know Your Standards

In This Chapter

>

vvyyvyy

Defining the meaning of standards

Listing examples of different types of standards

Discussing the impact of programming language standards on the architecture
Discussing the OSI model and examples of networking protocols

Using digital TV as an example that implements many standards

Some of the most important components within an embedded system are derived from
specific methodologies, commonly referred to as standards. Standards dictate how these
components should be designed, and what additional components are required in the system
to allow for their successful integration and function. As shown in Figure 2-1, standards can
define functionality that is specific to each of the layers of the embedded systems model, and
can be classified as market-specific standards, general-purpose standards, or standards that
are applicable to both categories.

d = Srandara
Standards
MHP ATSC -

Figure 2-1: Standards diagram

Standards that are strictly market-specific define functionality that is relative to a particular
group of related embedded systems that share similar technical or end user characteristics,
including:

Chapter 2

Consumer Electronics. Typically includes devices used by consumers in their per-
sonal lives, such as PDAs (personal data assistants), TVs (analog and digital), games,
toys, home appliances (i.e., microwave ovens, dishwashers, washing machines), and
internet appliances.”!!

Medical. Defined as “...any instrument, apparatus, appliance, material or other article,
whether used alone or in combination, including the software necessary for its proper
application intended by the manufacturer to be used for human beings for the purpose
of:

— diagnosis, prevention, monitoring, treatment or alleviation of disease,

— diagnosis, monitoring, treatment, alleviation of or compensation for an injury or
handicap,

— investigation, replacement or modification of the anatomy or of a physiological
process,

— control of conception,

and which does not achieve its principal intended action in or on the human body by
pharmacological, immunological or metabolic means, but which may be assisted in
its function by such means...”

—European Medical Device Directive (93/42/EEC) 4

This includes dialysis machines, infusion pumps, cardiac monitors, drug delivery,
prosthetics, and so forth.>!

Industrial Automation and Control. “Smart” robotic devices (smart sensors, motion
controllers, man/machine interface devices, industrial switches, etc.) used mainly in
manufacturing industries to execute a cyclic automated process.!>!!

Networking and Communications. Intermediary devices connecting networked end
systems, devices such as hubs, gateways, routers and switches. This market segment
also includes devices used for audio/video communication, such as cell phones (in-
cludes cell phone/PDA hybrids), pagers, video phones and ATM machines.*!

Automotive. Subsystems implemented within automobiles, such as entertainment
centers, engine controls, security, antilock brake controls and instrumentation.*!)

Aerospace and Defense. Systems implemented within aircraft or used by the military,
such as flight management, “smart” weaponry and jet engine control.!

Commercial Office/Home Office Automation. Devices used in an office setting, such
as printers, scanners, monitors, fax machines, photocopiers, printers and barcode
readers/writers.!!

18

Know Your Standards

Practical Tip

Embedded system market segments and their associated devices are always changing as new
devices emerge and other devices are phased out. The market definitions can also vary from
company to company semantically as well as how the devices are grouped by market seg-
ment. When | want a (very) quick overview of the current terms used to describe embedded
markets and how devices are being vertically grouped, | go to three or four websites of leading
embedded system software vendors. (In my engineering work, | have adopted the journalistic
rule of checking with three or more independent sources to verify information.) Alternately, |
simply use a search engine with keywords “embedded market segments” and take a look at
the latest developments in device grouping.

Most market-specific standards, excluding networking and some TV standards, are only
implemented into embedded systems, because by definition they are intended for specific
groups of embedded devices. General-purpose standards, on the other hand, are typically not
intended for just one specific market of embedded devices; some are adopted (and in some
cases originated) in nonembedded devices as well. Programming language-based standards
are examples of general-purpose standards that can be implemented in a variety of embedded
systems as well as nonembedded systems. Standards that can be considered both market-spe-
cific as well as general purpose include networking standards and some television standards.
Networking functionality can be implemented in devices that fall under the networking
market space, such as hubs and routers; in devices across various markets, such as wireless
communication in networking devices, consumer electronics, etc.; and also in nonembedded
devices. Television standards have been implemented in PCs, as well as in traditional TVs and
set-top boxes.

Table 2-1 lists some current real-world standards, and some of the purposes behind their
implementations.

19

Chapter 2

Table 2-1: Examples of standards implemented in embedded systems

Standard Type

Standard

Purpose

Market
Specific

Consumer
Electronics

JavaTV

The Java TV Application Programming Interface (API) is
an extension of the Java platform that provides access to
functionality unique to a digital television receiver, such as:
audio video streaming, conditional access, access to in-band
and out-of-band data channels, access to service information
data, tuner control for channel changing, on-screen graphics
control, media-synchronization (allows interactive television
content to be synchronized with the underlying video and
background audio of a television program) and application
lifecycle control. (Enables content to gracefully coexist with
television programming content such as commercials).*)

(See java.sun.com)

DVB (Digital Video Broadcast-
ing) —- MHP (Multimedia Home
Platform)

Java-based standard used in digital TV designs. Introduces
components in the system software layer, as well as provides
recommendations for hardware and the types of applica-
tions that would be compatible with MHP. Basically, defines
a generic interface between interactive digital applications
and the terminals ranging from low-end to high-end set top
boxes, integrated digital TV sets and multimedia PCs on
which those applications execute. This interface decouples
different provider’s applications from the specific hardware
and software details of different MHP terminal implementa-
tions enabling digital content providers to address all types
of terminals. The MHP extends the existing DVB open
standards for broadcast and interactive services in all trans-
mission networks including satellite, cable, terrestrial and
microwave systems.>?

(See www.mhp.org)

ISO/IEC 16500 DAVIC (Digital
Audio Visual Council)

DAVIC is an industry standard for end-to-end interoper-
ability of broadcast and interactive digital audio-visual
information, and of multimedia communication.>*

(See www.davic.org or www.iso.ch)

ATSC (Advanced Television
Standards Committee) —

DASE (Digital TV Applications
Software Environment)

The DASE standard defines a system software layer that
allows programming content and applications to run on a
“common receiver.” Interactive and enhanced applications
need access to common receiver features in a platform-inde-
pendent manner. This environment provides enhanced and
interactive content creators with the specifications necessary
to ensure that their applications and data will run uniformly
on all brands and models of receivers. Manufacturers will
thus be able to choose hardware platforms and operating sys-
tems for receivers, but provide the commonality necessary to
support applications made by many content creators.*

(See www.atsc.org)

20

Know Your Standards

Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type Standard Purpose
Market Consumer ATVEF (Advanced Television The ATVEF Enhanced Content Specification defines fun-
Specific Electronics | Enhancement Forum) — damentals necessary to enable creation of HTML-enhanced
(cont.) (cont.) SMPTE (Society of Motion television content that can be reliably broadcast across any

Picture and Television Engineers)

DDE-1

network to any compliant receiver. ATVEF is a standard for
creating enhanced, interactive television content and delivering
that content to a range of television, set-top, and PC-based
receivers. ATVEF [SMPTE DDE-1] defines the standards used
to create enhanced content that can be delivered over a variety
of mediums—including analog (NTSC) and digital (ATSC)
television broadcasts—and a variety of networks, including
terrestrial broadcast, cable, and satellite.>®

(See www.smpte.org/ or www.atvef.com)

DTVIA (Digital Television
Industrial Alliance of China)

DTVIA is an organization made up of leading TV manu-
facturers, research institutes and broadcasting academies
working on the key technologies and specifications for the
China TV industry to transfer from analog to digital. DTVIA
and Sun are working together to define the standard for next-
generation interactive digital television leveraging Sun’s Java
TV application programming interface (API) specification.>”

(See http://java.sun.com/pr/2000/05/pr000508-02.html,
http://netvision.qianlong.com/8737/2003-6-4/39 @878954.
htm, or contact Guo Ke Digital TV Industry Alliance (DT-
VIA), +86-10-64383425, email: guo-ke @btamail.net.cn)

ARIB-BML (Association of
Radio Industries and Business
of Japan)

ARIB in 1999 established their standard titled “Data Coding
and Transmission Specification for Digital Broadcasting” in
Japan, an XML-based specification. The ARIB B24 speci-
fication derives BML (broadcast markup language) from an
early working draft of the XHTML 1.0 Strict document type,
which it extends and alters.>”

(See www.arib.or.jp)

OCAP (OpenCable Application
Forum)

The OpenCable Application Platform (OCAP) is a system
software layer that provides an interface enabling applica-
tion portability (applications written for OpenCable must

be capable of running on any network and on any hardware
platform, without recompilation). The OCAP specification is
built on the DVB MHP specification with modifications for
the North American Cable environment that includes a full
time return channel. A major modification to the MHP is the
addition of a Presentation Engine (PE), that supports HTML,
XML, ECMAScript. A bridge between the PE and the Java
Execution Engine (EE), enables PE applications to obtain
privileges and directly manipulate privileged operations.>®!

(See www.opencable.com)

21

Chapter 2

Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type

Standard

Purpose

Market
Specific
(cont.)

Consumer
Electronics
(cont.)

OSGi (Open Services Gateway
Initiative)

The OSGi specification is designed to enhance all residential
networking standards, such as Bluetooth™, CAL, CEBus,
Convergence, enNET, HAVi™, HomePNA™, HomePlug™,
HomeRF™, Jini™ technology, LonWorks, UPnP, 802.11B
and VESA. The OSGi Framework and Specifications facili-
tate the installation and operation of multiple services on a
single Open Services Gateway (set-top box, cable or DSL
modem, PC, Web phone, automotive, multimedia gateway or
dedicated residential gateway).!>!

(See www.osgi.org)

OpenTV

OpenTV has a proprietary DVB-compliant system software
layer, called EN2, for interactive television digital set-top
boxes. It complements MHP functionality. and provides
functionality that is beyond the scope of the current MHP
specification, such as HTML rendering and web browsing.
[2-10]

(See www.opentv.com)

MicrosoftTV

MicrosoftTV is a proprietary interactive TV system software
layer that combines both analog and digital TV technolo-
gies with Internet functionality. MicrosoftTV Technologies
support current broadcast formats and standards, includ-

ing NTSC, PAL, SECAM, ATSC, OpenCable, DVB, and
SMPTE 363M (AT VEF specification) as well as Internet
standards such as HTML, XML, and so on.>'!

(See www.microsoft.com)

HAVi (Home Audio Video
Initiative)

HAVi provides a home networking standard for seamless
interoperability between digital audio and video consumer
devices, allowing all audio and video appliances within the
network to interact with each other and allow functions on
one or more appliances to be controlled from another appli-
ance, regardless of the network configuration and appliance
manufacturer.*!?

(See www.havi.org)

CEA (Consumer Electronics
Association)

Attempts to foster consumer electronics industry growth by
developing industry standards and technical specifications
that enable new products to come to market and encourage
interoperability with existing devices. Standards include
ANSI-EIA-639 Consumer Camcorder or Video Camera Low
Light Performance, CEA-CEB4 Recommended Practice for
VCR Specifications, and so on.*!”

(See www.ce.org)

22

Know Your Standards

Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type Standard Purpose
Market Medical FDA (USA) U.S. government standards for medical devices relating to the as-
Specific Devices pects of safety and/or effectiveness of the device. Class I devices
(cont.) are defined as non-life sustaining. These products are the least

complicated and their failure poses little risk. Class II devices

are more complicated and present more risk than Class I, though
are also non-life sustaining. They are also subject to any specific
performance standards. Class III devices sustain or support life,
so that their failure is life threatening. Standards include areas of
anesthesia (i.e., Standard Specification for Minimum Performance
and Safety Requirements for Resuscitators Intended for Use with
Humans, Standard Specification for Ventilators Intended for Use
in Critical Care, etc.), cardiovascular/neurology (i.e., Intracranial
pressure monitoring devices, etc.), dental/ENT (i.e., Medical Elec-
trical Equipment — Part 2: Particular Requirements for the Safety
of Endoscope Equipment, etc.), plastic surgery (i.e., Standard
Performance and Safety Specification for Cryosurgical Medical
Instrumentation, etc.) ObGyn/Gastroenterology (i.e., Medical elec-
trical equipment — Part 2: Particular requirements for the safety of
haemodialysis, haemodiafiltration and haemofiltration equipment,
etc.), and so on.!>"¥

(See www.fda.gov/)

Medical Devices Directive
(EU)

European Medical Device Directive are standards for medical
devices for EU member states relating to the aspects of safety
and/or effectiveness of these devices. The lowest risk devices fall
into Class I (Internal Control of Production and compilation of

a Technical File compliance), whereas devices which exchange
energy with the patient in a therapeutic manner or are used to
diagnose or monitor medical conditions, are in Class Ila (i.e., ISO
9002 + EN 46002 compliance). If this is done in manner which
could be hazardous for the patient, then the device falls into Class
Iib (i.e., ISO 9001 + EN 46001). A device that connects directly
with the Central Circulatory System or the Central Nervous
System or contains a medicinal product, then the device falls into
Class III (i.e., ISO 9001 + EN 46001 compliance, compilation of a
Design Dossier).> ¥

(See europa.eu.int)

IEEE1073 Medical Device
Communications

IEEE 1073 standards for medical device communication provide
plug-and-play interoperability at the point-of-care, optimized for
the acute care environment. The IEEE 1073 General Committee
is chartered under the IEEE Engineering in Medicine and Biology
Society, and works closely with other national and international
organizations, including HL7, NCCLS, ISO TC215, CEN TC251,
and ANST HISB.=>3

(See www.ieeel073.org/)

23

Chapter 2

Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type Standard Purpose
Market Industrial DICOM (Digital Imaging and The American College of Radiology (ACR) and the National
Specific Control Communications in Medicine) Electrical Manufacturers Association (NEMA) formed a
(cont.) joint committee in 1983 to develop the DICOM standard

for transferring images and associated information between
devices manufactured by various vendors, specifically to:

¢ Promote communication of digital image information,
regardless of device manufacturer

« Facilitate the development and expansion of picture
archiving and communication systems (PACS) that can also
interface with other systems of hospital information

 Allow the creation of diagnostic information data bases that
can be interrogated by a wide variety of devices distributed
geographically.> ¢!

(See http://medical.nema.org/)

Department of Commerce (USA)
— Office of Microelectronics,
Medical Equipment and
Instrumentation

Maintains a website that contains the global medical device
regulatory requirements on a per country basis.

(See www.ita.doc.gov/td/mdequip/regulations.html)

(EU) The Machinery Directive
98/37/EC

EU directive for all machinery, moving machines, machine
installations, and machines for lifting and transporting
people, as well as safety components. In general, machinery
being sold or used in the EU must comply with applicable
mandatory Essential Health and Safety Requirements
(EHSRs) from a long list given in the directive, and must un-
dertake the correct conformity assessment procedure. Most
machinery, considered less dangerous can be self-assessed
by the supplier, and being able to assemble a Technical

File. The 98/37/EC applies to an assembly of linked parts

or components with at least one movable part—actuators,
controls, and power circuits, processing, treating, moving, or
packaging a material—several machines acting in combina-
tion, and so on.*!8!

(See www.europa.eu.int)

IEC (International Electrotechni-
cal Commission 60204-1)

Applies to the electrical and electronic equipment of
industrial machines. Promotes the safety of persons who
come into contact with industrial machines, not only from
hazards associated with electricity (such as electrical shock
and fire), but also resulting from the malfunction of the
electrical equipment itself. Addresses hazards associated
with the machine and its environment. Replaces the second
edition of IEC 60204-1 as well as parts of IEC 60550 and
ISO 4336.21

(See www.iec.ch)

ISO (International Standards
Organization) Standards

Many standards in the manufacturing engineering segment,
such as ISO/TR 10450—Industrial automation systems and
integration—Operating conditions for discrete part manu-
facturing; Equipment in industrial environments, ISO/TR
13283 Industrial automation; Time-critical communications
architectures; User requirements and network management
for time-critical communications systems, and so on.>?"!

(See www.iso.ch)

24

Know Your Standards

Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type

Standard

Purpose

Market
Specific
(cont.)

Networking
and Commu-
nications

TCP (Transmission Control Pro-
tocol)/IP (Internet Protocol)

Protocol stack based on RFCs (Request for Comments)
791(IP) & 793 (TCP) that define system software compo-
nents (more information in Chapter 10).

(See www.fags.org/rfcs/)

PPP (Point-to-Point Protocol)

System software component based on RFCs 1661, 1332, and
1334 (more information in Chapter 10).

(See www.fags.org/rfcs/)

IEEE (Institute of Electronics
and Electrical Engineers) 802.3
Ethernet

Networking protocol that defines hardware and system
software components for local area networks (LANs) (more
information in Chapters 6 and 8).

(See www.ieee.org)

Cellular

Networking protocols implemented within cellular phones,
such as CDMA (Code Division Multiple Access) and TDMA
(Time Division Multiple Access) typically used in the US.
TDMA is the basis of GSM (Global System for Mobile tele-
communications) European international standard, UMTS
(Universal Mobile Telecommunications System) broadband
digital standard (3" generation)

(See http://www.cdg.org/ for the CDMA Development
Group, http://www.tiaonline.org/ for TDMA and GSM)

Automotive

GM Global

GM standards are used in the design, manufacture, qual-
ity control, and assembly of automotive components and
materials related to General Motors, specifically: adhesives,
electrical, fuels and lubricants, general, paints, plastics,
procedures, textiles, metals, metric and design.>?”!

Standards can be purchased from HIS Global at:
http://www.ihs.com/standards/index.html

Ford Standards

The Ford standards are from the Engineering Material
Specifications and Laboratory Test Methods volumes, the
Approved Source List Collection, Global Manufacturing
Standards, Non-Production Material Specifications, and the
Engineering Material Specs & Lab Test Methods Handbook.

[227]

Standards can be purchased from IHS Global at http://www.
ihs.com/standards/index.html

FMVSS (Federal Motor Vehicle
Safety Standards)

The Code of Federal Regulations (CFR) contains the text of
public regulations issued by the agencies of the U.S. Federal
government. The CFR is divided into several titles which
represent broad areas subject to Federal Regulation.*?”!

see http://www.nhtsa.dot.gov/cars/rules/standards/safstan2.
htm USA National Highway Traffic Safety Administration

25

Chapter 2

Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type

Standard

Purpose

Market
Specific
(cont.)

Automotive
(cont.)

OPEL Engineering Material
Specifications

OPEL’s standards are available in sections, such as: Metals,
Miscellaneous, Plastics and Elastomers, Materials of Body—
Equipment, Systems and Component Test Specifications, Test
Methods, Laboratory Test Procedures (GME/GMI), body and
electric, chassis, powertrain, road test procedures (GME/GMI),
body and electric, chassis, powertrain, process, paint & envi-
ronmental engineering materials, and so on.*?"

Standards can be purchased from HIS Global at:
http://www.ihs.com/standards/index.html

Jaguar Procedures and
Standards Collection

The Jaguar standards are available as a complete collection

or as individual standards collections such as: Jaguar-Test
Procedures Collection, Jaguar-Engine & Fastener Standards
Collection, Jaguar-Non-Metallic/Metallic Material Standards
Collection, Jaguar-Laboratory Test Standards Collection, etc.”**"

Standards can be purchased from IHS Global at http://www.ihs.
com/standards/index.html

ISO/TS 16949 — The Har-
monized Standard for the
Automotive Supply Chain

Jointly developed by the IATF (International Automotive Task
Force) members and forms the requirements for automotive
production and relevant service part organizations. Based on
ISO 9001:2000, AVSQ (Italian), EAQF (French), QS-9000
(U.S.) and VDAG.1 (German) automotive catalogs.>3%

(See http://www.iaob.org/)

Aerospace
and Defense

SAE (Society of Automotive
Engineers) — The Engineer-
ing Society For Advancing
Mobility in Land Sea Air
and Space

SAE Aerospace Material Specifications, SAE Aerospace
Standards (includes Aerospace Standards (AS), Aerospace
Information Reports (AIR), and Aerospace Recommended
Practices (ARP)). >?7

(See www.sae.org)

AIA/NAS — Aerospace
Industries Association of
America, Inc.

This standards service includes National Aerospace Standards
(NAS) and metric standards (NA Series). It is an extensive
collection that provides standards for components, design and
process specifications for aircraft, spacecraft, major weap-

ons systems and all types of ground and airborne electronic
systems. It also contains procurement documents for parts and
components of high technology systems, including fasteners,
high pressure hoses, fittings, high-density electrical connectors,
bearings and more.*”)

(See http://www.aia-aerospace.org/)

Department of Defense
(DOD) -JTA (Joint Techni-
cal Architecture)

DOD initiatives, such as the Joint Technical Architecture (JTA)
permits the smooth flow of information necessary to achieve
interoperability, resulting in optimal readiness. The JTA was
established by the U.S. Department of Defense to specify a
minimal set of information technology standards, including
Web standards, to achieve military interoperability. %"

(See http://www.disa.mil/main/jta.html)

26

Know Your Standards

Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type

Standard

Purpose

Market
Specific
(cont.)

Office
Automation

IEEE Std 1284.1-1997
IEEE Standard for Informa-
tion TechnologyTransport
Independent Printer/System
Interface (TIP/SI)

A protocol and methodology for software developers,
computer vendors, and printer manufacturers to facilitate the
orderly exchange of information between printers and host
computers are defined in this standard. A minimum set of
functions that permit meaningful data exchange is provided.
Thus a foundation is established upon which compatible
applications, computers, and printers can be developed, without
compromising an individual organization’s desire for design
innovation.>?!

(See www.ieee.org)

Postscript

A programming language from Adobe that describes the
appearance of a printed page that is an industry standard for
printing and imaging. All major printer manufacturers make
printers that contain or can be loaded with Postscript software
(.ps file extensions).

(See www.adobe.com)

ANSI/AIM BC2-1995,
Uniform Symbology Speci-
fication for Bar Codes

For encoding general purpose all-numeric data. Reference
symbology for UCC/EAN Shipping Container Symbol.
Character encoding, reference decode algorithm and optional
check character calculation are included in this document.

This specification is intended to be significantly identical to
corresponding Commission for European Normalization (CEN)
specification./>?”!

(See http://www.aimglobal.org/standards/aimpubs.htm)

General
Purpose

Networking

HTTP (Hypertext Transfer
Protocol)

A World Wide Web (WWW) protocol defined by a number of
different RFCs, including RFC2616, 2016, 2069, 2109, and
so on—Application Layer networking protocol implemented
within browsers on any device, for example.

(See http://www.w3c.org/Protocols/Specs.html)

TCP (Transmission Control
Protocol)/IP (Internet
Protocol)

Protocol stack based on RFCs (Request for Comments) 791(IP)
& 793 (TCP) that define system software components (more
information in Chapter 10).

(See http://www.fags.org/rfcs/)

IEEE (Institute of Electron-
ics and Electrical Engineers)
802.3 Ethernet

Networking protocol that defines hardware and system software
components for local area networks (LANs) (more information
in Chapters 6 and 8).

(See www.ieee.org)

Bluetooth

Bluetooth Specifications are developed by the Bluetooth
Special Interest Group (SIG), which allows for developing
interactive services and applications over interoperable radio
modules and data communication protocols (more information
on Bluetooth in Chapter 10).12!

(See www.bluetooth.org)

27

Chapter 2

Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type

Standard

Purpose

General
Purpose
(cont.)

Program-
ming
Languages

pJava (Personal Java)

Embedded Java standard from Sun Microsystems targeted
and larger embedded systems (more information in Section
2.1).

(See java.sun.com)

J2ME (Java 2 Micro Edition)

Set of embedded standards from Sun Microsystems targeting
the entire range of embedded systems, both in size and verti-
cal markets (more information in Section 2.1).

(See java.sun.com)

NET Compact Framework

Microsoft-based system that allows an embedded system to
support applications written in several different languages,
including C# and Visual Basic (more information in Section
2.1).

(See www.microsoft.com)

HTML (Hyper Text Markup
Language)

Scripting language whose interpreter typically is imple-
mented in a browser, WWW protocol (more information in
Section 2.1).

(See www.w3c.org)

Security

Netscape IETF (Internet Engi-
neering Task Force) SSL (Secure
Socket Layer) 128-bit Encryption

The SSL is a security protocol that provides data encryption,
server authentication, message integrity, and optional client
authentication for a TCP/IP connection, and is typically
integrated into browsers and web servers. There are different
versions of SSL (40-bit, 128-bit, etc.), with “128-bit” refer-
ring to the length of the “session key” generated by every
encrypted transaction (the longer the key, the more difficult it
is to break the encryption code). SSL relies on session keys,
as well as digital certificates (digital identification cards) for
the authentication algorithm.

(See http://wp.netscape.com/eng/ssl3/ for version 3 (latest
version at the time this book was written) of Netscape’s SSL
specification.

IEEE 802.10 Standards for
Interoperable LAN/MAN
Security (SILS)

Provides a group of specifications at the hardware and sys-
tem software layer to implement security in networks.

(See http://standards.ieee.org/getieee802/index.html)

Quality
Assurance

1SO 9000 Standards

A set of quality management process standards when
developing products (not product standards in them-
selves) or providing a service, including ISO 9000:2000,
ISO 9001:2000, ISO 9004:2000, and so on. ISO 9001:2000
presents requirements, while ISO 9000:2000 and ISO
9004:2000 present guidelines.

(See www.iso.ch)

28

Know Your Standards

Warning!

While Table 2-1 lists market-specific standards in the context of a single market, some mar-
ket-specific standards listed in this table have been implemented or adopted by other device
market segments. This table simply shows “some” real-world examples. Furthermore, different
countries, and even different regions of one country, may have unique standards for particular
families of devices (i.e., DTV or cell phone standards, see Table 2-1). Also, in most industries,
competing standards can exist for the same device, supported by competing interests. Find
out who has adopted which standards and how these competing standards differ by using the
Internet to look up published data sheets or manuals of the particular device, the documenta-
tion provided by the vendors of the components integrated within the device, or by attending
the various tradeshows, seminars, and conferences associated with that particular industry
or vendor, such as the Embedded Systems Conference (ESC), Java One, Real-Time Embedded
and Computing Conference, Embedded Processor Forum, etc.

This warning note is especially important for hardware engineers, who may have come from
an environment where certain standards bodies, such as IEEE, have a strong influence on what
is adopted. In the embedded software field there is currently no single standards body that
has the level of influence that IEEE has in the hardware arena.

The next three sections of this chapter contain real-world examples showing how specific
standards define some of the most critical components of an embedded system. Section 2.1
presents general-purpose programming language standards that can affect the architecture of
an embedded system. Section 2.2 presents networking protocols that can be implemented in a
specific family of devices, across markets, and in stand-alone applications. Finally, Section 2.3
presents an example of a consumer appliance that implements functionality from a number
of different standards. These examples demonstrate that a good starting point in demystify-
ing the design of an embedded system is to simply derive from industry standards what the
system requirements are and then determine where in the overall system these derived com-
ponents belong.

29

Chapter 2

2.1 An Overview of Programming Languages and
Examples of Their Standards

Why Use Programming Languages as a Standards Example?

In embedded systems design, there is no single language that is the perfect solution for every
system. Programming language standards, and what they introduce into an embedded systems
architecture, are used as an example in this section, because a programming language can
introduce an additional component into an embedded architecture. In addition, embedded
systems software is inherently based on one or some combination of multiple languages. The
examples discussed in-depth in this section, such as Java and the .NET Compact Framework,
are based upon specifications that add additional elements to an embedded architecture. Other
languages which can be based upon a variety of standards, such as ANSI C vs. Kernighan and
Ritchie C, aren't discussed in-depth because using these languages in an embedded design
does not usually require introducing an additional component into the architecture.

Note: Details of when to use what programming language and the pros and cons of such
usage are covered in Chapter 11. It is important for the reader to first understand the vari-
ous components of an embedded system before trying to understand the reasoning behind
using certain components over others at the design and development level. Language choice
decisions aren’t based on the features of the language alone, and are often dependent on
the other components within the system.

The hardware components within an embedded system can only directly transmit, store, and
execute machine code, a basic language consisting of ones and zeros. Machine code was used
in earlier days to program computer systems, which made creating any complex application
a long and tedious ordeal. In order to make programming more efficient, machine code was
made visible to programmers through the creation of a hardware-specific set of instructions,
where each instruction corresponded to one or more machine code operations. These hard-
ware-specific sets of instructions were referred to as assembly language. Over time, other
programming languages, such as C, C++, Java, etc., evolved with instruction sets that were
(among other things) more hardware-independent. These are commonly referred to as high-
level languages because they are semantically further away from machine code, they more
resemble human languages, and are typically independent of the hardware. This is in contrast
to a low-level language, such as assembly language, which more closely resembles machine
code. Unlike high-level languages, low-level languages are hardware dependent, meaning
there is a unique instruction set for processors with different architectures. Table 2-2 outlines
this evolution of programming languages.

30

Know Your Standards

Table 2-2: Evolution of programming languages %

Language Details

1 Generation | Machine code Binary (0,1) and hardware dependent.

2" Generation | Assembly language Hardware-dependent representing corresponding binary

machine code.

34 Generation | HOL (high-order High-level languages with more English-like phrases
languages)/procedural | and more transportable, such as C, Pascal, etc.
languages

4™ Generation | VHLL (very high level | “Very” high-level languages: object-oriented languages
languages)/non- (C++, Java,...), database query languages (SQL), etc.

procedural languages

5" Generation | Natural languages Programming similar to conversational languages,
typically used in artificial intelligence (Al). Still in the
research and development phases in most cases—not
yet applicable in mainstream embedded systems.

Note: Even in systems that implement some higher-level languages, some portions of embedded systems software
are implemented in assembly language for architecture-specific or optimized-performance code.

Because machine code is the only language the hardware can directly execute, all other languages
need some type of mechanism to generate the corresponding machine code. This mechanism
usually includes one or some combination of preprocessing, translation, and interpretation.
Depending on the language, these mechanisms exist on the programmer’s host system (typically
a nonembedded development system, such as a PC or Sparc station), or the target system (the
embedded system being developed). See Figure 2-2.

Target [Embedded System]

Host [Development System]

Application Layer

Application Layer Preprocessor Compiler Linker ...

System Software Layer
System Software Layer

Hardware Layer
Hardware Layer

Figure 2-2: Host and target system diagram

Preprocessing is an optional step that occurs before either the translation or interpretation

of source code, and whose functionality is commonly implemented by a preprocessor. The
preprocessor’s role is to organize and restructure the source code to make translation or inter-
pretation of this code easier. As an example, in languages like C and C++, it is a preprocessor
that allows the use of named code fragments, such as macros, that simplify code development
by allowing the use of the macro’s name in the code to replace fragments of code. The pre-
processor then replaces the macro name with the contents of the macro during preprocessing.
The preprocessor can exist as a separate entity, or can be integrated within the translation or
interpretation unit.

31

Chapter 2

Many languages convert source code, either directly or after having been preprocessed
through use of a compiler, a program that generates a particular target language—such as
machine code and Java byte code—from the source language (see Figure 2-3).

Compiler

Preprocessing < Header File(s) for languages like C and C++

!

Compiling

v

Target Code

Figure 2-3: Compilation diagram

A compiler typically “translates” all of the source code to some target code at one time. As

is usually the case in embedded systems, compilers are located on the programmer’s host
machine and generate target code for hardware platforms that differ from the platform the
compiler is actually running on. These compilers are commonly referred to as cross-compil-
ers. In the case of assembly language, the compiler is simply a specialized cross-compiler
referred to as an assembler, and it always generates machine code. Other high-level language
compilers are commonly referred to by the language name plus the term “compiler,” such as
“Java compiler” and “C compiler.” High-level language compilers vary widely in terms of
what is generated. Some generate machine code, while others generate other high-level code,
which then requires what is produced to be run through at least one more compiler or inter-
preter, as discussed later in this section. Other compilers generate assembly code, which then
must be run through an assembler.

After all the compilation on the programmer’s host machine is completed, the remaining
target code file is commonly referred to as an object file, and can contain anything from ma-
chine code to Java byte code (discussed later in this section), depending on the programming
language used. As shown in Figure 2-4, after linking this object file to any system libraries
required, the object file, commonly referred to as an executable, is then ready to be trans-
ferred to the target embedded system’s memory.

32

Know Your Standards

| C Source File (s) |

C Compiler

| Preprocessing |474| C Header File (s)
¥

| Compiling |

| C Object File (s) |
| Linker |4—| C System Libraries

| C Executable File |

Host Computer

Embedded System <

Figure 2-4: C Example compilation/linking steps and object file results

How Does the Executable Get from the Host to the Target?

A combination of mechanisms are used to accomplish this. Details on memory and how files are
executed from it will be discussed in more detail in Section Il, while the different transmission
mediums available for transmitting the executable file from a host system to an embedded
system will be discussed in more detail in the next section of this chapter (Section 2.2). Finally,
the common development tools used will be discussed in Chapter 12.

Examples of Programming Languages that Affect an Embedded Architecture:
Scripting Languages, Java, and .NET

Where a compiler usually translates all of the given source code at one time, an interpreter
generates (interprets) machine code one source code line at a time (see Figure 2-5).

33

Chapter 2

»{ Target 6d e for
Source L
Source L
Figure 2-5: Interpretation diagram
Source 2 P Target @ e for
Source L
Source B,
Source & »{ Target @d e for
Source B,
Source B
Source b

One of the most common subclasses of interpreted programming languages are scripting
languages, which include PERL, JavaScript, and HTML. Scripting languages are high-level
programming languages with enhanced features, including:

® More platform independence than their compiled high-level language counterparts.*>*

e Late binding, which is the resolution of data types on-the-fly (rather than at compile
time) to allow for greater flexibility in their resolution.*

e Importation and generation of source code at runtime, which is then executed
immediately.’>%

® Optimizations for efficient programming and rapid prototyping of certain types of
applications, such as internet applications and graphical user interfaces (GUIs).1>**!

With embedded platforms that support programs written in a scripting language, an additional
component—an interpreter—must be included in the embedded system’s architecture to allow
for “on-the-fly” processing of code. Such is the case with the embedded system architectural
software stack shown in Figure 2-6, where an internet browser can contain both an HTML
and JavaScript interpreter to process downloaded web pages.

Application Software
Layer

) Browser

System Software Layer

Hardware Layer

Figure 2-6: HTML and Javascript in the application layer

34

Know Your Standards

While all scripting languages are interpreted, not all interpreted languages are scripting lan-
guages. For example, one popular embedded programming language that incorporates both
compiling and interpreting machine code generation methods is Java. On the programmer’s
host machine, Java must go through a compilation procedure that generates Java byte code
from Java source code (see Figure 2-7).

Jjava Java Source File (s)

Figure 2-7: Embedded Java compilation

A

and linking diagram

Java Compiler

A 4

.class Java Byte Code File (s)

Java byte code is target code intended to be platform independent. In order for the Java
byte code to run on an embedded system, a Java Virtual Machine (JVM) must exist on
that system. Real-world JVMs are currently implemented in an embedded system in one of
three ways: in the hardware, in the system software layer, or in the application layer (see

Figure 2-8).

‘ Pplicatiorhye r ‘

Pplicatiorhye r Pplicatiorhye r

System Sofwr e System Sofwr e
hye r hye r Java Virtual Mia
Java ® vice D ivers U Java Virtual Mia U ‘ System Sofare Byer
‘ hfdave hyer ‘ hfdave hyer
‘ Java Bocessor U - R
bidwre hyer |] greeeemeeeeeeeeeeeeeed B RALEREA LR b
H JTMart ofSystem layer Jie., : JNbmplied impplication
i Sklmir’ s Ceed Enertechip $§ + tie,Hnertec’ sJbdK vaK vaM
~ [t : Jeode ad Jbd, d o’sfen P BM 3§ J9
""""""""""""""""""""""" K vad K vaM
IMhrdare,i.e., 1 s
Rl 3§ aelleNle § aj0

Figure 2-8: JVMs and the Embedded Systems Model

Size, speed, and functionality are the technical characteristics of a JVM that most impact an
embedded system design, and two JVM components are the primary differentiators between
embedded JVMs: the JVM classes included within the JVM, and the execution engine that
contains components needed to successfully process Java code (see Figure 2-9).

35

Chapter 2

JVM
Application Classes JVM Classes

Figure 2-9: Internal JVM components

Execution Engine

The JVM classes shown in Figure 2-9 are compiled libraries of Java byte code, commonly
referred to as Java APIs (application program interfaces). Java APIs are application indepen-
dent libraries provided by the JVM to, among other things, allow programmers to execute
system functions and reuse code. Java applications require the Java API classes, in addition to
their own code, to successfully execute. The size, functionality, and constraints provided by
these APIs differ according to the Java specification they adhere to, but can include memory
management features, graphics support, networking support, and so forth. Different standards
with their corresponding APIs are intended for different families of embedded devices (see
Figure 2-10).

=7

Cell Bne

8T op Bx
Jax Micro Edion
‘ Connected® ice Conf iguration CD) D ‘ Connectedmited® ice Conf iguration CD) D
‘ CVM fr ger JVM bsedn C’6r Compact) U ‘ KM faller JVM bsedn Tr Ho) U
3 B RM
O MBR M < > B it

3 Archtecture Archtecture

Figure 2-10: J2ME family of devices

36

Know Your Standards

In the embedded market, recognized embedded Java standards include J Consortium’s Real-
Time Core Specification, and Personal Java (pJava), Embedded Java, Java 2 Micro Edition
(J2ME) and The Real-Time Specification for Java from Sun Microsystems.

Figures 2-11a and b show the differences between the APIs of two different embedded Java
standards.

pJava JVM APIs

~N
Java.io Java.math Java.security
(Supports input/output streaming) (For integer and floating point arthmetic) (Manages Java application and VM security)
Java.applet Java.net Java.sql
(Java program usually running in browser) (Networking protocols) (Implements Java database connectivity [JDBC])
> Java APIs
Java.awt Java.rmi Java.text
(Abstract Windowing Toolkit for graphics) (Remote method Invocation) (For internationalization)
Java.lang Java.util Java.beans
(Java language components) (General-purpose utilities) (Framework to create reusable, embeddable,
modular software components)
J
Figure 2-11a: pJava 1.2 APl components diagram
JMHVM
Java.io Javax.microedition.lcdui
(Supports input/output streaming) (&ér interface)
Java.lang Java.microedition.rms
(Java language components) (Mobile information device profile for MIDlets
to store and retrieve data)
Java.util
(General-purpose utilities) Java.microedition.midlet
(Defines mobile information device profile
Java.microedition.io applications and related functions)
(Networking protocols)
Java.io
(Additional input/output streaming libraries)
CDC APIs Javalang
(Additional Java language components)
MIDP APIs

Figure 2-11b: J2ME CLDC 1.1/MIDP 2.0 APl components diagram

37

Chapter 2

Table 2-3 shows several real-world JVMs and the standards they adhere to.

Table 2-3: Real-world examples of JVMs based on embedded Java standards

Embedded Java Standards

Java Virtual Machines

Personal Java (pJava)

Tao Group’s Intent (www.tao-group.com)

Insignia’s pJava Jeode (www.insignia.com)

NSICom CrE-ME (www.nsicom.com)

Skelmir’s pJava Cee-J (www.skelmir.com)

Embedded Java

Esmertec Embedded Java Jeode (www.esmertec.com)

Java 2 Micro Edition (J2ME)

Esmertec’s Jbed for CLDC/MIDP and Insignia’s CDC Jeode
(www.esmertec.com and www.insignia.com)

Skelmir’s Cee-J CLDC/MIDP and CDC (www.skelmir.com)

Tao Group’s Intent (www.tao-group.com) CLDC & MIDP

Note: Information in table was gathered at the time this book was written and is subject to change; check with

specific vendors for latest information.

Within the execution engine (shown in Figure 2-12), the main differentiators that impact the
design and performance of JVMs that support the same specification are:

The garbage collector (GC), which is responsible for deallocating any memory no
longer needed by the Java application.

The unit that processes byte codes, which is responsible for converting Java byte
codes into machine code through interpretation, compilation (commonly referred to
as way-ahead-of-time or WAT), or just-in-time (JIT), an algorithm that combines both
compiling and interpreting. A JVM can implement one or more of these byte code
processing algorithms within its execution engine.

38

Know Your Standards

JVM
Application Classes JVM Classes
Class Loader
Garbage Collector
Memory
Byte Code Execution
Engine))
Execution Engine

Figure 2-12: Internal execution engine components

Garbage Collection

Why Talk About Garbage Collection?

While this section discusses garbage collection within the context of Java, | use it as a separate
example because garbage collection isn’t unique to the Java language. A garbage collector
can be implemented in support of other languages, such as C and C++224, that don’t typically
add an additional component to the system. When creating a garbage collector to support
any language, it becomes part of an embedded system’s architecture.

An application written in a language such as Java cannot deallocate memory that has been
allocated for previous use (as can be done in native languages, such as using “free” in the C
language, though as mentioned above, a garbage collector can be implemented to support

any language). In Java, only the GC (garbage collector) can deallocate memory no longer in
use by Java applications. GCs are provided as a safety mechanism for Java programmers so
they do not accidentally deallocate objects that are still in use. While there are several gar-
bage collection schemes, the most common are based upon the copying, mark and sweep, and
generational GC algorithms.

39

Chapter 2

The copying garbage collection algorithm (shown in Figure 2-13) works by copying refer-
enced objects to a different part of memory, and then freeing up the original memory space of
unreferenced objects. This algorithm uses a larger memory area in order to work, and usually
cannot be interrupted during the copy (it blocks the system). However, it does ensure that
what memory is used is used efficiently by compacting objects in the new memory space.

Memory Before GC Memory After GC
Copying Garbage Collector D
—»| Object 1 . Object 1
@cv0c000000000000000000000000000 >
Object 2 Object 2
Object 3 Object 4
L Object 4

Figure 2-13: Copying GC

The mark and sweep garbage collection algorithm (shown in Figure 2-14) works by “mark-
ing” all objects that are used, and then “sweeping” (deallocating) objects that are unmarked.
This algorithm is usually nonblocking, meaning the system can interrupt the garbage collec-
tor to execute other functions when necessary. However, it doesn’t compact memory the way
a copying garbage collector does, leading to memory fragmentation, the existence of small,
unusable holes where deallocated objects used to exist. With a mark and sweep garbage col-
lector, an additional memory compacting algorithm can be implemented, making it a mark
(sweep) and compact algorithm.

Memory Before GC Memory After GC
MarkandBep Garbage Collecto r g
5| Object 1 < Object 1
J : —
.
@sscsssessssssse H
Object 2 < .\/ Object 2 <
\/ Mark
Object 3
................................. >
8ep)
L___| Object 4 L Object 4

Figure 2-14: Mark and sweep (no compaction) garbage collector diagram

40

Know Your Standards

Finally, the generational garbage collection algorithm (shown in Figure 2-15) separates ob-
jects into groups, called generations, according to when they were allocated in memory. This
algorithm assumes that most objects that are allocated by a Java program are short-lived, thus
copying or compacting the remaining objects with longer lifetimes is a waste of time. So, it
is objects in the younger generation group that are cleaned up more frequently than objects in

the older generation groups. Objects can also be moved from a younger generation to an older

generation group. Different generational garbage collectors also may employ different algo-
rithms to deallocate objects within each generational group, such as the copying algorithm or

mark and sweep algorithms described previously.

Memory After GC

Bl

=

Memory Before GC

D d r Generation

Mark,8ep andCompat Garbge Coktor
.

Memory Afer GC
D Mark & § cep

[t

: Youngest Generation [Nursery]
.

.

[Memory Before GC

.

° Copying Garhge Coktor
.

. I :

. > i .

.

° -

. @escecssssectossecssscep
.

° B2

° -

. —

.

.

L]

.

. £ 3

.

.

.

.

.

. L& 4 e

.

.

.

.

.

. .

° Copying GC
.
©00

[Mark]

eesseccesscscesccesscccsssccccsach

[Sev ep]

B 1
—>| —

[t

Memory Afier GC
Compaction

T

i
N

H
[Compac] @
l@scccscscscscsceel

Mark 8 & ep) & Compact GC

Figure 2-15: Generational garbage collector diagram

41

Chapter 2

As mentioned at the start of this section, most real-world embedded JVMs implement some
form of either the copying, mark and sweep, or generational algorithms (see Table 2-4).

Table 2-4: Real-world examples of JVMs based on the garbage collection algorithms

Garbage Collector Java Virtual Machine
Copying NewMonic’s Perc (www.newmonics.com)
Mark & Sweep Skelmir’s Cee-J (www.skelmir.com)

Esmertec’s Jbed (www.esmertec.com)

NewMonics’ Perc (www.newmonics.com)

Tao Group’s Intent (Www.tao-group.com)

Generational Skelmir’s Cee-J (www.skelmir.com)

Note: Information in table was gathered at the time this book was written and is subject to change; check with
specific vendors for latest information.

Processing Java Bytecode

Why Talk About How Java Processes Bytecode?

This section is included because Java is an illustration of many different real-world techniques
that are used to translate source code into machine code in a variety of other languages. For
example, in assembly, C, and C++, the compilation mechanisms exist on the host machine,
whereas HTML scripting language source is interpreted directly on the target (with no com-
pilation needed). In the case of Java, Java source code is compiled on the host into Java byte
code, which then can be interpreted or compiled into machine code, depending on the JVM’s
internal design. Any mechanism that resides on the target, which translates Java byte code
into machine code, is part of an embedded system’s architecture. In short, Java’s translation
mechanisms can exist both on the host and on the target, and so act as examples of various
real-world techniques that can be used to understand how programming languages in general
impact an embedded design.

The JVM’s primary purpose in an embedded system is to process platform-independent Java
byte code into platform-dependent code. This processing is handled in the execution engine
of the JVM. The three most common byte code processing algorithms implemented in an
execution engine to date are interpretation, just-in-time (JIT) compiling, and way-ahead-of-
time/ahead-of-time compiling (WAT/AOT).

42

Know Your Standards

A 4

Byte Code 1
Parsing
Figure 2-16: Interpreter diagram vtab v

Byte Code 1
Byte Code 1 Interpreting

Byte Code 2 » Byte Code 2
Parsing

Byte Code 3 v

Byte Code 2
Interpreting

With interpretation, every time the Java program is loaded to be executed, every byte code
instruction is parsed and converted to native code, one byte code at a time, by the JVM’s
interpreter. Moreover, with interpretation, redundant portions of the code are reinterpreted
every time they are run. Interpretation tends to have the lowest performance of the three
algorithms, but it is typically the simplest algorithm to implement and to port to different
types of hardware.

A JIT compiler, on the other hand, interprets the program once, and then compiles and stores
the native form of the byte code at runtime, thus allowing redundant code to be executed
without having to reinterpret. The JIT algorithm performs better for redundant code, but it can
have additional runtime overhead while converting the byte code into native code. Additional
memory is also used for storing both the Java byte codes and the native compiled code. Varia-
tions on the JIT algorithm in real-world JVMs are also referred to as translators or dynamic
adaptive compilation (DAC).

Byte Code 1

Parsing and

Interpreting

v vtab Figure 2-17: JIT diagram

Byte Code 1
ITopilng

A

Byte Code 1 Copitd Byte Code 1 ‘

Byte Code 2
Parsing and
Interpreting

: |
Byte Code 2

Copitd Byte Code 3 ‘

ITopilng

==
< { Byte Code 2 l b{ Copitd Byte Code 2 ‘

st Pass ofProessing Sond and dditionalP asses
Byte Code ofProessing Byte Code

43

Chapter 2

Figure 2-18: WAT/AOT diagram Byte Code 1

class File JVM WAT Compiler D

eoee

[geececece®™ececececepl ObjectFile

Byte Code 2
cesscsscsnced [UM Linker
A

Byte Code 3

Runtime
Libraries

[eoecccccceg

Executables

Finally, in WAT/AOT compiling, all Java byte code is compiled into the native code at com-
pile time, as with native languages, and no interpretation is done. This algorithm performs at
least as well as the JIT for redundant code and better than a JIT for nonredundant code, but as
with the JIT, there is additional runtime overhead when additional Java classes dynamically
downloaded at runtime have to be compiled and introduced to the system. WAT/AOT can also
be a more complex algorithm to implement.

As seen in Table 2-5, there are real-world JVM execution engines that implement each of
these algorithms, as well as execution engine hybrids that implement some or all of these

algorithms.

Table 2-5: Real-world examples of JVMs based on the various byte code processing algorithms

Byte Code Processing

Java Virtual Machine

Interpretation

Skelmir Cee-J (www.skelmir.com)

NewMonics Perc (www.newmonics.com)

Insignia’s Jeode (www.insignia.com)

T

Skelmir Cee-J (two types of JITS) (www.skelmir.com)

Tao Group’s Intent (www.tao-group.com) — translation

NewMonics Perc (www.newmonics.com)

Insignia’s Jeode DAC (www.insignia.com)

WAT/AOT

NewMonics Perc (www.newmonics.com)

Esmertec’s Jbed (www.esmertec.com)

Note: Information in table was gathered at the time this book was written and is subject to change; check with

specific vendors for latest information.

44

Know Your Standards

Scripting languages and Java aren’t the only high-level languages that can automatically
introduce an additional component within an embedded system. The .NET Compact Frame-
work from Microsoft allows applications written in almost any high-level programming
language (such as C#, Visual Basic and Javascript) to run on any embedded device, indepen-
dent of hardware or system software design. Applications that fall under the .NET Compact
Framework must go through a compilation and linking procedure that generates a CPU-
independent intermediate language file, called MSIL (Microsoft Intermediate Language),
from the original source code file (see Figure 2-19). For a high-level language to be compat-
ible with the .NET Compact Framework, it must adhere to Microsoft’s Common Language
Specification, a publicly available standard that anyone can use to create a compiler that is
.NET compatible.

Source Code

qooe

Host < ‘ IL (Intermediate Language) Compiler D

A 4

EXE/dIl (IL and Metadata)

Target

Class Libraries

Class Loader e e o] (IL and Metadata)

P —
JIT Compiler ’

.

o

o

A 4

Native Code

Figure 2-19: .NET Compact Framework execution mode/

The .NET Compact Framework is made up of a common language runtime (CLR), a class
loader, and platform extension libraries. The CLR is made up of an execution engine that pro-
cesses the intermediate MSIL code into machine code, and a garbage collector. The platform
extension libraries are within the base class library (BCL), which provides additional func-
tionality to applications (such as graphics, networking and diagnostics). As shown in Figure
2-20, in order to run the intermediate MSIL file on an embedded system, the .NET Compact
Framework must exist on that embedded system. At the current time, the .NET Compact
Framework resides in the system software layer.

45

Chapter 2

Application Layer
MSIL Application
i .NET Compact Framework —
i Class Loader ’ BSL/Platform Extension Libraries

CLR

GC

I |—> (JIT) Execution Engine

System Software Layer

= —}

Hardware Layer

Memory

Figure 2-20: .NET Compact Framework and the Embedded Systems Model

2.2 Standards and Networking

Why Use Networking as a Standards Example?

A network, by definition, is two or more connected devices that can send and/or receive data.
If an embedded system needs to communicate with any other system, whether a develop-
ment host machine, a server, or another embedded device, it must implement some type of
connection (networking) scheme. In order for communication to be successful, there needs
to be a scheme that interconnecting systems agree upon, and so networking protocols (stan-
dards) have been put in place to allow for interoperability. As shown in Table 2-1, networking
standards can be implemented in embedded devices specifically for the networking market,
as well as in devices from other market segments that require networking connectivity, even
if just to debug a system during the development phase of a project.

Understanding what the required networking components are for an embedded device re-
quires two steps:

Understanding the entire network into which the device will connect.

Using this understanding, along with a networking model, such as the OSI (Open
Systems Interconnection) model discussed later in this section, to determine the
device’s networking components.

46

Know Your Standards

Understanding the entire network is important, because key features of the network will
dictate the standards that need to be implemented within an embedded system. Initially, an
embedded engineer should, at the very least, understand three features about the entire net-
work the device will plug into: the distance between connected devices, the physical medium
connecting the embedded device to the rest of the network, and the network’s overall struc-
ture (see Figure 2-21).

Network 1 - Peer-to-Peer Architecture Network 2— Client/Server Architecture

©0000000000000000000000000000000000000, ©000,
° .
® Transmission Medium M : e R M
i . == Server °
. Device C ° H & Client C .
: —a 4 i
: Networking . : Networking N °
. Components ° ° d Components NEIWO[kln% .
. : . Components :
. 4 o | Client A \ ” = °
° . ° ° . . o
. Device A e o | ———— . . M
° . ° Networking A / .
. ° M C; ts Ce . .
. Networking . : ‘omponents I - ~.. e
° Components : ° = \\=—= :
. — M ° M
[. o .
° Distance Device B . . Client B .
: — ° :)
. .
: Networking . : Networking o
° °
. Components ° . Components °
. e 2 .
. : ° :
: P -
. 4 ° o

T s

Network’s Overall Structure

Figure 2-21: Network block diagram

Distance Between Connected Devices

Networks can be broadly defined as either local area networks (LANs) or wide area net-
works (WANS). A LAN is a network in which all devices are within close proximity to

each other, such as in the same building or room. A WAN is a network that connects devices
and/or LANSs that are scattered over a wider geographical area, such as in multiple buildings
or across the globe. While there are other variations of WANs (such as Metropolitan Area
Networks (MAN) for inter-city networks, Campus Area Networks (CAN) for school-based
networks, etc.) and LANSs (i.e., short-distance wireless Personal Area Networks (PANs)) that
exist, networks are all essentially either WANs or LANS.

e e ey
Warning!

Watch those acroynyms! Many look similar but in fact can mean very different things. For
example, a WAN (wide area network) should not be confused with WLAN (wireless local area
network).

47

Chapter 2

Physical Medium

In a network, devices are connected with transmission mediums that are either bound or
unbound. Bound transmission mediums are cables or wires and are considered “guided”
mediums since electromagnetic waves are guided along a physical path (the wires). Unbound
transmission mediums are wireless connections, and they are considered unguided mediums
because the electromagnetic waves that are transmitted are not guided via a physical path, but
are transmitted through a vacuum, air, and/or water.

In general, the key characteristics that differentiate all transmission mediums whether wired
or wireless are:

The type of data the medium can carry (i.e., analog or digital).
How much data the medium can carry (capacity).
How fast the medium can carry the data from source to destination (speed).

How far the medium can carry the data (distance). For example, some mediums are
lossless, meaning no energy is lost per unit distance traveled, while others are lossy
mediums, which means a significant amount of energy is lost per unit distance trav-
eled. Another example is the case of wireless networks, that are inherently subject to
the laws of propagation, where given a constant amount of power, signal strengths
decrease by the square of a given distance from the source (i.e., if distance = 2 ft., the
signal becomes four times weaker; if distance = 10 ft., the signal is 100 times weaker,
and so on).

How susceptible the medium is to external forces (interference such as electromag-

netic interference (EMI), radio frequency interference (RFI), weather, and so forth).
Note: the direction a transmission medium can transmit data (that is, data being able to travel in only one direc-
tion vs. bidirectional transmission) is dependent on the hardware and software components implemented within

the device, and is typically not dependent on the transmission medium alone. This will be discussed later in this
section.

Understanding the features of the transmission medium is important, because these impact the
overall network’s performance, affecting such variables as the network’s bandwidth (data rate
in bits per second) and latency (the amount of time it takes data to travel between two given
points, including delays). Tables 2-6a and b summarize a few examples of wired (bound) and
wireless (unbound) transmission mediums, as well as some of their features.

48

Know Your Standards

Table 2-6a: Wired transmission mediums 2-2%1

Medium

Features

Unshielded
Twisted Pair
(UTP)

Copper wires are twisted into pairs and used to transmit analog or digital signals. Limits in length
(distance) depending on the desired bandwidth. UTP used in telephone/telex networks; can support
both analog and digital. Different categories of cables (3, 4, and 5) where CAT3 supports a data rate of
up to 16 Mbps, CAT4 up to 20 MHz, and CATS up to 100 Mbps. Requires amplifiers every 5—-6 km for
analog signals, and repeaters every 2—3 km for digital signals (over long distances signals lose strength
and are mistimed).

Relatively easy and cheap to install, but with a security risk (can be tapped into). Subject to external
electromagnetic interference. Can act as antennas receiving EMI/RFI from sources such as electric
motors, high-voltage transmission lines, vehicle engines, radio or TV broadcast equipment. These
signals, when superimposed on a data stream, may make it difficult for the receiver to differenti-

ate between valid data and EMI/RFI-induced noise (especially true for long spans that incorporate
components from multiple vendors). Crosstalk occurs when unwanted signals are coupled between
“transmit” and “receive” copper pairs, creating corrupted data and making it difficult for the receiver
to differentiate between normal and coupled signals. Lightning can be a problem when it strikes
unprotected copper cable and attached equipment (energy may be coupled into the conductor and can
propagate in both directions).

Coaxial

Baseband and broadband coaxial cables differ in features. Generally, coaxial cables are copper-wire
and aluminum-wire connections that are used to transmit both analog and digital signals. Baseband
coaxial commonly used for digital—cableTV/cable modems. Broadband used in analog (telephone)
communication.

Coaxial cable cannot carry signals beyond several thousand feet before amplification is required (i.e.,
by repeaters or boosters); higher data rates than twisted-pair cabling (several hundred Mbps and up to
several km). Coaxial cables not secure (can be tapped into), but are shielded to reduce interference and
therefore allow higher analog transmissions.

Fiber Optic

Clear, flexible tubing that allows laser beams to be transmitted along the cable for digital transmissions.
Fiber optic mediums have a GHz (bandwidth) transmission capability up to 100 km.

Because of their dielectric nature, optical fibers are immune to both EMI and RFI and cross-talk rarely
occurs. Optical-fiber cables do not use metallic conductors for transmission, so all-dielectric, optical-
fiber communications are less susceptible to electrical surges even if struck directly by lightning.

More secure—difficult to tap into, but typically more costly than other terrestrial solutions.

49

Chapter 2

Table 2-6b: Wireless transmission mediums 2-261

Medium

Features

Terrestrial
Microwave

Classified as SHF (super high frequency). Transmission signal must be line of sight, meaning
high-frequency radio (analog or digital) signals are transmitted via a number of ground stations and
transmission between stations must be in a straight line that is unobstructed ground—often used in
conjunction with satellite transmission. The distance between stations is typically 25-30 miles, with
the transmission dishes on top of high buildings or on high points like hill tops. The use of the low
GHz frequency range 2—40 GHz provides higher bandwidths (i.e., 2 GHz band has approx 7 MHz
bandwidth whereas 18 GHz band has approx 220 MHz bandwidth) than those available using lower
frequency radio waves.

Satellite
Microwave

Satellites orbit above the earth and act as relay stations between different ground stations and embed-
ded devices (their antennas) that are within the satellite’s line-of-sight and area covered (footprint),
where the size and shape of the footprint on the earth’s surface vary with the design of the satellite.

The ground station receives analog or digital data from some source (internet service provider, broad-
caster, etc.) and modulates it onto a radio signal that it transmits to the satellite, as well as controls
the position and monitors the operations of the satellite. At the satellite, a transponder receives the
radio signal, amplifies it and relays it to a device’s antenna inside its footprint. Varying the footprint
changes the transmission speeds, where focusing the signal on a smaller footprint increases transmis-
sion speeds. The large distances covered by a signal can also result in propagation delays of several
seconds.

A typical GEO (geosynchronous earth orbit) satellite (a satellite that orbits about 36,000 kilometers
above the equator—the speed of the satellite is matched to the rotation of the Earth at the equator)
contains between 20 and 80 transponders, each capable of transmitting digital information of up to
about 30—40 Mbps.

Broadcast Radio

Uses a transmitter and a receiver (of the embedded device) tuned to a specific frequency for the trans-
fer of signals. Broadcast communication occurs within a local area, where multiple sources receive
one transmission. Subject to frequency limitations (managed by local communications companies and
government) to ensure no two transmissions on the same frequency. Transmitter requires large anten-
nas; frequency range of 10 kHz—1 GHz subdivided into LF (low frequency), MF (medium frequency),
HF (high frequency), UHF (ultra high frequency) or VHF (very high frequency) bands.

Higher frequency radio waves provide larger bandwidths (in the Mbps) for transmission, but they have
less penetrating power than lower frequency radio waves (with bandwidths as low as in the kbps).

IR (Infrared)

Point-to-point link of two IR lasers lined up; blinking of laser beam reflects bit representations. THz
(1,000GHz - 2 x 10" Hz — 2 x 10" Hz) range of frequencies, with up to 20 Mbps bandwidth. Cannot
have obstructions, more expensive, susceptible to bad weather (clouds, rain) and diluted by sunlight,
difficult to “tap” (more secure).

Used in small, open areas with a typical transmission distance of up to 200 meters.

Cellular
Microwave

Works in UHF band—yvariable—depends on whether there are barriers. Signals can penetrate build-
ings/barriers, but degradation occurs and reduces the required distance the device must be from the cell
site.

50

Know Your Standards

The Network’s Architecture

The relationship between connected devices in a network determines the network’s overall
architecture. The most common architecture types for networks are peer-to-peer, client/
server, and hybrid architectures.

Peer-to-peer architectures are network implementations in which there is no centralized area
of control. Every device on the network must manage its own resources and requirements.
Devices all communicate as equals, and can utilize each other’s resources. Peer-to-peer
networks are usually implemented as LANs because, while simpler to implement, this archi-
tecture creates security and performance issues related to the visibility and accessibility of
each device’s resources to the rest of the network.

Client/server architectures are network implementations in which there is a centralized
device, called the server, in control that manages most of the network’s requirements and
resources. The other devices on the network, called clients, contain fewer resources and
must utilize the server’s resources. The client/server architecture is more complex than the
peer-to-peer architecture and has the single critical point of failure (the server). However,

it is more secure than the peer-to-peer model, since only the server has visibility into other
devices. Client/server architectures are also usually more reliable, since only the server has
to be responsible for providing redundancy for the network’s resources in case of failures.
Client/server architectures also have better performance, since the server device in this type of
network usually needs to be more powerful in order to provide the network’s resources. This
architecture is implemented in either LANs or WANS.

Hybrid architectures are a combination of the peer-to-peer and client/server architecture mod-
els. This architecture is also implemented in both LANs and WANSs.
Note: A network’s architecture is not the same as its topology. A network’s topology is the physical arrangement

of the connected devices, which is ultimately determined by the architecture, the transmission medium (wired vs.
wireless), and the distance between the connected devices of the particular network.

Open Systems Interconnection (OSI) Model

To demonstrate the dependencies between the internal networking components of an embed-
ded system and the network’s architecture, the distance between connected devices, and the
transmission medium connecting the devices, this section associates networking components
with a universal networking model, in this case the Open Systems Interconnection (OSI) Ref-
erence model. All the required networking components in a device can be grouped together
into the OSI model, which was created in the early 1980s by the International Organization
for Standardization (ISO). As shown in Figure 2-22, the OSI model represents the required
hardware and software components within a networked device in the form of seven layers:
physical, data-link, network, transport, session, presentation, and application layers. In rela-
tion to the Embedded Systems Model (Figure 1-1), the physical layer of the OSI model maps
to the hardware layer of the Embedded Systems Model, the application, presentation, and ses-
sion layers of the OSI model map to the application software layer of the Embedded Systems
Model, and the remaining layers of the OSI model typically map to the system software layer
of the embedded systems model.

51

Chapter 2

OSI Model

‘ pplication hye r

‘ Resentation hye r

Pplication Sofare hyer

‘ Session hye r

‘ Transport hye r

System Sofwsre hyer
‘ Netorkiye r

ORI [XA

‘ Data-Inlhye r

htdavre hyer

‘ Rysical hye r g

Figure 2-22: OSI and Embedded Systems Model block diagram

The key to understanding the purpose of each layer in the OSI model is to grasp that net-
working is not simply about connecting one device to another device. Instead, networking
is primarily about the data being transmitted between devices or, as shown in Figure 2-23,
between the different layers of each device.

In short, a networking connection starts with data originating at the application layer of one
device and flowing downward through all seven layers, with each layer adding a new bit of
information to the data being sent across the network. Information, called the header (shown
in Figure 2-24), is appended to the data at every layer (except for the physical and application
layers) for peer layers in connected devices to process. In other words, the data is wrapped
with information for other devices to unwrap and process.

The data is then sent over the transmission medium to the physical layer of a connected
device, and then up through the connected device’s layers. These layers then process the
data (that is, strip the headers, reformat, etc.) as the data flows upward. The functionality
and methodologies implemented at each layer based on the OSI model are also commonly
referred to as networking protocols.

52

Know Your Standards

hyer 7 Pp lication hyer Pp lication hyer hyer 7
'Y [y
y v
Resentation hyer Resentation hyer
K 7y
v v
Session hyer Session hyer
'Y [y
v v
Transport hyer Transport hyer
'Y [y
y v
Netork Layer Netork Layer
K 7y
v v
Data Inlyer Data Inlyer
K 7y
v v
hyer 1 Ry sical hyer Ry sical hyer hyer 1
Transmission
Medium

Figure 2-23: OSI model data flow diagram

Data Application

Header 1 Data Presentation

Header 2 Data Session

Header 3

Data Transport

Header 4 Data

Network

Header 5 Data

Data Link

Physical

Figure 2-24: Header diagram

53

Chapter 2

The OSI Model and Real-World Protocol Stacks

Remember that the OSI model is simply a reference tool to use in understanding real-world
networking protocols implemented in embedded devices. Thus, it isn’t always the case that
there are seven layers, or that there is only one protocol per layer. In reality, the functionality
of one layer of the OSI model can be implemented in one protocol, or it can be implemented
across multiple protocols and layers. One protocol can also implement the functionality of
multiple OSI layers as well. While the OSI model is a very powerful tool to use to understand
networking, in some cases a group of protocols may have their own name and be grouped
together in their own proprietary layers. For example, shown in Figure 2-25 is a TCP/IP pro-
tocol stack that is made up of four layers: the network access layer, internet layer, transport
layer, and the application layer. The TCP/IP application layer incorporates the functionality of
the top three layers of the OSI model (the application, presentation, and session layers), and
the network access layer incorporates two layers of the OSI model (physical and data link).
The internet layer corresponds to the network layer in the OSI model, and the transport layers
of both models are identical.

As another example, the wireless application protocol (WAP) stack (shown in Figure 2-26)
provides five layers of upper layer protocols. The WAP application layer maps to the ap-
plication layer of the OSI model, as do the transport layers of both models. The session and
transaction layers of the WAP model map to the OSI session layer, and WAP’s security layer
maps to OSI’s presentation layer.

The final example in this section is the Bluetooth protocol stack (shown in Figure 2-27),
which is a three-layer model made up of Bluetooth-specific as well as adopted protocols from
other networking stacks, such as WAP and/or TCP/IP. The physical and lower data-link lay-
ers of the OSI model map to the transport layer of the Bluetooth model. The upper data-link,
network, and transport layers of the OSI model map to the middleware layer of the Bluetooth
model, and the remaining layers of the OSI model (session, presentation, and application)
map to the application layer of the Bluetooth model.

54

Know Your Standards

THModel

OSI Model

Application hye r

CTansportiye ¢ |)
=

Resentation hyer ’
D —

CSesiontye rJ)

Application Software hye r

Ciemeriye)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
Transport hye r <|
D —
<
1
1
1

NetworkAcces s -

~ A
=]
(Newotiye +_J)

=

CDaaioiyer)

System Software hyer

hyer it
(e« Btdware Byer
1
i
il
Limemim i m it m et T -

OSI Model WAMode 1 :
A
o — : Application hyer ’ o
Application hye ’ . Application Software hye r
D — °
 Reentaioniye 1 |
e ————————————

Session hye r

Security hye r ’

Transport hye r ’
)

Data-Inlhye r

‘I

- Trmporye |

System Software hyer

Mdware hyer

Figure 2-26: WAR OSI and Embedded Systems Model block diagram

Chapter 2

Bietooth Model

Application Botocol
Group

war

Application Software hye r

Middleware Btocol
Group

e

Transport Botocol
Group

System Software hyer

Mdware hyer

Figure 2-27: Bluetooth, OSI and Embedded Systems Model block diagram

OSI Model Layer 1: Physical Layer

The physical layer represents all of the networking hardware physically located in an em-
bedded device. Physical layer protocols defining the networking hardware of the device are
located in the hardware layer of the Embedded Systems Model (see Figure 2-28). Physical
layer hardware components connect the embedded system to some transmission medium. The
distance between connected devices, as well as the network’s architecture, are important at
this layer, since physical layer protocols can be classified as either LAN protocols or WAN
protocols. LAN and WAN protocols can then be further subdivided according to the transmis-
sion medium connecting the device to the network (wired or wireless).

The physical layer defines, manages, and processes, via hardware, the data signals—the
actual voltage representations of 1’s and 0’s—coming over the communication medium. The
physical layer is responsible for physically transferring the data bits over the medium received
from higher layers within the embedded system, as well as for reassembling bits received
over the medium for higher layers in the embedded system to process (see Figure 2-29).

56

Know Your Standards

‘ Application Software hye r

‘ System Software hyer

—’ Mdware hye r —’

Y Y
A P
’

18211 Wireless
Radio &R

Rietooth Radio an d
Wadband

Device 1 Device 2

yer 2 Data Inlhyer Data Inlhyer

hyer 2

Transmission Medium

hyer 1 Ry sical hyer —@——I A T O

Ry sical hyer hyer 1

Figure 2-29: Physical layer data flow block diagram

57

Chapter 2

OSI Model Layer 2: Data-Link Layer

The data-link layer is the software closest to the hardware (physical layer). Thus, it includes,
among other functions, any software needed to control the hardware. Bridging also occurs
at this layer to allow networks interconnected with different physical layer protocols—for
example, Ethernet LAN and an 802.11 LAN—to interconnect.

Like physical layer protocols, data-link layer protocols are classified as either LAN protocols,
WAN protocols, or protocols that can be used for both LANs and WANSs. Data-link layer pro-
tocols that are reliant on a specific physical layer may be limited to the transmission medium
involved, but in some cases (for instance, PPP over RS-232 or PPP over Bluetooth’s RF-
COMM), data-link layer protocols can be ported to very different mediums if there is a layer
that simulates the original medium the protocol was intended for, or if the protocol supports
hardware-independent upper-data-link functionality. Data-link layer protocols are implement-
ed in the system software layer, as shown in Figure 2-30.

Application Software hye r

—’ System Software hyer —’

Y Y
Wireless Wired Wireless
‘ 1822 SN AP ‘ 1B2.2 SN AP =1
> e
‘ IB2.11 MA © ‘ 182.3 hernet "=

.p| HetoothM P
DPAP |, Bseband ... e
- 1B2.5 Tokn Ring -
na
ktdware hyer
Rysical hyer

Figure 2-30: Data-link layer protocols

58

Know Your Standards

The data-link layer is responsible for receiving data bits from the physical layer and format-
ting these bits into groups, called data-link frames. Different data-link standards have varying
data-link frame formats and definitions, but in general this layer reads the bit fields of these
frames to ensure that entire frames are received, that these frames are error free, that the
frame is meant for this device by using the physical address retrieved from the networking
hardware on the device, and where this frame came from. If the data is meant for the device,
then all data-link layer headers are stripped from the frame, and the remaining data field,
called a datagram, is passed up to the networking layer. These same header fields are append-
ed to data coming down from upper layers by the data-link layer, and then the full data-link
frame is passed to the physical layer for transmission (see Figure 2-31).

llyer ’
Datagram

fla ta]

Data Inkhyer

Data-linkhd ers Stripped T l Data-L nkhders App ~ ended to Data
Field iyer 2

owtasrene [101 MO QO LA L A AP 0900 A0

hyer 1

Ry sical hyer

Figure 2-31: Data-link layer data flow block diagram

OSI Model Layer 3: Network Layer

Network layer protocols, like data-link layer protocols, are implemented in the system software
layer, but unlike the lower data-link layer protocols, the network layer is typically hardware
independent and only dependent on the data-link layer implementations (see Figure 2-32).

At the OSI network layer, networks can be divided into smaller sub-networks, called seg-
ments. Devices within a segment can communicate via their physical addresses. Devices in
different segments, however, communicate through an additional address, called the network
address. While the conversion between physical addresses and network addresses can occur
in data-link layer protocols implemented in the device (i.e., ARP, RARP, etc.), network layer
protocols can also convert between physical and networking addresses, as well as assign
networking addresses. Through the network address scheme, the network layer manages data-
gram traffic and any routing of datagrams from the current device to another.

59

Chapter 2

Application Software Layer

System Software Layer

TCP/IP Stack Banyan/VINES

2 2 2 2 2 27

‘ OSPF u ICMP u RIP u BGP u ‘ RTP u ICP u
‘ 1P ‘ VIP

GPRS

2 2

SCCp u BSSAP u BSSMAP

J

(o JC

Data-link Layer

Hardware Layer

Physical Layer

Figure 2-32: Network Layer protocols in the Embedded Systems Model

Like the data-link layer, if the data is meant for the device, then all network layer headers are
stripped from the datagrams, and the remaining data field, called a packet, is passed up to the
transport layer. These same header fields are appended to data coming down from upper lay-
ers by the network layer, and then the full network layer datagram is passed to the data-link

layer for further processing (see Figure 2-33). Note that the term “packet” is sometimes used

to discuss data transmitted over a network, in general, in addition to data processed at the

transport layer.

Transport Layer Layer 4

Network Layer

Network Datagam

Network Headers Stripped

Packet
A

Network Header Appended to Data Field

(U] 0 []
[P Version] h eader len] data type]flata len] frag info] # hopsh pper layerfheck sum]f on ce IPfle st IPflata]

Data-link Layer Layer2

Figure 2-33: Network layer data flow block diagram

60

Layer 3

Know Your Standards

OSI Model Layer 4: Transport Layer

Transport layer protocols (shown in Figure 2-34) sit on top of and are specific to the network
layer protocols. They are typically responsible for establishing and dissolving communica-
tion between two specific devices. This type of communication is referred to as point-to-point
communication. Protocols at this layer allow for multiple higher-layer applications running
on the device to connect point-to-point to other devices. Some transport layer protocols can
also ensure reliable point-to-point data transmission by ensuring that packets are received and
transmitted in the correct order, are transmitted at a reasonable rate (flow control), and the
data within the packets are not corrupted. Transport layer protocols can provide the acknowl-
edgments to other devices upon receiving packets, and request packets to be retransmitted if
an error is detected.

Application Software Layer

System Software Layer

TCP/IP Stack GSM WAP

e 2 2 2
TCP u UDP u g ‘BSSMAPU DTAP u g ‘ WDP

o
=\

Network Layer

Data-link Layer

Hardware Layer

Physical Layer

Figure 2-34: Transport layer protocols in the Embedded Systems Model

In general, when the transport layer processes a packet received from lower layers, then all
transport layer headers are stripped from the packets, and the remaining data fields from one
or multiple packets are reassembled into other packets, also referred to as messages, and
passed to upper layers. Messages/packets are received from upper layers for transmission,
and are divided into separate packets if too long. The transport layer header fields are then

appended to the packets, and passed down to lower layers for further processing (see Figure
2-35).

61

Chapter 2

e

Message/Pscket

Transport Layer

Layer 4
Transport Header Appended to Data Field

L e)

TCP Packet

Network Layer Layer 3

Figure 2-35: Transport layer data flow block diagram

OSI Model Layer 5: Session Layer

The connection between two networking applications on two different devices is called a
session. Where the transport layer manages the point-to-point connection between devices
for multiple applications, the management of a session is handled by the session layer, as
shown in Figure 2-36. Generally, sessions are assigned a port (number), and the session layer
protocol must separate and manage each session’s data, regulate the data flow of each ses-
sion, handle any errors that arise with the applications involved in the session, and ensure the
security of the session—for example, that the two applications involved in the session are the
right applications.

Application Software Layer

TCP/P Stack WAP Stack
DNS u NFS u © g WSP u © g

System Software Layer

Transport Layer

Network Layer

Datalink Layer

Hardware Layer

Physical Layer

Figure 2-36: Session layer protocols in the Embedded Systems Model

62

Know Your Standards

When the session layer processes a message/packet received from lower layers, then all
session layer headers are stripped from the messages/packets, and the remaining data field
is passed to upper layers. Messages that are received from upper layers for transmission are
appended with session layer header fields and passed down to lower layers for further pro-
cessing (see Figure 2-37).

Presentation Layer Layer 6

Message
Session Layer _I\ /I_

[data]

Session Headers Stripped T l Session Header Appended to Data Field Layer 5
LA Packet 1101101100110111000110000]10
[Length][D % 1 ation Ch armel ID][Data]
Message/Packet
Transport Layer Layer 4

Figure 2-37: Session layer data flow block diagram

OSI Model Layer 6: Presentation Layer

Protocols at the presentation layer are responsible for translating data into formats that higher
applications can process, or translating data going to other devices into a generic format for
transmission. Generally, data compression/decompression, data encryption/decryption, and
data protocol/character conversions are implemented in presentation layer protocols. Relative
to the Embedded Systems Model, presentation layer protocols are usually implemented in
networking applications found in the application layer as shown in Figure 2-38.

Basically, a presentation layer processes a message received from lower layers, and then all
presentation layer headers are stripped from the messages, and the remaining data field is
passed to upper layers. Messages that are received from upper layers for transmission are
appended with presentation layer header fields and passed down to lower layers for further
processing (see Figure 2-39).

63

Chapter 2

Application Sofare Laye r

2 2 2 27
PE u MIDI u SSL u MPE u © D

i Session Layer

SysterSofare Layer
Transport Layer
derlLayer
Datatink_ayer
Hardswe Layer
Physical Layer

Figure 2-38: Presentation layer protocols in the Embedded Systems Model

Application Layer Layer 7

Message

Presentation Layer _I\ /I_
Message conversion I data I
T l Presentation Header Appended to Data Field Layer 6
Bluetooth Message 101 %f 100110111000 IIIBS 00 *
engt estination Channel ata
Message
Session Layer Layer 5

Figure 2-39: Presentation layer data flow block diagram

64

Know Your Standards

OSI Model Layer 7: Application Layer

A device initiates a network connection to another device at the application layer (shown in
Figure 2-40). In other words, application layer protocols are either used directly as network
applications by end-users or the protocols are implemented in end-user network applications
(see Chapter 10). These applications “virtually” connect to applications on other devices.

Application Software Layer

h[MIME L} SMTP L} FTP L} Telnet L} NCP L} APPC L} BT-SDP DJ NFSUD

(pops |) [aps |) [Finger) [HTtP |) [Boow |) | snwp) [RLOGIN])

Presentation Layer

i Session Layer

System Software Layer

Transport Layer

Network Layer

Data-link Layer

Hardware Layer

Physical Layer

Figure 2-40: Application layer protocols in the Embedded Systems Model

2.3 Multiple Standards-Based Device Example:
Digital Television (DTV)

Why Use Digital TV as a Standards Example?

“There’s a frenzy about portals on the internet, but the average person spends about an hour

online. The average consumer spends seven (7) hours a day watching TV, and TV is in 99%
of U.S. homes.”

—Forrester Research

Analog TVs process incoming analog signals of traditional TV video and audio content,
whereas digital TVs (DTVs) process both incoming analog and digital signals of TV video/
audio content, as well as application data content that is embedded within the entire digital

65

Chapter 2

data stream (a process called data broadcasting or data casting). This application data can
either be unrelated to the video/audio TV content (noncoupled), related to video/audio TV
content in terms of content but not in time (loosely coupled), or entirely synchronized with
TV audio/video (tightly coupled).

The type of application data embedded is dependent on the capabilities of the DTV receiver
itself. While there are a wide variety of DTV receivers, most fall under one of three catego-
ries: enhanced broadcast receivers, which provide traditional broadcast TV enhanced with
graphics controlled by the broadcast programming; interactive broadcast receivers, capable

of providing e-commerce, video-on-demand, e-mail, and so on through a return channel on
top of “enhanced” broadcasting; and multi-network receivers that include internet and local
telephony functionality on top of interactive broadcast functionality. Depending on the type of
receiver, DTVs can implement general-purpose, market-specific, and/or application-specific
standards all into one DT V/set-top box (STB) system architecture design (shown in Table 2-7).

Table 2-7: Examples of DTV standards

Standard Type Standard

Market Specific Digital video broadcasting (DVB) — multimedia home platform (MHP)
Java TV

Home audio/video interoperability (HAVi)

Digital Audio Video Council (DAVIC)

Advanced Television Standards Committee (ATSC)/Digital TV Applications
Software Environment (DASE)

Advanced Television Enhancement Forum (ATVEF)

Digital Television Industrial Alliance of China (DTVIA)

Association of Radio Industries and Business of Japan (ARIB-BML)
OpenLabs OpenCable application platform (OCAP)

Open services gateway initiative (OSGi)

OpenTV

MicrosoftTV

General Purpose HTTP (hypertext transfer protocol) — in browser applications

POP3 (post office protocol) — in e-mail application

IMAP4 (Internet message access protocol) — in e-mail application
SMTP (simple mail transfer protocol) — in e-mail application

Java

Networking (terrestrial, cable, and satellite)
POSIX

66

Know Your Standards

These standards

then can define several of the major components that are implemented in all

layers of the DTV Embedded Systems Model, as shown in Figure 2-41.

- T Application Software Layer
SMTP D ‘ POP3 D ‘ HTML D ‘ HTTP D ‘ VideoOnEmand D‘Eclmnic Progam {de BG D‘ D
System Software Layer
Come J)
ATE F) [MicrosoltV |,) [OpenTv]| 0SG_J|AmIL__ || DV A || DasE]) L _ MEP _ I—7
[iw JJswrv] b || we)
| M J
[B [= [
1P %
i \ PPP \
oS
—
[rosix
=
Smart @d [Video Bod e faplc s B
Modem B & r Ber P@dH er u Analogiptre B iver u ber Ber Tunin® @ r ber
Hardware Layer
P — BSB Analog V deo Eod e ! — — = ’@
; = : 5
[vaviosen [smarcca_] PODIodl c || BS@ode]| Analogl ne r ool L ape s J| mer [

Figure 2-41: DTV standards in the Embedded Systems Model

2.4 Summary

The purpose of this chapter was to show the importance of industry-supported standards when
trying to understand and implement embedded system designs and concepts. The program-
ming language, networking, and DTV examples provided in this chapter demonstrated how
standards can define major elements within an embedded architecture. The programming lan-
guage example provided an illustration of general-purpose standards that can be implemented
in a wide variety of embedded devices. These examples specifically included Java, showing

how a JVM was
Framework, for

needed at the application, system, or hardware layer, and the .NET Compact
languages such as C# and Visual Basic, which demonstrated a program-

ming language element that must be integrated into the systems software layer. Networking
provided an example of standards that can be general purpose, specific to a family of devices

(market driven),

or specific to an application (http in a browser, for instance). In the case of

networking, both the embedded systems and the OSI models were referenced to demonstrate
where certain networking protocols fit into an embedded architecture. Finally, the digital TV
STB example illustrated how one device implemented several standards that defined embed-
ded components in all layers.

67

Chapter 2

Chapter 3, Embedded Hardware Building Blocks and the Embedded Board, is the first chapter
of Section II: Embedded Hardware. Chapter 3 introduces the fundamental elements found on
an embedded board and some of the most common basic electrical components that make up
these elements, as well as those that can be found independently on a board.

68

Chapter 2 Problems

How can embedded system standards typically be classified?

[a]
[b]

[a]
[b]

Name and define four groups of market-specific standards.

Give three examples of standards that fall under each of the four market-specific
groups.

Name and define four classes of general-purpose standards.

Give three examples of standards that fall under each of the four general-purpose
groups.

Which standard below is neither a market-specific nor a general-purpose embedded
systems standard?

A.
B.
C.
D.
E.

[a]
[b]

HTTP - Hypertext Transfer Protocol.
MHP — Multimedia Home Platform.
J2EE — Java 2 Enterprise Edition.

All of the above.

None of the above.

What is the difference between a high-level language and a low-level language?
Give an example of each.

[Select] A compiler can be located on:

A.
B.
C.
D.

[a]
[b]

[a]
[b]

a target.

a host.

on a target and/or on a host.
None of the above.

What is the difference between a cross-compiler and a compiler?
What is the difference between a compiler and an assembler?

What is an interpreter?
Give two examples of interpreted languages.

[T/F] All interpreted languages are scripting languages but not all scripting languages are

interpreted.

69

Chapter 2

10.

11.

12.
13.
14.

15

16.

17.
18.
19.

20.

[a]
[b]

In order to run Java, what is required on the target?
How can the JVM be implemented in an embedded system?

Which standards below are embedded Java standards?

monw»>

pJava — Personal Java.

RTSC - Real Time Core Specification.
HTML - Hypertext Markup Language.
A and B only.

A and C only.

What are the two main differences between all embedded JVMs?

Name and describe three of the most common byte processing schemes.

[a]
[b]

[a]
[b]

[a]
[b]
[c]

What is the purpose of a GC?
Name and describe two common GC schemes.

Name three qualities that Java and scripting languages have in common.
Name two ways that they differ.

What is the NET Compact Framework?
How is it similar to Java?
How is it different?

What is the difference between LANs and WANs?

What are the two types of transmission mediums that can connect devices?

[a]
(b]
[c]
[d]

[a]
[b]

What is the OSI model?
What are the layers of the OSI model?
Give examples of two protocols under each layer.

Where in the Embedded Systems Model does each layer of the OSI model fall?
Draw it.

How does the OSI model compare to the TCP/IP model?
How does the OSI model compare to Bluetooth?

70

Section I: Endnotes

Chapter 1: Endnotes

[1-1] Embedded Microcomputer Systems, Valvano, p. 3; Embedded Systems Building Blocks, Labrosse,
p. 61.

[1-2] The Embedded Systems Design and Development Lifecycle Model is specifically derived from the SEI’s
Evolutionary Delivery Lifecycle Model and the Software Development Stages Model.

[1-3] The six stages of creating an architecture outlined and applied to embedded systems in this book are
inspired by the Architecture Business Cycle developed by SEI. For more on this brain child of SEI, read
“Software Architecture in Practice,” by Bass, Clements, and Kazman which does a great job in captur-
ing and articulating the process that so many of us have taken for granted over the years, or not even have
bothered to think about. While SEI focuses on software in particular, their work is very much applicable to
the entire arena of embedded systems, and I felt it was important to introduce and recognize the immense
value of their contributions as such.

[1-4] Software Architecture in Practice, Bass, Clements, Kazman; Real-Time Design Patterns, Douglass.

[1-5] Software Testing, Ron Patton, pp. 31-36.

Chapter 2: Endnotes

[2-1] Embedded System Building Blocks, Labrosse, Jean, p. 61; “Embedded Microcomputer Systems,” Volvano,
Jean, p. 3, Table 1.1.

[2-2] http://www.mhp.org/what_is_mhp/index.html.
[2-3] http://java.sun.com/products/javatv/overview.html.
[2-4] http://www.davic.org.

[2-5] http://www.atsc.org/standards.html.

[2-6] http://www.atvef.com.

[2-7] http://java.sun.com/pr/2000/05/pr000508-02.html and http://netvision.qianlong.com/8737/2003-6-
4/39@878954.htm.

[2-8] http://www.arib.or.jp.

[2-9] http://www.osgi.org/resources/spec_overview.asp.

[2-10] http://www.opentv.com.

[2-11] http://www.microsoft.com/tv/default.mspx.

[2-12] “HAVi, the A/V digital network revolution,” Whitepaper, p. 2.

[2-13] http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/search.cfm

[2-14] http://europa.eu.int/smartapi/cgi/sga_doc?smartapi!celexapi!prod!CELEXnumdoc&lg = E N&numdoc=31
993L0042&model=guichett”

[2-15] http://www.ieee1073.org.
[2-16] Digital Imaging and Communications in Medicine (DICOM): Part 1: Introduction and Overview, p. 5.

71

Section I: Endnotes

[2-17] http://www.ce.org/standards/default.asp.

[2-18] http://europa.eu.int/comm/enterprise/mechan_equipment/machinery/.

[2-19] https://domino.iec.ch/webstore/webstore.nsf/artnum/025140.

[2-20] http://www.iso.ch/iso/en/CatalogueListPage.CatalogueList? ICS1=25&I1CS2=40&ICS3=1.
[2-21] “Bluetooth Protocol Architecture,” whitepaper. Riku Mettala, p. 4.

[2-22] Systems Analysis and Design, Harris, David, p. 17.

[2-23] “I/Opener,” Morin and Brown, Sun Expert Magazine, 1998.

[2-24] “Boehm-Demers-Weiser conservative garbage collector: A garbage collector for C and C++”, Hans
Boehm, http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

[2-25] “Selecting the Right Transmission Medium Optical fiber is moving to the forefront of transmission media
choices leaving twisted copper and coaxial cable behind,” Curt Weinstein.

[2-26] “This Is Microwave” Whitepaper, Stratex Networks. http://www.stratexnet.com/about_us/our_technol-
ogy/tutorial/This_is_Microwave_expanded.pdf, “Satellite, Bandwidth Without Borders” whitepaper. Scott
Beardsley, Péar Edin and Alan Miles.

[2-27] http://www.ihs.com/standards/vis/collections.html and “IHS: Government Information Solutions,” p. 4.
[2-28] http://standards.ieee.org/reading/ieee/std_public/description/busarch/1284.1-1997_desc.html.

[2-29] http://www.aimglobal.org/aimstore/linearsymbologies.htm.

[2-30] http://www.iaob.org/iso_ts.html.

[2-31] http://www.praxiom.com/iso-intro.htm and the “Fourth-Generation Languages™ whitepaper. Sheri
Cummings. p. 1.

[2-32] “Spread Spectrum: Regulation in Light of Changing Technologies,” whitepaper, Carter, Garcia, and Pearah,
p.-7.

72

SECTION

11

Embedded Hardware

This Page Intentionally Left Blank

Embedded Hardware

Section II consists of five chapters that introduce the fundamental hardware components
of an embedded board and show how these components function together. The information
reflected in this chapter is not intended to prepare the reader to create a detailed board
design, but it will provide an architectural overview of some of the most important
elements of an embedded board, and information as to the function of these components.
Chapter 3 introduces the major hardware components of an embedded board using the
von Neumann model, the Embedded Systems Model, and real-world boards as references. Chap-
ters 4 through 7 discuss the major hardware components of an embedded board in detail.

Wherever possible, the theoretical information introduced is directly related to actual
embedded hardware, because it is the underlying physics of embedded hardware that directly
impacts board design. Understanding the major hardware elements of an embedded board is
critical to understanding the entire system’s architecture, because ultimately the capabilities
of an embedded device are limited or enhanced by what the hardware is capable of.

75

This Page Intentionally Left Blank

CHAPTER 3

Embedded Hardware Building Blocks
and the Embedded Board

In This Chapter

Introducing the importance of being able to read a schematic diagram
Discussing the major components of an embedded board

Introducing the factors that allow an embedded device to work
Discussing the fundamental elements of electronic components

3.1 Lesson One on Hardware: Learn to Read a Schematic!

This section is especially important for embedded software engineers and programmers.
Before diving into the details, note that it is important for all embedded designers to be able
to understand the diagrams and symbols that hardware engineers create and use to describe
their hardware designs to the outside world. These diagrams and symbols are the keys to
quickly and efficiently understanding even the most complex hardware design, regardless of
how much or little practical experience one has in designing real hardware. They also contain
the information an embedded programmer needs to design any software that requires compat-
ibility with the hardware, and they provide insight to a programmer as to how to successfully
communicate the hardware requirements of the software to a hardware engineer.

There are several different types of engineering hardware drawings, including:

Block diagrams, which typically depict the major components of a board (processors,
buses, I/0, memory) or a single component (a processor, for example) at a systems
architecture or higher level. In short, a block diagram is a basic overview of the hard-
ware, with implementation details abstracted out. While a block diagram can reflect
the actual physical layout of a board containing these major components, it mainly
depicts how different components or units within a component function together at

a systems architecture level. Block diagrams are used extensively throughout this
book (in fact, Figures 3-5a through 3-5e later in this chapter are examples of block
diagrams), because they are the simplest method in which to depict and describe the
components within a system. The symbols used within a block diagram are simple,
such as squares or rectangles for chips, and straight lines for buses. Block diagrams
are typically not detailed enough for a software designer to be able to write all of

the low-level software accurately enough to control the hardware (without a lot of

77

Chapter 3

headaches, trial and error, and even some burned-out hardware!). However, they are
very useful in communicating a basic overview of the hardware, as well as providing
a basis for creating more detailed hardware diagrams.

Schematics. Schematics are electronic circuit diagrams that provide a more detailed
view of all of the devices within a circuit or within a single component—everything
from processors down to resistors. A schematic diagram is not meant to depict the
physical layout of the board or component, but provides information on the flow of
data in the system, defining what signals are assigned where—which signals travel on
the various lines of a bus, appear on the pins of a processor, and so on. In schematic
diagrams, schematic symbols are used to depict all of the components within the sys-
tem. They typically do not look anything like the physical components they represent
but are a type of “shorthand” representation based on some type of schematic symbol
standard. A schematic diagram is the most useful diagram to both hardware and soft-
ware designers when trying to determine how a system actually operates, to debug
hardware, or to write and debug the software managing the hardware. See Appendix
B for a list of commonly used schematic symbols.

Wiring diagrams. These diagrams represent the bus connections between the major
and minor components on a board or within a chip. In wiring diagrams, vertical and
horizontal lines are used to represent the lines of a bus, and either schematic symbols
or more simplified symbols (that physically resemble the other components on the
board or elements within a component) are used. These diagrams may represent an
approximate depiction of the physical layout of a component or board.

Logic diagrams/prints. Logic diagrams/prints are used to show a wide variety of
circuit information using logical symbols (AND, OR, NOT, XOR, and so on), and
logical inputs and outputs (the 1’s and 0’s). These diagrams do not replace sche-
matics, but they can be useful in simplifying certain types of circuits in order to
understand how they function.

Timing diagrams. Timing diagrams display timing graphs of various input and output
signals of a circuit, as well as the relationships between the various signals. They are
the most common diagrams (after block diagrams) in hardware user manuals and data
sheets.

Regardless of the type, in order to understand how to read and interpret these diagrams, it

is first important to learn the standard symbols, conventions, and rules used. Examples of
the symbols used in timing diagrams are shown in Table 3-1, along with the conventions for
input/output signals associated with each of the symbols.

78

Embedded Hardware Building Blocks and the Embedded Board

Table 3-1: Timing diagrams symbol table 5

Symbol

Input Signals Output Signals

Input signal must be valid Output signal will be valid

><><><>< Input signal doesn’t affect sys- Indeterminate output signal
tem, will work regardless

Garbage signal (nonsense) Output signal not driven

(floating), tristate, HiZ, high
impedance

f If the input signal rises Output signal will rise

\ If the input signal falls Output signal will fall

An example of a timing diagram is shown in Figure 3-1. In this figure, each row represents

a different signal. In the case of the signal rising and falling symbols within the diagram, the
rise time or fall time is indicated by the time it takes for the signal to move from LOW to
HIGH or vice-versa (the entire length of the diagonal line of the symbol). When comparing
two signals, a delay is measured at the center of the rising or falling symbols of each signal
being compared. In Figure 3-1, there is a fall time delay between signals B and C and signals
A and C in the first falling symbol. When comparing the first falling symbol of signals A and
B in the figure, no delay is indicated by the timing diagram.

Rise Time Fall Time

Signal A

Signal B

Signal C

Figure 3-1: Timing diagram example

79

Chapter 3

Schematic diagrams are much more complex than their timing diagram counterparts. As intro-
duced earlier this chapter, schematics provide a more detailed view of all of the devices within a
circuit or within a single component. Figure 3-2 shows an example of a schematic diagram.

CUST.LEDS CPU LEDS J3 R4S
L

RIC INK

v LED LED
X MAG-
SER. FE JACK

64K, B192x8

14
7

GPIO(A4 3av
[sBs] m [SB7] [s86] GPIO RESET PHY(B4) = od
PIO__ 50 FINS oR

sV oaav Vo2V MIC PORT: 94 8 8 Nt o0y (]
< 1XT971 PHY

ENIAGPIO,
IEEE1284

P1_DB9-M P2_DB9-M

Rs2%2 RE232 | RSANS
wl—g%s PORTA RiA® swaoeiez | 8 8

€2

DIS0 D3L:16.. PORTB A\
PORTC A

RST- PORT A PORT B FRTC 104100 BTX
SW3, SW4, SWS, SW6 *MIC PORT
" BGA
ADDR. LINE BOOTSTRAP CTmoTy
DIP SWITCHES BURSTTERM. 18
S Ty MU
7GATES e *-
@ > = hac 2MHz
SW4-5 SWa-6 [|_| }J
=] v Lfoasios - RST- 0 RESET PR
FLASH FLASH BHE] :
WRITE READ A27.0 RESET®
ENABLE ENABLE CONT'L LINES
32 DATA LINES 31 ADDR/CONTL
33y BUF BGAP 1
T BCLK DEBUG

€S0 FLASH MEMORY, x16(1-8MB) or x32(2-16MB)

XTAL2}
STANDARD. = x16(1MB) or x32(2MB) T L isaaomnz
—
CS1 SDRAM MEMORY, x16(8 MB) ar 32(16MB) SIG
— SIGNALS T OSCILLATOR

STANDARD = SAME
S3 PARALLEL EE, x8(2-32KB)

44.2368MHz

CORE, PLL 10 = 33v

STANDARD =8K x 8

PROTOTYPING AREA - (2)SIOC16,
(4)SOT23-6, (8)12 06, (1)MINIDIP-8,
& POWER POIN TS.

(5) MICTOR EMILA TOR HEADERS - 38 PIN

Figure 3-2: Schematic diagram example #71

In the case of schematic diagrams, some of the conventions and rules include:

A title section located at the bottom of each schematic page, listing information that
includes, but is not limited to, the name of the circuit, the name of the hardware en-

gineer responsible for the design, the date, and a list of revisions made to the design
since its conception.

The use of schematic symbols indicating the various components of a circuit
(see Appendix B).

Along with the assigned symbol comes a label that details information about the
component (i.e., size, type, power ratings, etc.). Labels for components of a symbol,
such as the pin numbers of an IC, signal names associated with wires, and so forth
are usually located outside of the schematic symbol.

Abbreviations and prefixes are used for common units of measurement (i.e., k for
kilo or 10°, M for mega or 10°) and these prefixes replace writing out the units and
larger numbers.

Functional groups and subgroups of components are typically separated onto
different pages.

80

Embedded Hardware Building Blocks and the Embedded Board

I/0 and Voltage Source/Ground Terminals. In general, positive voltage supply ter-
minals are located at the top of the page, and negative supply/ground at the bottom.
Input components are usually on the left, and output components are on the right.

Finally, while this book provides an introduction into understanding the various diagrams and
recognizing schematic symbols and the devices they represent, it does not replace research-
ing more specifics on the particular diagrams used by your organization, whether through
additional reading or purchasing software, or asking the hardware engineers responsible for
creating the diagrams what conventions and rules are followed. (For instance, indicating the
voltage source and ground terminals on a schematic isn’t required, and may not be part of

the convention scheme followed by those responsible for creating the schematics. However, a
voltage source and a ground are required for any circuit to work, so don’t be afraid to ask.) At
the very least, the block and schematic diagrams should contain nothing unfamiliar to anyone
working on the embedded project, whether they are coding software or prototyping the hard-
ware. This means becoming familiar with everything from where the name of the diagram is
located to how the states of the components shown within the diagrams are represented.

One of the most efficient ways of learning how to learn to read and/or create a hardware dia-
gram is via the Traister and Lisk method®!%, which involves:

Step 1. Learning the basic symbols that can make up the type of diagram, such as timing
or schematic symbols. To aid in the learning of these symbols, rotate between this
step and steps 2 and/or 3.

Step 2. Reading as many diagrams as possible, until reading them becomes boring (in
that case rotate between this step and steps 1 and/or 3) or comfortable (so there is no
longer the need to look up every other symbol while reading).

Step 3. Writing a diagram to practice simulating what has been read, again until it either
becomes boring (which means rotating back through steps 1 and/or 2) or comfortable.

81

Chapter 3
3.2 The Embedded Board and the von Neumann Model

In embedded devices, all the electronics hardware resides on a board, also referred to as a
printed wiring board (PW) or printed circuit board (PCB). PCBs are often made of thin sheets
of fiberglass. The electrical path of the circuit is printed in copper, which carries the electrical
signals between the various components connected on the board. All electronic components that
make up the circuit are connected to this board, either by soldering, plugging in to a socket, or
some other connection mechanism. All of the hardware on an embedded board is located in the
hardware layer of the Embedded Systems Model (see Figure 3-3).

Application Software Layer

_ Figure 3-3: Embedded board and
System Software Layer the Embedded Systems Model

Hardware
Layer

Embedded Board

At the highest level, the major hardware components of most boards can be classified into
five major categories:

o Central Processing Unit (CPU) — the master processor

® Memory — where the system’s software is stored

o Input Device(s) — input slave processors and relative electrical components

® Output Device(s) — output slave processors and relative electrical components

o Data Pathway(s)/Bus(es) — interconnects the other components, providing a “high-
way” for data to travel on from one component to another, including any wires, bus
bridges, and/or bus controllers

82

Embedded Hardware Building Blocks and the Embedded Board

These five categories are based upon the major elements defined by the von Neumann model
(see Figure 3-4), a tool that can be used to understand any electronic device’s hardware
architecture. The von Neumann model is a result of the published work of John von Neumann
in 1945, which defined the requirements of a general-purpose electronic computer. Because
embedded systems are a type of computer system, this model can be applied as a means of
understanding embedded systems hardware.

EMBEDDED SYSTEM BOARD

CONTROLS USAGE AND MANIPULATION OF DATA Master Processor

| f |

1
1
1
: 5 SYSTEM COMPONENTS COMMONLY CONNECTED VIA BUSES
1
1
1

DATA FROM CPU OR INPUT DEVICES STORED IN Memory

MEMORY UNTIL A CPU OR OUTPUT DEVICE REQUEST
I 7'y
1
1
1 A 4

BRINGS DATA INTO THE EMBEDDED SYSTEM Input Output TAKES DATA OUT OF THE EMBEDDED SYSTEM

' 1
1 B 1
1 ‘ H 1
! : 1
L PP l

Figure 3-4: Embedded system board organization 5"

Based upon the von Neumann architecture model (also referred to as the Princeton architecture).

While board designs can vary widely as demonstrated in the examples of Figures 3-5a,

b, ¢, and d, all of the major elements on these embedded boards—and on just about any
embedded board—can be classified as either the master CPU(s), memory, input/output, or bus
components.

83

Chapter 3

¢ Master Processor: Geode

Data Digital & B GX533@1.1w (x86)
DDR |- > TFT .
SDR M Adress/Ghtrol AMD Geode™ ° Memory: ROM (BIOS 18
<7 eode ¢
(G2M 6 SDK GX 533@LIW MlogR B located in), SDRAM
e |7 e Input/Output Devi
P33V ¢ Inpu utpu_t evices:
’—' < CS5535, Audio Codec...
A A
* Buses: LPC, PCI
\
L7 ©ck >
14 MHz &= Generator Zis[em FS2T& P 33 MHz | theme t
trol Ehder - Ghtrolle r
A
Y Y
SJD(:—;;) < > AMD Geode™
(85535 IDElash &t | |pgpder
e Ou ¢ Companion | (@4-pin, 2 mm)
Adi Device
thdphone Out Gde‘f - > BC
Microphone In ~ ~€&—— Py L BS
m= I
GROs Serial Data g ®hder
Ber Bto n >

Figure 3-5a: AMD/National Semiconductor x86 reference board -
© 2004 Advanced Micro Devices, Inc. Reprinted with permission.

128,
Shared RI,
R gister-
10Bse-T Thinnet 10/1008se-T Serial Mode
! ! ! it Tt
! ! ! I Liit
10Bse-T | Thinnet 1008se-T R232 166
o oF oF X r X
thernet MII
NERI hip
System Bs BlB32
licati
Flash Memory R Memory ppsijceac;;) 2
28 dsre

Master Processor: Net+ARM ARM7
Memory: Flash, RAM

Input/Output Devices: 10Base-T trans-
ceiver, Thinnet transceiver, 100Base-T
transceiver, RS-232 transceiver, 16646
transceiver , ...

Buses: System Bus, MII, ...

Figure 3-5b: Net Silicon ARM?7 reference board %

84

Embedded Hardware Building Blocks and the Embedded Board

A160 Phnterfic e e Master Processor: Encore M3
(Aul500-based) processor

¢ Memory: Flash, SODIMM

e Input/Output Devices: Super I/0,...
Flash Memory Floppy/ .
Interfic e P rallel Brt e Buses: PCI, ...
SouthBdge
Hernet
[—>|
(Super o)

Bripheral IrDA
Interfic e

Serial Brts (2)
) _

core

IDHnterfice

Poht
@htroller

Z&

= 15)
Fa ’
M

Figure 3-5¢c: Ampro MIPS reference board 53

Motorola MB45 VIATEB
.
o
b wb e Master Processor: MPC8245
o
63e core e =T * Memory: Flash, SODIMM
oppy:
B
€ Super /0 ¢ Input/Output Devices: Super I/0
(Southbridge) 82559 Transceiver, ...
Mouse Brts
<—> Memory e * Buses: PCI,
M Ghtroller Bdge IrDA
emory > o

Serial Brts (2)

!

Eris (4)

Serial
Debug Brt [«

—

Miscellaneous
thernet Br t
Intel 38R
Bwr ©ck

Figure 3-5d: Ampro PowerPC reference board 54
Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Video Bocessor

A

* Master Processor: M37273 (8-bit)
TV Microcontroller
wdio Bocessor < e . Memory: NVM
M3123 e Input/Output Devices: Video processor,
NVM [« Audio Processor, Tuner, ...
¢ Buses: I°C, ...
Tuner <

Figure 3-5e: Mitsubishi analog TV reference board

85

Chapter 3

In order to understand how the major components on an embedded board function, it is useful
to first understand what these components consist of and why. All of the components on an
embedded board, including the major components introduced in the von Neumann model,

are made up of one or some combination of interconnected basic electronic devices, such as
wires, resistors, capacitors, inductors, and diodes. These devices also can act to connect the
major components of a board together. At the highest level, these devices are typically classi-
fied as either passive or active components. In short, passive components include devices such
as wires, resistors, capacitors and inductors that can only receive or store power. Active com-
ponents, on the other hand, include devices such as transistors, diodes, and integrated circuits
(ICs) that are capable of delivering as well as receiving and storing power. In some cases,
active components themselves can be made up of passive components. Within the passive and
active families of components, these circuit devices essentially differ according to how they
respond to voltage and current.

86

Embedded Hardware Building Blocks and the Embedded Board

3.3 Powering the Hardware

Power is the rate that energy is expended or work is performed. This means that in alternating
current (AC) and direct current (DC) circuits, the power associated with each element on the
board equals the current through the element multiplied by the voltage across the element

(P =VI). Accurate power and energy calculations must be done for all elements on an embed-
ded board to determine the power consumption requirements of that particular board. This is
because each element can only handle a certain type of power, so AC-DC converters, DC-AC
converters, direct AC-AC converters, and so on may be required. Also, each element has a
limited amount of power that it requires to function, that it can handle, or that it dissipates.
These calculations determine what type of voltage source can be used on a board, and how
powerful the voltage source needs to be.

In embedded systems, both AC and DC voltage sources are used, because each current
generation technique has its pros and cons. AC is easier to generate in large amounts us-

ing generators driven by turbines turned by everything from wind to water. Producing large
amounts of DC from electrochemical cells (batteries) is not as practical. Also, because
transmitting current over long transmission lines results in a significant loss of energy due

to the resistance of the wire, most modern electric company facilities transmit electricity to
outlets in AC current since AC can be transformed to lower or higher voltages much more
easily than DC. With AC, a device called a transformer, located at the service provider, is
used to efficiently transmit current over long distances with lower losses. The transformer is
a device that transfers electrical energy from one circuit to another, and can make changes to
the current and voltage during the transfer. The service provider transmits lower levels of cur-
rent at a higher voltage rate from the power plant, and then a transformer at the customer site
decreases the voltage to the value required. On the flip-side, at very high voltages, wires offer
less resistance to DC than AC, thus making DC more efficient to transmit than AC over very
long distances.

Some embedded boards integrate or plug into power supplies. Power supplies can be either
AC or DC. To use an AC power supply to supply power to components using only DC, an
AC-to-DC converter can be used to convert AC to the lower DC voltages required by the
various components on an embedded board, which typically require 3.3, 5, or 12 volts.

(Note: Other types of converters, such as DC-to-DC, DC-to-AC, or direct AC-to-AC can be
used to handle the required power conversions for devices that have other requirements.)

87

Chapter 3

Other embedded boards or components on a board (such as non-volatile memory, discussed
in more detail in Chapter 5) rely on batteries as voltage sources, which can be more practical
for providing power because of their size. Battery-powered boards don’t rely on a power plant
for energy, and they allow portability of embedded devices that don’t need to be plugged into
an outlet. Also, because batteries supply DC current, no mechanism is needed to convert AC
to DC for components that require DC, as is needed with boards that rely on a power supply
and outlet supplying AC. Batteries, however, have a limited life and must be either recharged
or replaced.

A Quick Comment on Analog vs. Digital Signals

A digital system processes only digital data, which is data represented by only 0’s and 1’s. On
most boards, two voltages represent “0” and “1”, since all data is represented as some com-
bination of 1’s and 0’s. No voltage (0 volts) is referred to as ground, VSS, or low, and 3, 5, or
12 volts are commonly referred to as VCC, VDD or HIGH. All signals within the system are
one of the two voltages, or are transitioning to one of the two voltages. Systems can define
“0” as low and “1” as high, or some range of 0—1 volts as LOW, and 4-5 volts as HIGH, for
instance. Other signals can base the definition of a “1”” or “0” on edges (low-to-high) or (high-
to-low).

Because most major components on an embedded board, such as processors, inherently
process the 1’s and O’s of digital signals, a lot of embedded hardware is digital by nature.
However, an embedded system can still process analog signals, which are continuous—that
is, not only 1’s and 0’s but values in between as well. Obviously, a mechanism is needed on
the board to convert analog signals to digital signals. An analog signal is digitized by a sam-
pling process, and the resulting digital data can be translated back into a voltage “wave” that
mirrors the original analog waveform.

Real-World Advice
Inaccurate Signals: Problems with Noise in Analog and Digital Signals

One of the most serious problems in both the analog and digital signal realm involves noise
distorting incoming signals, thus corrupting and affecting the accuracy of data. Noise is generally
any unwanted signal alteration from an input source, any part of the input signal generated
from something other than a sensor, or even noise generated from the sensor itself. Noise is a
common problem with analog signals. Digital signals, on the other hand, are at greater risk if
the signals are not generated locally to the embedded processor, so any digital signals coming
across a longer transmission medium are the most susceptible to noise problems.

Analog noise can come from a wide variety of sources—radio signals, lightning, power lines,
the microprocessor, the analog sensing electronics themselves, etc. The same is true for digital
noise, which can come from mechanical contacts used as computer inputs, dirty slip rings that
transmit power/data, limits in accuracy/dependability of input source, and so forth.

88

Embedded Hardware Building Blocks and the Embedded Board

The key to reducing either analog or digital noise is: 1) to follow basic design quidelines to
avoid problems with noise. In the case of analog noise this includes not mixing analog and
digital grounds, keeping sensitive electronic elements on the board a sufficient distance from
elements switching current, limiting length of wires with low signal levels/high impedance,
etc. With digital signals, this means routing signal wires away from noise-inducing high cur-
rent cables, shielding wires, transmitting signals using correct techniques, etc.; 2) to clearly
identify the root cause of the problem, which means exactly what is causing the noise. With
point 2), once the root cause of the noise has been identified, a hardware or software fix
can be implemented. Techniques for reducing analog noise include filtering out frequencies
not needed and averaging the signal inputs, whereas digital noise is commonly addressed via
transmitting correction codes/parity bits, and/or adding additional hardware to the board to
correct any problems with received data.

—Based on the articles by Jack Ganssle “Minimizing Analog Noise” (May 1997),

“Taming Analog Noise” (Nov. 1992) and “Smoothing Digital Inputs” (Oct. 1992)
Embedded Systems Programming Magazine

3.4 Basic Hardware Materials:
Conductors, Insulators, and Semiconductors

All electronic devices used on a board or that come into contact with an embedded board
(such as networking transmission mediums) are made up of materials that are generally
classified as conductors, insulators, or semiconductors. These categories differ according to
the ability of the materials to conduct an electric current. While conductors, insulators, and
semiconductors will all conduct given the right environment, conductors are materials that
have fewer impediments to an electric current (meaning they more easily lose/gain valence
electrons), and they (coincidentally) have three or fewer valence electrons (see Figure 3-6).

Figure 3-6: Conductors

89

Chapter 3

Most metals are conductors, because most metallic elements have a crystalline makeup that
doesn’t require a lot of energy to free the valence electrons of their atoms. The atomic lat-
tice (structure) of these metals is composed of atoms that are bound so tightly together that
valence electrons aren’t closely associated with any individual atom. This means that valence
electrons are equally attached to surrounding atoms, and the force attaching them to an indi-
vidual nucleus is practically nil. Thus, the amount of energy at room temperature to free these
electrons is relatively small. Buses and wired transmission mediums are examples of one or
more wires made up of conductive metallic material. A wire, in a schematic diagram, is typi-
cally represented by a straight line: * 7 (see Appendix B); in other electronic diagrams
(i.e., block) they can also be represented as arrows “<——"" .

Insulators typically have five or more valence electrons (see Figure 3-7), and impede an
electric current. This means that they are less likely to lose or gain valence electrons without
a great deal of applied energy to the material. For this reason, insulators are typically not the
main materials used in buses. Note that some of the best insulators, like conductive metals,
are very regular in their crystal lattice and their atoms do tightly bond. The main difference
between a conductor and insulator lies in whether the energy of the valence electrons is
enough to overcome any barriers between atoms. If this is the case, these electrons are free
floating in the lattice. With an insulator, like NaCl for example (sodium chloride, a.k.a. table
salt), the valence electrons would have to overcome a tremendous electric field. In short, in-
sulators require greater amounts of energy at room temperature to free their valence electrons
in comparison to conductors. Non-metals, such as air, paper, oil, plastic, glass, and rubber, are
usually considered insulators.

B*4© *— B,0;B ric Oxide B sed Glass
(neither boron nor oxg en are metals—they
create a molecule i h an ionic bond
containing 5 valence electrons)

Figure 3-7: Insulators

20

Embedded Hardware Building Blocks and the Embedded Board

Air Transmissions via Electromagnetic Waves

The ability of an insulator, air, to transmit data is the basis of wireless communication. Data is
transmitted specifically through electromagnetic waves that have the ability to induce a cur-
rent in a receiving antenna. An antenna is basically a conducting wire that contains a vibrating
current that radiates electromagnetic energy into its surroundings. In short, electromagnetic
waves are created when an electric charge oscillates at the speed of light, such as within an
antenna. The oscillation of an electric charge can be caused by many things—heat, AC circuitry,
and so on—but in essence, all elements above the temperature of absolute zero emit some
electromagnetic radiation. So, heat (for example) can generate electromagnetic radiation,
because the higher the temperature, the faster the electrons oscillate per unit of time, and
thus the more electromagnetic energy emitted.

When the electromagnetic wave is emitted, it travels through the empty space, if any, between
atoms (of air, of materials, etc.). The electromagnetic radiation is absorbed by that atom,
causing its own electrons to vibrate and, after a time, emit a new electromagnetic wave of
the same frequency as the wave it absorbed. It is, of course, usually intended at some point
for some type of receiver to intercept one of these waves, but the remaining electromagnetic
waves will continue to travel indefinitely at the speed of light (though they do weaken the
further they travel from their original source—the amplitude/strength of a wave is inversely
proportional to the square of the distance). It is for this reason that the different types of wire-
less mediums (satellite vs. Bluetooth for instance, discussed in Chapter 2) have their limitations
in terms of the types of devices and networks they are used in and where their receivers need
to be located.

Semiconductors usually have four valence electrons, and are classified as materials whose
base elements have a conductive nature that can be altered by introducing other elements into
their structure. This means that semiconductive material has the ability to behave both as a
conductor and as an insulator. Elements such as silicon and germanium can be modified in
such a manner that they have a resistance about halfway between insulators and conductors.
The process of turning these base elements into semiconductors starts with the purification

of these elements. After purification, these elements have a crystalline structure in which
atoms are rigidly locked together in a lattice with the electrons unable to move, making them
strong insulators. These materials are then doped to enhance their abilities to conduct elec-
trons. Doping is the process of introducing impurities, which in turn interweaves the silicon
or germanium insulator structure with the conductive features of the donor. Certain impurities
(like arsenic, phosphorus, antimony, etc.), called donors, create a surplus of electrons creating
an N-type semiconductor, while other impurities called acceptors, such as boron, produce a
shortage of electrons, creating a P-type semiconductor material (see Figures 3-8a and b).

Note that the fact that semiconductors usually have four valence electrons is a coincidence
(silicon and germanium both have four valence electrons, for example). A semiconductor
is defined by the energy of the valence electron with respect to the barriers between lattice
atoms.

91

Chapter 3

Missing electron makes this a P-type
semiconductor P 6r positis charge]

Ea electron makes this an N-type semiconductor
N” 6r negatie charge]
J

Figure 3-8b: N-type semiconductor

92

Embedded Hardware Building Blocks and the Embedded Board

3.5 Common Passive Components on Boards and in Chips:
Resistors, Capacitors, and Inductors

Passive electronic components, including wires, can be integrated (along with semiconductive
devices, discussed later in this chapter) to form processors and memory chips. These compo-
nents can also be a part of the circuitry (input circuitry, output circuitry, and so on) found on
the board. The next several sub-sections introduce passive components commonly found on
an embedded board, mainly the resistor, the capacitor, and the inductor.

3.5.1 The Resistor

Even the best of conductors will offer some resistance to current flow. Resistors are devices
made up of conductive materials that have had their conductivity altered in some fashion to
allow for an increase in resistance. For example, carbon-composition resistors are created

by the mixing of carbon (the conductor) with an insulating material (the impurity). Another
technique used in creating resistors is to change the physical shape of the material to alter its
resistance, such as winding a wire into a coil, as is the case in wire-wound resistors. There are
several different types of resistors in addition to wire-wound and carbon-composition, includ-
ing current-limiting, carbon film, foil filament wound, fuse and metal film, to name a few.
Regardless of type, all resistors provide the same inherent function, to create a resistive force
in a circuit. Resistors are a means, within an AC or DC circuit, to control the current or volt-
age by providing some amount of resistance to the current or voltage that flows across them.

Because resistors, as reflected in Ohm’s Law (V = IR), can be used to control current and
voltage, they are commonly used in a variety of circuitry both on boards and integrated into
processor or memory chips when needed to achieve a particular bias (voltage or current level)
for some type of circuitry the resistors are connected to. This means that a set of resistors
networked properly to perform a certain function—for example, as attenuators, voltage divid-
ers, fuses, heaters, and so on—provides a specific voltage or current value adjustment that is
required for some type of attached circuitry.

Given two resistors with identical resistances, depending on how the resistor was made, a
set of properties is considered when selecting between the two for use in a particular circuit.
These properties include:

Tolerance in %, which represents at any one time how much more or less precise the
resistance of the resistor is at any given time, given its labeled resistance value. The
actual value of resistance should not exceed + or — the labeled tolerance. Typically,
the more sensitive a particular circuit is to error, the tighter (smaller) the tolerances
that are used.

93

Chapter 3

® Power rating. When a current encounters resistance, heat, along with some other
forms of energy at times, such as light, is generated. The power rating indicates how
much power a resistor can safely dissipate. Using a low-powered resistor in a higher-
powered circuit can cause a melt-down of that resistor, as it is not able to release the
generated heat from the current it carries as effectively as a higher-powered resistor
can.

® Reliability level rating in %, meaning how much change in resistance might occur in
the resistor for every 1000 hours of resistor use.

o Temperature coefficient of resistance, or TCR. The resistivity of materials that make
up the resistor can vary with changes in temperature. The value representing a change
in resistance relative to changes in temperature is referred to as the temperature coef-
ficient. If a resistor’s resistivity doesn’t change in response to a temperature change, it
has a “0” temperature coefficient. If a resistor’s resistivity increases when the tem-
perature increases and decreases when the temperature decreases, then that resistor
has a “positive” temperature coefficient. If a resistor’s resistivity decreases when the
temperature increases, and increases when the temperature decreases, then that resis-
tor has a “negative” temperature coefficient. For example, conductors typically have
a “positive” temperature coefficient, and are usually most conductive (have the least
resistance) at room temperature, while insulators typically have fewer freed valence
electrons at room temperature. Thus, resistors made up of particular materials that
display some characteristic at “room temperature,” and a measurably different one at
warmer or cooler temperatures, impact what types of systems they ultimately may be
used in (mobile embedded devices vs. indoor embedded devices, for example).

While there are many different ways to make resistors, each with their own properties, at the
highest level there are only two types of resistors: fixed and variable. Fixed resistors are resis-
tors that are manufactured to have only one resistance value. Fixed resistors come in many
different types and sizes depending on how they are made (see Figure 3-9a), though in spite
of the differences in physical appearances, the schematic symbol representing fixed resistors
remains the same depending on the schematic standard supported (Figure 3-9b).

_/\ /\ /\ — Europe

USA/Japan

Figure 3-9a: Figure 3-9b:
Fixed resistors Fixed resistor schematic symbols

924

Embedded Hardware Building Blocks and the Embedded Board

For fixed resistors with bodies that are too small to contain their printed property values, the
values are calculated from color coded bands located physically on the resistor’s body. These
color coded bands appear as either vertical stripes, used on fixed resistors with axial leads as
shown in Figure 3-10a, or in various locations on the body, used on fixed resistors with radial
leads as shown in Figure 3-10b.

-« D —=|

1st Color Multiplier - |4_ L t(J"O-”j"_hl max.
Band -\ \/-Culor Band » 03T1" _________ ﬁ.
. =0 l o \\k T/!
0.25"+0.031 H
6.35 mm =0.794
Bnd " Cotor Bans Pl nooo] kgt

Figure 3-10a:
Fixed resistors with axial leads

Figure 3-10b:
Fixed resistors with radial leads

A resistor may also include additional color coded bands representing its various properties,
such as reliability level ratings, temperature coefficient, tolerance, and so on. While different
types of fixed resistors have different numbers and types of bands, the color definitions are
typically the same. Tables 3-2a, b, c, and d show the various types of bands that can be found
on the body of a fixed resistor along with their meanings.

Color of Digits Multiplier Color of Temperature
Band Band coefficient
Black 0 X1 Brown 100 ppm
Brown 1 x10 Red 50 ppm
Red 2 x100 Orange 15 ppm
Orange 3 x1K Yellow 25 ppm
Yellow 4 x10K
Green 5 x100K
Blue 6 xX1M
Purple 7 x10M
Grey 8 x100M
White 9 x1000M
Silver - x0.01
Gold - x0.1
Table 3-2a: Resistor color code digits Table 3-2b:

and multiplier table 5% Temperature coefficient 3¢

95

Chapter 3

Color of Reliability Color of Tolerance
Band Level (%) Band (%)
Brown 1% Silver + 10%
Red 0.1% Gold +5%
Orange 0.01% Brown + 1%
Yellow 0.001% Red +2%
Green +0.5%
Blue +0.25%
Purple +0.1%
Table 3-2c:

Reliability level (%1000 HR) ¢ Table 3-2d: Tolerance B¢

To understand how the color coding works, let’s take an example of a 5-band carbon com-
position resistor with axial leads, in which the bands are arranged as vertical stripes on the
resistor’s body, with associated colors bands as shown in Figure 3-11. Bands 1 and 2 are
digits, band 3 is the multiplier, band 4 is tolerance, and band 5 is reliability. Note that resis-
tors can vary widely in the number and meanings of the bands, and that this is one specific
example in which we’re given the information and are told how to use the tables to determine
resistance and other various properties. This resistor’s first three bands are red = 2, green

=5, and brown = x10. Thus, this resistor has a resistance of 250 € (2 and 5 of the red and
green bands are the first and second digits, the third brown band “x10” value is the multiplier
which is used to multiply “25” by 10, resulting in the value of 250). Taking into account

the resistor’s tolerance reflected by the red band or + 2%, this resistor has a resistance value
of 250 Q £ 2%. The fifth band in this example is a yellow band, reflecting a reliability of
0.001%. This means that the resistance of this resistor might change by 0.001% from the
labeled value (250 € * 2% in this case) for every 1000 hours of use. Note: The amount of
resistance provided by a resistor is measured in ohms (Q).

Figure 3-11:
5-band fixed resistor with axial leads example

1" Digit ...t
2" Digit ...
Multiplier

Tolerance - :
Riability

96

Embedded Hardware Building Blocks and the Embedded Board

Variable resistors vary their resistance on-the-fly, as opposed to manufactured fixed resistors.
Resistance can be varied manually (potentiometers), by changes in light (photosensitive/photo
resistor), by changes in temperature (thermally sensitive/termistor), and so on. Figures 3-12a
and b show what some variable resistors physically look like, as well as how they are symbol-
ized in schematics.

Brentiometers Boto resistor Termister

Figure 3-12b: Variable resistor’s schematic symbols

3.5.2 The Capacitor

Capacitors are made up of conductors typically in the form of two parallel metal plates sepa-
rated by an insulator, which is a dielectric such as air, ceramic, polyester, mica, and so forth,
as shown in Figure 3-13a.

/ ; Ectric & Voltage
Field Cg D @ Source

Figure 3-13a: Capacitor Figure 3-13b: Capacitor in circuit

97

Chapter 3

When each of the plates is connected to an AC voltage source (see Figure 3-13b), the plates
accumulate opposing charges, positive in one plate and negative in the other. Electrons are
surrounded by electric fields produced by that charge. An electric field emanates outwardly
and downwardly from the source, in this case the charged plate, diminishing in field strength
as it gets further from the source. The electric field created between the two plates acts to
temporarily store the energy and keep the plates from discharging. If a wire were to connect
the two plates, current would flow until both plates were no longer charged—or as is the case
with AC voltage sources, when the polarity changes, the plates then discharge.

In short, capacitors store energy in electric fields. Like the resistor, they impede the flow of
energy, but unlike the resistor, which dissipates some of this energy intentionally and is typi-
cally used in both AC and DC circuits, the capacitor is more commonly used in AC circuits,
and gives this same energy back to the circuit in its original form (electrically) when the
plates are discharged. Note that, depending on how the capacitor is made, manufacturing
imperfections may result in a capacitor not functioning perfectly, causing some unintentional
loss of energy in the form of heat.

Any two conductors located in close proximity can act as capacitors (with air being the
dielectric). This phenomena is called inter-electrode capacitance. It is for this reason that in
some devices (involving radio frequencies) this phenomena is minimized by enclosing some
electronic components.

A set of properties is considered when selecting capacitors for use in a particular circuit,
namely:

Temperature coefficient of capacitance. Similar in meaning to TCR (temperature
coefficient of resistance). If a capacitor’s conductance doesn’t change in response to
a temperature change, it has a “0” temperature coefficient. If a capacitor’s capaci-
tance increases when the temperature increases, and decreases when the temperature
decreases, then that capacitor has a “positive” temperature coefficient. If a capacitor’s
capacitance decreases when the temperature increases, and increases when the tem-
perature decreases, then that capacitor has a “negative” temperature coefficient.

Tolerance in %, which represents at any one time how much more or less precise the
capacitance of a capacitor is at any given time given its labeled capacitance value (the
actual value of capacitance should not exceed + or — the labeled tolerance).

98

Embedded Hardware Building Blocks and the Embedded Board

As with resistors, capacitors can be integrated into a chip, and depending on the capacitor,
used in everything from DC power supplies to radio receivers and transmitters. Many differ-
ent types of capacitors exist (variable, ceramic, electrolytic, epoxy, and so on), differing by
the material of the plates and dielectric and, like resistors, by whether they can be adjusted
on-the-fly (see Figures 3-14a and b).

Figure 3-14a: Capacitors

Non-Polarized/Bipolar Fixed Fixed Polarized Variable

Figure 3-14b: Capacitor’s schematic symbols

3.5.3 Inductors

Inductors, like capacitors, store electrical energy in AC circuits. With capacitors, however,
energy is temporarily stored in an electric field, whereas inductors temporarily store energy
in a magnetic field. These magnetic fields are produced by the movement of electrons, and
can be visualized as rings surrounding an electric current (see Figure 3-15a). The direction of
electron flow determines the direction of the magnetic field (see Figure 3-15b).

29

Chapter 3

E ectron Flow

E ectron Flow

E ectron
Flow — Battery +

Figure 3-15a: Magnetic fields Figure 3-15b: Direction of magnetic fields

All materials, even conductors, have some resistance and thus give off some energy. Some of
this energy is stored within the magnetic fields surrounding the wire. Inductance is the storage
of energy within the magnetic field surrounding a wire with a current flowing through it (and
like capacitance, can occur unintentionally). When a change occurs in the current stream, as
happens in an AC circuit, the magnetic field changes and thus “induces a force on a charged
object” (Faraday’s Law of Induction). Any expansion, due to a current increase, means an
increase in the energy stored by the inductor, whereas a collapse of a magnetic field, due to a
lack of current, will release that energy back into the circuit. Changes in current are reflected
in how inductance is measured. Measured in units of henries (H), inductance is the ratio
between the rate of current change and the voltage across the inductor.

As mentioned, all wires with some current have some sort of inductance, however minimal.
Because magnetic flux is much higher for a coiled wire than for a straighter wire, most com-
mon inductors are made up of a coiled wire, although, again, inductors can be made up of a
single wire or set of wires. Adding some type of core other than air, such as ferrite or pow-
dered iron within the coiled-up wire increases the magnetic flux density many times over.
Figures 3-16a and b show some common inductors and their schematic symbol counterparts.

Air Core Iron Core

Figure 3-16b:
Inductor’s appearance Inductor’s schematic symbols

100

Embedded Hardware Building Blocks and the Embedded Board

The properties that define inductance include the number of individual coils (the more coils,
the larger the inductance), the diameter of the coils (which is directly proportional to induc-
tance), the overall shape of the coil (cylindrical/solenoidal, doughnut-shaped/toroidal, and so
on), and the overall length of the coiled wire (the longer it is, the smaller the inductance).

3.6 Semiconductors and the Active Building Blocks
of Processors and Memory

While P-type and N-type semiconductors are the basic types of semiconductors, as discussed
in Section 3.4, they are not usually very useful on their own. These two types must be com-
bined in order to be able to do anything practical. When P-type and N-type semiconductors
are combined, the contact point, called the P-N Junction, acts as a one-way gate to allow
electrons to flow within the device in a direction dependent on the polarity of the materials.
P and N-type semiconductive materials form some of the most common basic electronic
devices that act as the main building blocks in processor and memory chips: diodes and
transistors.

3.6.1 Diodes

A diode is a semiconductor device made up of two materials, one P-type and one N-type,
joined together. A terminal is connected to each of the materials, called an anode, labeled “A”
in the schematic symbol in Figure 3-17b, and a cathode, labeled “C” in the schematic in Figure
3-17b.

Diode B (Ight Hhitting Diode) Rotodiode/Rotosensiti & @er

Figure 3-17b: Diode schematic symbols

101

Chapter 3

These materials work together to allow current to flow in only one direction. Current flows
through a diode from the anode to cathode as long as the anode has a higher (positive) volt-
age; this phenomena is called forward biasing. Current flows in this condition because the
electrons flowing from the voltage source are attracted to the P-type material of the diode
through the N-type material (see Figure 3-18a).

@ rrent Flow

+ - - +
1] i
P S | | S |
: S Depletion R gion
v -v -
A :
P ype N-Type
< < < < \ 4 T ype N-Type
0 A
1 1
' '
R I nction R @ nction
Figure 3-18a: Figure 3-18b:
Diode in forward bias Diode in reverse bias

When current will not flow through the diode because the cathode has a higher (positive)
voltage than the anode, the diode acts like a variable capacitor, whose capacitance changes
depending on the amount of reverse voltage. This is called reverse biasing. In this case (as
shown in Figure 3-18b), the electrons are pulled away from the P-type material in the diode,
creating a depletion region, a section surrounding the P-N junction that has no charge and
acts as an insulator, resisting current flow.

There are several different types of diodes, each with their own common uses, such as recti-
fier diodes that convert AC to DC by keeping the polarity constant, PIN diodes as switches,
zener diodes for voltage regulation, and so on. Some of the most recognizable diodes on a
board are the Light Emitting Diodes or LEDs, shown in Figure 3-19. LEDs are the blinking
or steady lights that can indicate anything from PowerON, to problems with the system, to
remote-control signals, depending on how they are designed. LEDs are designed to emit vis-
ible or infrared (IR) light when forward biased in a circuit.

As a final note, keep in mind that higher forms of semiconductor logic are based upon the
diode depletion effect. This effect generates a region where the barrier is higher than the aver-
age valence electron energy, and the barrier can be influenced by voltage.

102

Embedded Hardware Building Blocks and the Embedded Board

@ rrent Flow
Figure 3-19: e e
LED in forward bias

A
[
'
'

v Rt nction encased in doped shell
A

v

‘When electrons mog into P Type

Material, R otons emitted

3.6.2 Transistors

“Transistor” is the contraction for current-transferring resistor.>> Transistors are made up of
some combination of P-type and N-type semiconductor material, with three terminals con-
necting to each of the three materials (see Figure 3-20a). It is the combination and versatility
of these materials that, depending on the type of transistor, allow them to be used for a variety
of purposes, such as current amplifiers (amplification), in oscillators (oscillation), in high-
speed integrated circuits (ICs, to be discussed later this chapter), and/or in switching circuits
(DIP switches, push buttons, and so on commonly found on off-the-shelf reference boards

for example). While there are several different types of transistors, the two main types are the
bipolar junction transistor (BJT) and the field effect transistor (FET).

The BJT, also referred to as the bipolar transistor, is made up of three alternating types of
P-type and N-type material, and are subclassed based on the combination of these materi-

als. There are two main subclasses of bipolar transistors, PNP and NPN. As implied by their
names, a PNP BJT is made up of two sections of P-type materials, separated by a thin section
of N-type material, whereas the NPN bipolar transistor is made up of two sections of N-type
material, separated by a thin section of P-type material. As shown in Figures 3-20a and b,
each of these sections has an associated terminal (electrode): an emitter, base, and a collector.

@l ector N N Ritt er itt er P | N | P @l ector

R & nction R i nction

Figure 3-20a: NPN BJT “OFF” Figure 3-20b: PNP BJT “OFF”

103

Chapter 3

When the NPN BIJT is OFF (as shown in Figure 3-20a), electrons in the emitter cannot bypass
the P-N junction to flow to the collector, because there is no biasing voltage (0 volts) at the
base to pressure electrons over the junctions.

@iren t Flow v
.......... S v,

e
) v
M Hitt er
@ll ector Y. > > Yop > > > >
N P N v c
A A

) E
R @in ction 6rard-bi ased

Figure 3-21a: NPN BJT “ON” Figure 3-21b: NPN BJT schematic symbol

To turn the NPN BJT “ON” (as shown in Figure 3-21a), a positive voltage and input cur-

rent must be applied at the base so escaping electrons from the emitter are attracted to the
P-type base, and, because of the thinness of the P-type material, these electrons then flow to
the collector. This then creates a (positive) current flow from the collector to the emitter. This
current flow is a combination of the base current and collector current, and so, the larger the
base voltage, the greater the emitter current flow. Figure 3-21b shows the NPN BJT schematic
symbol, which includes an arrow indicating the direction of output current flow from the
emitter when the transistor is ON.

When the PNP BJT is OFF (as shown in Figure 3-20b), electrons in the collector cannot
bypass the PN junction to flow to the emitter, because the 0 volts at the base is placing just
enough pressure to keep electrons from flowing. To turn the PNP BJT ON (as shown in Fig-
ure 3-22a), a negative base voltage is used to decrease pressure and allow a positive current
flow out of the collector, with a small output current flowing out of the base, as well. Figure
3-22b shows the PNP BJT schematic symbol, which includes an arrow indicating the direc-
tion of current flow info the emitter and out the collector terminal when the transistor is ON.

@ren t Flow
......... IS

hitt er

R din ction 6rard-bi ased

Figure 3-22a: PNP BJT “ON” Figure 3-22b: PNP BJT schematic symbol

104

Embedded Hardware Building Blocks and the Embedded Board

In short, PNP and NPN BJTs work in the same manner, given the opposite directions of cur-
rent flow, the P and N type material makeup, and the voltage polarities applied at the base.

Like the BJT, the FET is made up of some combination of P-type and N-type semiconductor
material. Like the BJT, FETs have three terminals, but in FETSs these terminals are called a
source, a drain/sink, and a gate (see Figure 3-22). In order to function, FETs do not require a
biasing current, and are controlled via voltage alone. Beyond this, there are several subtypes
of FETs that function and are designed differently, the most common falling under the fami-
lies of the metal-oxide-semiconductor field-effect transistor (MOSFET) and the junction
field-effect transistor (JFET).

There are several types of MOSFETs, the main two subclasses of which are enhancement
MOSFETs and depletion MOSFETs. Like BJTs, enhancement-type MOSFETs become less
resistant to current flow when voltage is applied to the gate. Depletion-type MOSFETSs have
the opposite reaction to voltage applied to the gate: they become more resistant to current
flow. These MOSFET subclasses can then be further divided according to whether they are
P-channel or N-channel transistors (see Figure 3-23a, b, c, and d).

A -V

Gate

V.

ov Drain . P
: Source
Source

Gate Drain N N
| v]

N N _
P -
Depletion
Region
Figure 3-23a: Figure 3-23b:
N-channel enhancement MOSFET “OFF” N-channel depletion MOSFET “OFF”
v, v
Gate
= ov
S
ource > ILI Drain
Gate Source p p
Drain |
P P N
Depletion
R gion
Figure 3-23c: Figure 3-23d:
P-channel enhancement MOSFET “OFF” P-channel depletion MOSFET “OFF”

105

Chapter 3

In N-channel enhancement MOSFETs, the source and drains are N-type (- charge)
semiconductor material and sit on top of P-type material (+ charge). In P-channel enhance-
ment MOSFETs, the source and drains are P-type (+ charge) semiconductor material and sit
on top of N-type material (— charge).When no voltage is applied to the gate, these transistors
are in the OFF state (see Figure 3-23a and c), because there is no way for current to flow from
the source to the drain (for N-channel enhancement MOSFETS) or from drain to source for
P-channel enhancement MOSFETs.

N-channel depletion MOSFETs are in the “OFF” state when a negative voltage is applied to
the gate (as shown in Figure 3-23b) to create a depletion region, an area in which no current
can flow, making it more difficult for electrons to flow through the transistor because of a
smaller available channel for current to flow through. The more negative the voltage applied
to the gate, the larger the depletion region, and the smaller the channel available for electron
flow. As seen in Figure 3-23d, the same holds true for a P-channel depletion MOSFET, except
because of the reversed type (polarity) of materials, the voltage applied at the gate to turn the
transistor OFF is positive instead of negative.

The N-channel enhancement MOSFET is in the ON state when “+” (positive) voltage is
applied to the gate of the transistor. This is because electrons in the P-type material are
attracted to the area under the gate when the voltage is applied, creating an electron channel
between the drain and source. So, with the positive voltage on the other side of the drain, a
current flows from the drain (and gate) to the source over this electron channel. P-channel
enhancement MOSFETSs, on the other hand, are in the ON state when “—” (negative) voltage
is applied to the gate of the transistor. This is because electrons from the negative voltage
source are attracted to the area under the gate when the voltage is applied, creating an elec-
tron channel between the source and drain. So, with the positive voltage on the other side of
the source, current flows from the source to the drain (and gate) over this electron channel
(see Figures 3-24a and c).

Because depletion MOSFETSs are inherently conductive, when there is no voltage applied to
the gates of an N-channel or P-channel depletion MOSFET, there is a wider channel in which
electrons are free to flow through the transistor from, in the case of an N-channel depletion
MOSEFET, the source to the drain and, in the case of the P-channel depletion MOSFET, the
drain to the source. In these cases, the MOSFET depletion transistors are in the “ON” state
(see Figures 3-24b and d).

106

Embedded Hardware Building Blocks and the Embedded Board

@rren t Flow
.......... S

@rren t Flow v
......... IS

v, Drain I;"P
v Y Source

Source ‘ N N
Drain Gate & > v R et
v v ‘
i | ’_‘
y > P

N K
P
Figure 3-24a: Figure 3-24b:
N-channel enhancement MOSFET “ON” N-channel depletion MOSFET “ON”
@iren t Flow
AAAAAAAAA e
ov
@iren t Flow * Gate
e i

A

-V Source L N
v .
A | Gate Drain : Drain
Source J— > P P
v ‘ v TRF QNS T -
A A |
pY-] > P N

N
Figure 3-24c: Figure 3-24d:
P-channel enhancement MOSFET “ON” P-channel depletion MOSFET “ON”

As seen in Figure 3-25, the schematic symbols for the MOSFET enhancement and depletion
N-channel and P-channel transistors contain an arrow that indicates the direction of current
flow for N-channel MOSFET depletion and enhancement transistors (into the gate, and with
what is coming into the drain, output to the source), and P-channel MOSFET depletion and
enhancement transistors (into the source, and out of the gate and drain) when these transistors

are ON.
D D D D
S S S S

N-hannel N-hiannel Hiannel Hannel
Depletion Bhancement Depletion hhancemen t

Figure 3-25: MOSFET schematic symbols

107

Chapter 3

The JFET transistors are subclassed as either N-channel or P-channel JFETSs, and like deple-
tion-type MOSFETsSs, become more resistive to current flow when voltage is applied to their
gates. As shown in Figure 3-26a, an N-channel JFET is made up of the drain and source
connecting to N-type material, with the gate connecting to two P-type sections on either
side of the N-type material. A P-channel JFET has the opposite configuration, with the drain
and source connecting to P-type material, and the gate connecting to two N-type sections on
either side of the P-type material (see Figure 3-26b).

% -V V. v
Gate Gate
Drain g P Source o N
Source Drain
N N P P
| * | | |
Deplgtion Depletion
Region R gion
Figure 3-26a: N-channel JFET “OFF” Figure 3-26b: P-channel JFET “OFF”

In order to turn the N-channel JFET transistor “OFF”, a negative voltage must be applied to
the gate (as shown in Figure 3-26a) to create a depletion region, an area in which no current
can flow, making it more difficult for electrons to flow through the transistor because of a
smaller available channel for current to flow through. The more negative the voltage applied
to the gate, the larger the depletion region, and the smaller the channel available for electron
flow. As seen in Figure 3-26b, the same holds true for a P-channel JFET, except because of
the reversed type of materials, the voltage applied at the gate to turn the transistor OFF is
positive instead of negative.

When there is no voltage applied to the gates of an N-channel or P-channel JFET, there is a
wider channel in which electrons are free to flow through the transistor from, in the case of an
N-channel JFET, the source to the drain and, in the case of the P-channel JFET, the drain to
the source. In this case, the JFET transistors are in the “ON” state (see Figures 3-27a and b).

As seen in Figure 3-28, the schematic symbols for the JFET N-channel and P-channel transis-
tors contain an arrow that indicates the direction of current flow for N-channel (into the gate,
and with what is coming into the drain, output to the source) and P-channel (into the source,
and out of the gate and drain) when these transistors are ON.

108

Embedded Hardware Building Blocks and the Embedded Board

@rren t Flow

AAAAAAAAAA OO Grren t Flow
ov TGN
ov
Gate A
v Gate
: A
Drain t’P
M Source Source N)
Y Drain
: . : P P
: v > P

D D
’ @ ’ @
S
N-iannel Hannel

Figure 3-28: JFET N-channel and P-channel schematic symbols

Again, there are other types of transistors (such as unijunction) but essentially the major
differences between all transistors include size (FETs can typically be designed to take up
less space than BJTs, for instance), price (FETs can be cheaper and simpler to manufacture
than BJTs, because they are only controlled via voltage), usage (FETs and unijunctions are
typically used as switches, BJTs in amplification circuits), and so on. In short, transistors are
some of the most critical elements in the design of more complex circuitry on an embedded
board. The next several pages will indicate how they are used.

109

Chapter 3

3.6.3 Building More Complex Circuitry from the Basics: Gates

Transistors that can operate as switches, such as MOSFETs, are operating in one of two
positions at any one time: ON (1) or OFF (0). MOSFETs are implemented in a switched elec-
tronic circuit in which the switch (the transistor) controls the flow of electrons over the wire
by (if an nMOS) being ON (completing the circuit path) or OFF (breaking the circuit path), or
vice-versa if a pMOS. It is because embedded hardware communicates via various combina-
tions of bits (0’s and 1’s) that transistors like the MOSFET are used in circuits that can store
or process bits, since these types of transistors can function as a switch that is either a value
of “0” or “1”. In fact, transistors, along with other electronic components such as diodes and
resistors are the main “building blocks” of more complex types of electronic switching cir-
cuits, called logical circuits or gates. Gates are designed to perform logical binary operations,
such as AND, OR, NOT, NOR, NAND, XOR, and so on. Being able to create logic circuits

is important, because these operations are the basis of all mathematical and logical functions
used by the programmer and processed by the hardware. Reflecting logical operations, gates
are designed to have one or more input(s) and one output, supporting the requirements to
perform logical binary operations. Figures 3-29a and b outline some examples of the truth
tables of some logical binary operations, as well as one of the many possible ways transistors
(MOSFETs are again used here as an example) can build such gates.

AND OR NOT NAND NOR XOR

1|12 |0 In|12|o 1|0 1|12 |0 I1nj12 |0 1|12 |0
0 [0 |O 0 10 |O 0 1 0 |0 1 0 [0 1 0O [0 |0
0O |1 |0 0 1 1 1 0 0 1 1 0 1 0 0 1 1
1 0|0 1 0 1 1 0 1 1 0|0 1 0 1
1 1 1 1 1 1 1 1 0 1 1 0 1 1 0

Figure 3-29a: Truth tables of logical binary operations

110

Embedded Hardware Building Blocks and the Embedded Board

Figure 3-29b: CMOS (MOSFET) gate transistor design examples 517

In the static CMOS (complementary metal-oxide semiconductor) logic method of implementing gates, both
nMOS and pMOS gates are used in the design. (For simplicity and electrical reasons, transistors of the
same polarity are often not mixed, but grouped separately, where transistors of one polarity type pull output
a certain way with some input value, and the other pulls output the other way, given the same input.) The
CMOS method is sequential-based, meaning there are no clocks in the circuit, and that circuit outputs are
based upon all past and current inputs (as opposed to the combinatorial method whose output is based
upon input at some moment in time). Sequential vs. combinatorial gates will be discussed in more detail
later this section. The NOT Gate is simplest to understand, so we start with this example.

**Note: inputs (11 and 12) are inputs to the transistor gates. For P-channel (pMOS) enhancement transis-
tors, the transistor is ON when gate is OFF, whereas for the N-channel (nMOS) enhancement transistor
the transistor is ON when gate is ON.

NOT Gate

P Schematic
1 ' } o) Symbol

0, nMOS T2 is OFF -- pMOS T1 is ON -- and with Vpp will pull O =1.
1, pMOS T1 is OFF -- nMOS T2 is ON -- but Vss/Gnd il pull O =0.

111

Chapter 3

Figure 3-29b: CMOS (MOSFET) gate transistor design examples 5% (continued)

NOR Gate
Vop
1
2
Schematic
Symbol
11=0,12=0thenO=1 i H 11=0,12=1 then 0=0
: WhenIl=0 pMOS T2 is ON (pulled up by Vpp) — nMOS T4 is OFF i WhenIl =0 pMOS T2 is ON (pulled up by Vpp) — nMOS T4 is OFF
12=0 nMOS T1 is OFF -- pMOS T3 is ON(pulled up by Vpp) H 12=1 nMOS T1 is ON but pulled to 0 by Vss/GND -- pMOS T3 is OFF
O determined by T1, T3, or T4 being ON - so O =1 since T3 is ON O determined by T1, T3, or T4 being ON — so O =0 since no transistors pulled ON

11=1,12=0then 0=0
When Il =1 pMOS T2 is OFF —nMOS T4 is ON but pulled to 0 by Vss/GND
12 =0 nMOS T1 is OFF -- pMOS T3 is ON(pulled up by Vpp)
O determined by T1, T3, or T4 being ON - so O =0 since no transistors pulled ON

Il=1,12=1then0=0
When Il =1 pMOS T2 is OFF —nMOS T4 is ON but pulled to 0 by Vss/GND
12=1 nMOS T1 is ON but pulled to 0 by Vss/GND -- pMOS T3 is OFF
O determined by T1, T3, or T4 being ON - so O =0 since no transistors pulled ON

OR Gate

Schematic
Symbol

Note : This is circuit is a NOR gate with an inverter at the end of circuit.(TS and T6)

I[1=0,12=0thenO=0 11=0,12=1thenO=1

11 (0) “NOR” 12 (0) resulted in O=1, thus inverted is O=0 11(0) “NOR” 12 (1) Resulted in O=0, thus inverted is O = 1
I1=1,12=0thenO =1 I1=1,12=1thenO=1
11(1) “NOR” 12 (0) Resulted in O=0, thus inverted is O = 1 ¢ I1(1) “NOR” 12 (1) Resulted in O=0, thus inverted is O = 1

112

Embedded Hardware Building Blocks and the Embedded Board

Figure 3-29b: CMOS (MOSFET) gate transistor design examples 5% (continued)

NAND Gate

Schematic]
fo) Symbol]

Vss
11=0,12=0thenO=1 i 11=0,12=1thenO=1
WhenI1 =0 pMOS T1 is ON (pulled up by Vpp) — nMOS T3 is OFF i ¢ WhenIl =0 pMOS TI is ON (pulled up by Vpp) — nMOS T3 is OFF
12 =0 nMOS T4 is OFF -- pMOS T2 is ON(pulled up by Vpp) 12=1 nMOS T4 is ON but pulled to 0 by Vss/GND -- pMOS T2 is OFF
O determined by T1, T2, or T3 being ON — so O = 1 since T1 and T2 is ON : O determined by T1, T2, or T3 being ON - so O = I since T1 is ON

I1=1,12=0thenO=1
WhenIl =1 pMOS T1is OFF —nMOS T3 is ON but pulled to 0 by Vss/GND
12 =0 nMOS T4 is OFF -- pMOS T2 is ON(pulled up by Vpp)
O determined by T1, T2, or T3 being ON —so O = I since T2 is ON

I1=1,12=1 thenO=0
When Il =1 pMOS TI is OFF —nMOS T3 is ON but pulled to 0 by Vss/GND
12 =1 nMOS T4 is ON but pulled to 0 by Vss/GND -- pMOS T2 is OFF
O determined by T1, T2, or T3 being ON —so O = 0 since no transistors pulled ON

AND Gate

Voo

Schematic
Symbol

Note : This is circuit is a NAND gate with an inverter a t the end of circuit.(T5 and T6)

11=0,12=0thenO=0 11=0,12=1thenO0=0

11 (0) “NAND” 12 (0) resulted in O=1, thus inverted is O=0 11(0) “NAND” 12 (1) Resulted in O=1, thus inverted is O = 0
11=1,12=0 then 0=0 I1=1,12=1thenO=1
11(1) “NAND” 12 (0) Resulted in O=1, thus inverted is O = 0 I1(1) “NAND” 12 (1) Resulted in O=0, thus inverted is O = 1

113

Chapter 3

Sequential Logic and the Clock

Logic gates can be combined in many different ways to perform more useful and complex
logic circuits (called sequential logic), such as circuits that have some type of memory. In
order to accomplish this, there must be a sequential series of procedures to be followed to
store and retrieve data at any moment in time. Sequential logic is typically based upon one
of two models: a sequential or combinational circuit design. These models differ in what
triggers their gate(s) into changing state, as well as what the results are of a changed state
(output). All gates exist in some defined “state,” which is defined as the current values associ-
ated with the gate, as well as any behavior associated with the gate when the values change.

Sequential Circuit
Inputs

I1
12

Output

Figure 3-30: Sequential circuit diagram

As shown in Figure 3-30, sequential circuits provide output that can be based upon current
input values, as well as previous input and output values in a feedback loop. Sequential
circuits can change states synchronously or asynchronously depending on the circuit. Asyn-
chronous sequential circuits change states only when the inputs change. Synchronous
sequential circuits change states based upon a clock signal generated by a clock generator
connected to the circuit.

Ring F lling e >
g g r==-=-=a -——--

T m

Figure 3-31: Clock signal of synchronous sequential circuits

Almost every embedded board has an oscillator, a circuit whose sole purpose is generating

a repetitive signal of some type. Digital clock generators, or simply clocks, are oscillators
that generate signals with a square waveform (see Figure 3-31). Different components may
require oscillators that generate signals of various waveforms, such as sinusoidal, pulsed, saw
tooth, and so on to drive them. In the case of components driven by a digital clock, it is the
square waveform. The waveform forms a square, because the clock signal is a logical signal
that continuously changes from 0 to 1 or 1 to 0. The output of the synchronous sequential
circuit is synchronized with that clock.

114

Embedded Hardware Building Blocks and the Embedded Board

Commonly used sequential circuits (synchronous and asynchronous) are multivibrators, logic
circuits designed so that one or more of its outputs are fed back as input. The subtypes of
multivibrators—astable, monostable or bistable—are based upon the states in which they hold
stable. Monostable (or oneshot) multivibrators are circuits that have only one stable state,

and produce one output in response to some input. The bistable multivibrator has two stable
states (0 or 1), and can remain in either state indefinitely, whereas the astable multivibra-

tor has no state in which it can hold stable. Latches are examples of bistable multivibrators.
Latches are multivibrators, because signals from the output are fed back into inputs, and they
are bistable because they have only one of two possible output states they can hold stable at: 0
or 1. Latches come in several different subtypes (S-R, Gated S-R, D Latch, etc.). Figure 3-32
demonstrates how the basic logical gates are combined to make different types of latches.

@ Q@

Gated S-R NOR Latch Gated D Latch

Figure 3-32: Latches B-%

One of the most commonly used types of latches in processors and memory circuitry is the
flip-flop. Flip-flops are sequential circuits that derived their name because they function by
alternating (flip-flopping) between both states (0 and 1), and the output is then switched (from
0-to-1 or from 1-to-0, for example). There are several types of flip-flops, but all essentially
fall under either the asynchronous or synchronous categories. Flip-flops, and most sequential
logic, can be made from a variety of different gate combinations, all achieving the same type
of results. Figure 3-33 is an example of a synchronous flip-flop, specifically an edge-triggered
D flip-flop. This type of flip-flop changes state on the rising edge or falling edge of a square-
wave enable signal—in other words, it only changes states, thus changing the output, when it
receives a trigger from a clock.

115

Chapter 3

Flip-Flop

PRE G § Next State

Initial or Current
State

Combinational Logic
Inputs «eeeedd e » Outputs

@

B

Figure 3-33: D flip-flop diagram 54

Like the sequential circuit, combinational circuits can have one or more input(s) and only
one output. However, both models primarily differ in that a combinatorial circuit’s output is
dependent only on inputs applied at that instant, as a function of time, and “no” past condi-
tions. A sequential circuit’s output, on the other hand, can be based upon previous outputs
being fed back into the input, for instance. Figure 3-34 shows an example of a combinational
circuit, which is essentially a circuit with no feedback loop.

11120)
Figure 3-34:

_fz _§Z _§Z Combinational circuit (no feedback loop) 5

All of the various logic gates introduced in the last sections, along with the other electronic
devices discussed in this chapter so far, are the building blocks of more complex circuits that
implement everything from the storage of data in memory to the mathematical computations
performed on data within a processor. Memory and processors are all inherently complex
circuits, explicitly integrated circuits (ICs).

116

Embedded Hardware Building Blocks and the Embedded Board

3.7 Putting It All Together: The Integrated Circuit (IC)

Gates, along with the other electronic devices that can be located on a circuit, can be com-
pacted to form a single device, called an integrated circuit (IC). ICs, also referred to as chips,
are usually classified into groups according to the number of transistors and other electronic
components they contain, as follows:

SSI (small scale integration) containing up to 100 electronic components per chip.

MSI (medium scale integration) containing between 100-3,000 electronic compo-
nents per chip.

LSI (large scale integration) containing 3,000-100,000 electronic components per
chip.

VLSI (very large scale integration) containing between 100,000-1,000,000 electronic
components per chip.

ULSI (ultra large scale integration) containing over 1,000,000 electronic components
per chip.

ICs are physically enclosed in a variety of packages that includes SIP, DIP, flat pack, and oth-
ers. (See Figure 3-35.) They basically appear as boxes with pins protruding from the body of
the box. The pins connect the IC to the rest of the board.

)
T T
DIP

SIP

flat pack metal can

Figure 3-35: IC packages

117

Chapter 3

Physically packaging so many electronic components in an IC has its advantages as well as
drawbacks. These include:

Size. ICs are much more compact than their discrete counterparts, allowing for
smaller and more advanced designs.

Speed. The buses interconnecting the various IC components are much, much smaller
(and thus faster) than on a circuit with the equivalent discrete parts.

Power. ICs typically consume much less power than their discrete counterparts.

Reliability. Packaging typically protects IC components from interference (dirt, heat,
corrosion, etc.) far better than if these components were located discretely on a board.

Debugging. It is usually simpler to replace one IC than try to track down one compo-
nent that failed among 100,000 (for example) components.

Usability. Not all components can be put into an IC, especially those components
that generate a large amount of heat, such as higher value inductors or high-powered
amplifiers.

In short, ICs are the master processors, slave processors, and memory chips located on
embedded boards (see Figure 3-36a through e).

- D - Digital & B - e Master Processor: Geode
< Adress/Ghtrol AMD Geode™ GX533@1.1w (x86)
SDK GX 533@1.1W mlog®& B .
< Beesr g—> e Memory: ROM (BIOS is
233V located in), SDRAM
1 1 e Input/Output Devices:
CS5535, Audio Codec...
\
14 MHz & | ook System FS2T& 33 MHz Beme ¢ e Buses: LPC, PCI
T Generator @htrol Ehder < > Ghtrolle r
A
\d \d
SJD(:—;;) < > AMD Geode™
(85535 IDElash &t | |pgpder
Ine Ou Companion | (@4-pin, 2 mm)
Adio Device
thdphone Out Gdec - > BC
Microphone In ~ ~€—— 1 \ BSs
ms P
GROs Serial Data g ®hder
Ber Bito n >

Figure 3-36a: AMD/National Semiconductor x86 reference board "
© 2004 Advanced Micro Devices, Inc. Reprinted with permission.

118

Embedded Hardware Building Blocks and the Embedded Board

ICs
1IEEE 1284, .
Shared RAM., e Master Processor: Net+ARM
Register- ARM7
_ i _ i Mod
10Base-T Thinnet 10/100Base-T Serial ode o Memory: Flash, RAM
e Input/Output Devices: 10Base-T
| OBaseT] Thi 100BaseT RS232 16646 transceiver, Thinnet transceiver,
ase- innet ase- .
Xevr Xevr Xevr Xevr Xevr IOOBas.e-T transceiver, RS-232
transceiver, 16646 transceiver, etc.
Ethernet MII
NET+ARM Chip
System Bus 8/16/32
RAM Memo Application
Flash Memory Ty Specific
256Kx32 Hardware
Figure 3-36b: Net Silicon ARM?7 reference board 5%
(3 ICs
cp e Master Processor: Encore M3
core 5 |, (Au1500-based) processor
SOM M 23 | CE—

+ Memory: Flash, SODIMM
Flash Memory R Floppy/ e Input/Output Devices: Super /O,
Memory Interface R rallel Brt etc.

SouthBridge
¢ > Super /D Mouse Brts
Bripheral
| —»] Interface Brt
(mo S
~—

Figure 3-36¢: Ampro MIPS reference board 5

119

Chapter 3

Motorola MPC8245
(N\

SODIMM
Flash
Memory

VIA VT82C686B
e N

Serial
Debug Port «—

JTA

Power
Supply

ICs
e Master Processor: MPC8245
e Memory: Flash, SODIMM

¢ Input/Output Devices: Super 1/0,
82559 Transceiver, etc.

IDE Interface
Floppy/
Parallel Port
Keyboard &
Mouse Ports
Ir]
| Port
Serial Ports (2)
<«—>| USB Ports (4)

CPU
PowerPC™
603e core PCI
< Bus > Super 1/0
& Controller
(Southbridge)
Memory PCI
Controller | Bridge
—
Miscellaneous
Ethernet Port
Intel 82559ER
Clock
33 MHz

PCI Interface

Figure 3-36d: Ampro PowerPC reference board 54
Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Video Processor

A

Audio Processor

A

12C Bus

NVM

A

Tuner

A

M37273

ICs

e Master Processor: M37273 (8-bit) TV micro-
controller

e Memory: NVM

¢ Input/Output Devices: Video processor, audio
processor, tuner, etc.

Figure 3-36e: Mitsubishi analog TV reference board

120

Embedded Hardware Building Blocks and the Embedded Board

3.8 Summary

The purpose of this chapter was to discuss the major functional hardware components of an
embedded board. These components were defined as the master processor, memory, I/0, and
buses—the basic components that make up the von Neumann model. The passive and active
electrical elements that make up the von Neumann components, such as resistors, capacitors,
diodes, and transistors, were also discussed in this chapter. It was demonstrated how these
basic components can be used to build more complex circuitry, such as gates, flip-flops, and
ICs, that can be integrated onto an embedded board. Finally, the importance of and how to
read hardware technical documentation, such as timing diagrams and schematics, was intro-
duced and discussed.

The next chapter, Chapter 4: Embedded Processors, covers the design details of embedded
processors by introducing the different ISA models, as well as how the von Neumann model
is applicable to implementing an ISA in the internal design of a processor.

121

[a]
[b]
[c]

Chapter 3 Problems

What is the von Neumann model?
What are the main elements defined by the von Neumann model?

Given the block diagrams in Figures 3-37a and b, and data sheet information on the
accompanying CD under Chapter 3, files “ePMC-PPC” and “sbcARM?7”, identify
where the major elements in this diagram would fall relative to the von Neumann
model.

= = [optional]= =

' \
1 1
1 1
1 2MB L2 Cache | 1 2MB L2 Cache
1 1
1 1
1 A 1 A
! 64 ! 64
1 1
1 1
1 . 1 .
! P1 ! PO
: MPC7410 : MPC7410
f Altivec f Altivec
1 1
y Y
L SO —_——
64-bit 60x Bus Solano
3 Interface
32 32
SDRAM L& Mpc 107 : 3
S12MB Solano Solano
Y
Flash 8 o 3] 2 2| 3] of 1
Memory 33 MHz 32-bit
PCI Bus
4 MB . B CDETFGH
(2R 2R 28 2R 2R 2N
v

FMC Connectors

ePMC Connectors

Figure 3-37a: PowerPC board block diagram 513/

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

122

Embedded Hardware Building Blocks and the Embedded Board

Address, Control, Data |

UART |
IR PORT
ARM7 UART(0.1] COM PORTS Com 1
RS232
$3C45108
ARMTTDMI
N
._§ Processor Mt LEVELONE Com2
s 97210/100Mb/s
S Ethernet LAN Controller
g g ENET
g 3 PORT A
5 2 HDLC PORTS
3 2 RS232RS48S
3
HDLC
16MB SDRAM Port A
33V-PCI00
(2-4MBX 16
XData [0.32] g § HDLC
= 3 E Port B
=] =C — Switches
s -
- =
I _ = (2) 29LV800BT =) LCD
o £ = 2MB Flash OR S Misc. Logic | Dishay =z
o s = S Intel StrataFlash 2 EPM 7064A E-4 3
& S a 3 16MB Flash & g
= = (2) 28F64013A E 5
o
1 z
< Buffered Address [0..7]
o 5 xxxzsssgfmm z
5 o i Buffered Data [0.7] g
= § Buffered Address [0..21] =
B = USER
10
Power Reset
INPUT 45V
33V Clocks Reset
- Config.
REGULATOR

Figure 3-37b: ARM board block diagram 514

[a] Given the simple flashlight shown in Figure 3-38, draw a corresponding schematic
diagram.

Flashlight

Battery
_ + 11 Bulb

Switch

Y

Figure 3-38: Simple flashlight 571

123

Chapter 3

[b] Read the schematic diagram in Figure 3-39, and identify the symbols in the diagram.

o1 DBOM o CUST.LEDS CPU LEDS 73 RMS
- A M2
RS232 RS232 | RSARS 33v b X
T g
NS S __PORTA RiAs sweorez| 8 8 G| g [SR®
IS0 l D31:16... PORTE 64K, RI92xR
PORTC A ot
GPIO(A4) ,
(=81 GPIO RESETPHY(BY) Y
PlO_S0FINS
2 OR,
svooaav g emvmr o (]
Bt | LXT971 PHY
FORTC 10100 BTX
SW3, SW4, SWS, SW6
ADDR. LINE BOOTSTRAP! BGA
18
DIP SWITCHES o IRV o
ac = 25MHz
SW4-5 SW4-6 I_1 [] FJ
RST- RESET PR,
FLASH 33v
. LS
BGA/PQFP. 5 ITAG C!
DEBUG
> :
©S0 FLASH MEMORY, x16(1-8MB) o x32(2-16MB) PLUEXF)
XTAL2]
STANDARD. = x16(1MR) or x32(2MB) [1 is4a0mus
BUFFERS —
€SI SDRAM MEMORY, x1 68 MB) ar x32(16MB) SIGNALS . - OSCILLATOR
STANDARD = SAME <
i 44.2368MHz
€S3 PARALLEL EF, xB2-32KR) e ing 1o [3V
SO CLK
STANDARD = 8K x §
PROTOTYPING AREA - (2)SIOCI6,
(4)SOT23-6, (8)12 06, (1)MINIDIP-E,
(5) MICTOR EMILA TOR HEADERS - 38 PIN GND & POWER POIN TS. "1
e "

Figure 3-39: Schematic diagram example 57

3. [a] What are the basic materials that all components on an embedded board are
composed of?

[b] What are the major differences between these materials?
[c] Give two examples of each type of material.

4. Finish the sentence: A wire is:
A. not an insulator.
B. aconductor.
C. asemiconductor.
D. Both A and B.
E. None of the above.

5. [T/F] A surplus of electrons exists in a P-type semiconductor.

6. [a] Whatis the difference between a passive circuit element and an active circuit
element?

[b] Name three examples of each.

7. [a] Define and explain the various properties of the fixed resistor in Figure 3-40 by
reading its color-coded bands and referencing Tables 3-3 a, b, ¢, and d.
[b] Calculate its resistance.

124

Embedded Hardware Building Blocks and the Embedded Board

Color of Digits Multiplier Color of Temperature
Band Band coefficient
Black 0 X1 Brown 100 ppm
Brown 1 x10 Red 50 ppm
Red 2 x100 Orange 15 ppm
Orange 3 x1K Yellow 25 ppm
Yellow 4 x10K
Green 5 x100K fable 3-3b:
Temperature coefficient 3¢
Blue 6 xX1M
Purple 7 x10M
Grey 8 x100M
White 9 x1000M
Silver - x0.01
Gold - x0.1
Table 3-3a: Resistor color code digits
and multiplier table 3¢ Color of Tolerance
Band (%)
Color of Reliability Silver = 10%
Band Level (%) Gold + 5%
Brown 1% Brown +1%
Red 0.1% Red +2%
Orange 0.01% Green +0.5%
Yellow 0.001% Blue +0.25%
Purple +0.1%
Table 3-3c:
Reliability level (%1000 HR) 5 Table 3-3d: Tolerance 7%

Orange oo
Gold

Figure 3-40: Brown
Fixed resistor Green

Red ... :

¥ Digit i PP F
2" Digit ..
Multiplier -
Tolerance -
Reliability

125

Chapter 3

8. Where do capacitors store energy?
A. In magnetic fields.
B. Inelectric fields.
D. None of the above.
E. All of the above.

9. [a] Where do inductors store energy?
[b] What happens to an inductor when the current stream changes?

10. What feature does not affect the inductance of a wire?
The diameter of the wire.

The diameter of the coils.

The number of individual coils.

The type of material the wire is made of.

The overall length of the coiled wire.

None of the above.

monNww»

11. What is the PN junction?

12. [a] Whatis an LED?
[b] How does an LED work?

13. [a] What is a transistor?
[b] What is a transistor made of?

14. [T/F] The NPN-BJT transistor shown in Figure 3-41 is OFF.

\& +V

Collector
PN Junction forward-biased

Figure 3-41: NPN BJT transistor

Emitter

126

Embedded Hardware Building Blocks and the Embedded Board

15. Which figure, of Figures 3-42a through d, shows a P-channel depletion MOSFET that is
ON?

Gate Gate

Drain b P Source N
Source
| | N

Drain

Depletion

Region _
Figure 3-42a: MOSFET 1 Figure 3-42b: MOSFET 2
+V
Vi
Gate
Vi
oV S N
ource b \—‘ Drain
Gate Drain P P
Source ,—| |
EE R EN Bl
P p—
Dep etion
R gon
Figure 3-42c: MOSFET 3 Figure 3-42d: MOSFET 4

16. [a] What are gates?
[b] What are gates typically designed to perform?
[c] Draw the truth tables for the logical binary operations NOT, NAND, and AND.

17. [a] Draw and describe a NOT gate built from CMOS (MOSFET) transistors.
[b] Draw and describe a NAND gate built from CMOS (MOSFET) transistors.

[c] Draw and describe an AND gate built from CMOS (MOSFET) transistors.
[Hint: this circuit is a NAND gate with an inverter at the end of the circuit.]

18. What is a flip-flop?

127

Chapter 3

19 [a] Whatis an IC?
[b] Name and describe the classes of ICs according to the number of electronic
components they contain.

20. Identify at least five ICs in Figures 3-37a and b under problem 1 of this section.

128

CHAPTER

Embedded Processors

In This Chapter

What an ISA is and what it defines
Discussion of the internal processor design as related to the von Neumann mode/
Introduction to processor performance

Processors are the main functional units of an embedded board, and are primarily responsible
for processing instructions and data. An electronic device contains at least one master proces-
sor, acting as the central controlling device, and can have additional slave processors that work
with and are controlled by the master processor. These slave processors may either extend the
instruction set of the master processor or act to manage memory, buses, and I/O (input/output)
devices. In the block diagram of an x86 reference board, shown in Figure 4-1, the Atlas STPC
is the master processor, and the super I/O and ethernet controllers are slave processors.

SDRAM 4 ;
CPU M PCI Bus to
(SopiMM) |7 v Core Baseboard
CRT/TIT O | STPC® Allas| 4 » [DEto
Baseboard (Computer N ”| Baseboard
Ina Chip)
Keyboard
& Mouseto ¢ > < > CEOt:ﬁ';:leetr
Baseboard Host-
Peripheral
Serial Ports |4 ; Interface USB (4) to
To Baseboard |- 4 ¢ > Baseboard
_
Internal Bus
: Real Time
Clock (RTC)
Parallel /Floppy A 4
to
Baseboard ' '
Super 1/0 > BIOS
Controller
Infrared to 4)
Baseboard b v

Figure 4-1: Ampro’s Encore 400 board #

129

Chapter 4

As shown in Figure 4-1, embedded boards are designed around the master processor. The
complexity of the master processor usually determines whether it is classified as a micro-
processor or a microcontroller. Traditionally, microprocessors contain a minimal set of
integrated memory and I/O components, whereas microcontrollers have most of the sys-

tem memory and I/O components integrated on the chip. However, keep in mind that these
traditional definitions may not strictly apply to recent processor designs. For example, micro-
processors are increasingly becoming more integrated.

Why Use an Integrated Processor?

While some components, like I/O, may show a decrease in performance when integrated into
a master processor as opposed to remaining a dedicated slave chip, many others show an
increase in performance because they no longer have to deal with the latencies involved with
transmitting data over buses between processors. An integrated processor also simplifies the
entire board design since there are fewer board components, resulting in a board that is simpler
to debug (fewer points of failure at the board level). The power requirements of components
integrated into a chip are typically a lot less than those same components implemented at the
board level. With fewer components and lower power requirements, an integrated processor
may result in a smaller and cheaper board. On the flip side, there is less flexibility in adding,
changing, or removing functionality since components integrated into a processor cannot be
changed as easily as if they had been implemented at the board level.

There are literally hundreds of embedded processors available, and not one of them cur-
rently dominates embedded system designs. Despite the sheer number of available designs,
embedded processors can be separated into various “groups” called architectures. What
differentiates one processor group’s architecture from another is the set of machine code
instructions that the processors within the architecture group can execute. Processors are
considered to be of the same architecture when they can execute the same set of machine
code instructions. Table 4-1 lists some examples of real-world processors and the architecture
families they fall under.

130

Embedded Processors

Table 4-1: Real-world architectures and processors

Architecture Processor Manufacturer

AMD Aulxxx Advanced Micro Devices, ...

ARM ARM7, ARMDO, ... ARM, ...

Cl16X C167CS, C165H, C164(I, ... Infineon, ...

ColdFire 5282, 5272, 5307, 5407, ... Motorola/Freescale, ...

1960 1960 Vmetro, ...

M32/R 32170, 32180, 32182, 32192, ... Renesas/Mitsubishi, ...

M Core MMC2113, MMC2114, ... Motorola/Freescale

MIPS32 R3K, R4K, 5K, 16, ... MTI4kx, IDT, MIPS Technologies, ...

NEC Vr55xx, Vr54xx, Vrd1xx NEC Corporation, ...

PowerPC 82xx, 74xxX,8xX,7XX,6XX,5XX,4XX IBM, Motorola/Freescale, ...

68k 680x0 (68K, 68030, 68040, 68060, ...), | Motorola/Freescale, ...
683xx

SuperH (SH) SH3 (7702,7707, 7708,7709), SH4 Hitachi, ...
(7750)

SHARC SHARC Analog Devices, Transtech DSP,

Radstone, ...

strongARM strongARM Intel, ...

SPARC UltraSPARC 11 Sun Microsystems, ...

TMS320C6xxx TMS320C6xxx Texas Instruments, ...

x86 X86 [386,486,Pentium (11, III, Intel, Transmeta, National
1V)...] Semiconductor, Atlas, ...

TriCore TriCorel, TriCore2, ... Infineon, ...

4.1 ISA Architecture Models

The features that are built into an architecture’s instruction set are commonly referred to as
the Instruction Set Architecture or ISA. The ISA defines such features as the operations that
can be used by programmers to create programs for that architecture, the operands (data) that
are accepted and processed by an architecture, storage, addressing modes used to gain access
to and process operands, and the handling of interrupts. These features are described in more
detail below, because an ISA implementation is a determining factor in defining important
characteristics of an embedded design, such as performance, design time, available function-
ality, and cost.

131

Chapter 4

Operations

Operations are made up of one or more instructions that execute certain commands. (Note
that operations are commonly referred to simply as instructions.) Different processors can
execute the exact same operations using a different number and different types of instruc-
tions. An ISA typically defines the types and formats of operations.

Types of Operations

Operations are the functions that can be performed on the data, and they typically include
computations (math operations), movement (moving data from one memory location/reg-
ister to another), branches (conditional/unconditional moves to another area of code to
process), input/output operations (data transmitted between I/O components and master
processor), and context switching operations (where location register information is
temporarily stored when switching to some routine to be executed and after execution, by
the recovery of the temporarily stored information, there is a switch back to executing the
original instruction stream).

The instruction set on a popular lower-end processor, the 8051, includes just over 100
instructions for math, data transfer, bit variable manipulation, logical operations, branch
flow and control, and so on. In comparison, a higher end MPC823 (Motorola/Freescale
PowerPC) has an instruction set a little larger than that of the 8051, but with many of
the same types of operations contained in the 8051 set along with an additional handful,
including integer operations/floating-point (math) operations, load and store operations,
branch and flow control operations, processor control operations, memory synchroni-
zation operations, PowerPC VEA operations, and so on. Figure 4-2a lists examples of
common operations defined in an ISA.

Math and Logical Shift/Rotate Load/Store Compare Instructions...
Move Instructions...
Add Logical Shift Right Stack PUSH Branch Instructions ...
Subtract Logical Shift Left Stack POP
Multiply Rotate Right Load
Divide Rotate Left Store
AND | |
OR
XOR

Figure 4-2a: Sample ISA operations

In short, different processors can have similar types of operations, but usually have dif-
ferent overall instruction sets. As mentioned above, what is also important to note is
that different architectures can have operations with the same purpose (add, subtract,
compare, etc.), but the operations may have different names or internally operate much
differently, as seen in Figures 4-2b and c.

132

Embedded Processors

CMP crfD,L,rA,rB ...

a« EXTS(rA) Figure 4-2b: '
b« EXTS(E) MPC823 compare operation 2
if a<b then ¢ - 0b100

Copyright of Freescale Semiconductor, Inc.

Ise if a>b then ¢ < 0b010 jssi
else if a>b then ¢ 2004. Used by permission.

else ¢ «<— 0b001
CR[4 * crfD-4 *crfD +3] < ¢ || XER[SO}

C.cond.Sfs, ft
C.cond.D fs, ft ...

if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or The MIPS32/MIPS 1 compare
QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then

less < false operation is a floating point
equal « false operation. The value in floating
unordered ¢ true 5 o .

if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or point register fs is compared to
(cond3 and (QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft,fmt)))) then . . .
SignalException (InvalidOperation) the value mﬂoatmg pOll’lt reg-
ellldif ister ft. The MIPS I architecture
else . . .
less «ValueFPR(fs, fmt) <fmt ValueFPR(ft, fmt) deﬁnes a smgleﬂoatmg point
equal <« ValueFPR(fs, fmt) =fmt ValueFPR(ft, fmt) condition Code, implemented
unordered ¢« false 0,0
endif as the coprocessor 1 condition
condition ¢« (cond2 and less) or (condl and equal) signal (Cplcond) and the C bit in
or (cond0 and unordered) .
SetFPConditionCode (cc, condition) the FP Control/Status register.

Figure 4-2c: MIPS32/MIPS | — compare operation I

Operation Formats

The format of an operation is the actual number and combination of bits (1’s and 0’s) that
represent the operation, and is commonly referred to as the operation code or opcode.
MPC823 opcodes, for instance, are structured the same and are all 6 bits long (0-63 deci-
mal) (see Figure 4-3a). MIPS32/MIPS I opcodes are also 6 bits long, but the opcode can
vary as to where it is located, as shown in Figure 4-3b. An architecture, like the SA-1100
which is based upon the ARM v4 Instruction Set, can have several instruction set formats
depending on the type of operation being performed (see Figure 4-3c).

| r_,L [] Reserved
Cm)'w l 31 [crfD [0[L[A [B ‘ 0000000000 ‘0 l
0 56 89 1011 1516 20 21 30 31

Figure 4-3a: MPC823 “CMP” operation size 4

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

133

Chapter 4

C conds fs, ft ADD rd, rs,rt
—
—
31 26 25 2120 16 15 1110 8 76 5 43 0 31 26 25 2120 1615 1110 65 0
COP1 Al FC SPECIAL 0 ADD
fmt ft fs cc 0 cond rs rt rd
010001 of 1 000000 00000 100000
6 5 5 5 3 11 2 4 6 5 5 5 5 6

Figure 4-3b: MIPS32/MIPS | “CMP” and “ADD" operation sizes and locations 4%

Instruction Type 3 2827 : 1615 87 0
""""""""" Data Processingl / PSR Transfer | cond |0 o‘ | ‘ Opcode |S| Rn Rd Operand2
Multiply | cond |000000[AlS| Rd Rn Rs [1001| Rm
Long Multiply | cond | 0000 1/UA'S RdHi | Rdlo Rs |[1001] Rm
Swap | cond | 00010/B00| Rn Rd |0000/1001 Rm
Load & Store Byte/Word | cond | 01| 1|P[U|BW|L| Bn Rd Offset
Halfword Transfer : Immediate Offset | cong 100/PlU/SW|L| Rn Register List
Halfword Transfer : Register Offset | cond | 00 o|P|u|1jw/L| Bn Rd | Offset1 |1|S|H|1|Offset2
Branch | cond | 00 o|P|Ujojw|L| Rn Rd |00 00[1|S|H[1| RAm
Branch Exchange | cond | 10 1]L Offset
Coprocessor Data Transfer | cond |0001[0010/111 1111 1/1111/0001| Bn
Coprocessor Data Operation | cond |1 1 o[p[u[nw[L] Rn | cRd | cPnum Offset
Coprocessor Register Transfer | cond |11 10| Opt CRn | CRd | CPNum| Op2 |0| CRm
v Software Interrupt | cond |1 110 Op1‘L CRn Rd | GPNum| Op2 |1| CRm
Cond 1111 SWI Number

1 - Data Processing OpCodes

0000 = AND - Rd: = Op1 AND Op2

0001 = EOR - Rd: = Op1 EOR Op2

0010 = SUR - Rd: = Op1 - Op2

0011 = RSB - Rd: = Op2 - Opf

0100 = ADD - Rd: = Op1 + Op2

0101 = ADC - Rd: = Op1 + Op2 + C

0110 = SEC - Rd: = Op2 - Op1 + C -1

0111 = RSC - Rd: = Op2 - Op1 + C — 1

1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORR - Rd: = Op1 OR Op2

1101 = MOV - Rd: = Op2

1110 = BIC - Rd: = Op1 AND NOT Op2

1111 = MVN - Rd: = NOT Op2

Figure 4-3c: SA-1100 instruction ©-*1

Operands

Operands are the data that operations manipulate. An ISA defines the types and for-
mats of operands for a particular architecture. For example, in the case of the MPC823
(Motorola/Freescale PowerPC), SA-1110 (Intel StrongARM), and many other architec-
tures, the ISA defines simple operand types of bytes (8 bits), halfwords (16 bits), and
words (32 bits). More complex data types such as integers, characters, or floating point
are based on the simple types shown in Figure 4-4.

134

Embedded Processors

byte
0 15
halfword

word

Figure 4-4: Simple operand types

An ISA also defines the operand formats (how the data looks) that a particular architec-
ture can support, such as binary, decimal and hexadecimal. See Figure 4-5 for an example
showing how an architecture can support various operand formats.

MOV registerX, 10d s Move decimal value 10 into register X
MOV registerX, $0Ah ; Move hexadecimal value A(decimal 10) to register X
MOV registerX, 00001010b s Move binary value 00001010 (decimal 10) to register X

Figure 4-5: Operand formats pseudocode example

Storage

The ISA specifies the features of the programmable storage used to store the data being

operated on, primarily:

A. The organization of memory used to store operands. Memory is simply an array
of programmable storage, like that shown in Figure 4-6, that stores data, including
operations, operands, and so on.

The indices of this array are locations referred to as memory addresses, where each

location is a unit of memory that can be addressed separately. The actual physical or
virtual range of addresses available to a processor is referred to as the address space.

An ISA defines specific characteristics of the address space, such as whether it is:

Linear. A linear address space is one in which specific memory locations are rep-
resented incrementally, typically starting at “0” thru 2!, where N is the address
width in bits.

135

Chapter 4

CE

A Ay Ao
Address Decoder . Memory Cell
gl(:l{ :l(ROM Matrix
D
L L
D_ 1] I
:>_ 1] I

3-state output
buffers

XN

R

7 ;7 77 77 77 77 ;7

Dy

De

Ds Dy D3 D> Dy Do

Figure 4-6: Block diagram of memory array ¢

136

Embedded Processors

Segmented. A segmented address space is a portion of memory that is divided
into sections called segments. Specific memory locations can only be accessed by
specifying a segment identifier, a segment number that can be explicitly defined
or implicitly obtained from a register, and specifying the offset within a specific
segment within the segmented address space.

The offset within the segment contains a base address and a limit, which map to
another portion of memory that is set up as a linear address space. If the offset is
less than or equal to the limit, the offset is added to the base address, giving the
unsegmented address within the linear address space.

Containing any special address regions.
Limited in any way.

An important note regarding ISAs and memory is that different ISAs not only define
where data is stored, but also how data is stored in memory—specifically in what
order the bits (or bytes) that make up the data is stored, or byte ordering. The two
byte-ordering approaches are big-endian, in which the most significant byte or bit is
stored first, and little-endian, in which the least significant bit or byte is stored first.

For example:
68000 and SPARC are big-endian
x86 is little-endian

ARM, MIPS and PowerPC can be configured as either big-endian or little-endian
using a bit in their machine state registers

. Register Set

A register is simply fast programmable memory normally used to store operands

that are immediately or frequently used. A processor’s set of registers is commonly
referred to as the register set or the register file. Different processors have differ-

ent register sets, and the number of registers in their sets vary between very few to
several hundred (even over a thousand). For example, the SA-1110 register set has
37 32-bit registers, whereas the MPC823, on the other hand, has about a few hundred
registers (general-purpose, special purpose, floating point registers, etc.).

. How Registers Are Used

An ISA defines which registers can be used for what transactions, such as special
purpose, floating point, and which can be used by the programmer in a general fash-
ion (general purpose registers).

137

Chapter 4

As a final note on registers, one of many ways processors can be referenced is
according to the size (in bits) of data that can be processed and the size (in bits) of
the memory space that can be addressed in a single instruction by that processor.
This specifically relates back to the basic building block of registers, the flip-flop, but
this will be discussed in more detail in Section 4.2.

Commonly used embedded processors support 4-bit, 8-bit, 16-bit, 32-bit, and/or
64-bit processing, as shown in Table 4-2. Some processors can process larger
amounts of data and can access larger memory spaces in a single instruction, such
as 128-bit architectures, but they are not commonly used in embedded designs.

Table 4-2: “x-bit” architecture examples

“x"-Bit | Architecture
4 Intel 4004, ...
8 Mitsubishi M37273, 8051, 68HCOS, Intel
8008/8080/8086, ...
16 ST ST10, TI MSP430, Intel 8086/286, ...
32 68K, PowerPC, ARM, x86 (386+), MIPS32, ...
Addressing Modes

Addressing modes define how the processor can access operand storage. In fact, the usage
of registers is partly determined by the ISA’s Memory Addressing Modes. The two most
common types of addressing mode models are the:

Load-Store Architecture, which only allows operations to process data in registers,
not anywhere else in memory. For example, the PowerPC architecture has only one
addressing mode for load and store instructions: register plus displacement (support-
ing register indirect with immediate index, register indirect with index, etc.).

Register-Memory Architecture, which allows operations to be processed both within
registers and other types of memory. Intel’s 1960 Jx processor is an example of an ad-
dressing mode architecture that is based upon the register-memory model (supporting
absolute, register indirect, etc.).

Interrupts and Exception Handling

Interrupts (also referred to as exceptions or traps depending on the type) are mecha-
nisms that stop the standard flow of the program in order to execute another set of code
in response to some event, such as problems with the hardware, resets, and so forth. The
ISA defines what if any type of hardware support a processor has for interrupts. (Note:
because of their complexity, interrupts will be discussed in more detail in Section 4.2.
later in this chapter.)

138

Embedded Processors

There are several different ISA models that architectures are based upon, each with their
own definitions for the various features. The most commonly implemented ISA models are
application-specific, general purpose, instruction-level parallel, or some hybrid combination
of these three ISAs.

4.1.1 Application-Specific ISA Models

Application-specific ISA models define processors that are intended for specific embedded
applications, such as processors made only for TVs. There are several types of application-
specific ISA models implemented in embedded processors, the most common models being:

Controller Model

The Controller ISA is implemented in processors that are not required to perform
complex data manipulation, such as video and audio processors that are used as slave
processors on a TV board, for example (see Figure 4-7).

»»»»»»»»»»»»»» > Video Processor |«

--------------- > Audio Processor

Controller ISA 2
PR > FCBus | 37273
Architecture :

NVM |«

............... > Tuner |«

Figure 4-7: Analog TV board example with controller ISA implementations

Datapath Model

The Datapath ISA is implemented in processors whose purpose is to repeatedly
perform fixed computations on different sets of data, a common example being digital
signal processors (DSPs), shown in Figure 4-8.

139

Chapter 4

Analog Baseband RF Section Antenna

Microphone

L Signal
PSK 1gna
Codec | — MQo dulator] | RF Conditioning
Speaker
Amplifier Neg
Supply
Keyboard ARM
PA Control Control IrDA
Display —_I‘ !
Battery
— Vi n oV
— Analog Digital
Battery/ Te%np — Section Section
Monitor — EN EN
T Power Management Integrated Power Supplies

Figure 4-8: Board example with datapath ISA implementation—digital cellphone #”!

Finite State Machine with Datapath (FSMD) Model

The FSMD ISA is an implementation based upon a combination of the Datapath

ISA and the Controller ISA for processors that are not required to perform complex
data manipulation and must repeatedly perform fixed computations on different sets
of data. Common examples of an FSMD implementation are application-specific
integrated circuits (ASICs) shown in Figure 4-9, programmable logic devices (PLDs),
and field-programmable gate-arrays (FPGAs, which are essentially more complex
PLDs).

DATA
SDRAM] dom/
— AF

ADDR

“DATA MPEG —
DATA ASIC o Sensor

Controller

ADDR

<>
-
<>
-
-
-

F

BB
Memory
Card
Flash
Buttons

1T
Speakers
Mics

Figure 4-9: Board example with FSMD ISA implementation—solid-state digital camcorder ¥

140

Embedded Processors

Java Virtual Machine (JVM) Model

The JVM ISA is based upon one of the Java Virtual Machine standards discussed in
Chapter 2, Sun Microsystem’s Java Language. As described in Chapter 2, real-world
JVMs can be implemented in an embedded system via hardware, such as in alile’s
aj-80 and aj-100 processors, for example (Figure 4-10).

GPIO Headers SPI Header

Touch

Screen <+—— 1;‘11 I\;IIB
Controller as
Memory
50-Pin LCD
LCD > 5 E——
Connector Controller <~— | MB
SRAM

10Base-T
Ethernet <——*
Controller

g

[|
LI

2 x RS-232

Figure 4-10: JVM ISA implementation example “°

4.1.2 General-Purpose ISA models

General-purpose ISA models are typically implemented in processors targeted to be used in
a wide variety of systems, rather than only in specific types of embedded systems. The most
common types of general-purpose ISA architectures implemented in embedded processors

are:

Complex Instruction Set Computing (CISC) Model

The CISC ISA, as its name implies, defines complex operations made up of several
instructions. Common examples of architectures that implement a CISC ISA are
Intel’s x86 and Motorola/Freescale’s 68000 families of processors.

141

Chapter 4

Data Digital RGB
DDR | = - TFT
Address/Control
fgﬁ‘:f‘: - AMD Geode™
or SDCLKs GX 533@1.1W Analog RGB
1281x16) |[® Processor > CRT
__ PCI33V
A A
\
L | Clock .
1MH z &= Generator System FS2 JTAG B 33 MHz Ethernet
[Control Header < Controller
A
\/ \
- -
BB Ports - >
o [AMD Geode™
CS5535 IDE/Flash Port | IpE Header
Line © t Companion " @2 mm)
Adi Device
: l io
Headpone © Codec < > LPC
Micropone In ~ ~€—] BI®
A A
LPC Br t L
GPIO Serial Data " LPC Header
Powr Btto n { >

Figure 4-11: CISC ISA implementation example #19
© 2004 Advanced Micro Devices, Inc. Reprinted with permission.

Reduced Instruction Set Computing (RISC) Model

In contrast to CISC, the RISC ISA usually defines:

— an architecture with simpler and/or fewer operations made up of fewer instructions.
— an architecture that has a reduced number of cycles per available operation.

Many RISC processors have only one-cycle operations, whereas CISCs typically
have multiple cycle operations. ARM, PowerPC, SPARC, and MIPS are just a few
examples of RISC-based architectures.

142

Embedded Processors

IEEE 1284,
Shared RAM,
Register-

10Base-T Thinnet 10/100Base-T Serial Mode
10Base-T| Thinnet 100Base-T RS232 16646

Xevr Xevr Xevr Xevr Xcvr

Ethernet MII
NET+ARM Chip
System Bus 8/16/32
Application
Flash Memory RAM Memory Specific
256Kx32 Hardware

Figure 4-12: RISC ISA implementation example ©1

Final Note on CISC vs. RISC

In the area of general-purpose computing, note that many current processor designs fall
under the CISC or RISC category primarily because of their heritage. RISC processors have
become more complex, while CISC processors have become more efficient to compete with
their RISC counterparts, thus blurring the lines between the definition of a RISC versus a CISC
architecture. Technically, these processors have both RISC and CISC attributes, regardless of
their definitions.

4.1.3 Instruction-Level Parallelism ISA Models

Instruction-level Parallelism ISA architectures are similar to general-purpose ISAs, except
that they execute multiple instructions in parallel, as the name implies. In fact, instruction-
level parallelism ISAs are considered higher evolutions of the RISC ISA, which typically
has one-cycle operations, one of the main reasons why RISCs are the basis for parallelism.
Examples of instruction-level parallelism ISAs include:

143

Chapter 4

Single Instruction Multiple Data (SIMD) Model

The SIMD Machine ISA is designed to process an instruction simultaneously on
multiple data components that require action to be performed on them.

OTI-4110 Controller Block Diagram

Flash/ Fax
ROM Modem

SDRAM

Scanner . Scanner | Laser Engine
CCD/CI AFE Controller
OTI-4110 Inkjet
Scaﬂﬂer« Motor/Lamp |__| Head/Motor [Heads
Motor/ Drivers Drivers | Motors
Lamp I I

USB Memory
Device Card
Connector Slot

Figure 4-13: SIMD ISA implementation example 12

Superscalar Machine Model

The superscalar ISA is able to process multiple instructions simultaneously within
one clock cycle through the implementation of multiple functional components
within the processor.

Instruction Memory (Flash/OTP/DRAM) .

Instruction Memory Interface -~
Interrupt Request

Module

TriCare Superscalar CPU
Instruction Control Unit

—1 Timer Module

Serial BT Module
ISPI, UART’s

Integer Pipeline Load/Store Pipeline

f

General-Purpose General-Purpose
Data Registers ~ Address Registers

Debug Evaluation
Module

Peripheral Interface Bus

External Bus Interface Module

T System Registers T
¥ v —>{ 2-channel DMA

Data Memory Interface -~

Data Memory (SRAM, DRAM, EEPROM)

Figure 4-14: Superscalar ISA implementation example 13

144

Embedded Processors

Very Long Instruction Word Computing (VLIW) Model

The VLIW ISA defines an architecture in which a very long instruction word is made
up of multiple operations. These operations are then broken down and processed in
parallel by multiple execution units within the processor.

Reference Board

SDRAM

AuxAnalog
Audio In ADC
AuSPD SPBto IS
Audio In Cob MUX
NTSC Audio
NTSC Eder
17 Tuner
NTSC Video
Decoder
B NIM —l MUX
~{ra]
| j
NIM Control Module
13ital Bord 1394
Llapak

JTAG

On-Board PCI/XIO Bus

TM-1100

S
Codec
Audio
Codec

Audio
Codec

T — -Audio
L1l Audio Codec
[l

Mux

<—>| Boot EPROMl

|—_> SPDF OUT

— L1
— R1
— L2
— R2
— L3
— R3

Audio — L4
—{ &k 51w

1
1
1
,:_ Colour Key .
1 Mux
1

1
1|YUV to ROB
| T Matrix OACs :
_______ Al !
+ NTSC

HD50
MPEG-2
Decoder

PCI Bridge [<—| ER OM

!

—> RGB Out (No Display)

PCI-to-PCI
Bridge

Available

Supr I/ O

PCI Slot

! !
[Psivca siot | [Fash |<r| South Bridge |+—|

IDE

|IR’0 W r| Scriall Parallel |B§/ board |Mnusc|

Figure 4-15: VLIW ISA implementation example—(VLIW) Trimedia-based DTV board #'4

4.2 Internal Processor Design

The ISA defines what a processor can do, and it is the processor’s internal interconnected
hardware components that physically implement the ISA’s features. Interestingly, the funda-
mental components that make up an embedded board are the same as those that implement
an ISA’s features in a processor: a CPU, memory, input components, output components,
and buses. As mentioned in Figure 4-16, these components are the basis of the von Neumann

model.

145

Chapter 4

Embedded System Board

Master Processor

[o |

1
Controls Usage and Manipulation of Data l I
i | Memory |

v LY

I |

5 System Components Commonly
Connected Via Buses

Data From CPU or Input Devices Stored v
in Memory Until a CPU or Output | Memory |
Device Request !
- T !
1
Brings Data Into the Embedded System | Input | | Output | Gets Data Out of the Embedded System
: A |

Figure 4-16: Von Neumann-based processor diagram

Of course, many current real-world processors are more complex in design than the von Neu-
mann model has defined. However, most of these processors’ hardware designs are still based
upon von Neumann components, or a version of the von Neumann model called the Harvard
architecture model. These two models primarily differ in one area, and that is memory. A

von Neumann architecture defines a single memory space to store instructions and data. A
Harvard architecture defines separate memory spaces for instructions and data; separate data
and instruction buses allow for simultaneous fetches and transfers to occur. The main rea-
soning behind using von Neumann versus a Harvard-based model for an architecture design
is performance. Given certain types of ISAs, like Datapath model ISAs in DSPs, and their
functions, such as continuously performing fixed computations on different sets of data, the
separate data and instruction memory allow for an increase in the amount of data per unit of
time that can be processed, given the lack of competing interests of space and bus accesses
for transmissions of data and instructions.

146

Embedded Processors

ro--oo von Neumann Processor ~ ------+ e Harvard Processor - o o - — - - - ————_)
| cru | CPU |
! st A f T T
Address Pathway ~ Data & Instruction Instruction pqction Data Address ~ Data
Pathway Address
Pathway Pathway Pathway Pathway

| On-Chip Memory |

1)

| Input | | Output|

v v i

Input

)

Output

1 1
1 1
1 1
1 1
] 1
1 1
1 1
1 1
1 1
1 1
1 I
1 I
1 1
1 1
1 . !
1 Instruction Memory Data Memory 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Figure 4-17: Von Neumann vs. Harvard architectures

As mentioned previously, most processors are based upon some variation of the von Neu-
mann model (in fact, the Harvard model itself is a variation of the von Neumann model).
Real-world examples of Harvard-based processor designs include ARM’s ARM9/ARM10,
MPC860, 8031, and DSPs (see Figure 4-18a), while ARM’s ARM7 and x86 are von Neu-
mann-based designs (see Figure 4-18b).

B ses
Instruction Memory i
g K $stem Interfice Unit
ICache
CPU of the MPC8 Core I MMU Memory Controbr
is the PowerPC core D U-bus | B
'« | Cache $stem Bnctions
PowerPC™ (7)|D MMU BalT _ime cbck :
Data Memory PCMCIA Interfice ------- = InputOut put
ParatllO Internal &heral :
Bud Re Memory égﬁ?&? Purpose -
€herators Pace il mers SDri\z/lIlA
ParatlInterfic ¢ A S Controbr S
Port Internal |-2nd Progam (@ M N irwalDM_A
T mers Peripheralis @
A & & & [BICT] [BIT_1II*C| Communications
i Processor
| Time Bt Assige 1 | Briallnterfice Moduk

Figure 4-18a: Harvard architecture example — MPC860 #14

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

While the MPCS860 is a complex processor design, it is still based upon the fundamental components of the
Harvard model: the CPU, instruction memory, data memory, I/O, and buses.

147

Chapter 4

SYSREF Clock Module x86 CPU Core Graphics Processor (GP)
[systempLL | [1&BIcach | Integer MMU " BLT Engine
DOTREF —| | DOTCLK PLL | [1&B Deach | Unit [| Load/Store ROP Unit
| TLB I I Br Controller Unit I Alpha Compositing I
GeodeLink™ t \
| ~—
SDCLKs Memory

64-Bit

Controller (GLMC)

GeodeLink™ Interface Unit 0
(GLIU0)

AA

v

HW VGA

| g4bi
DDR 64-bit DDR SDRAM t Display Controller (DC)
GeodeLink™ <—»| GeodeLink™ Interface Unit 1
Processor (GLCP) I\ A
Interface

Rany f Yoy
L1 Video Processor (VP)

oy

AMD Geode™

Video Scalar
GeodeLink™

I/0 Companion N TFT Video Mixer
Device Pcéll?;lglge Controller | _
Interface () hl Alpha Blender

il

I I 3x8-Bit DAC

AMD Geode™ PCI TFT CRT
CS5535 Companion Device (Flat Panel)

Figure 4-18b: Vlon Neumann architecture example — x86 #1¢

x86 is a complex processor design based upon the von Neumann model where, unlike the MPC860 processor,
instructions and data share the same memory space.

Why Talk About the von Neumann Model?

The von Neumann model not only impacts the internals of a processor (what you don't see)
but it shapes what you do see and what you can access within a processor. As discussed in
Chapter 3, ICs—and a processor is an IC—have protruding pins that connect them to the board.
While different processors vary widely in the number of pins and their associated signals, the
components of the von Neumann model, both at the board and at the internal processor level,
also define the signals that all processors have. As shown in Figure 4-19, to accommodate
board memory, processors typically have address and data signals to read and write data to
and from memory. In order to communicate to memory or I/O, a processor usually has some
type of READ and WRITE pins to indicate it wants to retrieve or transmit data.

Of course there are other pins not explicitly defined by von Neumann that are required for
practical purposes, such as a synchronizing mechanism like a clock signal to drive a processor,
and some method of powering and grounding of the processor. However, regardless of the
differences between processors, the von Neumann model essentially drives what external pins

all processors have.
(Continued on next page.)

148

Embedded Processors

Voltage Source Figure 4-19:
Von Neumann and processor pins
nddress Pins ___ L Clock
Read
Data Pins Processor
D= —— Write

Ground

4.2.1 Central Processing Unit (CPU)

The semantics of this section can be a little confusing, because processors themselves are
commonly referred to as CPUs, but it is actually the processing unit within a processor that is
the CPU. The CPU is responsible for executing the cycle of fetching, decoding, and executing
instructions (see Figure 4-20). This three-step process is commonly referred to as a three-
stage pipeline, and most recent CPUs are pipelined designs.

Instruction to be Executed to be Determined

Determine
Instruction
Results Stored in Result i)
Programmable Storage Store Instruction | Instruction Obtained
Fetch from Programmable Storage
CPU
Execution Cycle
Results of Instruction Operating Execute ‘)
on Operands Determined Instruction Instruction Size and
Decode Purpose Determined
Operand
Fetch

Operand Located and Retrieved from Operand Storage

Figure 4-20: Fetch, decode and execution cycle of CPU

While CPU designs can widely differ, understanding the basic components of a CPU will
make it easier to understand processor design and the cycle shown in Figure 4-20. As defined
by the von Neumann model, this cycle is implemented through some combination of four
major CPU components:

the arithmetic logic unit (ALU) — implements the ISA’s operations

registers — a type of fast memory

149

Chapter 4

the control unit (CU) — manages the entire fetching and execution cycle
the internal CPU buses — interconnect the ALU, registers, and the CU

Looking at a real-world processor, these four fundamental elements defined by the von Neu-
mann model can be seen within the CPU of the MPC860 (see Figure 4-21).

I-cache/I-MMU interface D-cache/D-MMU interface
Control Unit SEIELTET @
Address Branch Instruction
generation@h unit@D queue @
control bus ! 1
write back bus
(2 slots/clock)
+Special | GPR || GPR™}./IMUL/| | ALU/ LDST || LDST - Buses
"‘ Regs || 32x32 || history | / IDIV BFU address | | fix data
source busses A P § ’) I f
(4 slots/clock) + ! !
Regi;ters ALU

Figure 4-21: The MPC860 CPU — the PowerPC core 13

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Remember: Not all processors have these components as strictly defined by the von Neumann model, but will
have some combination of these components under various aliases somewhere on the processor. Remember
that this model is a reference tool the reader can use to understand the major components of a CPU design.

Internal CPU Buses

The CPU buses are the mechanisms that interconnect the CPU’s other components: the ALU,
the CU, and registers (see Figure 4-22). Buses are simply wires that interconnect the various
other components within the CPU. Each bus’s wire is typically divided into logical functions,
such as data (which carries data, bi-directionally, between registers and the ALU), address
(which carries the locations of the registers that contain the data to be transferred), control
(which carries control signal information, such as timing and control signals, between the
registers, the ALU, and the CU), and so on.

Note: To avoid redundancy, buses will be discussed in more detail in Chapter 7.

150

Embedded Processors

I-cache/I-MMU interface D-cache/D-MMU interface

Sequencer @

Address Branch Instruction
generation__ [| unit queue @
control bus 1 ! Control Bus
write back bus
(2 slots/clock)

Special || GPR GPR | |[IMUL/| | ALU/ LDST | | LDST
Regs || 32x32 || history | | IDIV BFU address | |fix data

source busses ¥ ' f X [} 1
Y A i | |

(4 slots/clock)

Data Buses

Figure 4-22: PowerPC core and buses 1

In the PowerPC Core, there is a Control Bus that carries the control signals between the ALU, CU, and regis-
ters. What the PowerPC calls “source buses,” are the data buses that carry the data between registers and the
ALU. There is an additional bus called the write-back which is dedicated to writing back data received from a
source bus directly back from the load/store unit to the fixed or floating point registers.

Arithmetic Logic Unit (ALU)

The arithmetic logic unit (ALU) implements the comparison, mathematical and logical opera-
tions defined by the ISA. The format and types of operations implemented in the CPU’s ALU
can vary depending on the ISA. Considered the core of any processor, the ALU is responsible
for accepting multiple n-bit binary operands and performing any logical (AND, OR, NOT,

etc.), mathematical (+, —, *, etc.), and comparison (=, <, >, etc.) operations on these operands.

The ALU is a combinational logic circuit that can have one or more inputs and only one
output. An ALU’s output is dependent only on inputs applied at that instant, as a function of
time, and “no” past conditions (see Chapter 3 on gates). The basic building block of most
ALUs (from the simplest to the multifunctional) is considered the full adder, a logic circuit
that takes three 1-bit numbers as inputs and produces two 1-bit numbers. How this actually
works will be discussed in more detail later this section.

To understand how a full adder works, let us first examine the mechanics of adding binary
numbers (0’s and 1’s) together:

151

Chapter 4

e
0 <

:?<<
2

Starting with two 1-bit numbers, adding them will produce, at most, a 2-bit number:

Xo | Yo | So | Cou | —0b+0b=0b

0 0 0 0 = 0b+ 1b=0b

0 1 1 0 =1b+0b=1b

1 0 1 0 =1b + 1b = 10b (or 2d) In binary addition of 2 1-bit numbers, when the

]] 0] count exceeds 10 (the binary of 2 decimal), the 1 (C,,,) is carried and added

to the next row of numbers thus resulting in a 2-bit number.

This simple addition of two 1-bit numbers can be executed via a half-adder circuit, a logical
circuit that takes two 1-bit numbers as inputs and produces a 2-bit output. Half-adder circuits,

like all logical circuits, can be designed using several possible combinations of gates, such as
the possible combinations shown in Figure 4-23a.

Half Adder using XOR and AND gates Half Adder using NOR and AND gates

X % S Xo — q
Y, J 0 0
CUut
Cout Y 0

Figure 4-23a: Half-adder logic circuits #2"

Figure 4-23b: Half-adder logic symbol #21

152

Embedded Processors

In order to add a larger number, the adder circuit must increase in complexity, and this is
where the full adder comes into play. When trying to add two-digit numbers, for example, a
full adder must be used in conjunction with a half adder. The half adder takes care of adding
the first digits of the two numbers to be added (i.e., X, Yo, and so on)—the full adder’s three
1-bit inputs are the second digits of the two numbers to be added (i.e., x,, y,,...) along with
the carry (C,,) in from the half adder’s addition of the first digits. The half adder’s output is
the sum (S,) along with the carry out (C,,,) of the first digit’s addition operation; the two 1-bit
outputs of the full adder are the sum (S,) along with the carry out (C,,,) of the second dig-
its” addition operation. Figure 4-24a shows the logic equations and truth table, Figure 4-24b
shows the logic symbol, and Figure 4-24c shows an example of a full adder at the gate level,
in this case, a combination XOR and NAND gates.

X Y Cin | S Cout

0 0 0 0 0

o to T 1 13 5 Sum(S)=X Cpn+XC i +XYC '+ XY’ Ci’
0 1 0 1 0 Carry Out (Cout) =X + XCi =Y Cj,

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Figure 4-24a: Full adder truth table and logic equations -2

Figure 4-24b: Full adder logic symbol 2%

N >
T

)
=

Figure 4-24c: Full adder gate-level circuit 429

153

Chapter 4

To add larger numbers, additional full adders can then be integrated (cascaded) to the half-
adder/full-adder hybrid circuit (see Figure 4-25). The example shown in this figure is the
basis of the ripple-carry adder (one of many types of adders), in which “n” full adders are

cascaded so the carry produced by the lower stages propagates (ripples) through to the higher
stages in order for the addition operation to complete successfully.

Ciy ... Cin
v v
Xn .o X1 Xo
+ Y, ... Y1 Yo
Sn... Si So
+ +
Cout Cou C
L]
.
\
~ N
X Y, X, Y, Xy Y Xo Yo
X Y X Y X Y X Y
— Cou FA Cin—1 Cou FA] Cou FA Cin 1 Cou HA
S S S S
Sy Sy S So
Most Significant Bit

Least Significant Bit

Figure 4-25: Cascaded adders

Multifunction ALUs that provide addition operations, along with other mathematical and
logical operations, are designed around the adder circuitry, with additional circuitry incorpo-
rated for performing subtraction, logical AND, logical OR, and so on (see Figure 4-26a). The
logic diagram shown in Figure 4-26b is an example of two stages of an n-bit multifunction
ALU. The circuit in Figure 4-26 is based on the ripple-carry adder that was just described.

In the logic circuit in Figure 4-26b, control inputs k,, k,, k,, and c¢,, determine the function
performed on the operand or operands. Operand inputs are X = x,_, ...X;Xpand Y =y, | ...y,¥,

and the output is sum (S) =s,_,...8,So-

154

Embedded Processors

G

Control Inputs Result Function

k, k, ko Cin

0 0 0 0 S=X Transfer X

0 0 0 1 S=X+1 Increment X

0 0 1 0 S=X+Y Addition

0 0 1 1 S=X+Y+1 Add with Carry In

0 1 0 0 S=X-Y-1 Subtract with Borrow
0 1 0 1 S=X-Y Subtraction

0 1 1 0 S=X-1 Decrement X

0 1 1 1 S=X Transfer X

1 0 0 S=XORY Logical OR

1 0 1 S=XXORY Logical XOR

1 1 0 S=XANDY Logical AND

1 1 1 S=NOT X Bit-wise Compliment

vi Xo

Figure 4-26a: Multifunction ALU truth table and logic equations 42

ko

ky

ka

Y

Cout

-

S
|

Sy

155

Figure 4-26b: Multifunction ALU gate-level circuitry #-2°

Chapter 4

Where the ALU saves the generated results varies with different architectures. With the
PowerPC shown in Figure 4-25, results are saved in a register called an Accumulator. Results
can also be saved in memory (on a stack or elsewhere), or in some hybrid combination of these
locations.

I-cache/I-MMU interface D-cache/D-MMU interface

Sequencer @

Address Branch Instruction
generation@h uni@ queue @
1 ¥
control bus

write back bus
(2 slots/clock)

Special || GPR GPR | |IMUL/| | ALU/ LDST | | LDST
Regs || 32x32 || history | | IDIV BFU address | | fix data

source busses i I f [EX) LR I
(4 slots/clock) A1 I I

ALU
Figure 4-27: PowerPC core and the ALU #7°

In the PowerPC core, the ALU is part of the “Fixed Point Unit” that implements all fixed-point instructions
other than load/store instructions. The ALU is responsible for fixed-point logic, add, and subtract instruction
implementation. In the case of the PowerPC, generated results of the ALU are stored in an Accumulator. Also,
note that the PowerPC has an IMUL/IDIV unit (essentially another ALU) specifically for performing multipli-
cation and division operations.

Registers

Registers are simply a combination of various flip-flops that can be used to temporarily store
data or to delay signals. A storage register is a form of fast programmable internal processor
memory usually used to temporarily store, copy, and modify operands that are immediately
or frequently used by the system. Shift registers delay signals by passing the signals between
the various internal flip-flops with every clock pulse.

Registers are made up of a set of flip-flops that can be activated either individually or as a set.
In fact, it is the number of flip-flops in each register that is actually used to describe a proces-
sor (for example, a 32-bit processor has working registers that are 32 bits wide containing 32
flip-flops, a 16-bit processor has working registers that are 16 bits wide containing 16 flip-
flops, and so on). The number of flip-flops within these registers also determines the width of
the data buses used in the system. Figure 4-28 shows an example of how eight flip-flops could
comprise an 8-bit register, and thus impact the size of the data bus. In short, registers are
made up of one flip-flop for every bit being manipulated or stored by the register.

156

Embedded Processors

(MSB) Bit Rejte (LSB)
| bit 7 | bit 6 | bit 5 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
Data
Ba
Qo wsm) Q Q Q; Q. Qs Qs Q7 sy
PRE PRE PRE PRE PRE PRE PRE PRE
D Q Q D Q D Q D Q D
CLK — >CLK — >CLK — >CLK — >CLK — >CLK — >CLK — >CLK <.
Q Q Q Q Q Q Q Q :
CLR CLR CLR CLR CLR CLR CLR CLR :
? @) @) 0 o) 0 @) :
Clock s
Start :
Figure 4-28a: 8-bit register with 8 D flip-flops example #2" :
Pr&(PRE) :
Data (d L E
Q :
Pls .
Clock @tor .
4......-....
Q

Cler (CLR)

Figure 4-28b: Example of gate level circuit of flip-flop 2

157

Chapter 4

While ISA designs do not all use registers in the same way to process the data, storage typi-
cally falls under one of two categories, either general purpose or special purpose (see Figure
4-29). General purpose registers can be used to store and manipulate any type of data deter-
mined by the programmer, whereas special purpose registers can only be used in a manner
specified by the ISA, including holding results for specific types of computations, having pre-
determined flags (single bits within a register that can act and be controlled independently),
acting as counters (registers that can be programmed to change states—that is, increment—
asynchronously or synchronously after a specified length of time), and controlling 1/0 ports
(registers managing the external I/O pins connected to the body of the processor and to board
I/0). Shift registers are inherently special purpose, because of their limited functionality.

I-cache/I-MMU interface D-cache/D-MMU interface

Sequencer @

Address Branch Instruction
generation unit queue @

1 ¥

control bus
write back bus
(2 slots/clock)

Special | GPR GPR | |IMUL/| | ALU/ LDST || LDST
Regs || 32x32 || history | | IDIV BFU address | |fix data

source busses f ; | ’ f 1 ? I ?
(4 slots/clock) Y I I

Registers

Figure 4-29: PowerPC core and register usage '

The PowerPC Core has a “Register Unit” which contains all registers visible to a user. PowerPC processors
generally have two types of registers: general-purpose and special-purpose (control) registers.

158

Embedded Processors

The number of registers, the types of registers, and the size of the data that these registers can
store (8-bit, 16-bit, 32-bit, and so forth) varies depending on the CPU, according to the ISA
definitions. In the cycle of fetching and executing instructions, the CPU’s registers have to be
fast, so as to quickly feed data to the ALU, for example, and to receive data from the CPUs
internal data bus. Registers are also multi-ported so as to be able to both receive and transmit
data to these CPU components. The next several pages of this section will give some real-
world examples of how some common registers in architectures can be designed, specifically
flags and counters.

Example 1: Flags

Flags are typically used to indicate to other circuitry that an event or a state change has
occurred. In some architectures, flags can be grouped together into specific flag registers,
while in other architectures, flags comprise some part of several different types of registers.

To understand how a flag works, let’s examine a logic circuit that can be used in designing a
flag. Given a register, for instance, let us assume that bit 0 is a flag (see Figures 4-30a and b)
and the flip-flop associated with this flag bit is a set-reset (SR) flip-flop, the simplest of data-
storage asynchronous sequential digital logic. The (cross NAND) SR flip-flop is used in this
example to asynchronously detect an event that has occurred in attached circuitry via the set
(S) or reset (R) input signal of the flip-flop. When the set/reset signal changes from O to 1 or
1 to 0, it immediately changes the state of the flip-flop, which results, depending on the input,
in the flip-flop setting or resetting.

(MSB) N-Bit Register (LSB)

[|

bit 2 | bit 1 | bit 0 |

Figure 4-30a: N-bit register with flag and SR flip-flop example 2"

Data
Bus

QO (LSB) QO s QN (MSB)
Preset (PRE)

S o Q PRE
S Q

S
CLR
R }
Clock

CLR Start

Q|

Figure 4-30b: SR flip-flop gate-level circuit example #2"

159

Chapter 4

Example 2: Counters

As mentioned at the beginning of this section, registers can also be designed to be counters,
programmed to increment or decrement either asynchronously or synchronously, such as with
a processor’s program counter (PC) or timers, which are essentially counters that count clock
cycles. An asynchronous counter is a register whose flip-flops are not driven by the same
central clock signal. Figure 4-31a shows an example of a 8-bit MOD-256 (modulus-256)
asynchronous counter using JK flip-flops (which has 128 binary states—capable of count-
ing between 0 and 255, 128 * 2 = 256). This counter is a binary counter, made up of 1’s and
0’s, with 8 digits, one flip-flop per digit. It loops counting between 00000000 and 11111111,
recycling back to 00000000 when 11111111 is reached, ready to start over with the count.
Increasing the size of the counter—the maximum number of digits the counter can count
to—is only a matter of adding an additional flip-flop for every additional digit.

o 5 & & & b o &
PRE PRE PRE PRE PRE PRE PRE
J Q J Q J Q J Q J Q J Q
CLK
—q
K CLR Q K CLR Q K CLR Q K CLR Q K CLR K CLR Q € CLR Q
o® 7 T T T T 7
divide-by-2 divide-by-4 divide-by-S divide-by-16 divide-by-32 | divide-by-64 divide-by-128 | divide-by-256
4 4 “a e Py e 4 a4
Q) asw) Q Q, Q: Q. Qs Qq Qr sy
Figure 4-31a: 8-bit MOD-256 asynchronous counter example 2"
PRE | CLR |CLK | J | K| Q | Q | Mode
0 1 X x| x |1 0 | Preset [|
1 0 X x| x |0 1 | Clear
0 0 X x| x |1 1 | Unused Q—] B | 6
1 1 - 0] 0]Q,|Q,| Hold
1 1 — 0| 1|0 | 0] Reset
1 1 - | 1]0]0]| 0] Set
1 1 - | 1] 1]Q|Q,| Toggle PRE CLR
1 1 |-01|1]1][Q,|Q,| Hold J
Figure 4-31b: K J
JK flip-flop truth table %2 -|

CLK

Figure 4-31c:
JK flip-flop gate level diagram #-2"

160

Embedded Processors

All the flip flops of the counter are fixed in toggle mode; looking at the counter’s truth table in
4-31b under toggle mode, the flip-flop inputs (J and K) are both = 1 (HIGH). In toggle mode,
the first flip-flop’s output (Q,) switches to the opposite of its current state at each active clock
HIGH-to-LOW (falling) edge (see Figure 4-32).

Rising Falling R T— »

Edge. Edge _ ICycle

a wT h v h v :

] '] '] '] '

' ' ' ' ' ' ' '

' '] '] ') '

') [S > ' ' ' '
CLK -----1 L---'!\l;\};%i%L-'-'! Lot Lo,

r-TTT TS hl r=-==-==-==- hl

' ' ' '

' ' ' '

| ' ' '

' | ' '

' ! ! !
Qy----------"! [—— [

Output switch Output switch ~ Output switch ~ Output switch
Otol) (1t00) Otol) (1o 0)

Figure 4-32: First flip-flop CLK timing waveform for MOD-256 counter

As seen from Figure 4-32, the result of toggle mode is that Q,, the output of the first flip-flop,
has half the frequency of the CLK signal that was input into its flip-flop. Q,becomes the CLK
signal for the next flip-flop in the counter. As seen from the timing diagram in Figure 4-33,
Q,, the output of the second flip-flop signal has half the frequency of the CLK signal that was
input into it (one-quarter of the original CLK signal).

Rising Falling P — >
Edge Edge 1 Cycle
B it B Fr-=-=-=1 r==-=-=-1 r==-=--1 reTTm, remTT FemTT
e e
1 1 1 1 1 1 1 1 f ' f ' f '
'] ' L) ' ' ' ' f ' ' ' f i
'] ') ' ' ' '
) P SO ' ') ' ' ' ' ' ' '
CLK of N t____!Pulset____! LIS ool e B te---
15t Flip-Flop W dth
r========-= Al r========= h :- --------- ‘: Ir----
] L) 1 ' ' N N
] L) ' ' ' ' '
: E i i | : !
CLK of e o e Lo
20d Flip-Flop (Qg)
L - F--s============+7
L) ' '
1] ' '
1 1 1
) ' '
1 1 1
o ' L. '
A A A
Output switch Output switch Output switch
Oto1) (1to0) Otol)

Figure 4-33: Second flip-flop CLK timing waveform for MOD-256 counter

161

Chapter 4

This cycle in which the output signals for the preceding flip-flops become the CLK signals
for the next flip-flops continues until the last flip-flop is reached. The division of the CLK
signal originally input into the first flip-flop can be seen in Figure 4-31a. The combination of
output switching of all the flip-flops on the falling edges of the outputs of the previous flip-
flop, which acts as their CLK signals, is how the counter is able to count from 00000000 to
11111111 (see Figure 4-34).

IOV
JULLULT

CLK of
1st Flip-Flop

[

D ll
N

Il
UL

2nd Flip-Flop

I

CLK of
3rd Flip-Flop

(A IR
IR ARRIRRRRRREREE

 CLKof
4th Flip-Flop

CLK of
5th Flip-Flop

CLK of
6th Flip-Flop

CLK of
7th Flip-Flop

CLK of
8th Flip-Flop

Counting Counting Counting Counting Counting Counting Counting Counting
00000000-00000111 00001000-00001111 ~ 00010000-00010111 ~ 00011000-00100000 00100001-00101000 00101001-00110000 00110001-01000000 01000001-01001000

Figure 4-34: All flip-flop CLK timing waveforms for MOD-256 counter

162

Embedded Processors

With synchronous counters, all flip-flops within the counter are driven by a common clock
input signal. Again using JK flip-flops, Figure 4-35 demonstrates how a MOD256 synchro-
nous counter circuitry differs from a MOD-256 asynchronous counter (the previous example).

+5 Volts (g
PRE PRE PRE PRE
J Q = J Qi J Qi J Q
flip-flop 1 fiflop3 | | | N flipflop 8
—Q I—C —Q —Q —Q
K Q K Q K Q K Q
CLR Q CLR Q CLR Q CLR Q
D [©) (©) (©)
CLK
CLR
divide-by-2 -. divide-by-4 -. divide-by-8 -, divide-by- ... - divide-by-256 .
a « « « “a
Qo (Lsm) Q Q, Q. Qo (MsB)

Figure 4-35: 8-bit MOD-256 synchronous counter example 2"

The five additional AND gates (note: two of the five AND gates are not explicitly shown due
to the scale of the diagram) in the synchronous counter example in Figure 4-35 serve to put
the flip-flops either in HOLD mode if inputs J and K = 0 (LOW) or in TOGGLE mode if
inputs J and K = 1 (HIGH). Refer to JK flip-flop truth table in Figure 4-30b. The synchronous
counter in this example works because the first flip-flop is always in TOGGLE mode at the
start of the count 00000000, while the rest are in HOLD mode. When counting (0 to 1 for

the first flip-flop), the next flip-flop is then TOGGLED, leaving the remaining flip-flops on
HOLD. This cycle continues (2—4 for the second flip-flop, 4-8 for the third flip-flop, 8—15 for
the fourth flip-flop, 15-31 for the fifth flip-flop, and so on) until all counting is completed to
11111111 (255). At that point, all the flip-flops have been toggled and held accordingly.

163

Chapter 4

Control Unit (CU)

The control unit (CU) is primarily responsible for generating timing signals, as well as
controlling and coordinating the fetching, decoding, and execution of instructions in the
CPU. After the instruction has been fetched from memory and decoded, the control unit then
determines what operation will be performed by the ALU, and selects and writes signals
appropriate to each functional unit within or outside of the CPU (i.e., memory, registers,
ALU, etc.). To better understand how a processor’s control unit functions, let’s examine more
closely the control unit of a PowerPC processor.

Example: PowerPC Sequencer Unit

I-cache/I-MMU interface D-cache/D-MMU interface

Sequencer @

Address Branch Instruction
Szlilttml ------------------------- - generation_ [| unit__[| queue @
[1

Y Y

control bus
write back bus

(2 slots/clock)
Special || GPR GPR IMUL/| | ALU/ LDST LDST
Regs | 32x32 || history | | IDIV BFU address | | fix data
source busses f I f I 11 }
(4 slots/clock) Y : :

Figure 4-36: PowerPC core and the CU 7%

As shown in Figure 4-36, the PowerPC core’s CU is called a “sequencer unit,” and is the heart
of the PowerPC core. The sequencer unit is responsible for managing the continuous cycle of
fetching, decoding, and executing instructions while the PowerPC has power, including such
tasks as:

Provides the central control of the data and instruction flow among the other major
units within the PowerPC core (CPU), such as registers, ALU and buses.

Implements the basic instruction pipeline.

Fetches instructions from memory to issue these instructions to available execution
units.

Maintains a state history for handling exceptions.

164

Embedded Processors

Like many CUs, the PowerPC’s sequencer unit isn’t one physically separate, explicitly
defined unit; rather, it is made up of several circuits distributed within the CPU that all work
together to provide the managing capabilities. Within the sequencer unit these components

are mainly an address generation unit (provides address of next instruction to be processed), a
branch prediction unit (processes branch instructions), a sequencer (provides information and
centralized control of instruction flow to the other control sub-units), and an instruction queue
(stores the next instructions to be processed and dispatches the next instructions in the queue
to the appropriate execution unit).

The CPU and the System (Master) Clock

A processor’s execution is ultimately synchronized by an external system or master clock,
located on the board.The master clock is an oscillator along with a few other components,
such as a crystal. It produces a fixed frequency sequence of regular on/off pulse signals
(square waves), as seen in Figure 4-37. The CU, along with several other components on an
embedded board, depends on this master clock to function. Components are driven by either
the actual level of the signal (a “0” or a “1”), the rising edge of a signal (the transition from
“0” to “1”), and/or the falling edge of the signal (the transition from “1” to “0”). Different
master clocks, depending on the circuitry, can run at a variety of frequencies, but typically
must run so the slowest component on the board has its timing requirements met. In some
cases, the master clock signal is divided by the components on the board to create other clock
signals for their own use.

Rising Falling [N >
Edge Edge 1 Cycle
toFTTTT r====1 r====a1 r====1
4 'S | 1 I] 1
! 1 1 1 1 1 | 1
' ' ' ' |) ']
) ') ') ') '
) ' R ») . , '
| 1 | Pulse 1]] | 1
Width
Time

Figure 4-37: Clock signal

In the case of the CU, for instance, the signal produced by the master clock is usually divided
or multiplied within the CPU’s CU to generate at least one internal clock signal. The CU then
uses internal clock signals to control and coordinate the fetching, decoding, and execution of
instructions.

165

Chapter 4

4.2.2 On-Chip Memory

Author note: The material covered in this section is very similar to that in Chapter 5: Board
Memory, since, aside from certain types of memory and memory management components,
the memory integrated within an IC is similar to memory located discretely on a board.

The CPU goes to memory to get what it needs to process, because it is in memory that all of
the data and instructions to be executed by the system are stored. Embedded platforms have a
memory hierarchy, a collection of different types of memory, each with unique speeds, sizes,
and usages (see Figure 4-38). Some of this memory can be physically integrated on the pro-
cessor, such as registers, read-only memory (ROM), certain types of random access memory
(RAM), and level-1 cache.

Processor

_______ 1 Main
Memory

Secondary/Tertiary
Storage

Cache
1

I Level-1 :
' Cache !
! 1
! 1

Figure 4-38: Memory hierarchy

Read-Only Memory (ROM)

On-chip ROM is memory integrated into a processor that contains data or instructions that
remain even when there is no power in the system, due to a small, longer-life battery, and
therefore is considered to be nonvolatile memory (NVM). The content of on-chip ROM usu-
ally can only be read by the system it is used in.

To get a clearer understanding of how ROM works, let’s examine a sample logic circuit of

8 x 8 ROM, shown in Figure 4-39. This ROM includes three address lines (log,8) for all
eight words, meaning the 3-bit addresses ranging from 000 to 111 will each represent one of
the eight bytes. (Note that different ROM designs can include a wide variety of addressing
configurations for the exact same matrix size, and this addressing scheme is just an example
of one such scheme.) D, through D, are the output lines from which data is read, one output
line for each bit. Adding additional rows to the ROM matrix increases its size in terms of the
number of address spaces, whereas adding additional columns increases a ROM’s data size
(the number of bits per address) it can store. ROM size specifications are represented in the
real world identically to what is used in this example, where the matrix reference (8 x 8,

16k x 32, and so on) reflects the actual size of ROM where the first number, preceding the

166

Embedded Processors

“x”, 1s the number of addresses, and the second number, after the “x”, reflects the size of the
data (number of bits) at each address location—8 = byte, 16 = half word, 32 = word, and so
on. Also, note that in some design documentation, the ROM matrix size may be summarized.
For example, 16 kB (kBytes) of ROM is 16K x 8 ROM, 32 MB of ROM is 32 M x 8 ROM,
and so on.

Az A 1 AO

Address Decoder . Memory Cell

gl(Y Y ROM Matrix

GO U U UL

%
AN
AN

3-state output

& NN NN

Dy Dg Ds Dy D3 Dy Dy Do

Figure 4-39: 8 x 8 ROM logjic circuit ¢

In this example, the 8 x 8 ROM is an 8 x 8 matrix, meaning it can store eight different 8-bit
bytes, or 64 bits of information. Every intersection of a row and column in this matrix is a
memory location, called a memory cell. Each memory cell can contain either a bipolar or
MOSEFET transistor (depending on the type of ROM) and a fusible link (see Figure 4-40).

167

Chapter 4

MOSFET Storage Memory Cell Bipolar Storage Memory Cell
(MROMS, PROMS, EPROMs, EEPROMs, Flash) (MROMs, PROMs)
Programmable | Vop Voo Programmable | Vee Vee
Link _, _, Link |
- = K s
Stores Stores Stores Stores
> poech > o

Figure 4-40: 8 x 8 MOSFET and bipolar memory cells #-2

When a programmable link is in place, the transistor is biased ON resulting in a 1 being
stored. All ROM memory cells are typically manufactured in this configuration. When writing
to ROM, a “0” is stored by breaking the programmable link. How links are broken depends
on the type of ROM. How to read from a ROM depends on the ROM, but in this example,

the chip enable (CE) line is toggled (HIGH to LOW) to allow the data stored to be output via
DO0-D7 after having received the 3-bit address requesting the row of data bits (see Figure 4-41).

Finally, the most common types of on-chip ROM include:

MROM (mask ROM), which is ROM (with data content) that is permanently etched
into the microchip during the manufacturing of the processor, and cannot be modified
later.

PROM:s (programmable ROM), or OTPs (one-time programmables), which is a type
of ROM that can be integrated on-chip, that is one-time programmable by a PROM
programmer (in other words, it can be programmed outside the manufacturing factory).

EPROM (erasable programmable ROM), which is ROM that can be integrated on a
processor, in which content can be erased and reprogrammed more than once (the
number of times erasure and re-use can occur depends on the processor). The content
of EPROM is written to the device using special separate devices and erased, either
selectively or in its entirety using other devices that output intense ultraviolet light
into the processor’s built-in window.

EEPROM (electrically erasable programmable ROM), which, like EPROM, can be
erased and reprogrammed more than once. The number of times erasure and re-use
can occur depends on the processor. Unlike EPROMs, the content of EEPROM can
be written and erased without using any special devices while the embedded system
is functioning. With EEPROMs, erasing must be done in its entirety, unlike EPROMs,
which can be erased selectively.

A cheaper and faster variation of the EEPROM is Flash memory. Where EEPROMs
are written and erased at the byte level, Flash can be written and erased in blocks

or sectors (a group of bytes). Like EEPROM, Flash can be erased while still in the
embedded device.

168

Embedded Processors

CE

Address Decoder
1 1

Y

) W)) L

YN

3-state output

buffers ;7 7

CN NN

Gate | A2 | Al | A0 [D7 [D6 | D5 [D4 | D3 | D2 [DI | DO
1 0 0 0 1 1 1 1 0 1 1 1
2 0 0 1 1 1 0 1 1 1 0 1
3 0 1 0 0 1 1 1 1 0 1 1
4 0 1 1 0 0 1 0 1 1 1 1
5 1 0 0 1 1 1 1 1 1 1 1
6 1 0 1 1 1 1 0 0 0 0 1
7 1 1 0 0 1 1 1 1 1 1 1
8 1 1 1 1 0 1 1 1 1 1 0

Broken Programmable

Link in Memory Cell

x
.
.
.
. .
ROM Matrix P
-
.
y 3

777 ;7

Dy De¢

Ds Dy

Figure 4-41: 8 x 8 reading ROM circuit 42"

169

Chapter 4

Random-Access Memory (RAM)

RAM (random access memory), commonly referred to as main memory, is memory in which
any location within it can be accessed directly (randomly, rather than sequentially from some
starting point), and whose content can be changed more than once (the number depending on
the hardware). Unlike ROM, contents of RAM are erased if RAM loses power, meaning RAM
is volatile. The two main types of RAM are static RAM (SRAM) and dynamic RAM (DRAM).

As shown in Figure 4-42a, SRAM memory cells are made up of transistor-based flip-flop
circuitry that typically holds its data due to a moving current being switched bi-directionally
on a pair of inverting gates in the circuit, until power is cut off or the data is overwritten.

word

bit a bit
Figure 4-42a: 6 Transistor SRAM cell 4261

To get a clearer understanding of how SRAM works, let us examine a sample logic circuit of
4K x8 SRAM shown in Figure 4-42b.

In this example, the 4K x 8 SRAM is a 4K x 8 matrix, meaning it can store 4096 (4 x 1024)
different 8-bit bytes, or 32768 bits of information. As shown in the diagram below, 12 address
lines (Ay—A,,) are needed to address all 4096 (000000000000b—111111111111b) possible ad-
dresses, one address line for every address digit of the address. In this example, the 4K x 8 SRAM
is set up as a 64 x 64 array of rows and columns where addresses A,—A;identifying the row,
and A—A,, identifying the column. As with ROM, every intersection of a row and column in
the SRAM matrix is a memory cell, and in the case of SRAM memory cells, they can contain
flip-flop circuitry mainly based on semiconductor devices such as polysilicon load resistors,
bipolar transistors, and/or CMOS transistors. There are eight output lines (D,—D,), a byte for
every byte stored at an address.

In this SRAM example, when the chip select (CS) is HIGH, then memory is in standby mode
(no read or writes are occurring). When CS is toggled to LOW and write-enable input (WE)
is LOW, then a byte of data is written through the data input lines (D—D,) at the address indi-
cated by the address lines. Given the same CS value (LOW) and WE is HIGH, then a byte of
data is being read from the data output lines (D,~D,) at the address indicated by the address
lines (A—A,).

170

Embedded Processors

Ao—— =
Al—% %
A= Row — 64 x 64 SRAM Array
As— = —
A4—% %
As—{o— =
D —_|?— : —_|?—D
DO Column I/O Circuits DO
1 —:| S —:| ?— 1
D) — Column Select | D
s 5 D
Data Input E3 B E3 Data Output
-5 5
Ds > "
D¢ —?— As A7 As A9 Ao An _E— Dg
b —H5— ——
€s ——

Figure 4-42b: 4K x 8 SRAM logic circuit #2"

As shown in Figure 4-43, DRAM memory cells are circuits with capacitors that hold a charge
in place (the charges or lack thereof reflecting data). DRAM capacitors need to be refreshed
frequently with power in order to maintain their respective charges, and to recharge capacitors
after DRAM is read (reading DRAM discharges the capacitor). The cycle of discharging and
recharging of memory cells is why this type of RAM is called dynamic.

Data Out

A

< >

v
Data In

Figure 4-43: DRAM (capacitor-based) memory cell 42

171

Chapter 4

Given a sample logic DRAM circuit of 16K x8, this RAM configuration is a two-
dimensional array of 128 rows and 128 columns, meaning it can store 16384 (16 x 1024)
different 8-bit bytes, or 131072 bits of information. With this address configuration, larger
DRAMS can either be designed with 14 address lines (A;—A ;) needed to address all 16384
(000000000000b—11111111111111b) possible addresses—one address line for every address
digit of the address—or these address lines can be multiplexed, or combined into fewer lines
to share, with some type of data selection circuit managing the shared lines. Figure 4-44
demonstrates how a multiplexing of address lines could occur in this example.

|
CAS Column Address Register

[T TT T T1
A7 Ag A9 Ao A Az Az
EN

RAS | Column Address Decoder
AJA; VoA, BN
A/Ag 1 Al
Ay/Ag Row [| As Row
Address Address 128 x 128 DRAM Array
As/A Register —f A5 Decoder
AgAy — A
As/A |, 1 As
Ag/A s —1 As
Do II/O Buffers & Sense Amplifiers —— Do
D — — Di
D2 _ —— D2
D; W/R L Ds
Data Input Data Output
D4 —— Da
Ds —— Ds
D¢ —— Ds¢
D7 — D7

Figure 4-44: 16K x 8 SRAM logic circuit #2"

172

Embedded Processors

The 16K x 8 DRAM is set up with addresses A —A,identifying the row, and A,—A ;identify-
ing the column. In this example, the ROW address strobe (RAS) line is toggled (from HIGH
to LOW) for Aj—A, to be transmitted, and then the Column Address Strobe (CAS) line is
toggled (from HIGH to LOW) for A,—A, to be transmitted. After this point the memory cell is
latched and ready to be written to or read from.

There are eight output lines (D,—D;), a byte for every byte stored at an address. When the
write enable (WE) input line is HIGH, data can be read from output lines D,—D; and when
WE is LOW, data can be written to input lines D-D, .

One of the major differences between SRAM and DRAM lies in the makeup of the DRAM
memory array itself. The capacitors in the memory array of DRAM are not able to hold a
charge (data). The charge gradually dissipates over time, thus requiring some additional
mechanism to refresh DRAM, in order to maintain the integrity of the data. This mechanism
reads the data in DRAM before it is lost, via a sense amplification circuit that senses a charge
stored within the memory cell, and wrifes it back onto the DRAM circuitry. Ironically, the
process of reading the cell also discharges the capacitor, even though reading the cell in the
first place is part of the process of correcting the problem of the capacitor gradually discharg-
ing in the first place. A memory controller (see Section 5.4, Memory Management for more
information) in the embedded system typically manages a DRAM’s recharging and discharg-
ing cycle by initiating refreshes and keeping track of the refresh sequence of events. It is this
refresh cycling mechanism that discharges and recharges memory cells that gives this type of
RAM its name—*“dynamic” RAM (DRAM)—and the fact that the charge in SRAM stays put
is the basis for its name, “static” RAM (SRAM). It is this same additional recharge circuitry
that makes DRAM slower in comparison to SRAM. (Note that SRAM is usually slower than
registers, because the transistors within the flip-flop are usually smaller, and thus do not carry
as much current as those typically used within registers.)

SRAMs also usually consume less power than DRAMsS, since no extra energy is needed for a
refresh. On the flip side, DRAM is typically cheaper than SRAM, because of its capacitance-
based design, in comparison to its SRAM flip-flop counterpart (more than one transistor).
DRAM also can hold more data than SRAM, since DRAM circuitry is much smaller than
SRAM circuitry and more DRAM circuitry can be integrated into an IC.

DRAM is usually the “main” memory in larger quantities, and is also used for video RAM
and cache. DRAMs used for display memory are also commonly referred to as frame buffers.
SRAM, because it is more expensive, is typically used in smaller quantities, but because it is
also the fastest type of RAM, it is used in external cache (see Section 5.2) and video memory
(when processing certain types of graphics, and given a more generous budget, a system can
implement a better-performing RAM).

Table 4-3 summarizes some examples of different types of integrated RAM and ROM used
for various purposes in ICs.

173

Chapter 4

Table 4-3: On-chip memory #271

Main Memory

Video Memory

Cache

SRAM

NA

RAMDAC (Random-Access Memory
Digital-to-Analog Converter)

RAMDAC processors are used in video

cards for display systems without true color,

to convert digital image data into analog
display data for analog displays, such as
CRTs (cathode ray tubes). The built-in
SRAM contains the color palette table that
provides the RGB (Red/Green/Blue) on
version values used by the DACs (digital-
to-analog converters), also built into the

RAMDAC, to change the digital image data
into the analog signals for the display units.

SRAM has been used for both
level-1 and level-2 caches. A type of
SRAM, called BSRAM (Burst/Syn-
chBurst Static Random-Access
Memory), that is synchronized with
either the system clock or a cache
bus clock, has been primarily used
for level-2 cache memory. (See
Section 4.2.)

DRAM

SDRAM (Synchronous Dynamic Ran-
dom-Access Memory) is DRAM that is
synchronized with the microprocessor’s
clock speed (in MHz). Several types of
SDRAMs are used in various systems,
such as the JDEC SDRAM (JEDEC
Synchronous Dynamic Random-Access
Memory), PC100 SDRAM (PC100
Synchronous Dynamic Random-Access
Memory), and DDR SDRAM (Double
Data Rate Synchronous Dynamic
Random-Access Memory). ESDRAM
(Enhanced Synchronous Dynamic Ran-
dom-Access Memory) is SDRAM that
integrates SRAM within the SDRAM,
allows for faster SDRAM (basically the
faster SRAM portion of the ESDRAM
is checked first for data, then if not
found, the remaining SDRAM portion
is searched).

RDRAM (On-Chip Rambus Dynamic
Random-Access Memory) and MDRAM

(On-Chip Multibank Dynamic Random-Ac-
cess Memory) are DRAMs commonly used

as display memory that store arrays of bit
values (pixels of the image on the display).
The resolution of the image is determined

by the number of bits that have been defined

per each pixel.

DRDRAM (Direct Rambus Dy-

namic Random-Access Memory)

and SLDRAM (SyncLink Dynamic
Random-Access Memory) are DRAMs
whose bus signals (see Section 2.1,
Memory Buses for more information)
can be integrated and accessed on one
line, thus decreasing the access time
(since synchronizing operations on
multiple lines are not necessary).

FRAM (Ferroelectric Random-Access
Memory) is nonvolatile DRAM, mean-
ing data isn’t lost from DRAM when
power is shut off. FRAM has a lower
power requirement than other types

of SRAM, DRAM, and some ROMs
(Flash), and is targeted for smaller
handheld devices (PDAs, phones, etc.).

FPM DRAM (Fast Page Mode Dynamic
Random-Access Memory), EDORAM/
EDO DRAM (Data Output Random-
Access/Dynamic Random-Access
Memory), and BEDO DRAM (Data
Burst Extended Data Output Dynamic
Random-Access Memory). ...

FPM DRAM (Fast Page Mode Dynamic
Random-Access Memory), EDORAM/
EDO DRAM (Data Output Random-Ac-
cess/Dynamic Random-Access Memory),
and BEDO DRAM (Data Burst Extended
Data Output Dynamic Random-Access
Memory)....

Enhanced Dynamic Random-Ac-
cess Memory (EDRAM) integrates
SRAM within the DRAM, and is
usually used as level-2 cache (see
Section 4.2). The faster SRAM
portion of EDRAM is searched first
for the data, and if not found there,
then the DRAM portion of EDRAM
is searched.

174

Embedded Processors

Cache (Level-1 Cache)

Cache is the level of memory between the CPU and main memory in the memory hierarchy
(see Figure 4-45). Cache can be integrated into a processor or can be off-chip. Cache exist-
ing on-chip is commonly referred to as level-1 cache, and SRAM memory is usually used as
level-1 cache. Because (SRAM) cache memory is typically more expensive due to its speed,
processors usually have a small amount of cache, whether on-chip or off-chip.

Processor

Main
Memory

Secondary/Tertiary

1
_______ 1 Level-3 Storage

Cache

1
I Levell |
! Cache 1
! 1
! 1

Figure 4-45: Level-1 cache in the memory hierarchy

Using cache has become popular in response to systems that display a good locality of refer-
ence, meaning that these systems in a given time period access most of their data from a
limited section of memory. Cache is used to store subsets of main memory that are used or
accessed often. Some processors have one cache for both instructions and data, while other
processors have separate on-chip caches for each.

———————— von Neumann Processor sm-mmq T Harvard Processor e e
| CPU | cpU |
[) . [¥ I ¥
Address Pathway ~ D32 g‘flg}f‘l:g;mo” rj:ggrcet;(s)n Instruction Data Address ~ Data
Pathway Pathway Pathway Pathway

| On-Chip Cache Memory |

: ' v i

1
1
1
1
1
1
1
1
1
1
1
1
i
1
' Instruction Cache Ra Cache
1
1
1
1
1
1
1
1
:
1
i @
1
1

Figure 4-46: Level-1 cache in the von Neumann and Harvard models

175

Chapter 4

Different strategies are used when writing to and reading data from level-1 cache and main-
memory. These strategies include transferring data between memory and cache in either
one-word or multiword blocks. These blocks are made up of data from main memory, as well
as the location of that data in main memory (called fags).

In the case of writing to memory, given some memory address from the CPU, this address

is translated to determine its equivalent location in level-1 cache, since cache is a snapshot
of a subset of memory. Writes must be done in both cache and main memory to ensure that
cache and main memory are consistent (have the same value). The two most common write
strategies to guarantee this are write-through, in which data is written to both cache and main
memory every time, and write-back, in which data is initially only written into cache, and
only when it is to be bumped and replaced from cache is it written into main memory.

When the CPU wants to read data from memory, level-1 cache is checked first. If the data is
in cache, it is called a cache hit. The data is returned to the CPU and the memory access pro-
cess is complete. If the data is not located in level-1 cache, it is called cache miss. Oft-chip
caches (if any) are then checked for the data desired. If this is a miss, then main memory is
accessed to retrieve and return the data to the CPU.

Data is usually stored in cache in one of three schemes:

Direct Mapped, where data in cache is located by its associated block address in
memory (using the “tag” portion of the block).

Set Associative, where cache is divided into sets into which multiple blocks can be
placed. Blocks are located according to an index field that maps into a cache’s par-
ticular set.

Full Associative, where blocks are placed anywhere in cache, and must be located by
searching the entire cache every time.

In systems with memory management units (MMU) to perform the translation of addresses
(see Section 4.2), cache can be integrated between the CPU and the MMU, or the MMU and
main memory. There are advantages and disadvantages to both methods of cache integration
with an MMU, mostly surrounding the handling of DMA (direct memory access), which is
the direct access of off-chip main memory by slave processors on the board without going
through the main processor. When cache is integrated between the CPU and MMU, only the
CPU accesses to memory affect cache; therefore DMA writes to memory can make cache
inconsistent with main memory unless CPU access to memory is restricted while DMA data
is being transferred or cache is being kept updated by other units within the system besides
the CPU. When cache is integrated between the MMU and main memory, more address trans-
lations need to be done, since cache is affected by both the CPU and DMA devices.

176

Embedded Processors

On-Chip Memory Management

Many different types of memory can be integrated into a system, and there are also differenc-
es in how software running on the CPU views memory addresses (logical/virtual addresses)
and the actual physical memory addresses (the two-dimensional array or row and column).
Memory managers are ICs designed to manage these issues, and in some cases are integrated
onto the master processor.

The two most common types of memory managers that are integrated into the master proces-
sor are memory controllers (MEMC) and memory management units (MMUs). A memory
controller (MEMC) is used to implement and provide glueless interfaces to the different
types of memory in the system, such as cache, SRAM, and DRAM, synchronizing access to
memory and verifying the integrity of the data being transferred. Memory controllers access
memory directly with the memory’s own physical (two-dimensional) addresses. The con-
troller manages the request from the master processor and accesses the appropriate banks,
awaiting feedback and returning that feedback to the master processor. In some cases, where
the memory controller is mainly managing one type of memory, it may be referred to by that
memory’s name (such as DRAM controller, cache controller, and so forth).

Memory management units (MMUSs) are used to translate logical addresses into physical
addresses (memory mapping), as well as handle memory security, control cache, handle

bus arbitration between the CPU and memory, and generate appropriate exceptions. Figure
4-47 shows the MPC860, which has both an integrated MMU (in the core) and an integrated
memory controller (in the system interface unit).

4K System Interface Unit
1 Cache
Core | |[IMMU U-bus Memory Controller | ==
4K D BIU
< | Cache System Enctions
PowerPC™ @ D MMU Real Time clock
PCMCIA Interface
Parallel /O Internal 4 General
Baud Rate Memory (Ijg;e&)ul efr Purpose :
Generators Space Timers 1]g I\?I‘Xlal
Parallel Interface 32-Bit RISC Tontroller . s
Port Tnternal Land Promm ROM [MA | 2 Virtual IDMA

Timers Peripheral Bus

[SCCI !_L\sccz !_L\scc3 !_L\SCC4 !_i_\s Cl !_L\SMC r‘t_\spn é BN oo

Processor
| Time Slot Assige r | Serial Interface Module

Figure 4-47: Memory management and the MPC860 #°

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

177

Chapter 4

In the case of translated addresses, the MMU can use level-1 cache on the processor, or por-
tions of cache allocated as buffers for caching address translations, commonly referred to as
the translation lookaside buffer or TLB, to store the mappings of logical addresses to physi-
cal addresses. MMUSs also must support the various schemes in translating addresses, mainly
segmentation, paging, or some combination of both schemes. In general, segmentation is the
division of logical memory into large variable-size sections, whereas paging is the dividing up
of logical memory into smaller fixed-size units.

The memory protection schemes then provide shared, read/write, or read-only accessibility to
the various pages and/or segments. If a memory access is not defined or allowed, an interrupt
is typically triggered. An interrupt is also triggered if a page or segment isn’t accessible dur-
ing address translation (i.e., in the case of a paging scheme, a page fault, etc.). At that point
the interrupt would need to be handled; the page or segment would need to be retrieved from
secondary memory, for example.

The scheme supporting segmentation and/or paging of the MMU typically depends on the
software—that is, the operating system. See Chapter 9: Operating System for more on virtual
memory and how MMUSs are used along with the system software to manage virtual memory.

Memory Organization

Memory organization includes not only the makeup of the memory hierarchy of the particular
platform, but also the internal organization of memory, specifically what different portions

of memory may or may not be used for, as well as how all the different types of memory are
organized and accessed by the rest of the system. For example, some architectures may split
memory so that a portion stores only instructions and another only stores data. The SHARC
DSP contains integrated memory that is divided into separate memory spaces (sections of
memory) for data and programs (instructions). In the case of the ARM architectures, some are
based upon the von Neumann model (for example, ARM7), which means it has one memory
space for instructions and data, whereas other ARM architectures (namely ARM9) are based
upon the Harvard model, meaning memory is divided into a section for data and a separate
section for instructions.

The master processor, along with the software, treats memory as one large one-dimensional
array, called a Memory Map (see Figure 4-48). This map serves to clearly define what address
or set of addresses are occupied by what components.

FFFF FFFF

Figure 4-48a:
Memory map

0000 0000

178

Embedded Processors

FFFF FFFF Address | Register Size
Offset
000 SIU module configuration register (SIUMCR) 32 bits
004 System Protection Control Register (SYPCR) 32 bits
LLRELEERLLEL > 008-00D | Reserved 6 bytes
00E Software Service Register (SWSR) 16 bits
010 SIU Interrupt Pending Register (SIPEND) 32 bits
014 SIU Interrupt Mask Register (SIMASK) 32 bits
018 SIU Interrupt Edge/Level Register (SIEL) 32 bits
01C SIU Interrupt Vector Register (SIVEC) 32 bits
020 Transfer Error Status Register (TESR) 32 bits
0000 0000

Figure 4-48b: MPC860 registers within memory map “1%

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Within this memory map, an architecture may define multiple address spaces accessible to
only certain types of information. For example, some processors may require at a specific
location—or given a random location—a set of offsets to be reserved as space for its own
internal registers (see Figure 4-48b). The processor may also allow specific address spaces
accessible to only internal I/O functionality, instructions (programs), and/or data.

4.2.3 Processor Input/Output (I/0)

Author note: The material in this section is similar to material in Chapter 6: Board I/0, since
aside from certain types of 1/0 or components of an 1/0 subsystem that are integrated on an
IC versus discretely located on a board—the basics are essentially the same.

Input/output components of a processor are responsible for moving information to and from
the processor’s other components to any memory and I/O outside of the processor, on the
board (see Figure 4-49). Processor I/O can either be input components that only bring infor-
mation into the master processor, output components that bring information out of the master
processor, or components that do both (see Figure 4-48).

Virtually any electromechanical system, embedded and nonembedded, conventional (key-
board, mouse, etc.) as well as unconventional (power plants, human limbs, etc.), can be
connected to an embedded board and act as an I/O device. I/O is a high-level group that can
be subdivided into smaller groups of either output devices, input devices, or devices that are
both input and output devices. Output devices can receive data from board I/O components
and display that data in some manner, such as printing it to paper, to a disk, or to a screen, or
a blinking LED light for a person to see. An input device transmits data to board I/O com-
ponents, such as a mouse, keyboard, or remote control. I/O devices can do both, such as a
networking device that can transmit data to and from the Internet, for instance. An I/O device
can be connected to an embedded board via a wired or wireless data transmission medium,
such as a keyboard or remote control, or can be located on the embedded board itself, such as
an LED.

179

Chapter 4

1
1 1
' Embedded System Board |
i i
: Master Processor :
| '
! CPU !
1
Controls Usage and Manipulation of Data 1 I !
1
I
! Memory :
1
| v [} H
1
! Output Input i
| :
1 1
1 1
1 1
1 1
| 5 System Components Commonly Connected Via Buses b
1 . i 1
‘ ! !
Data From CPU or Input Devices Stored in Memory M H
Until a CPU or Output Device Request emory :
| 1 i
1 1
] A 1
Brings Data Into the Embedded System Input Output Gets Data Out if the Embedded System

Figure 4-49: Processor I/O diagram

Because 1/0 devices can be such a wide variety of electromechanical systems, ranging from
simple circuits to another embedded system entirely, processor I/O components can be orga-
nized into categories based on the functions they support, the most common including:

Networking and communications I/O (the physical layer of the OSI model — see
Chapter 2)

Input (keyboard, mouse, remote control, voice, etc.)
Graphics and output I/O (touch screen, CRT, printers, LEDs, etc.)

Storage 1/0O (optical disk controllers, magnetic disk controllers, magnetic tape con-
trollers, etc.)

Debugging I/0 (BDM, JTAG, serial port, parallel port, etc.)

Real-time and miscellaneous I/O (timers/counters, analog-to-digital converters and
digital-to-analog converters, key switches, and so on)

180

Embedded Processors

In short, an I/O subsystem can be as simple as a basic electronic circuit that connects the
master processor directly to an I/O device (such as a master processor’s I/O port to a clock
or LED located on the board) to more complex I/O subsystem circuitry that includes several
units, as shown in Figure 4-50. I/O hardware is typically made up of all or some combination
of six main logical units:

The transmission medium, wireless or wired medium connecting the I/O device to the
embedded board for data communication and exchanges

A communication port, which is what the transmission medium connects to on the
board, or if a wireless system, what receives the wireless signal

A communication interface, which manages data communication between master
CPU and I/O device or 1/O controller; also responsible for encoding data and decod-
ing data to and from the logical level of an IC and the logical level of the I/O port.
This interface can be integrated into the master processor, or can be a separate IC.

An I/O controller, a slave processor that manages the I/O device
I/0 buses, the connection between the board I/0 and master processor

The master processor integrated 1/0

! Other Controllers :
HD { = eeeeeemmeee—eo !
L]
L]
@ e ————— e e e ———
Port l Graphics Board I
T e o m - Master I FTTTTTTT T bl : """"""")
1 HD Controller «—— » Processor <—>| 1 Graphics Controller ! Port Monitor
e . L ! :
LED «— b 1

Printer

Figure 4-50: Ports and device controllers on an embedded board

181

Chapter 4

This means that the I/O on the board can range from a complex combination of components, as
shown in Figure 4-51a, to a few integrated I/O board components, as shown in Figure 4-51b.

I/O Devices

Communication
Port
L]

R L)
H Embedded Board . . —» CRT
! Y. Transmission
! Memory Video Parallel ; Medium
| Integrated Master CPU (Frame Buffer) Controller | ¥ Port |
! Parallel Interface M E N LCD
1
: . :
1 o 1
! ‘ . i
,,, D

: :

° .

L]

. 1/0 Bus

The Master Processor
Integrated I/O and
Communication Interface

1/0 Port (Pin)

Master CPU

XX R -

the master pocessor
integrated /O I/O Device
(LED)

Embedded Board

Figure 4-51b: Simple I/O subsystem -39

Transmission mediums, buses, and board I/O are beyond the scope of this section, and are
covered in Chapter 2 (transmission mediums), Chapter 7 (board buses) and Chapter 6 (board
I/0), respectively. I/O controllers are a type of processor (see Section 4.1, ISA Architecture
Models). An I/O device can be connected directly to the master processor via I/0 ports (pro-
cessor pins) if the I/O devices are located on the board, or can be connected indirectly via a
communication interface integrated into the master processor or a separate IC on the board.

182

Embedded Processors

As seen from the sample circuit in Figure 4-52, an I/O pin is typically connected to some
type of current source and switching device. In this example it’s a MOSFET transistor. This
sample circuit allows for the pin to be used for both input and output. When the transistor is
turned OFF (open switch), the pin acts as an input pin, and when the switch is ON it operates
as an output port.

1/0 Pin

v ‘_I_I_ |
Ty

INPUT OUTPUT

Figure 4-52: /O port sample circuit 424

A pin or sets of pins on the processor can be programmed to support particular I/O functions
(for example, Ethernet port receiver, serial port transmitter, bus signals, etc.), through a mas-
ter processor’s control registers (see Figure 4-53).

Oma |
L O "5 mum
Bt - 0
R [
TP & Pow r
198} PC
B [B
e i
B M
TIE B @& r
Tog ®r K
Tiline T 3
Tim]
e —
8I/U S/U | TeL e t . gc
Tas ™ 1 Pih 1

b B ™ 2 Pih 2
Ton “ Ipm s s |70 5
wr oum | L2

Figure 4-53: MPC860 reference platform and [/O #2°

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

In the case of the MPC860, the /O such as Ethernet and RS-232 are implemented by the SCC registers, RS-232
by SMC2, and so on. The configuration of pins occurs in software, and so will be discussed in Chapter 8.

183

Chapter 4

Within the various I/O categories (networking, debugging, storage, and so forth), processor
I/0 is typically subgrouped according to how data is managed. Note that the actual subgroups
may be entirely different depending on the architecture viewpoint, as related to the embed-
ded systems model. Here “viewpoint” means that hardware and software can view (and hence
subgroup) I/0O differently. Within software, the subgroups can even differ depending on the
level of software (i.e., system software versus application software, operating system versus
device drivers, and so on). For example, in many operating systems, 1/O is considered to be
either block or character I/0. Block I/O stores and transmits data in fixed block sizes, and is
addressable only in blocks. Character 1/0, on the other hand, manages data in streams of char-
acters, the size of the character depending on the architecture—such as one byte, for example.

From a hardware viewpoint, /O manages (transmits and/or stores) data in serial, in parallel,
or both.

Managing I/0 Data: Serial vs. Parallel 1/0

Processor I/0 that can transmit and receive serial data is made up of components in which
data is stored, transferred and/or received one bit at a time. Serial I/O hardware is typically
made up of some combination of the six main logical units outlined at the start of the chap-
ter; serial communication then includes within its I/O subsystem a serial port and a serial
interface.

Serial interfaces manage the serial data transmission and reception between the master CPU
and either the 1/0 device or its controller. They include reception and transmission buffers to
store and encode or decide the data they are responsible for transmitting either to the master
CPU or an I/O device. In terms of serial data transmission and reception schemes, they gener-
ally differ as to what direction data can be transmitted and received, as well as in the actual
process of how the data bits are transmitted (and thus received) within the data stream.

Data can be transmitted between two devices in one of three directions: one way, in both
directions but at separate times because they share the same transmission line, and in both
directions simultaneously. A simplex scheme for serial I/0O data communication is one in
which a data stream can only be transmitted—and thus received—in one direction (see Figure
4-54a). A half duplex scheme is one in which a data stream can be transmitted and received
in either direction, but in only one direction at any one time (see Figure 4-54b). A full duplex
scheme is one in which a data stream can be transmitted and received in either direction,
simultaneously (see Figure 4-54c).

Embedded Board Printer

i Serial Interface

Serial Interface

Transfer Data [:
(TxData) :

{ Receive Data
i (RxData)

Serial Port Serial Port

. Ground (Gnd)

Figure 4-54a: Simplex transmission scheme example #7¢

184

Embedded Processors

Embedded Board

erial Interface

Transfer Data

(TxData) :
RTS

Receive Data

(RxData)

. Ground (Gnd) :

| Transfer Data

i (TxData)
Serial Serial { RTS
Port Port

‘ Receive Data

i (RxData)

. Ground (Gnd)

Figure 4-54b: Half duplex transmission scheme example #1¢/

Embedded Board

: Serial Interface

Transfer Data
: (TxData) :

Receive Data
(RxDara) |

Ground (Gnd)

‘ ‘ & IP Phn e

Serial > < Serial
Port Port

' Serial Interface |

Transfer Data
(TxData) :

| Receive Data
i (RxDara)

Ground (Gnd) |

Figure 4-54c: Full duplex transmission scheme example '8

Within the actual data stream, serial I/O transfers can occur either as a steady (continuous)
stream at regular intervals regulated by the CPU’s clock, referred to as a synchronous trans-
fer, or intermittently at irregular (random) intervals, referred to as an asynchronous transfer.

Embedded Sytem
Transmitter

STD STR T
bit (s) flata bits bit
Idle | ¢ Idle Embedded Sstem
0 of 11 1|_0| 11 Receiver
MSB s BB
Serial Fame :

Samfing in middle
of data bit priod

Figure 4-55: Asynchronous transfer sample diagram

185

Chapter 4

In an asynchronous transfer (shown in Figure 4-55), the data being transmitted can be stored
and modified within a serial interface’s transmission buffer or registers. The serial interface at
the transmitter divides the data stream into packets that typically range from either 4-8 or 5-9
bits, the number of bits per character. Each of these packets is then encapsulated in frames

to be transmitted separately. The frames are packets that are modified before transmission by
the serial interface to include a START bit at the start of the stream, and a STOP bit or bits
(i.e., can be 1, 1.5, or 2 bits in length to ensure a transition from “1” to “0” for the START bit
of the next frame) at the end of the data stream being transmitted. Within the frame, after the
data bits and before the STOP bit, a parity bit may also be appended. A START bit indicates
the start of a frame, the STOP bit(s) indicates the end of a frame, and the parity is an optional
bit used for very basic error checking. Basically, parity for a serial transmission can be NONE
(for no parity bit and thus no error checking), EVEN (where the total number of bits set to
“1” in the transmitted stream, excluding the START and STOP bits, needs to be an even num-
ber for the transmission to be a success), and ODD (where the total number of bits set to “1”
in the transmitted stream, excluding the START and STOP bits, needs to be an odd number
for the transmission to be a success).

Between the transmission of frames, the communication channel is kept in an idle state,
meaning a logical level “1” or non-return to zero (NRZ) state is maintained.

The serial interface of the receiver then receives frames by synchronizing to the START bit of
a frame, delays for a brief period, and then shifts in bits, one at a time, into its receive buffer
until reaching the STOP bit (s). In order for asynchronous transmission to work, the bit rate
(bandwidth) has to be synchronized in all serial interfaces involved in the communication.
The bit rate is defined as:

(number of actual data bits per frame/total number of bits per frame) * the baud rate.

The baud rate is the total number of bits, regardless of type, per unit of time (kbits/sec,
Mbits/sec, etc.) that can be transmitted.

Both the transmitter’s serial interface and the receiver’s serial interface synchronize with
separate bit-rate clocks to sample data bits appropriately. At the transmitter, the clock starts
when transmission of a new frame starts, and continues until the end of the frame so that the
data stream is sent at intervals the receiver can process. At the receiving end, the clock starts
with the reception of a new frame, delaying when appropriate, in accordance with the bit rate,
sampling the middle of each data bit period of time, and then stopping when receiving the
frame’s STOP bit(s).

186

Embedded Processors

Next Frame Previous Frame Embedded System
Embedded System - FEEEEEE o of1 1 1|_0| 1 1|i|w AAAAAA Receiver
Transmitter

MSB LSB

Serial Frame

Figure 4-56: Synchronous transfer sample diagram

In a synchronous transmission (as shown in Figure 4-56), there are no START or STOP bits
appended to the data stream, and there is no idle period. As with asynchronous transmis-
sions, the data rates on the receiving and transmitting have to be in sync. However, unlike the
separate clocks used in an asynchronous transfer, the devices involved in a synchronous trans-
mission are synchronizing off of one common clock which does not start and stop with each
new frame (and on some boards there may be an entirely separate clock line for the serial
interface to coordinate the transfer of bits). In some synchronous serial interfaces, if there is
no separate clock line, the clock signal may even be transmitted along with the data bits.

The UART (universal asynchronous receiver-transmitter) is an example of a serial interface
that does asynchronous serial transmission, whereas SPI (serial peripheral interface) is an
example of a synchronous serial interface. Note: different architectures that integrate a UART
or other types of serial interfaces can have varying names for the same type of interface, such
as the MPC860 which has SMC (serial management controller) UARTs, for example. Review
the relevant documentation to understand the specifics.

Serial interfaces can either be separate slave ICs on the board, or integrated onto the master
processor. The serial interface transmits data to and from an I/O device via a serial port (see
Chapter 6). Serial ports are serial communication (COM) interfaces that are typically used
to interconnect off-board serial I/O devices to on-board serial board I/O. The serial interface
is then responsible for converting data that is coming to and from the serial port at the logic
level of the serial port into data that the logic circuitry of the master CPU can process.

Processor Serial I/0 Example 1:
An Integrated Universal Asynchronous Receiver-Transmitter (UART)

The UART (universal asynchronous receiver-transmitter) is an example of a full duplex serial
interface that can be integrated into the master processor and that does asynchronous serial
transmission. As mentioned earlier, the UART can exist in many variations and under many
names; however, they are all based upon the same design—the original 8251 UART control-
ler implemented in older PCs. A UART (or something like it) must exist on both sides of the
communication channel, in the I/O device as well as on the embedded board, in order for this
communication scheme to work.

187

Chapter 4

In this example, we look at the MPC860 internal UART scheme since the MPC860 has more
than one way to implement a UART. The MPC860 allows for two methods to configure a
UART, either using an SCC (serial communication controller) or an SMC (serial manage-
ment controller). Both of these controllers reside in the PowerPC’s Communication Processor
Module (shown in Figure 4-57) and can be configured to support a variety of different com-
munication schemes, such as Ethernet, HDLC, etc. for the SCC, and transparent, GCI, etc. for
SMC:s. In this example, however, we are only examining both being configured and function-

ing as a UART.

4K System Interface Unit
1 Cache
Core ~ | 1MMU U-bus Memory Controller E::
4K D BIU i
- .| Cache System Hnctions
PowerPC™ @ D MMU Real Time clock
PCMCIA Interface
Parallel /0 Internal 4 General
Baud Rate | |Memory | [MeITUPL 1 pyrpose :
Generators Space Timers 1 S I\S/I(Xlal
Parallel Interface 32-Bit RISC ontroller | . 5
Port Tnternal | 2 Progm_ROM 2 Virtual IDMA
t Timers Peripheral Bus t @
| S S S O DY 1
P | !Tg\ !s_c%\ 5CC3) [SCCA) BMCT [2C]Communications
R I ool Processor
Time Slot Assiger r Serial Interface| Module

Figure 4-57: MPC860 UARTs 4!

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

MPC860 SCC in UART Mode

As introduced at the start of this section, in an asynchronous transfer, the data being transmit-
ted can be stored and modified within a serial interface’s transmission buffer. With the SCCs
on the MPC860, there are two UART FIFO (first-in-first-out) buffers, one for receiving data
for the processor and one for transmitting data to external I/0 (see Figures 4-58a and b). Both
buffers are typically allocated space in main memory.

188

Embedded Processors

U-Bus

Baud Rate
Generator(s) CLKx

t

!

[oos] |

Control Registers |

Clock Generator

Internal Clocks

Peripheral Bus
Receive Transmit
Data Data
Register Register

Control
UIlit SYNC

R, Shifter] [Shifterl 2"

Figure 4-58a: SCC in receive mode -2

U-Bus

T

I

SDMA ’ Control Registers ‘

Peripheral Bus

T

!

DPLL TCLKx

and Clock
Recovery RCLKx

Clock Generator

Internal Clocks

Receive
Control
Unit

CDx* —*

Receive
Data
i3]

Transmit
Data
»

Transmit[— RTS*
Control
Unit [+ CTS*

RxD

Hl Decoder H Delimiter H ShifterH ShifterH DelimiterH hcoder }—'

TxD

Figure 4-58b: SCC in transmit mode %

As can be seen in Figures 4-58a and b, along with the reception and transmission buffers,
there are control registers to define the baud rate, the number of bits per character, the parity,
and the length of the stop bit, among other things. As shown in Figures 4-58a and b, as well
as 4-59, there are five pins, extending out from the PowerPC chip, that the SCC is connected
to for data transmission and reception: transmit (TxD), receive (RxD), carrier detect (CDXx),
collision on the transceiver (CTSx), and request-to-send (RTS). How these pins work together
is described in the next few paragraphs.

189

Chapter 4

* TXDx - transmit pins
SCC Pin Summary * RXDx - receive pins
* CDx - carrier detect pins
* CTSx - clear-to-send pins
* RTSx - request-to-send pins

~<~—— PAJ[15]/RXDI

— PA[14]/TXDI1

<~— PC[10]/CDI1*/ TGATE1

<~ PC[11]/CTS1

— = PB[19]/RTS1*/LI1ST1 or PC[15] /RTS1* /L1ST1/ DREQO
<— PA[13]/RXD2

— PA[12]/TSD2

<~ PCJ8]/CD2* | TGATE2

~—— PC[9]/CTS2*

[— PBJ[18]/RTS2*/L1ST1 or PC[14] / RTS2* / L1ST2 / DREQ1
<~——— PDJ11]/RXD3

— PDJ[10]/TSD3

<~ PC[6]/CD3* /LIRSYNCB

~— PC[7] / CTS3* / SDACK2 / LITSYNCB

— PD[7]/RTS3*

<—— PDJ[9]/RXD4

———— PD|[8]/TXD4

<~— PC[4]/CD4* /LIRSYNCA

<~ PC[5]/ CTS4 / SDACK1/LITSYNCA

[— PD[6]/ RTS4*

Figure 4-59: SCC pinouts #-2°1

In either receive or transmit modes, the internal SCC clock is activated. In asynchronous
transfers, every UART has its own internal clock that, though unsynchronized with the clock
in the UART of the external I/O device, is set at the same baud rate as that of the UART it is
in communication with. The carrier detect (CDx) is then asserted to allow the SCC to receive
data, or the collision on the transceiver (CTSx) is asserted to allow the SCC to transmit data.

As mentioned, data is encapsulated into frames in asynchronous serial transmissions. When
transmitting data, the SDMA transfers the data to the transmit FIFO and the request-to-send
pin asserts (because it is a transmit control pin and asserts when data is loaded into the trans-
mit FIFO). The data is then transferred (in parallel) to the shifter. The shifter shifts the data
(in serial) into the delimiter, which appends the framing bits (i.e., start bits, stop bits, and so
on). The frame is then sent to the encoder for encoding before transmission. In the case of an
SCC receiving data, the framed data is then decoded by the decoder and sent to the delimiter
to strip the received frame of nondata bits, such as start bit, stop bit(s), and so on. The data

is then shifted serially into the shifter, which transfers (in parallel) the received data into the
receive data FIFO. Finally, the SDMA transfers the received data to another buffer for contin-
ued processing by the processor.

MPC860 SMC in UART Mode

As shown in Figure 4-60a, the internal design of the SMC differs greatly from the internal
design of the SCC (shown in Figures 5-58a and b), and in fact has fewer capabilities than an
SCC. An SMC has no encoder, decoder, delimiter, or receive/transmit FIFO buffers. It uses
registers instead. As shown in Figure 4-60b, there are only three pins that an SMC is connect-
ed to: a transmit pin (SMTXDx), a receive pin (SMRXDx), and sync signal pin (SMSYN).
The sync pin is used in transparent transmissions to control receive and transmit operations.

190

Embedded Processors

SMTXDx - transmit pins
“SMRXDx - rece ive pins
SMSYNX - sgch signal pins for transparent

Baud Rate
Generator(s) CLKx

U-Bus
T t PBEMRXDI1
: PBEMTXD 1
SDMA | Control Registers | <~ PBEMSYNS DACK1
«—— PBBMRXDRCL KOA
Clock Generator PBEMTXDLCLK 9
. PBEMSYNS DACK?2
Peripheral Bus
l Internal Clocks
Receive Transmit Control
Data Data Unit SYNC
Register Register

]
RxD, [Shifter X

Figure 4-60a: SMC #25] Figure 4-60b: SMC pins 42/

Data is received via the receive pin into the receive shifter, and the SDMA then transfers the
received data from the receive register. Data to be transmitted is stored in the transmit regis-
ter, and then moved into the shifter for transmission over the transmit pin. Note that the SMC
does not provide the framing and stripping of control bits (i.e., start bit, stop bit(s), and so on)
that the SCC provides.

Processor Serial I/O Example: An Integrated Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) is an example of a full-duplex serial interface that can be
integrated into the master processor and that does synchronous serial transmission. Like the
UART, an SPI needs to exist on both sides of the communication channel (in the I/O device,
as well as on the embedded board) in order for this communication scheme to work. In this
example, we examine the MPC860 internal SPI, which resides in the PowerPC’s Communica-
tion Processor Module (shown in Figure 4-61).

K Sytem Interface Unit
IC
ache @ 1N
Core I MMU U-bus MemoryController |H—
XK D - BIU N
- | Cache Sstem Enctions
PoerPC™ @ D MMU Real Time clock
PCMCIA Interface
Parallel 10 Internal 4General
Interrupt
Baud Rate Memory Purpose
Generators Space Controller Timers %el\r/ﬁ\l
Parallel Interface | it RISC @ontroller | $:
POIT Internal | and Program ROM [MA N irtual DMA
Timers Peripheral Bus @
EE & & & L L #E [12C] Communications
Processor
| Time Slot Assigner Serial Interface] ~ Module

Figure 4-61: MPC860 SPI I

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

191

Chapter 4

In a synchronous serial communication scheme, both devices are synchronized by the same
clock signal generated by one of the communicating devices. In such a case, a master-slave
relationship develops in which the master generates the clock signal which it and the slave
device, adheres to. It is this relationship that is the basis of the four pins that the MPC860 SPI
is connected to (as shown in Figure 4-62b): the master out/slave in or transmit (SPIMOSI),
master in/slave out or receive (SPIMISO), clock (SPICLK), and slave select (SPISEL).

U-Bus * SPIMOSI - master out,sl ave in pin

t * SPIMISO - master in,sl ave out pin
ﬁ : * SPICLK - SPI cloclpi n
SDMA | Control Registers | * SPISEL - SPI slave select pin,used hen &PI is in sl ave mode
Peripheral Bus

4 v 4
[SPI Mode Reg| ~ [Transmit Reg] [Receive Reg | DEE——E 811 V19 S
PBRTBPISEL *REECT1*
|® Counter '—‘| (D Shift_Register TXD
RXD
IN CLK Clock JUTULUTUL MUyt
seivost 0000000 0000000C
Pins Interf: ‘—|SPI BRG
| T IT nte atce t | : @l seiviso 0000000 0000000C
BRGCLK SPISEL* M\

SPISEL* SPIMOSI SPIMISO SPICLK

Figure 4-62a: SPI 1#2% Figure 4-62b: SPI pins 2°]

When the SPI operates in a master mode, it generates the clock signals, while in slave mode,
it receives clock signals as input. SPIMOSI in master mode is an output pin, SPMISO in
master mode is an input pin, SPICLK supplies an output clock signal in master mode that
synchronizes the shifting of received data over the SPIMISO pin or shifts out transmitted
data over SPIMOSI. In slave mode, SPIMOSI is an input pin, SPIMISO is an output pin, and
SPICLK receives a clock signal from the master synchronizing the shifting of data over the
transmit and receive pins. The SPISEL is also relevant in slave mode, because it enables input
into the slave.

How these pins work together, along with the internal components of the SPI, are shown

in Figure 4-62a. Essentially, data is received or transmitted via one shift register. If data is
received, it is then moved into a receive register. The SDMA then transfers the data into a
receive buffer that usually resides in main memory. In the case of a data transmission, the
SDMA moves the data to be transmitted from the transfer buffer in main memory to the trans-
mit register. SPI transmission and reception occurs simultaneously; as data is received into
the shift register, it shifts out data that needs to be transmitted.

192

Embedded Processors

Parallel I/0

I/0O components that transmit data in parallel allow data to be transferred in multiple bits
simultaneously. Just as with serial I/O, parallel I/O hardware is also typically made up of
some combination of six main logical units, as introduced at the start of this chapter, except
that the port is a parallel port and the communication interface is a parallel interface.

Parallel interfaces manage the parallel data transmission and reception between the master
CPU and either the I/O device or its controller. They are responsible for decoding data bits
received over the pins of the parallel port, transmitted from the I/O device, and receiving data
being transmitted from the master CPU, and then encoding these data bits onto the parallel
port pins.

They include reception and transmission buffers to store and manipulate the data they are
responsible for transmitting either to the master CPU or an I/O device. Parallel data transmis-
sion and reception schemes, like serial I/O transmission, generally differ in terms of what
direction data can be transmitted and received, as well as the actual process of how the actual
data bits are transmitted (and thus received) within the data stream. In the case of direction of
transmission, as with serial I/O, parallel I/O uses simplex, half-duplex, or full-duplex modes.
Again, like serial 1/O, parallel I/O can be transmitted asynchronously or synchronously.
Unlike serial I/0, parallel I/O does have a greater capacity to transmit data, because multiple
bits can be transmitted or received simultaneously. Examples of I/O devices that transfer and
receive data in parallel include IEEE1284 controllers (for printer/display I/O devices), CRT
ports, and SCSI (for storage I/O devices).

Interfacing the Master Processor with an 1/O Controller

When the communication interface is integrated into the master processor, as is the case with
the MPC860, it is a matter of connecting the identical pins for transmitting data and receiving
data from the master processor to an I/O controller. The remaining control pins are then con-
nected according to their function. In Figure 4-63a, for instance, the RTS (request to send) on
the PowerPC is connected to transmit enable (TENA) on the Ethernet controller, since RTS

is automatically asserted if data is loaded into the transmit FIFO, indicating to the controller
that data is on its way. The CTS (collision on the transceiver) on the PowerPC is connected to
the CLSN (clear to send) on the Ethernet controller and the CD (carrier detect) is connected
to the RENA (receive enable) pin, since when either CD or CTS are asserted, a transmission
or data reception can take place. If the controller does not clear to send or receive enable to
indicate data is on its way to the PowerPC, no transmission or reception can take place. Fig-
ure 4-63b shows a MPC860 SMC interfaced to an RS-232 IC, which takes the SMC signals
(transmit pin (SMTXDx) and receive pin (SMRXDx)) and maps them to an RS-232 port in this
example.

193

Chapter 4

MCI8D W
MPC860 TXDI1 TX MC68160 fCH Cc2 1
T | T'%
*
RTSI TENA TPTX+ Cl- c2
CLKn TCLK TPTX— LR T4 RSCDI¢
RXDI1 — F—CTS1*
X TPRX+ | SMTXDI b3 T8 [—TXDI* |RS3
Ch1* RENA SMRXD1 DOl Rt |—Rrxpl* |Cone
TPRX- | —D02 RR
CLKm RCLK B ——03 R [—DIRI*
CTS1* CLSN
RSEnb ———STB
Figure 4-63a: MPC860 SCC UART interfaced Figure 4-63b: MPC860 SMC interfaced
to Ethernet controller #2 to RS-232 14231
Copyright of Freescale Semiconductor, Inc. 2004. Used by permission. Copyright of Freescale Semiconductor, Inc. 2004.
Used by permission.
Interface
Example MPC860 l\élgg;[zz(;;;f
SPIMISO SPISO
SPIMOSI SPISI
SPICLK SPICK
Port Pin SPISS

Figure 4-63c: MPC860 SPI interfaced to ROM #-2°1

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Finally, Figure 4-63c shows an example of a PowerPC SPI in master mode interfaced with
some slave IC, in which the SPIMISO (master in/slave out) is mapped to SPISO (SPI slave
out). Since in master mode SPIMISO is an input port, SPIMOSI (master out/slave in) is
mapped to SPISI (slave in). Since SPIMOSI in master mode is an output port, SPICLK is
mapped to SPICK (clock) since both ICs are synchronized according to the same clock, and
SPISEL is mapped to SPISS (Slave Select input) which is only relevant if the PowerPC is in
slave mode. If it were the other way around (that is, PowerPC in slave mode and slave IC in
master mode), the interface would map identically.

Finally, for a subsystem that contains an I/O controller to manage the 1/O device, the interface
between an I/0O Controller and master CPU (via a communications interface) is based on four
requirements:

An ability for the master CPU to initialize and monitor the 1/0 Controller. 1/0
controllers can typically be configured via control registers and monitored via status
registers. These registers are all located on the I/O controller itself. Control registers
can be modified by the master processor to configure the I/O controller. Status reg-
isters are read-only registers in which the master processor can get information as to
the state of the I/O controller. The master CPU uses these status and control registers
to communicate and/or control attached I/O devices via the 1/O controller.

194

Embedded Processors

A way for the master processor to request I/0. The most common mechanisms used
by the master processor to request I/O via the I/O controller are special I/0 instruc-
tions (I/O mapped) in the ISA and memory-mapped I/0, in which the 1/O controller
registers have reserved spaces in main memory.

A way for the 1/0 device to contact the master CPU. 1/0 controllers that have the
ability to contact the master processor via an interrupt are referred to as interrupt
driven I/O. Generally, an I/O device initiates an asynchronous interrupt requesting
signaling to indicate (for example) that control and status registers can be read from
or written to. The master CPU then uses its interrupt scheme to determine when an
interrupt will be discovered.

Some mechanism for both to exchange data. This refers to the process by which
data is actually exchanged between the 1/O controller and the master processor. In a
programmed transfer, the master processor receives data from the I/O controller into
its registers, and the CPU then transmits this data to memory. For memory-mapped
I/0 schemes, DMA (direct memory access) circuitry can be used to bypass the master
CPU entirely. DMA has the ability to manage data transmissions or receptions direct-
ly to and from main memory and an I/O device. On some systems, DMA is integrated
into the master processor, and on others there is a separate DMA controller.

Note: More on 1/0O with examples of components will be covered in Chapter 6: Board I/0.
Some (unintegrated) processors have I/O components that work in conjunction with board
I/0, so there is a great deal of overlapping information.

Interrupts

Interrupts are signals triggered by some event during the execution of an instruction stream
by the master processor. This means they can be initiated asynchronously, for external hard-
ware devices, resets, power failures, or synchronously for instruction-related activities such as
system calls, or illegal instructions. These signals cause the master processor to stop executing
the current instruction stream and start the process of handling (processing) the interrupt.

The three main types of interrupts are software, internal hardware, and external hardware.
Software interrupts are explicitly triggered internally by some instruction within the cur-
rent instruction stream being executed by the master processor. Internal hardware interrupts,
on the other hand, are initiated by an event that is a result of a problem with the current
instruction stream that is being executed by the master processor because of the features (or
limitations) of the hardware, such as illegal math operations like overflow or divide-by-zero,
debugging (single-stepping, breakpoints), invalid instructions (opcodes), and so on. Inter-
rupts that are raised (requested) by some internal event to the master processor (basically,
software and internal hardware interrupts) are also commonly referred to as exceptions or
traps (depending on the type of interrupt). Finally, external hardware interrupts are interrupts
initiated by hardware other than the master CPU (i.e., board buses, I/O, etc.). What actually
triggers an interrupt is typically determined by the software via register bits that activate or
deactivate potential interrupt sources in the initialization device driver code.

195

Chapter 4

For interrupts that are raised by external events, the master processor is either wired via

an input pin(s), called an IRQ (Interrupt Request Level) pin or port, to outside intermedi-

ary hardware (i.e., interrupt controllers), or directly to other components on the board with
dedicated interrupt ports that signal the master CPU when they want to raise the interrupt.
These types of interrupts are triggered in one of two ways: level-triggered or edge-triggered.
A level-triggered interrupt is initiated when the interrupt request (IRQ) signal is at a certain
level (i.e., HIGH or LOW—see Figure 4-64a). These interrupts are processed when the CPU
finds a request for a level-triggered interrupt when sampling its IRQ line, such as at the end of
processing each instruction.

Edge-triggered interrupts trigger when a change occurs on its IRQ line (from LOW to HIGH/
rising edge of signal or from HIGH to LOW/falling edge of signal—see Figure 8-64b). Once
triggered, these interrupts latch into the CPU until processed.

Level Triggered IRQ Sampling

IRQ

v v | v

CPU | Fetch | Decode | Execute | Fetch | Decode | Execute | Fetch Decode | Execute

Figure 4-64a: Level-triggered interrupts “-24

Falling Edge Trigger 6r Edge

Triggered Interrupt Rimng Edge Trigger 6r Edge

Triggered Interrupt

IRQ

CPU | Fetch | Decode | Execute | Fetch | Decode | Execute | Fetch | Decode | Execute |

Figure 4-64b: Edge-triggered interrupts #-24

Both types of interrupts have their strengths and drawbacks. With a level-triggered interrupt,
as shown in Figure 4-65a, if the request is being processed and has not been disabled before
the next sampling period, the CPU would try to service the same interrupt again. On the flip
side, if the level-triggered interrupt were triggered and then disabled before the CPU’s sample
period, the CPU would never note its existence and would therefore never process it. Edge
level interrupts can have problems if they share the same IRQ line, if they are triggered in the
same manner at about the same time (say before the CPU could process the first interrupt),
resulting in the CPU being able to detect only one of the interrupts (see Figure 4-65b).

Because of these drawbacks, level-triggered interrupts are generally recommended for inter-
rupts that share IRQ lines, whereas edge-triggered interrupts are typically recommended for
interrupt signals that are very short or very long.

196

Embedded Processors

Level Triggered IRQ inactive before
IRQ still active for same interrupt IRQ Sampling CPUsampling period
at 2 sampling periods ! :
RO
v P\ v [1 3 v

CPU | Fetch | Decode | Execute | Fetch | Decode | Execute | Fetch | Decode | Execute

Figure 4-65a: Level-triggered interrupts drawbacks 34

Problem if Falling Edge Trigger or Rising Edge
Trigger for both Edge Triggered Interrupts
around the same time with the CPU only processing 1

CPU | Fetch | Decode | Execute | Fetch | Decode | Execute | Fetch | Decode | Execute

Figure 4-65b: Edge-triggered interrupts drawbacks #-24

At the point an IRQ of a master processor receives a signal that an interrupt has been raised,
the interrupt is processed by the interrupt handling mechanisms within the system. These
mechanisms are made up of a combination of both hardware and software components. In
terms of hardware, an interrupt controller can be integrated onto a board or within a proces-
sor to mediate interrupt transactions in conjunction with software. Architectures that include
an interrupt controller within their interrupt handling schemes include the 268/386 (x86)
architectures that use two PICs (Intel’s Programmable Interrupt Controller); MIPS32, which
relies on an external interrupt controller; and the MPC860 (shown in Figure 4-66a), which
integrates two interrupt controllers, one in the CPM and one in its SIU. For systems with no
interrupt controller (such as the Mitsubishi M37267M8 TV microcontroller shown in Figure
4-66b), the interrupt request lines are connected directly to the master processor, and interrupt
transactions are controlled via software and some internal circuitry (registers, counters, etc.).

PowerPC
Port C45

IREQ

Figure 4-66a: Motorola/Freescale MPC860 interrupt controllers 42
Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

197

Chapter 4

Mitsubishi
Circuitry %3

16usec

M37267M8

Interrupt Input Pins Dusec % C([)?tml 8-bit Binary
INTI INT2 nit up Counter >
ml---5 RE1 RE2 L
————— Ports (P4)
b S T— T T INT2
| | | | INT1 "(5 Interrupt Interval |
i RE2 Determination Register

i Selection Gate: Connected to]
: :

black colored portiot rest

Figure 4-66b: Mitsubishi M37267MS8 circuitry 422

Interrupt acknowledgment, or JACK, is typically handled by the master processor when an
external device triggers an interrupt. Because IACK cycles are a function of the local bus,

the TACK function of the master CPU depends on interrupt policies of system buses, as well
as the interrupt policies of components within the system that trigger the interrupts. With
respect to the external device triggering an interrupt, the interrupt scheme depends on whether
that device can provide an interrupt vector (a place in memory that holds the address of

an interrupt’s ISR). For devices that cannot provide the interrupt vector, master processors
implement an auto-vectored interrupt scheme and acknowledgment is done via software. An
interrupt vectored scheme is implemented to support peripherals that can provide an interrupt
vector over a bus, and acknowledgment is automatic. Some IACK register on the master CPU
informs the device, requesting the interrupt to stop requesting interrupt service, and provides
the master processor with what it needs to process the correct interrupt (such as the interrupt
number, vector number, and so forth). Based upon the activation of an external interrupt pin,
an interrupt controller’s interrupt select register, a device’s interrupt select register, or some
combination of these, the master processor can determine which ISR to execute. After the ISR
completes, the master processor resets the interrupt status by adjusting the bits in the pro-
cessor’s status register or an interrupt mask in the external interrupt controller. The interrupt
request and acknowledge mechanisms are determined by the device requesting the interrupt
(since it determines which interrupt service to trigger), the master processor, and the system
bus protocols.

198

Embedded Processors

Keep in mind that this is a general introduction to interrupt handling, covering some of the
key features found in a variety of schemes. The overall interrupt handling scheme can vary
widely from architecture to architecture. For example, PowerPC architectures implement an
auto-vectored scheme, with no interrupt vector base register. The 68000 architecture supports
both auto-vectored and interrupt vectored schemes, whereas MIPS32 architectures have no
IACK cycle, and so the interrupt handler handles the triggered interrupts.

All available interrupts within a processor have an associated interrupt level, which is the
priority of that interrupt within the system. Typically, interrupts starting at level “1” are the
highest priority within the system, and incrementally from there (2,3,4,...) the priorities of the
associated interrupts decrease. Interrupts with higher levels (priorities) have precedence over
any instruction stream being executed by the master processor. This means that not only do
interrupts have precedence over the main program, but they also have precedence over inter-
rupts with lower priorities as well.

The master processor’s internal design determines the number and types of interrupts avail-
able, as well as the interrupt levels (priorities) supported within an embedded system. In
Figure 4-67a, the MPC860 CPM, SIU, and PowerPC core all work together to implement
interrupts on the MPC823 processor. The CPM allows for internal interrupts (two SCCs, two
SMCs, SPI, 12C, PIP, general-purpose timers, two IDMAs, one SDMA, one RISC Timers)
and 12 external pins of port C, and drives the interrupt levels on the SIU. The SIU receives in-
terrupts from eight external pins (IRQO-7), and eight internal sources, for a total of 16 sources

SIU PowerPC

Port C4:15 TRQO:7

CPM LVLO:7 SIU

Ic —IREQ

C
P

17 Devices —| M
1C

Figure 4-67a: Motorola/Freescale MPC860 interrupt pins and table #-2°

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

199

Chapter 4

of interrupts (one of which can be the CPM), and drives the IREQ input to the core. When the

IREQ pin is asserted, external interrupt processing begins. The priority levels are shown in
Figure 4-67b.

SWT
1RQO NMI
REQ[0:7] 1 dae/ *Q0IGEN l
—— Level NMI
[DEC | Level 7 — DEC
S
Level 6 1
— 5| U EPPC | * SIU receives an interrupt
PIT | Level5 ¥ 1 CORE from 1 of 8 external sources or
RTC Level4 —| N 1 of 8 internal sources
Level3 — T IREQ — Assuming no masking
PCMCIA 5 < SIU asserts the IREQ in
. put to
| Level2 B 1 11\1 the EPPC core
Level 1 "I R
L
Level 0 R
Debug DEBUG

System Interface Unit (SIU)

Port C[4:15]————
Timer] ———

Timer2 ————|

290

Timer3 ———
Timerd ———

SCCl——— To SIU Interrupt Controller
SCC2———

SMC1

SMC2——

T

Communication

Processor
Module SPI

(CPM) PC——

PIP——|

IDMA| ———
IDMA2 e CPIC Generates an interrupt to the SIU Interrupt
SDMA ———| Controller at a User Programmable Level

RISC Timers ——————|

T ASZA

Figure 4-67b: Motorola/Freescale MPC860 interrupt levels 421

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
In another architecture, such as the 68000, (shown in Figures 4-68a and b) there are eight

levels of interrupts (0—7), and interrupts at level 7 are the highest priority. The 68000 interrupt
table (Figure 4-68b) contains 256 32-bit vectors.

200

Embedded Processors

Ins. Vector Vector
There are three IRQ pins: IPLO, IPLI, and IPL2 Nt [glector Assigoment
Eich 0 000 Reset Initial Interrupt Stack Pointer
1ght s 1 004 Reset initial Program Gunte r
Internal IRQ’s 2 008 Access Fault
4 Times—4 Modern 3 00C Address Error
TTTTTTTT - Keyboard 4 010 Illegal Instruction
Eight 5 014 Integer Divide by o
———— | 1 6 018 @K, 8K2 instructio n
68000 MFP leéerfla 7 01C FTRAPce,TRAPcc, TRAPV instruction s
Modem Qs 8 020 Privilege Violation
Disk 9 024 Trace
10 028 Line 1010 Emulator Unimplemented ALine ftode)
11 02C Line 1111 Emulator Unimplemented Fline frode)
12 08 Unassigned,Reserv ed)
16 Possible 13 03 Gprocessor Protocol Violation
14 08 Format Error
GLUE Interrupts 15 08 Uninitialied Inerrupt
IPLO 16-23 040-08 Unassigned,Reserv_ed)
IPLI ,{_ 24 060 Spurious Interrupt
1PL2 g 25 064 Level 1 Interrupt Autovector
) VBLANK 26 068 Level 2 Interrupt Autovector
| HBLANK 27 06C Level Interrupt Auto vector
28 00 Level 4 Interrupt Autovector
29 0z Level Snterrupt Auto vector
6 08 Level 6 Interrupt Autovector
MEFP vs. Screen Interrupts 3 0T Level Interrupt Auto vector
3-47 080-08C TRAP 6 D I3nstructor Vectors
3 48 0 FP Branch or Set on Unordered Ghditio n
F[gure 4-68a: 49 0¢ FP Inexact Result
[4-23] [} 08 FP Divide by #o
Motorola/Freescale 68K IRQs - 3 0C__ FP Underfo w
3 0DO FP @erand Error
3 0D4 FP O erfo w
S 0D8 FP Signaling NAN
5 0DC FP Unimplemented Data Type Def ined 6r MG8040)
6 0EO MMU 6hf iguration Error
3 OE4 MMU Illegal peration Erro r
8 OE8 MMU Access Level Violation Error
963 OEDOFC Unassigned,Reserv_ed)
6425 100DBC _ User Def ned Vectors (9)

Figure 4-68b:
Motorola/Freescale 68K IRQs table 423

The M37267M8 architecture (shown in Figure 4-69a) allows for interrupts to be caused by
16 events (13 internal, two external shown in the figure above, and one software) whose
priorities and usages are summarized in Figure 4-69b.

P4,/MXGcan be used as external interrupt pin INT2.

LTt

M37267M8

T v

P4, can be used as external interrupt pin INT1.

Figure 4-69a: Mitsubishi M37267M8 8-bit TV microcontroller interrupts 2%

201

Chapter 4

Interrupt Source Priority | Interrupt Causes

RESET 1 (nonmaskable)

CRT 2 Occurs after character block display to CRT is completed
INT1 3 External Interrupt ** the processor detects that the level of

a pin changes from 0 (LOW) to 1 (HIGH), or 1 (HIGH) to 0
(LOW) and generates an interrupt request.

Data Slicer 4 Interrupt occurs at end of line specified in caption position
register

Serial I/O Interrupt request from synchronous serial I/O function

Timer 4 Interrupt generated by overflow of timer 4

5
6
Xin & 4096 7 Interrupt occurs regularly w/ a f(Xin)/4096 period.
8
9

Vsync An interrupt request synchronized with the vertical sync signal
Timer 3 Interrupt generated by overflow of timer 3

Timer 2 10 Interrupt generated by overflow of timer 2

Timer 1 11 Interrupt generated by overflow of timer 1

INT2 12 External Interrupt ** the processor detects that the level of

a pin changes from 0 (LOW) to 1 (HIGH), or 1 (HIGH) to 0
(LOW) and generates an interrupt request.

Multimaster I’C Bus 13 Related to I’C bus interface

interface

Timer 5 & 6 14 Interrupt generated by overflow of timer 5 or 6
BRK instruction 15 (nonmaskable software)

Figure 4-69b: Mitsubishi M37267M8 8-bit TV microcontroller interrupt table #2%

Several different priority schemes are implemented in various architectures. These schemes
commonly fall under one of three models: the equal single level (where the latest interrupt to
be triggered gets the CPU), the static multilevel (where priorities are assigned by a priority
encoder, and the interrupt with the highest priority gets the CPU), and the dynamic multilevel
(where a priority encoder assigns priorities, and the priorities are reassigned when a new
interrupt is triggered).

After the interrupt is acknowledged, the remaining interrupt handling process as described
above is typically handled via software, and so the discussion of interrupts will be continued
in Chapter 8: Device Drivers.

4.2.4 Processor Buses

Like the CPU buses, the processor’s buses interconnect the processor’s major internal com-
ponents (in this case the CPU, memory and I/O as shown in Figure 4-70) together, carrying
signals between the different components.

202

Embedded Processors

4K System Interface Unit
1 Cache
Core ~ | 1MMU U-bus Memory Controller E_:E
4K D BIU
< | Cache System HEnctions
PowerPCT™ @ D MMU Real Time clock
PCMCIA Interface
Parallel I/O Internal 4 General
Interrupt
Baud Rate Memory Purpose
Generators Space Controller Timers 1]g I\%ﬁgial
Parallel Interface 32-Bit RISC @ontroller | . S;
Port Tnternal |_and Promm ROM [MA | 2 Virtual IDMA
Timers Peripheral Bus

SCCT][SCC2] [SCC3] [SCCA] [SMCT] [SMC2] [SPI éCommumcaﬂons

Processor
| Time Slot Assige r | Serial Interface Module

Figure 4-70: MPC860 processor buses #7°1

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

In the case of the MPC860, the processor buses include the U-bus interconnecting the system interface unit
(SIU), the communications processor module (CPM), and the PowerPC core. Within the CPM, there is a
peripheral bus, as well. Of course, this includes the buses within the CPU.

A key feature of processor buses is their width which is (the number of bits that can be
transmitted at any one time). This can vary depending on both the buses implemented within
the processor—for example: x86 contains bus widths of 16/32/64, 68K has 8/16/32/ 64 bit
buses, MIPS 32 has 32 bit buses, and so forth—as well as the ISA register size definitions.
Each bus also has a bus speed (in MHz) that impacts the performance of the processor. Buses
implemented in real-world processor designs include the U, peripheral, and CPM buses in the
MPC8xx family of processors, and the C and X buses in the x86 Geode.

To avoid redundancy, buses are covered in more detail in Chapter 7: Board Buses, and more
examples are provided there.

4.3 Processor Performance

There are several measures of processor performance, but are all based upon the processor’s
behavior over a given length of time. One of the most common definitions of processor
performance is a processor’s throughput, the amount of work the CPU completes in a given
period of time.

203

Chapter 4

As discussed in Section 2.1, a processor’s execution is ultimately synchronized by an external
system or master clock, located on the board. The master clock is simply an oscillator pro-
ducing a fixed frequency sequence of regular on/off pulse signals that is usually divided or
multiplied within the CPU’s CU (control unit) to generate at least one internal clock signal
running at a constant number of clock cycles per second, or clock rate, to control and coordi-
nate the fetching, decoding, and execution of instructions. The CPU’s clock rate is expressed
in MHz (megahertz).

Using the clock rate, the CPU’s execution time, which is the total time the processor takes

to process some program in seconds per program (total number of bytes), can be calculated.
From the clock rate, the length of time a CPU takes to complete a clock cycle is the inverse
of the clock rate (1/clock rate), called the clock period or cycle time and expressed in seconds
per cycle. The processor’s clock rate or clock period is usually located in the processor’s
specification documentation.

Looking at the instruction set, the CPI (average number of clock cycles per instruction) can
be determined in several ways. One way is to obtain the CPI for each instruction (from the
processor’s instruction set manual) and multiplying that by the frequency of that instruction,
and then adding up the numbers for the total CPI.

CPI = X(CPI per instruction * instruction frequency)
At this point the total CPU’s execution time can be determined by:

CPU execution time in seconds per program = (total number of instructions per
program or instruction count) * (CPI in number of cycle cycles/instruction) * (clock
period in seconds per cycle) = ((instruction count) * (CPI in number of cycle cycles/
instruction)) / (clock rate in MHz)

The processor’s average execution rate, also referred to as throughput or bandwidth, reflects
the amount of work the CPU does in a period of time and is the inverse of the CPU’s execu-
tion time:

CPU throughput (in bytes/sec or MB/sec) = 1/ CPU execution time = CPU performance

Knowing the performance of two architectures (Geode and SA-1100, for example), the
speedup of one architecture over another can then be calculated as follows:

Performance(Geode) / Performance (SA-1100) = Execution Time (SA-1100) / Execu-
tion Time (Geode) = “X”, therefore, Geode is “X” times faster than SA-1100

Other definitions of performance besides throughput include:

A processor’s responsiveness, or latency, which is the length of elapsed time a pro-
cessor takes to respond to some event.

204

Embedded Processors

A processor’s availability,which is the amount of time the processor runs normally
without failure; reliability, the average time between failures or MTBF (mean time
between failures); and recoverability, the average time the CPU takes to recover from
failure or MTTR (mean time to recover).

On a final note, a processor’s internal design determines a processor’s clock rate and the CPI;
thus a processor’s performance depends on which ISA is implemented and how the ISA is
implemented. For example, architectures that implement Instruction-level Parallelism ISA
models have better performance over the application-specific and general-purpose based
processors because of the parallelism that occurs within these architectures. Performance can
be improved because of the actual physical implementations of the ISA within the processor,
such as implementing pipelining in the ALU. (Note: There are variations on the full adder
that provide additional performance improvements, such as the carry lookahead adder (CLA),
carry completion adder, conditional sum adder, carry select adder, and so on. In fact, some
algorithms that can improve the performance of a processor do so by designing the ALU to
be able to process logical and mathematical instructions at a higher throughput—a technique
called pipelining.) The increasing gap between the performance of processors and memory
can be improved by cache algorithms that implement instruction and data prefetching (es-
pecially algorithms that make use of branch prediction to reduce stall time), and lockup-free
caching. Basically, any design feature that allows for either an increase in the clock rate or
decrease in the CPI will increase the overall performance of a processor.

4.3.1 Benchmarks

One of the most common performance measures used for processors in the embedded market
is millions of instructions per seconds or MIPS.

MIPS = Instruction Count / (CPU execution time * 10°) = Clock Rate / (CPI * 10°)

The MIPS performance measure gives the impression that faster processors have higher MIPS
values, since part of the MIPS formula is inversely proportional to the CPU’s execution time.
However, MIPS can be misleading when making this assumption for a number of reasons,
including:

Instruction complexity and functionality aren’t taken into consideration in the MIPS
formula, so MIPS cannot compare the capabilities of processors with different [ISAs.

MIPS can vary on the same processor when running different programs (with varying
instruction count and different types of instructions).

Software programs called benchmarks can be run on a processor to measure its performance;
the performance discussion will continue in Section 1V, Putting It All Together.

205

Chapter 4

4.4 Reading a Processor’s Datasheet
A processor’s datasheet provides key areas of useful processor information.

Author note: I don’t assume that what I read from a vendor is 100% accurate, until 1
have seen the processor running and verified the features myself.

Datasheets exist for almost any component, both hardware and software, and the information
they contain varies between vendors. Some datasheets are a couple of pages long and list only
the main features of a system, while others contain over 100 pages of technical information.
In this section, I have used the MPC860EC rev. 6.3 datasheet, which is 80 pages, to sum-
marize some of the key areas of useful information in a processor’s datasheet. The reader can
then use it as an example for reading other processor datasheets, which typically have similar
overviews and technical information.

Section 2 of MPC860 Datasheet Example: Overview of the Processor’s Features

Figure 4-71a shows a block diagram of the MPC860, which is described in the datasheet’s
feature list shown in Figure 4-71b. As shown in the various shaded and unshaded sections of the
overview, everything from the description of the physical IC packaging to the major features of
the processor’s internal memory scheme is summarized. The remaining sections of the data-
sheet also provide a wide variety of information, including providing recommendations as to
how the MPC860 should be integrated onto a PCB such as: VDD pins should be provided with
low-impedance paths to the board’s supply, GND pins should be provided with low-impedance
paths to ground, all unused inputs/signals that will be inputs during reset should be pulled up, to
providing electrical specifications for the IEEE 1149.1 JTAG timings, the AC and DC electrical
specifications for the CPM, the AC electrical specifications for the UTOPIA interface, the AC
electrical specifications for the fast Ethernet controller (FEC), and so on.

4K System Interface Unit
1 Cache @
Core | IMMU U-bus Memory Controller EE
4K D BIU
< | Cache System Enctions
PowerPCT™ @ D MMU Real Time clock
PCMCIA Interface
Parallel I/O Internal 4 General
Baud Rate Memory Clgifti)li ér Purpose
Generators Space Timers 16 I\%?Anal
Parallel Interface | 32-Bit RISC @ontroller |
Port Internal |_and Promm ROM [MA | 2 Virtual IDMA

Timers Peripheral Bus

[SCCT][SCC2] [SCC3] [SCC4] [SM! L SPIT éCommumcatlons

Processor
| Time Slot Assige r | Serial Interface Module

Figure 4-71a: MPC860 processor block diagram 1%

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

206

Embedded Processors

Datasheet Overview

* Embedded single-issue, 32-bit PowerPC core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose
registers (GPRs)
— The core performs branch prediction with conditional prefetch without conditional execution.

On-chip Memory

Memory Management

— Advanced on-chip-emulation debug mode

External Data Bus Width and Support

« Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
* 32 address lines
* Operates at up to 80 MHz

Memory Management

« General-purpose timers SIU features (timers, ports, etc.)

— Four 16-bit timers or two 32-bit timers
— Gate mode can enable/disable counting
— Interrupt can be masked on reference match and event capture.

« System integration unit (SIU)
— Bus monitor
— Software watchdog
— Periodic interrupt timer (PIT)
— Low-power stop mode
— Clock synthesizer
— Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture
— Reset controller
— IEEE 1149.1 test access port (JTAG)

Figure 4-71b: MPC860 overview from datasheet 417/

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

207

Chapter 4

Datasheet Overview

Interrupt Scheme

1/0 NetworkingFeatures

* 10/100 Mbps Ethernet support, fully compliant with the IEEE 802.3u Standard (not available when
using ATM over UTOPIA interface)

* ATM support compliant with ATM forum UNI 4.0 specification
— Cell processing up to 50-70 Mbps at 50-MHz system clock
— Cell multiplexing/demultiplexing
— Support of AAL5 and AALO protocols on a per-VC basis. AALO support enables OAM and software implementation of
other protocols.
— ATM pace control (APC) scheduler, providing direct support for constant bit rate (CBR) and unspecified bit rate (UBR)
and providing control mechanisms enabling software support of available bit rate (ABR)
— Physical interface support for UTOPIA (10/100-Mbps is not supported with this interface) and byte-aligned serial (for
example, TI/E1/ADSL)
— UTOPIA-mode ATM supports level-1 master with cell-level handshake, multi-PHY (up to four physical layer devices),
connection to 25-, 51-, or 155-Mbps framers, and UTOPIA/system clock ratios of 1/2 or 1/3.
— Serial-mode ATM connection supports transmission convergence (TC) function for TI/E1/ADSL lines, cell delineation,
cell payload scrambling/descrambling, automatic idle/unassigned cell insertion/stripping, header error control (HEC)
generation, checking, and statistics.

CPM Internal Memory and Memory Management

CPM I/0

CPM I/0

Figure 4-71b: MPC860 overview from datasheet #'” (continued)

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

208

Embedded Processors

Datasheet Overview

CPM 1/O

External Bus Support

CPM 1/O

« Low power support

— Full on—all units fully powered
— Doze—core functional units disabled except time base decrementer, PLL, memory controller, RTC, and CPM in low-
power standby

— Sleep—all units disabled except RTC and PIT, PLL active for fast wake up

— Deep sleep—all units disabled including PLL except RTC and PIT

— Power down mode—all units powered down except PLL, RTC, PIT, time base, and decrementer

Debugging Support

Voltage Source/Power Information

*3.3-V operation with 5-V TTL compatibility except EXTAL and EXTCLK

IC Packaging

Figure 4-71b: MPC860 overview from datasheet *'” (continued)

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

209

Chapter 4

Section 3 of MPC860 Datasheet Example: Maximum Tolerated Ratings

This section of the MPC860 datasheet provides information on the maximum voltage and
temperature ranges that this processor can be exposed to (for the MPC860, shown in Table
4-4a). The maximum tolerated temperature for processors is the maximum temperature a
processor can withstand without damage, whereas the maximum tolerated voltage is the

maximum voltage a processor can withstand without damage.

Different processors will have their own maximum tolerated voltage and power ratings
(as seen from Table 4-4b the tables for the maximum temperatures and voltages of the

NET+ARM processor).

Table 4-4a: MPC860 processor maximum tolerated voltage and temperature ratings #'71

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

(GND=0V)
Rating Symbol Value Unit

Supply voltage! Vion -0.3t04.0 \%
VoL —0.3 t0 4.0 \%

KAPWR -0.3t04.0 \Y

VDDSYN —0.3 t0 4.0 \Y

Input voltage? V, GND - 0.3 to VDDH A\
Temperature® (standard) T min) 0 °C
T 95 °C

Temperature® (extended) Tamin) -40 °C
Tima 95 °C

Storage temperature range T -55to 150 °C

sig

©

The power supply of the device must start its ramp from 0.0 V.
Functional operating conditions are provided with the DC electrical specifications in Table 4-4b. Absolute
maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond

those listed may affect device reliability or cause permanent damage to the device.

Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage.

This restriction applies to power-up and normal operation (that is, if the MPC860 is unpowered, voltage greater
than 2.5 V must not be applied to its inputs).

Minimum temperatures are guaranteed as ambient temperature, T,. Maximum temperatures are guaranteed

as junction temperature, T;.

210

Embedded Processors

Table 4-4b: NET+ARM processor maximum tolerated voltage and temperature ratings 17

Characteristic Symbol Min Max Unit
Thermal Resistance — Junction to Ambient 0, 31 °C/W
Operating Junction Temperature T, -40 100 °C
Operating Ambient Temperature T, —-40 85 °C
Storage Temperature Tsrg -60 150 °C
Internal Core Power @ 3.3V — Cache Enabled Pt 15 mW / MHz
Internal Core Power @ 3.3V — Cache Disabled Pt 9 mW / MHz
Sym Parameter Conditions Min Max Unit
Vibs DC supply voltage Core and -0.3 4.6 A%
standard 1/Os
Vv, DC input voltage, 3.3 V I/Os -0.3 | Vpps+0.3, 4.6 max \
Vo DC output voltage, 3.3 V I/Os -0.3 | Vpps+0.3, 4.6 max \Y
TEMP | Operating free air temperature Industrial —-40 +85 °C
range
Tyq Storage Temperature —-60 +150 °C

Section 4 of MPC860 Datasheet Example: Thermal Characteristics

The thermal characteristics of a processor indicate what type of thermal design requirements
need to be taken into consideration for using that processor on a particular board. Table 4-5
shows the thermal characteristics of the MPC860; more information on thermal manage-
ment is contained in Sections 5 and 7. A processor that exceeds the ranges of its absolute and
functional temperature limits runs the risk of having logical errors, a degradation in perfor-
mance, changes in operating characteristics, and/or even permanent physical destruction of
the processor.

A processor’s temperature is a result of both the embedded board it resides on, as well as its
own thermal characteristics. A processor’s thermal characteristics depend on the size and ma-
terial used to package the IC, the type of interconnection to the embedded board, the presence
and type of mechanism used for cooling the processor (heat sink, heat pipes, thermoelectric
cooling, liquid cooling, etc.) as well as the thermal constraints imposed on the processor by
the embedded board, such as power density, thermal conductivity/airflow, local ambient tem-
perature, heat sink size, and so on.

211

Chapter 4

Table 4-5: MPC860 processor thermal characteristics “171
Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Rating Environment Symbol | RevA | Rev Unit
B,C,D
Junction-to-ambient ! Natural con- Single-layer Roja 31 40 °C/W
vection board (1s)
Four-layer Roma® 20 25
board (2s2p)
Airflow (200 | Single-layer Roma’ 26 32
ft/min) board (1s)
Four-layer | 16 21
board (2s2p)
Junction-to-board * Rgp 8 15
Junction-to-case 3 Ry 5 7
Junction-to-package top ¢ | Natural con- Yir 1 2
vection
Airflow (200 2 3
ft/min)

Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.

2 Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.

* Per JEDEC JESD51-6 with the board horizontal.

4 Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is
measured on the top surface of the board near the package.

Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method
(MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad pack-
ages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the
junction to the exposed pad without contact resistance.

Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2.

Section 5 of MPC860 Datasheet Example: Power Dissipation

The thermal management of an embedded board includes the technologies, processes, and
standards that must be implemented in order to remove heat that results from the power dis-
sipation of a board component like a processor from individual components on an embedded
board. The heat must be transferred in a controlled way to the board’s cooling mechanism,
which is a device that keeps the board components from overheating by insuring that the tem-
peratures of board components stay within functional temperature limits.

A processor’s power dissipation results in an increase in temperature relative to the tem-
perature of a reference point, with the increase depending on the net thermal resistance
(opposition to the flow of expended heat energy, specified as the degree of temperature rise
per unit of power) between the junction the die within the processor package, and a reference
point. In fact, one of the most important factors that determines how much power a processor
can handle is thermal resistance (more on thermal resistance in Section 7).

212

Embedded Processors

Table 4-6 provides MPC860’s power dissipation for the processor running at a variety of
frequencies, as well as in modes where the CPU and bus speeds are equal (1:1) or where CPU
frequency is twice the bus speed (2:1).

Table 4-6: MPC860 processor power dissipation 7/

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Die Revision Frequency (MHz) | Typical ' | Maximum ? | Unit

A.3 and previous 25 450 550 mW
40 700 850 mW

50 870 1050 mW

B.1 and C.1 33 375 TBD mW
50 575 TBD mW

66 750 TBD mW

D3and D4 50 656 735 mW
(1:1 mode) 66 TBD TBD mW
D3and D4 66 722 762 mW
(2:1 mode) 80 851 909 mW

' Typical power dissipation is measured at 3.3 V.
2 Maximum power dissipation is measured at 3.5 V.

Both the thermal characteristics for the MPC860, shown in Table 4-5, that indicate what
maximum junction temperature this processor needs to stay below, as well as the power dis-
sipation levels for the processor, shown in Table 4-6, will determine what reliable thermal
mechanisms are needed on the board in order to maintain the PowerPC’s junction temperature
within acceptable limits. (Note: developing a reliable thermal solution for the entire board
means the thermal requirements for all board components are taken in consideration, not just
those of the processors.)

Section 6 of MPC860 Datasheet Example: DC characteristics

Table 4-7 outlines the electrical DC characteristics of the MPC860, which are the specific op-
erating voltage ranges for this processor. Within this table, these characteristics generally are:

The operating voltage (the first two entries in Table 4-7) of a processor is the voltage
applied from the power supply to the power pin (i.e., V4, V.., €tc.) on the processor.

The input high voltage (the third entry in Table 4-7) is the voltage range for all input
pins, except EXTAL and EXTLCK, at logic level high, where voltages exceeding the
maximum value can damage the processor, whereas voltages less the minimum value
are typically interpreted as a logic level low or undefined.

The input low voltage (the fourth entry in Table 4-7) is the voltage range for all input
pins at logic level low, where voltages below the minimum stated value can damage
or cause the processor to behave unreliably, whereas voltages greater than the maxi-
mum value are typically interpreted as a logic level high or undefined.

213

Chapter 4

The EXTAL and EXTLCK input high voltage (the fifth entry in Table 4-7) are the
maximum and minimum voltages for these two pins, and voltage values have to
remain between these ranges to avoid damaging the processor.

The various input leakage currents for different V,, (entries 6-8) mean that when the
input voltage is between the required range, a leakage current flows on various ports,,
except for pins TMS, TRST, DSCK, and DSDI.

The output high voltage (the ninth entry in Table 4-7) states the minimum high-out-
put voltage is not less than 2.4 V when the processor is sourcing a current of 2.0 mA,
except on XTAL, XFC, and open-drain pins.

The output low voltage (the last entry in Table 4-7) states the maximum low-output
voltage is not higher than .5 V when the processor is sourcing various currents on
various pins.

Table 4-7: MPC860 processor DC characteristics “177

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Characteristic Symbol Min Max Unit
Operating voltage at 40 MHz or less Voo Voo, VDDSYN 3.0 3.6 Vv
KAPWR 2.0 3.6 \Y%
(power-down mode)
KAPWR Vippy — 0.4 Vion \Y%
(all other operating
modes)
Operating voltage greater than Vopns Voprs KAPWR, 3.135 3.465 A"
40 MHz VDDSYN
KAPWR 2.0 3.6 v
(power-down mode)
KAPWR Voo — 0.4 Vios \%
(all other operating
modes)
Input high voltage (all inputs except Vi 2.0 5.5 v
EXTAL and EXTCLK)
Input low voltage A% GND 0.8 v
EXTAL, EXTCLK input high voltage Viue 0.7 x (Vppn) Voou v
+0.3

214

Embedded Processors

Table 4-7: MPC860 processor DC characteristics 71 (continued)

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Input leakage current, V,, =5.5V L, — 100 HA
(except TMS, TRST, DSCK, and

DSDI pins)

Input leakage current, V,, =3.6 V L, — 10 HA
(except TMS, TRST, DSCK, and

DSDI pins)

Input leakage current, V,, =0V (ex- L, — 10 HA
cept TMS, TRST, DSCK, and DSDI

pins)

Input capacitance ' Ci, — 20 pF
Output high voltage, [y = -2.0 mA, Vou 24 — v

Vipu = 3.0V (except XTAL, XFC, and
open-drain pins)

Output low voltage Voo — 0.5 v
IOL =2.0 mA, CLKOUT
IOL =32 mA"*?
IOL=53mA"*
IOL =7.0 mA, TXD1/PA14, TXD2/
PA12

FIRESET, SRESET

Input capacitance is periodically sampled. _ o -

2 A(0:31), TSIZO/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1),
IP_B2/10IS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWPO/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/ATO, IP_B7/PTR/AT3,
RXD1/PA15, RXD2/PA13, LITXDB/PA11, LIRXDB/PA10, LITXDA/PA9, LIRXDA/PAS, TIN1/LIRCLKA/BRGO1/
CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1ITCLKA/BRGO2/CLK3/PAS5, TOUT2/CLK4/PA4, TIN3/BRGO3/
CLKS5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/ PA1, LITCLKB/TOUT4/CLK8/PAO, RE-
JCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/12CSCL/
PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21,
SMRXD2/L1CLKOA/PB20, LIST1/RTS1/PB19, L1ST2/RTS2/PB18, LIST3/L1RQB/PB17, L1ST4/L1IRQA/PB16, BRGO3/
PB15, RSTRT1/PB14, L1ST1/RTS1/DREQO/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, LIST4/L1RQA/
PC12, CTS1/PC11, TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, SDACK2/L1TSYNCB/PC7, LIRSYNCB/PC6,
SDACKI/LITSYNCA/PCS, LIRSYNCA/PC4, PD15, PD14, PD13, PD12, PD11, PD10, PD9, PDS8, PD5, PD6, PD7, PD4,
PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3] _ o o

* BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/IOWR,

WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/

CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_AS, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/

MODCKI1/STS, OP3/MODCK?2/DSDO, BADDR(28:30)

1

215

Chapter 4

Section 7 of MPC860 Datasheet Example: Thermal Calculation and Measurement

As mentioned in Section 5, thermal resistance is one of the most important factors that
determine how much power a processor can handle. In this datasheet, the specified thermal
parameters for the MPC860 (shown in Figure 4-72) are the thermal resistance estimates from
junction-to-ambient (Rg,,), from junction-to-case (Rg,c), and from junction-to-board (Rgp).
For these equations, P, = (Vpp * Iyp) + Py 1s assumed where

P, = power dissipation in package
P, = power dissipation of the I/O drivers.
Vip = supply voltage

Ipp = supply current

Ambient (Air) - -
Oen i
%
-—
Case ! !
{Oc
Junction (Die) |

IRIRINI IRIRINI

Figure 4-72: MPC860 processor thermal parameters 4171
Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Junction-to-Ambient Thermal Resistance

This is an industry standard value that provides an estimation of thermal performance. The
processor’s junction temperature, T; (which is the average temperature of the die within the
package in Celsius), can be obtained from the equation:

T, =T, + (Ry, * Pp) where:

T, = ambient temperature (°C) is the temperature of the undistributed ambient air sur-
rounding the package, usually measured at some fixed distance away from the
processor package.

Rg,a = package junction-to-ambient thermal resistance (°C/W)

P, = power dissipation in package

216

Embedded Processors

Junction-to-Case Thermal Resistance

The junction-to-case thermal resistance estimates thermal performance when a heat sink is
used or where a substantial amount of heat is dissipated from the top of the processor’s pack-
age. Typically, in these scenarios, the thermal resistance is expressed as:

Rgia = Reje + Ryca (the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance) where:
Rg4 = junction-to-ambient thermal resistance (°C/W)

Rg,c = junction-to-case thermal resistance (°C/W).

Note: Ry, is device related and cannot be influenced by the user.

Rgca = case-to-ambient thermal resistance (°C/W).

Note: The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, Ryc,.
Junction-to-Board Thermal Resistance

The junction-to-board thermal resistance estimates thermal performance when most of the
heat is conducted to the embedded board. Given a known board temperature and assuming
heat lost to air can be negated, a junction temperature estimation can be made using the fol-
lowing equation:

T, =Ty + (R * Pp) where:
Ty = board temperature (°C)
Rg;4 = junction-to-board thermal resistance (°C/W)
P, = power dissipation in package

When board temperature is not known, then a thermal simulation is recommended. When an
actual prototype is available, the junction temperature can then be calculated via:

T, =T; + (W) * Pp) where:

¥, = thermal characterization parameter from a measurement of temperature from the
top center of processor’s packaging case.

217

Chapter 4

4.5 Summary

This chapter discusses what an embedded processor is and what it is made up of. It began

by introducing the concept of the instruction set architecture (ISA) as the main differentiator
between processors, and went on to discuss what an ISA defines, as well as what common
types of processors fall under what type of ISA model (application specific, general purpose,
or instruction level parallel). After the ISA discussion, the second main section of this chapter
discusses how the features of an ISA are physically implemented in a processor. With this, the
von Neumann model once again came into play, since the same major types of components
that can be found on an embedded board can also be found at the IC (processor) level. Finally,
this chapter wrapped up with a discussion on how processor performance is typically mea-
sured, as well as insight into how to read a processor’s datasheet.

The next chapter, Chapter 5, introduces the hardware basics on board memory and also dis-
cusses the impact of board memory on an embedded system’s performance.

218

[a]
[b]

[a]

[b]
[c]

[a]

[T/F] The Harvard model is derived from the von Neumann model.

Chapter 4 Problems

What is an ISA?
What features does an ISA define?

Name and describe the three most common ISA models on which architectures are

based?

Name and describe two types of ISAs that fall under each of the three ISA models.
Give four real-world processors that fall under the types of ISAs listed in [b].

What do the main components of a board and the internal design of a processor

have in common in reference to the von Neumann?

Indicate whether Figures 4-73a and b are von Neumann-based or Harvard-based proces-
sors. Explain your reasoning.

Instruction Data Control

T

DABI0]

DCach e
Control

IDDB10]

A

v

Data Cache

Flgure 4-73a: External Coprocessor <
ARM9 processor #2¥ tertuce)
A A
<
P Protection
ICache |« Unit /CP15
Control <
> <
7 4
1AB10]
ARMITDMI
Processor Core
Instruction Cache 1DBI0] (Integral EmbeddedICE)
4_‘
TAP > N
AMBA Interface
Controller <
<
L
T AG Interface
BABI10] Beontrol BDB10]

219

e
Buffer

Chapter 4

10.
11.
12.

13.

18 pins 40 pins GEN 24 pins
A A A
Interrupt
DMA MIC v T controller
A
EFE DMA 1EEE 1284, v
cpu v Y 64K shared Timer General
Ethernet DMA —» RAM module purpose 10
controller or 'y Y
ARM7 \ — DMA GPIO
core ith +
8K cache
or A4 A 4 A 4 A 4 A4
16K 4 BBus 4 >
SRAM
SER ¢ ¢ MEM | BUS
SYS Serial Memory BBus BBus
module controller controller arbiter
Clock PLL A
test T
T v v
12 pins 11 pins 70 pins

Figure 4-73b: ARM?7 processor 429

According to the von Neumann model, list and define the major components of the CPU.

[a]
[b]

What is a register?
Name and describe the two most common types of registers.

What are the active electrical elements that registers are made of?

A processor’s execution is ultimately synchronized by what board mechanism?

monw»>

System clock.

Memory.

1/0 bus.

Network slave controller.
None of the above.

Draw and describe the memory hierarchy of an embedded system.

What are the types of memory that can be integrated into a processor?

[a]
[b]

[a]
[b]

What is the difference between ROM and RAM?
Give two examples of each.

What are the three most common schemes used to store and retrieve data in cache?
What is the difference between a cache hit and cache miss?

220

Embedded Processors

14. Name and describe the two most common types of units that manage memory.
15. What is the difference between physical memory and logical memory?

16. [a] What is the memory map?
[b] What is the memory makeup of a system with the memory map shown in Figure
4-747
[c] Which memory components shown in the memory map of Figure 4-74 are typically
integrated into the master processor?

Address Range Accessed Device Port Width
0x00000000 - 0x003FFFFF |Flash PROM Bank 1 32
0x00400000 - 0x007FFFFF | Flash PROM Bank 2 32
0x04000000 - 0x043FFFFF | DRAM 4Mbyte (1Meg x32-bit)it) 32
0x09000000 - 0x09003FFF | MPC Internal Memory Map 32
0x09100000 - 0x09100003 | BCSR - Board Control & Status Register 32
0x10000000 - 0x17FFFFFF | PCMCIA Channel 16

Figure 4-74: Memory map #2

17. Name and describe the six logical units used to classify /O hardware.

18. [a] What is the difference between serial and parallel I/O?
[b] Give a real-world example of each.

19. In a system that contains an I/O controller to manage an I/O device, name at least two
requirements that the interface between the master processor and I/O controller is typi-
cally based upon.

20. What is the difference between a processor’s execution time and throughput?

221

This Page Intentionally Left Blank

CHAPTER

Board Memory

In This Chapter

Defining the various types of board memory
Discussing memory management of onboard memory
Discussing memory performance

As first introduced in Chapter 4, embedded platforms can have a memory hierarchy, a col-
lection of different types of memory, each with unique speeds, sizes, and usages (see Figure
5-1). Some of this memory can be physically integrated on the processor, like registers and
certain types of primary memory, which is memory connected directly to or integrated in the
processor such as ROM, RAM, and level-1 cache. Types of memory that can be integrated
into a processor were introduced in Chapter 4. In this chapter, it is memory that is typically
located outside of the processor, or that can both be either integrated into the processor or
located outside the processor, that is discussed. This includes other types of primary memory,
such as ROM, level-2+ cache, and main memory, and secondary/tertiary memory, which is
memory that is connected to the board but not the master processor directly, such as
CD-ROM, floppy drives, hard drives, and tape.

Processor
[l Immmmmmmmmmm
m——--- - ! Main ! i\ Secondary/ !
Ml SN Level3 ! Memory ! ' Tertiary 1
R EEEEE y Level2 1 1 Cache | | i ! Storage :
! Leveld 1 1 Cache i o N !
! Cache : ! po ' i i i :

_______ o

o N Lo I :

Figure 5-1: Memory hierarchy

Note: The material in this section is similar to material in Chapter 4 covering on-chip memory, since the basics of
memory operation are essentially the same whether the memory is integrated into an IC or located discretely on a

board.

223

Chapter 5

Primary memory is typically a part of a memory subsystem (shown in Figure 5-2) made up of
three components:

The memory IC
An address bus
A data bus
Data Bus
Data In Data Out
Data Interface
(T
Memory IC
T r
Address Decoder
|
Address In Address Bus

Figure 5-2: Hardware primary memory subsystem

In general, a memory IC is made up of three units: the memory array, the address decoder,
and the data interface. The memory array is actually the physical memory that stores the data
bits. While the master processor, and programmers, treat memory as a one-dimensional array,
where each cell of the array is a row of bytes and the number of bits per row can vary, in
reality physical memory is a two-dimensional array made up of memory cells addressed by a

unique row and column, in which each cell can store 1 bit (as shown in Figure 5-3).

The locations of each of the cells within the two-dimensional memory array are commonly
referred to as the physical memory addresses, made up of the column and row parameters.
The main basic hardware building blocks of memory cells depend on the type of memory, to
be discussed later in this chapter.

The remaining major component of a memory IC, the address decoder, locates the address

of data within the memory array, based on information received over the address bus, and

the data interface provides the data to the data bus for transmission. The address and data
buses take address and data to and from the memory address decoder and data interface of the
memory IC (buses are discussed in more detail in Chapter 7: Board Buses).

224

Board Memory

Address Bus

Address Decoder L. Memory Cell

Memory Array

LT

JHHRHE

E buffers ?7 77 77 77 77 ;7 77 ;7 Ingfgl‘ce

D7 De Ds D4 D3 D> Dy Do

Figure 5-3: (ROM) memory array >

Memory ICs that can connect to a board come in a variety of packages, depending on the type
of memory. Types of packages include dual inline packages (DIPs), single in-line memory
modules (SIMMs), and dual in-line memory modules (DIMMs). As shown in Figure 5-4a, DIPs
are packages enclosing the IC, made up of ceramic or plastic
material, with pins protruding from two opposing sides of 16 15 14 13 12 11 10 9
the package. The number of pins can vary between memory | | | | | | | |
ICs, but actual pinouts of the various memory ICs have been
standardized by JEDEC (Joint Electronic Device Engineering Memory IC
Committee) to simplify the process of interfacing external
memory ICs to processors. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 8

Figure 5-4a: DIP example &1

225

=3
S

)

REEEEIE I

C oUW —

SEEELEEEIE
NIRRT

>
&

84

SRS

A A A A
Front Back Front Back
One electrical contact on Separate electrical contact on for
opposing pins on both sides. opposing pins on both sides.
Figure 5-4b: 30-pin SIMM example 5" Figure 5-4c: 168-pin DIMM example 5"/

SIMMs and DIMMs (shown in Figures 5-4b and c¢) are mini modules (PCBs) that hold sev-
eral memory ICs. SIMMs and DIMMs have protruding pins from one side (both on the front
and back) of the module that connect into a main embedded motherboard. The configurations
of SIMMs and DIMMs can both vary in the size of the memory ICs on the module (256KB,
1MB, etc.). For example, a 256K x 8 SIMM is a module providing 256K (256 * 1025)
addresses of one byte each. To support a 16-bit master processor, for example, two of these
SIMMs would be needed; to support a 32-bit architecture, four SIMMs of this configuration
would be needed, and so on.

The number of pins protruding from SIMMs and DIMMs can vary as well (30 pin, 72 pin,
168 pin, etc.). The advantage of a SIMM or DIMM having more pins is that it allows for
fewer modules needed to support larger architectures. So, for example, one 72-pin SIMM
(256K x 32) would replace the four 30-pin SIMMs (256K x 8) for 32-bit architectures. Final-
ly, the main difference between SIMMs and DIMM s is how the pins function on the module:
on SIMMs the two pins on either side of the board are connected, creating one contact,
whereas on DIMMs opposing pins are each independent contacts (see Figures 5-4b and c).

226

Board Memory

At the highest level, both primary and secondary memory can be divided into two groups,
non-volatile or volatile. Non-volatile memory is memory that can store data after the main
power source to the board has been shut off (usually due to a small, on-board, longer-life
battery source). Volatile memory loses all of its “bits” when the main power source on the
board has been shut off. On embedded boards, there are two types of non-volatile memory
families—read-only memory (ROM) and auxiliary memory—and one family of volatile
memory, random-access memory (RAM). The different types of memories, discussed in the
next several sections, each provide a unique purpose within the system.

5.1 Read-Only Memory (ROM)

Read-only memory (ROM) is a type of non-volatile memory that can be used to store data on
an embedded system permanently, typically through a smaller on-board battery source that is
separate from the board’s main power source. The type of data stored on ROM in an embed-
ded system is (at the very least) the software required by the device to function in the field
after being shipped out of the factory. The contents of ROM can typically only be read by the
master processor; however, depending on the type of ROM, the master processor may or may
not be able to erase or modify the data located in ROM.

Basically, a ROM circuit works by accepting column and row address inputs, as shown in
Figure 5-5. Each cell (addressed by one column and row combination) stores a 1 or 0 depend-
ing on some voltage value. In fact, every ROM cell is designed to hold only either a 1 or O
permanently using the voltage source attached. An integrated decoder uses the row/column
inputs to select the specific ROM cell. While the actual storage and selection mechanisms are
dependent on the type of components used in building the ROM (i.e., diodes, MOS, bipolar,
and so forth—the basic building blocks introduced in Chapter 3), all types of ROM can exist
as external (chips) to the master CPU.

The circuit in Figure 5-5 includes three address lines (log,8) for all eight words, meaning the
3-bit addresses ranging from 000 to 111 each represent one of the 8 bytes. Note that different
ROM designs can include a wide variety of addressing configurations for the exact same
matrix size, and this addressing scheme is just an example of one such scheme. D, through D,
are the output lines from which data is read, one output line for each bit. Adding additional
rows to the ROM matrix increases its size in terms of the number of address spaces, whereas
adding additional columns increases a ROM’s data size, or the number of bits per address, it
can store. ROM sizes are identified in the real world by a matrix reference (i.e., 8 x 8§,

16K x 32, ...), reflecting the actual size of ROM. The first number is the number of addresses,
and the second number (after the “x”) reflects the size of the data, or number of bits, at each
address location (that is, 8 = one byte, 16 = half word, 32 = word, and so on). Also note that
in some design documentation, the ROM matrix size may be summarized. For example,

16 kB (kBytes) of ROM is 16K x 8 ROM, 32 MB of ROM is 32 M x 8 ROM, and so on.

227

Chapter 5

Ar Ay Ao

VY

Address Decoder . Memory Cell

ROM Matrix

T

MY
AN
AN

3state output

= buffers ;7 ;7 ;7 77 77 77 77 ;7

Dy Dg Ds Dy D3 D> Dy Do

Figure 5-5: 8 x 8 ROM logic circuit >

In this example, the 8 x 8 ROM is an 8 x 8 matrix, meaning it can store eight different 8-bit
words, or 64 bits of information. Every intersection of a row and column in this matrix is a
memory location, called a memory cell. Each memory cell can contain either a bipolar or
MOSEFET transistor (depending on the type of ROM) and a fusible link (see Figure 5-6).

228

Board Memory

(MROMs, PROMs)

MOSFET Storage Memory Cell Bipolar Storage Memory Cell
(MROMS, PROMS, EPROMs, EEPROMS, Flash)
Programmable : Vbp Vbp Programmable _ : Vee
Link _, _, Link
- = q
Stores Stores S‘II(,),res

Stores
o

Figure 5-6: 8 x 8 MOSFET and bipolar memory cells

[5-1]

When a programmable link is in place, the transistor is biased ON, resulting in a “1” being
stored. All ROM memory cells are typically manufactured in this configuration. When writing
to ROM, a “0” is stored by breaking the programmable link. How links are broken depends
on the type of ROM; this is discussed at the end of this section during the summary of differ-
ent types of ROMs. How to read from a ROM depends on the ROM, but in this example, for
instance, the chip enable (CE) line is toggled (i.e., HIGH to LOW) to allow the data stored to

be output via DO-D7 after having received the 3-bit address requesting
(see Figure 5-7).

229

the row of data bits

Chapter 5

Gate | A2 | Al | A0 [D7 [D6 | D5 [D4 | D3 | D2 [DI | DO
1 0 0 0 1 1 1 1 0 1 1 1
2 0o 0 1 1 1 0 1 1 1 0 1
3 0 1 0 0 1 1 1 1 0 1 1
4 0 1 1 0o 0 1 0 1 1 1 1
5 1 0o 0 1 1 1 1 1 1 1 1
6 1 0 1 1 1 1 o 0 0 0 1
7 1 1 0o |o 1 1 1 1 1 1 1
8 1 1 1 1 0 1 1 1 1 1 0
A2 Al Ao Broken Programmable
Link in Memory Cell
Address Decoder I
.
I’,
ROM Matrix s
.
/’,
7 3

e

oo

3state output

& NN NN

Dy De¢ Ds Dy D3 D> Dy Do

Figure 5-7: 8 x 8 reading ROM circuit "

230

Board Memory

The most common types of ROM used on embedded boards are:

Mask ROM (MROM). Data bits are permanently programmed into a microchip by
the manufacturer of the external MROM chip. MROM designs are usually based
upon MOS (NMOS, CMOS) or bipolar transistor-based circuitry. This was the
original type of ROM design. Because of expensive set-up costs for a manufacturer
of MROMs, it is usually only produced in high volumes, and there is a wait time of
several weeks to several months. However, using MROMs in design of products is a
cheaper solution.

One-Time Programmable ROM (OTP or OTPRom). This type of ROM can only be
programmed (permanently) one time as its name implies, but it can be programmed
outside the manufacturing factory, using a ROM burner. OTPs are based upon bipo-
lar transistors, in which the ROM burner burns out fuses of cells to program them to
“1” using high voltage/current pulses.

Erasable Programmable ROM (EPROM). An EPROM can be erased more than one
time using a device that outputs intense short-wavelength, ultraviolet light into the
EPROM package’s built-in transparent window. (OTPs are one-time programmable
EPROMs without the window to allow for erasure; the packaging without the window
used in OTPs is cheaper.)

EPROMs are made up of MOS (i.e., CMOS, NMOS) transistors whose extra “float-
ing gate” (gate capacitance) is electrically charged, and the charge trapped, to store a
“0” by the Romizer through “avalanche induced migration”, a method in which a high
voltage is used to expose the floating gate. The floating gate is made up of a conduc-
tor floating within the insulator, which allows enough of a current flow to allow for
electrons to be trapped within the gate, with the insulator of that gate preventing
electron leakage.

The floating gates are discharged via UV light, to store a “1” for instance. This is
because the high-energy photons emitted by UV light provide enough energy for
electrons to escape the insulating portion of the floating gate (remember from Chapter 3,
that even the best of insulators, given the right circumstances, will conduct). The total
number of erasures and rewrites is limited depending on the EPROM.

Electrically Erasable Programmable ROM (EEPROM). Like EPROM, EEPROMs
can be erased and reprogrammed more than once. The number of times erasure and
re-use occur depends on the EEPROMs. Unlike EPROMs, the content of EEPROM
can be written and erased “in bytes” without using any special devices. In other
words, the EEPROM can stay on its residing board, and the user can connect to

the board interface to access and modify an EEPROM. EEPROMs are based upon
NMOS transistor circuitry, except insulation of the floating gate in an EEPROM is
thinner than that of the EPROM, and the method used to charge the floating gates is
called the Fowler-Nordheim tunneling method (in which the electrons are trapped by
passing through the thinnest section of the insulating material). Erasing an EEPROM

231

Chapter 5

which has been programmed electrically is a matter of using a high-reverse polar-

ity voltage to release the trapped electrons within the floating gate. Electronically
discharging an EEPROM can be tricky, though, in that any physical defects in the
transistor gates can result in an EEPROM not being discharged completely before a
new reprogram. EEPROMs typically have more erase/write cycles than EPROMs, but
are also usually more expensive.

A cheaper and faster variation of the EEPROM is Flash memory. Where EEPROMs
are written and erased at the byte level, Flash can be written and erased in blocks or
sectors (a group of bytes). Like EEPROM, Flash can be erased electrically, while still
residing in the embedded device. Unlike EEPROMs, which are NMOS-based, Flash
is typically CMOS-based.

Uses for the Different ROMs

Embedded boards can vary widely in the type of board ROMs they use, not only in the pro-
duction system but even throughout the development process. For example, at the start of
development, more expensive EPROMSs may be used to test the software and hardware, whereas
OTPs may be used at the end of development stages to provide different revisions of the code
for a particular platform to various other groups (for testing/QA, hardware, manufacturer of
MaskROMs, etc.). The ROMs actually used in mass production and deployed in an embedded
system could be the maskROMs (the cheapest solution of the above family of ROM ICs). On
more complex and expensive platforms, Flash memory may be the only ROM used through
the entire device development and deployment process, or could be used in combination with
another type of ROM, such as a boot maskROM.

5.2 Random-Access Memory (RAM)

With RAM (random access memory), commonly referred to as main memory, any location
within it can be accessed directly and randomly, rather than sequentially from some starting
point, and its content can be changed more than once—the number of times depending on
the hardware. Unlike ROM, contents of RAM are erased if the board loses power, meaning
RAM is volatile. The two main types of RAM

are static RAM (SRAM) and dynamic RAM ord
(DRAM).

As shown in Figure 5-8a, SRAM memory cells
are made up of transistor-based flip-flop circuit-
ry that typically holds its data, due to a moving
current being switched bidirectionally on a pair
of inverting gates in the circuit, until power is
cut off or the data is overwritten. To get a clearer
understanding of how SRAM works, let us
examine a sample logic circuit of 4K x 8 SRAM

shown in Figure 5-8b. Figure 5-8a: 6 Transistor SRAM cell 52

bit - bit

232

Board Memory

Ao—5— =
Al—%= %
A= Row — 64 x 64 SRAM Array
As—{— —
A4—% %
As—— =
D ?— : . ?—D
DO Column IO Circuits DO
1 —:| ?— —:| 7 Di
D, —| Column Select || D
» —H5 oD
Data Input §3 B l;3 Data Output
5 5
Ds > B
D¢ _E_ As A7 As A9 Ao An _E_ Dg
D1 —H5— 50
€s ——

Figure 5-8b: 4K x 8 SRAM logic circuit "

In this example, the 4K x 8 SRAM is a 4K x 8 matrix, meaning it can store 4096 (4 x 1024)
different 8-bit bytes, or 32768 bits of information. As shown in Figure 5-8b, 12 address lines
(AyA,)) are needed to address all 4096 (000000000000b—111111111111b) possible address-
es—one address line for every address digit of the address. There are 8 input and output lines
(Dy—D;), a byte for every byte stored at an address. There are also CS (chip select) and WE
(write enable) input signals to indicate whether the data pins are enabled (CS) and to indicate
whether the operation is a READ or WRITE operation (WE), respectively.

In this example, the 4K x 8 SRAM is set up as a 64 x 64 array of rows and columns with
addresses A;—A;identifying the row, and A,—A |, identifying the column. As with ROM, every
intersection of a row and column in the SRAM matrix is a memory cell—and in the case of
SRAM memory cells, they can contain flip-flop circuitry mainly based on semiconductor
devices such as polysilicon load resistors and NMOS transistors, bipolar transistors, and/or
CMOS (NMOS and PMOS) transistors (see Figure 5-9 for example circuits). Data is stored
within these cells by the continuous current being switched, in both possible directions, on
the two inverting gates within the flip-flop.

233

Chapter 5

SRAM MOSFET Storage Memory Cell SRAM Bipolar Storage Memory Cell

Vee Vce

Bit Select Bit Select

— — _ Data
Bit Select Bit Select

Figure 5-9: Flip-flop SRAM memory cell logic circuit example 52

When the chip select (CS) in Figure 5-8 is HIGH, then memory is in standby mode (no read
or writes are occurring). When CS is toggled to LOW (i.e., from HIGH to LOW) and Write-
Enable Input (WE) is LOW, then a byte of data is being written through these data input lines
(Dy—D;) at the address indicated by the address lines. With CS LOW and WE HIGH, then a
byte of data is being read from the data output lines (D,—D;) at the address indicated by the
address lines (Aj—~A,). The timing diagram in Figure 5-10 demonstrates how the different
signals can function for a memory read and memory write in SRAM.

Data e from Data Read from
Master Processor SRAM

Figure 5-10: SRAM timing diagram "

Sigal
A
CE #GH
CE \ / \
CEX0 W CEX0 W
W WLO WData Mie WIHGHData Read
hen CELO W hen CELO W
Address —< Address Transmitted >—< Address Transmitted >—
Data 4< >

» Time

Board Memory

As shown in Figure 5-11a, DRAM memory cells are circuits with capacitors that hold a
charge in place—the charges or lack thereof reflecting data. DRAM capacitors need to be
refreshed frequently with power in order to maintain their respective charges, and to recharge
capacitors after DRAM is read, since reading DRAM discharges the capacitor. The cycle of
discharging and recharging of memory cells is why this type of RAM is called dynamic.

Data Out
A
Figure 5-11a: DRAM)]
(capacitor-based) memory cell & e
i
Dattt In

Let’s look at a sample logic DRAM circuit of 16K x 8. This RAM configuration is a two-
dimensional array of 128 rows and 128 columns, meaning it can store 16384 (16 x 1024)
different 8-bit bytes, or 131072 bits of information. With this address configuration, larger
DRAMSs can either be designed with 14 address lines (A;—A ;) needed to address all 16384
(000000000000b—11111111111111b) possible addresses—one address line for every address
digit of the address—or these address lines can be multiplexed (combined into fewer lines to
share) with some type of data selection circuit managing the shared lines. Figure 5-11b dem-
onstrates how address lines could be multiplexed in this example.

The 16K x 8 DRAM is set up with addresses A—A,identifying the row, and A,—A ; identify-
ing the column. As shown in Figure 5-12a, the Row Address Strobe (RAS) line is toggled
(i.e., from HIGH to LOW) for A,—A, to be transmitted, and then the Column Address Strobe
(CAS) line is toggled (i.e., from HIGH to LOW) for A,—A,; to be transmitted. After this point
the memory cell is latched and ready to be written to or read from. There are eight output
lines (D, — D,), a byte for every byte stored at an address. When the Write Enable (WE) input
line is HIGH, data can be read from output lines D— D; when WE is LOW, data can be writ-
ten to input lines D,—D,. The timing diagrams in Figure 5-12 demonstrates how the different
signals can function for a memory read and memory write in DRAM.

235

Chapter 5

Column Address Register
[T TT T 11
A7 Ag A9 Ao Al Az Az

EN

Column Address Decoder

128 x 128 DRAM Array

CAS
RAS |
AA ; V A, EN
AAg A
A Row As Row
Address Address
AsA | Register A3 Decoder
A4A Ay
AsA 1o As
AgA |3 Ag
Do
D,
D>
D3
Data Input
Dy
Ds
D¢
Dy

Figure 5-11b: 16K x 8 DRAM logic circuit 5"

IIO Buffers & Sense Amplifiers

R/_

236

Dy
Ds
D¢
Dy

Data Output

Board Memory

Signal
A
CE #GH
CE \ CE+0 W / \ CE4+10 W
W WIGHData Read
Ben CELO W
CAS \

RAS \

Rowddress transmitted Column address transmitted >7

Address
Data < Data Read from SRAM
» Time
Figure 5-12a: DRAM read timing diagram 5"/
Signal
A
CE #GH
CE \ CE40 W CE40 W
w WLO WData e
hen CELO W
CAS \ /
RAS \ /
Address Rowddress transmitted Column address transmitted >7
Data / Data Mte from

\ Master Processor

» Time

Figure 5-12b: DRAM write timing diagram

237

Chapter 5

One of the major differences between SRAM and DRAM lies in the makeup of the DRAM
memory array. The capacitors in the memory array of DRAM are not able to hold a charge
(data). The charge gradually dissipates over time, thus requiring some additional mechanism
to refresh DRAM, in order to maintain the integrity of the data. This mechanism reads the
data in DRAM before it is lost using a sense amplification circuit that senses a charge stored
within the memory cell, and writes it back onto the DRAM circuitry. The process of reading
the cell also discharges the capacitor (even though reading the cell is part of the process of
correcting the problem of the capacitor gradually discharging in the first place). A memory
controller (see Section 5.4, Memory Management for more information) in the embedded
system typically manages a DRAM’s recharging and discharging cycle by initiating refreshes
and keeping track of the refresh sequence of events. It is this refresh cycling mechanism that
discharges and recharges memory cells that gives this type of RAM its name—*“dynamic”
RAM (DRAM)—and the fact that the charge in SRAM stays put is the basis for its name,
“static” RAM (SRAM). It is this same additional recharge circuitry which makes DRAM
slower in comparison to SRAM. Note that one of the reasons SRAM is usually slower than
registers (a type of integrated memory discussed in Chapter 4), is that when the transistors
within the SRAM flip-flop are smaller, they do not carry as much current as those typically
used within registers.

SRAMs also usually consume less power than DRAMs, since there is no extra energy needed
for a refresh. On the flip side, DRAM is typically cheaper than SRAM, because of its capaci-
tance-based design. DRAM also can hold more data than SRAM, since DRAM circuitry is
much smaller then SRAM circuitry, and more DRAM circuitry can be integrated into an IC.

DRAM is usually the “main” memory in larger quantities, as well as being used for video
RAM and cache. DRAMs used for display memory are also commonly referred to as frame
buffers. SRAM, because it is more expensive, is typically used in small quantities, but be-
cause it is also typically the fastest type of RAM, it is used in external cache (see Section 5.2)
and video memory (where processing certain types of graphics, and given a more generous
budget, a system can implement a better performing RAM).

Table 5-1 summarizes some examples of different types of RAM and ROM used for various
purposes on embedded boards.

238

Board Memory

Table 5-1: Board memory 54

Main Memory

Video Memory

Cache

SRAM

BSRAM (Burst/SynchBurst
StaticRandom-Access
Memory); SRAM that is
synchronized with either
the system clock or a cache
bus clock.

DRAM

SDRAM (Synchronous Dynamic Random-
Access Memory)

DRAM that is synchronized with the
microprocessor’s clock speed (in MHz). Several
types of SDRAMSs are used in various systems,
such as the JDEC SDRAM (JEDEC Synchro-
nous Dynamic Random-Access Memory),
PC100 SDRAM (PC100 Synchronous Dynamic
Random-Access Memory), and DDR SDRAM
(Double Data Rate Synchronous Dynamic Ran-
dom-Access Memory). ESDRAM (Enhanced
Synchronous Dynamic Random-Access Memo-
ry) is SDRAM that integrates SRAM within the
SDRAM, allow for faster SDRAM (basically
the faster SRAM portion of the ESDRAM is
checked first for data, then if not found, the
remaining SDRAM portion is searched).

RDRAM (On-Chip Rambus Dy-
namic Random-Access Memory)
and MDRAM (On-Chip Multi-
bank Dynamic Random-Access
Memory) DRAMs commonly
used as display memory that
store arrays of bit values (pixels
of the image on the display).
The resolution of the image is
determined by the number of bits
that have been defined per each
pixel.

Enhanced Dynamic
Random-Access Memory
(EDRAM) actually inte-
grates SRAM within the
DRAM, and is usually used
as level-2 cache (see Section
2.1). The faster SRAM por-
tion of EDRAM is searched
first for the data, and if

not found there, then the
DRAM portion of EDRAM
is searched.

DRDRAM (Direct Rambus Dynamic Random-
Access Memory) and SLDRAM (SyncLink
Dynamic Random-Access Memory)

DRAMs whose bus signals (Chapter 7, Section
7, Memory Buses” for more information) can
be integrated and accessed on one line, thus
decreasing the access time (since synchronizing
operations on multiple lines are not necessary).

Video RAM (VRAM) DRAM in
which the refresh buffer is dupli-
cated and connected to the outside
world as a second, serial I/O port.
A line of data can be fetched from
the memory in parallel, just as is
done in a refresh, and then be read
out serially. If the RAM contains
pixel values, then this sequence
nicely corresponds to a scan line
on a monitor and facilitates dis-
play generation. At the same time,
the master processor can access
the RAM normally with almost
no interference.

FRAM (Ferroelectric Random-Access Memory)
Non-volatile DRAM, meaning data isn’t lost
from DRAM when power is shut off. FRAM
has a lower power requirement then other types
of SRAM, DRAM, and some ROMs (Flash),
and is targeted for smaller handheld devices
(PDAs, phones, etc.).

FPM DRAM (Fast Page Mode
Dynamic Random-Access Mem-
ory), EDORAM/EDO DRAM
(Data Output Random-Ac-
cess/Dynamic Random-Access
Memory), and BEDO DRAM
(Data Burst Extended Data Out-
put Dynamic Random-Access
Memory)....

FPM DRAM (Fast Page Mode Dynamic
Random-Access Memory), EDORAM/EDO
DRAM (Data Output Random-Access/Dynamic
Random-Access Memory), and BEDO DRAM
(Data Burst Extended Data Output Dynamic
Random-Access Memory)....

239

Chapter 5

Level-2+ Caches

Level 2+ (level 2 and higher) cache is the level of memory that exists between the CPU and
main memory in the memory hierarchy.

Processor
mTTTTT Immmmmmmmmmmy
S ! Main | i Secondary/ !
il TN Leveld ! Memory | ' Tertiary]
- t Level2 1 1 Cache I i ! Storage |
} Leveld 1 ' Cache 1 1 roy Lo !
I Cache 1 ' Vo oo Lo !

_______ 1 1 1 1

S I S Do S S :

Figure 5-13: Level-2+ cache in the memory hierarchy

In this section, cache that is external to the processor is introduced, which is caches higher
than level 1. As shown in Table 5-1, SRAM memory is usually used as external cache (like
level-1 cache), because the purpose of cache is to improve the performance of the memory
system, and SRAM is faster than DRAM. Since (SRAM) cache memory is typically more ex-
pensive because of its speed, processors will usually have a small amount of cache (on-chip,
off-chip, or both).

Using cache became popular in response to systems that displayed a good locality of refer-
ence, meaning that these systems, in a given time period, accessed most of their data from a
limited section of memory. Basically, cache is used to store subsets of main memory that are
used or accessed often, capitalizing on the locality of reference and making main memory
seem to execute faster. Because cache holds copies of what is in main memory, it gives the
illusion to the master processor that it is operating from main memory even if actually operat-
ing from cache.

There are different strategies when writing to and reading data from a set of memory ad-
dresses, called the working set, to and from cache. One-word or multiword blocks are used
to transfer data between memory and cache. These blocks are made up of data from main
memory, as well as the location of that data in main memory (called fags).

When writing to memory, the memory address from the CPU is translated to determine its
equivalent location in level-1 cache, given that cache is a snapshot of a subset of memory.
Writes must be done in both cache and main memory to ensure that cache and main memory
are consistent (have the same value). The two most common write strategies to guarantee this
are write-through, in which data is written to both cache and main memory every time, and
write-back, in which data is initially only written into cache, and only when it is to be bumped
and replaced from cache will it be written into main memory.

240

Board Memory

When the CPU wants to read data from memory, level-1 cache is checked first. If the data is
in cache, it is called a cache hit, the data is returned to the CPU and the memory access pro-
cess is complete. If the data is not located in level-1 cache, it is called cache miss. External
off-chip caches are then checked, and if there is a miss there also, then on to main memory to
retrieve and return the data to the CPU.

Data is usually stored in cache in one of three schemes: direct mapped, set associative, or
full associative. In the direct mapped cache scheme, addresses in cache are divided into sec-
tions called blocks. Every block is made up of the data, a valid tag (flag indicating if block is
valid), and a tag indicating the memory address(es) represented by the block. In this scheme,
data is located by its associated block address in memory, using the “tag” portion of the
block. The tag is derived from the actual memory address, and is made up of three sections: a
tag, an index, and an offset. The index value indicates the block, the offset value is the offset
of the desired address within the block, and the tag is used to compare with the actual address
tag to insure the correct address was located.

The set associative cache scheme is one in which cache is divided into sections called sets,
and within each set, multiple blocks are located at the set-level. The set associative scheme is
implemented at the set-level. At the block level, the direct-mapped scheme is used. Essential-
ly, all sets are checked for the desired address via a universal broadcast request. The desired
block is then located according to a tag that maps into a cache’s particular set. The full
associative cache scheme, like the set associative cache scheme, is also composed of blocks.
In the full associative scheme, however, blocks are placed anywhere in cache, and must be
located by searching the entire cache every time.

As with any scheme, each of the cache schemes has its strengths and drawbacks. Whereas
the set associative and full associative schemes are slower than the direct mapped, the direct
mapped cache scheme runs into performance problems when the block sizes get too big.

On the flip side, the cache and full associative schemes are less predictable than the direct
mapped cache scheme, since their algorithms are more complex.

Finally, the actual cache swapping scheme is determined by the architecture. The most com-
mon cache selection and replacement schemes include:

Optimal, using future reference time, swapping out pages that won’t be used in the
near future.

Least recently used (LRU), which swaps out pages that were used the least recently.

FIFO (first in, first out) is another scheme which, as its name implies, swaps out the
pages that are the oldest, regardless of how often they are accessed in the system.
While a simpler algorithm then LRU, FIFO is much less efficient.

Not recently used (NRU), swaps out pages that were not used within a certain time
period.

241

Chapter 5

Second chance, FIFO scheme with a reference bit, if “0” will be swapped out (a refer-
ence bit is set to “1” when access occurs, and reset to “0” after the check).

Clock paging, pages replaced according to clock (how long they have been in mem-
ory), in clock order, if they haven’t been accessed (a reference bit is set to “1” when
access occurs, and reset to “0” after the check).

On a final note, these selection and replacement algorithms are not only limited to swapping
data in and out of cache, but can be implemented via software for other types of memory
swapping (for example, OS memory management covered in Chapter 9).

Managing Cache

In systems with memory management units (MMU) to perform the translation of addresses
(see Section 5.4), cache can be integrated between the master processor and the MMU, or
the MMU and main memory. There are advantages and disadvantages to both methods of
cache integration with an MMU, mostly surrounding the handling of DMA devices that allow
data to access off-chip main memory directly without going through the main processor. (Di-
rect memory access is discussed in Chapter 6, Board I/0.) When cache is integrated between
the master processor and MMU, only the master processor access to memory affects cache;
therefore, DMA writes to memory can make cache inconsistent with main memory unless
master processor access to memory is restricted while DMA data is being transferred or cache
is being kept updated by other units within the system besides the master processor. When
cache is integrated between the MMU and main memory, more address translations must be
done, since cache is affected by both the master processor and DMA devices.

In some systems, a memory controller may be used to manage a system with external cache
(data requests and writes, for instance). More details on memory controllers can be found in
Section 5.4.

5.3 Auxiliary Memory

As mentioned at the start of this chapter, certain types of memory can be connected directly
to the master processor, such as RAM, ROM, and cache, while other types of memory, called
secondary memory, are connected to the master processor indirectly via another device. This
type of memory, as shown in Figure 5-14, is the external secondary memory and tertiary
memory and is commonly referred to as auxiliary or storage memory. Auxiliary memory is
typically nonvolatile memory used to store larger amounts of regular, archival, and/or backups
of data, for longer periods of time to indefinitely.

242

Board Memory

Processor
inialaet 1mmmmmmm-mmmy
ittt ! Main | i Secondary/ !
m-----5 | Level3 ! Memory ! ! Tertiary 1
R § Level2 1 1 Cache , ' I ! Storage :
| Levell 1 1 Cache : o N !
! Cache | : Vo ' | | | '

_______ 1o

N I S DL I N :

Figure 5-14: Auxiliary memory in the memory hierarchy

Auxiliary memory can only be accessed by a device that is plugged into an embedded board,
such as the disks in a hard drive, the CD via a CD-ROM, a floppy disk via a floppy drive,
magnetic tape via a magnetic tape drive, and so on. The auxiliary devices used to access aux-
iliary memory are typically classified as I/O devices, and are discussed in Chapter 6 in more
detail. It is the auxiliary memories that plug into or are inserted within these I/O devices, that
the master CPU can access that is discussed in this section. Auxiliary memory is typically
classified by how its data is accessed (read and written) by its associated auxiliary device:
sequential access in which data can only be accessed in sequential order; random access in
which any data can be accessed directly; or direct access, which is both sequential and ran-
dom access schemes combined.

Magnetic tape is a sequential type of memory, meaning that data can only be accessed in
sequential order, and the information is stored on the tape in a sequence of rows, where sets
of rows form blocks. The only data that can be accessed at any moment in time is the data in
contact with the read/write/erase head(s) of the tape drive. When the read/write/erase head(s)
is positioned at the beginning of the tape, the access time for retrieving data is dependent
upon the location of that data on the tape, because all the data before the requested data must
be accessed before retrieving the desired data. Figures 5-15a and b show an example of how
magnetic tape works. Markers on the tape indicate the start and end of the tape. Within the
tape, markers also indicate the start and end of files. The data with each file is divided into
blocks, separated by gaps (of no data) to allow the hardware to accelerate—to begin operat-
ing, for example—and slow down when needed. Within each block, data is separated into
rows, where each row is a “bit” of the entire data width (i.e., of 9 bits for byte-sized data +

1 parity bit) and each row of bits is called a track. Each track has its own read/write/erase
head(s), meaning for the nine tracks there are nine write heads, nine read heads, and nine
erase heads. Refer to Figure 5-15a.

243

Chapter 5

| Block | Gap | Block | Gap ‘

R A\

Read e Erase

Ehd thd Ehd

Start of File Marker End of File Marker

Figure 5-15a: Sequential access tape drive -/

om0 EEEN] N .
L - [——] -]
Track 7 [1 . . ([]
Track 6 I Block Gap 10 .
Track 5 . I N
Track 4 I iy | |
Track 3 . .
Track 2 . . ([]
Track 1 L [1
Track 0 L 1L 1 L ([]

Figure 5-15b: Tape drive block -3/

In this storage medium, the tape is made up of a polyester transportation layer with an
overlying ferromagnetic (highly magnetic) powdered-oxide layer (see Figure 5-16). The
read/write/erase head is also made up of materials that are highly magnetic (such as iron,
cobalt, etc.). To write data onto the tape, an electrical current is passed through the magnetic
coils of the write head, creating a magnetic leakage field within the air gap of the head. This
field is what magnetizes the tape, and reversing the current flowing through the write head’s
air gap reverses the polarity of the magnetic field on the tape. The data is written in magne-
tized islands of rows when the tape passes the head, where a “0” is no change in magnetic
polarity of the oxide layer on the tape, and a “1” is a polarity change of that layer. To read the
data from a magnetic tape, a voltage is induced into the magnetic coil of the read head by the
tape passing over it, which then is translated to a “0” or “1” depending on the polarity of the
magnetic field on the tape. An Erase Head, for example, would then demagnetize the tape.

244

Board Memory

ReadfeErase thd

Air Gap Within &hd

Ferromagnetic Podered Oxide Layer
Magnetic Tape

Polyester Layer Backing

Figure 5-16: Magnetic tape

As shown in Figure 5-17a, a hard drive has multiple platters, which are metal disks covered
with a magnetic material (film) to record data. Every platter contains multiple tracks, shown
in Figure 5-17b. These are separate concentric rings representing separate sections for record-
ing data. Every track is broken down into sectors, basic subsections which can be read or
written to simultaneously.

Hh

Arm

ACtuator b

— PR
----------- Platters

— PR—

— PR

Figure 5-17a: Internals of hard drive 3

Inner Track (H ghest)

Outer Track (Lowest — Track 0)

Sector

Figure 5-17b: Hard drive platter 5/

245

Chapter 5

Depending on the size of the hard drive, it can have multiple heads, electromagnets used

to record data to and read data from the platters via switchable magnetic fields. The head is
supported by the disk arm that moves around by an actuator, which positions the head at the
appropriate location to store, retrieve, and or delete data.

A hard disk is an example of a memory that uses the direct access memory scheme, where a
combination of random access and sequential access schemes are used to retrieve and store
data. On each track, data is then stored sequentially. The read/write head (s) can be moved
randomly to access the right track, and the sectors of each track are then accessed sequentially
to locate the appropriate data.

Like the disks in a hard drive, a compact disk is broken down into tracks and sectors (see
Figure 5-18).

Inner Track (H ghest)

Outer Track (Lowest — Track 0)

< Sector

Figure 5-18: CD

The key difference between the platters in a hard drive and a CD is that the film on the purely
optical CD isn’t magnetic, but an ultrathin optical metal material. Also, where in a hard drive
electromagnets are used to read and write data to a platter, lasers are used to read and write
data to a CD. Another key difference between the hard disk device and a CD is that data can
be read and written to the platters of the disk multiple times, whereas the CD can only be
written to one time (with a high intensity laser) and read from (via a low intensity laser) mul-
tiple times. There are optical disks that can be erased, whose film is made up of magnetic and
optical metal material. These disks are read, written, and erased via a combination of manipu-
lating lasers and magnetic fields.

246

Board Memory

The main difference between primary and secondary memory lies in how they interact with
the master processor. The master processor is directly connected to primary memory, and
can only access the data directly that is in primary memory. Any other data that the master
processor wants to access (such as that in secondary memory) must be transmitted to primary
memory first before it is accessible to the master processor. Secondary memory is typically
controlled by some intermediary device, and is not directly accessible by the master processor.

The various access schemes, such as random access, sequential access, direct access, and

so on, can be used in either primary or secondary memory designs. However, since primary
memories typically need to be faster, they usually employ a random access scheme, which

is normally the faster of the access schemes. However, the circuitry required for this type of
access method makes primary memory larger, more expensive, and consume more power than
secondary memory.

5.4 Memory Management of External Memory

There are several different types of memory that can be integrated into a system, and there are
also differences in how software running on the CPU views logical/virtual memory addresses
and the actual physical memory addresses—the two-dimensional array or row and column.
Memory managers are ICs designed to manage these issues. In some cases, they are inte-
grated onto the master processor.

The two most common types of memory managers found on an embedded board are mem-
ory controllers (MEMC) and memory management units (MMUs). A memory controller
(MEMCO), shown in Figure 5-19, is used to implement and provide glueless interfaces to the
different types of memory in the system, such as SRAM and DRAM, synchronizing access to
memory and verifying the integrity of the data being transferred. Memory controllers access
memory directly with the memory’s own physical two-dimensional addresses. The controller
manages the request from the master processor and accesses the appropriate banks, await-
ing feedback and returning that feedback to the master processor. In some cases, where the
memory controller is mainly managing one type of memory, it may be referred to by that
memory’s name, such as DRAM controller, cache controller, and so forth.

247

Chapter 5

(Switch Select)

Y Address Bits Memory Controller
BusyComplete Command
A A |
X Address Bits
Bank 1 Latch |«
I B < > <
-
< Latch [«
Bank 2 [« » <
B it Data Bus
Bank 2Y [Latch

< > N

Figure 5-19: Memory controller sample circuit =

Memory management units (MMUs) mainly allow for the flexibility in a system of having a
larger virtual memory (abstract) space within an actual smaller physical memory. An MMU,
shown in Figure 5-20, can exist outside the master processor and is used to translate logical
(virtual) addresses into physical addresses (memory mapping), as well as handle memory
security (memory protection), controlling cache, handling bus arbitration between the CPU
and memory, and generating appropriate exceptions.

Motorola/
Fr(::eosrc(zile <::> MC68851 <:> Memory

M68020

Figure 5-20: Motorola/Freescale M68020 external memory management

In the case of translated addresses, the MMU can use level-1 cache or portions of cache
allocated as buffers for caching address translations, commonly referred to as the translation
lookaside buffer or TLB, on the processor to store the mappings of logical addresses to physi-
cal addresses. MMUs also must support the various schemes in translating addresses, mainly
segmentation, paging, or some combination of both schemes. In general, segmentation is the
division of logical memory into large variable size sections, whereas paging is the dividing up
of logical memory into smaller fixed size units (more on segmentation and paging in Chapter
9). When both schemes are implemented, logical memory is first divided into segments, and
segments are then divided into pages.

248

Board Memory

The memory protection schemes then provide shared, read/write or read-only accessibility to
the various pages and/or segments. If a memory access is not defined or allowed, an interrupt
is typically triggered. An interrupt is also triggered if a page or segment isn’t accessible dur-
ing address translation—for example, in the case of a paging scheme, a page fault, etc. At that
point the interrupt would need to be handled (the page or segment would have to be retrieved
from secondary memory, for example).

The scheme supporting segmentation or paging of the MMU typically depends on the software
(the operating system). See Chapter 9: Operating System for more on virtual memory and how
MMUs can be used along with the system software to manage virtual memory.

5.5 Board Memory and Performance

As discussed in Chapter 4, one of the most common measures of a processor’s performance is
its throughput (bandwidth), or the CPU’s average execution rate. The performance through-
put can be negatively impacted by main memory especially, since the DRAM used for main
memory can have a much lower bandwidth than that of the processors. There are specific
timing parameters associated with memory (memory access times, refresh cycle times for
DRAM, and so on) that act as indicators of memory performance.

Solutions for improving the bandwidth of main memory include:

Integrating a Harvard-based architecture, with separate instruction and data memory
buffers and ports, for systems that expect to perform a high number of memory
accesses and computations on a large amount of data.

Using DRAMs, such as DRDRAM and SLDRAM, that integrate bus signals into one
line, to decrease the time it takes to arbitrate the memory bus to access memory.

Using more memory interface connections (pins), increasing transfer bandwidth.
Using a higher signaling rate on memory interface connections (pins).

Implementing a memory hierarchy with multiple levels of cache, which has faster
memory access times than those of other types of memory.

Memory hierarchies (shown in Figure 5-1) were designed in part to improve performance.
This is because memory access during execution of programs tends not to be random, and
exhibits good localities of reference. This means that systems, in a given time period, access
most of their data from a limited section of memory (locality in space) or access the same
data again within that given period of time (locality in time). Thus, faster memory (usually
SRAM), called cache, was integrated into a memory system for this type of data to be stored
and accessed by the CPU. This integration of different types of memories is referred to as the
memory hierarchy. It is important that the memory hierarchy be effective, since the master
processor spends most of its time accessing memory in order to process the applicable data.
The memory hierarchy can be evaluated by calculating how many cycles are spent (wasted)
due to memory latency or throughput problems, where

249

Chapter 5

Memory stall cycles = Instruction Count * Memory References/Instruction * Cache Miss Rate * Cache Miss Penalty
In short, memory performance can be improved by:

Introducing cache, which means fewer slower DRAM accesses with a decrease in the
average main memory access time; non-blocking cache will especially decrease any
cache miss penalties.

Note that with the introduction of cache, the average total memory access time = (cache hit time +
(cache miss rate * cache miss penalty)) + (% cache misses * average main memory access time)
where (cache hit time + (cache miss rate * cache miss penalty)) = average cache access time.

Reducing the cache miss rate, by increasing cache block sizes or implementing
prefetching (hardware or software), a technique by which data and/or instructions
theoretically needed in the future are transferred from main memory and stored in
cache.

Implementing pipelining, which is the process of breaking down the various functions
associated with accessing memory into steps, and overlapping some of these steps.
While pipelining doesn’t help latency (the time it takes to execute one instruction), it
does help to increase throughput, by decreasing the time it takes for cache writes, for
example, and thus reducing cache write “hit” times. The pipeline rate is limited only
by its slowest pipeline stage.

Increasing the number of smaller multi-level caches rather than having one big cache,
since smaller caches reduce the cache’s miss penalty and average access time (hit
time), whereas a larger cache has a longer cycle time and for pipe stages in an imple-
mented pipeline.

Integrating main memory onto the master processor, which is cheaper as well, since
on-chip bandwidth is usually cheaper than pin bandwidth.

5.6 Summary

This chapter introduced some of the basic hardware concepts involving memory that are typi-
cally found on an embedded board, specifically the different types of board memory and the
basic electrical elements that are used in building them. While there are few fundamental dif-
ferences between memory located on a board and memory integrated into a processor, there
are certain types of memory that can be, or are only, located outside the master processor on
the embedded board itself—certain types of ROM and RAM (summarized in Table 5-1), as
well as auxiliary memory. This chapter ends with an introduction of some of the key perfor-
mance issues that revolve around board memory.

The next chapter, Chapter 6: Board I/0, discusses a variety of hardware I/O that can be found
on an embedded board.

250

10.
11.

Chapter 5 Problems

Draw and describe the memory hierarchy of an embedded system.

Which memory component(s) in a memory hierarchy is typically located on the board,
outside the master processor?

monQw»>

[a]
[b]

[a]
[b]

Level-2 cache.
Main memory.
Secondary memory.
All of the above.
None of the above.

What is ROM?
Name and describe three types of ROM.

What is RAM?
Name and describe three types of RAM.

Draw examples of ROM, SRAM, and DRAM memory cells.
Describe the main differences between these memory cells.

[T/F] SRAM is usually used in external cache, because SRAM is slower than DRAM.

What type of memory is typically used as main memory?

[a]
[b]

[a]
[b]

What is the difference between level-1, level-2, and level-3 cache?
How do they all work together in a system?

What are the three most common schemes used to store and retrieve data in cache?
What is the difference between a cache hit and cache miss?

Name and describe at least four cache swapping schemes.

[a]
[b]

What is auxiliary memory?
List four examples of auxiliary memory.

251

Chapter 5

12

13.

14.

15.

16.
17.

17

18

. [T/F] Auxiliary memory is typically classified according to how data is accessed.

[a] Name and define three data accessibility schemes commonly implemented in
auxiliary memory.
[b] Provide a real-world example that falls under each scheme.

Finish the sentence: MMUSs and memory controllers not integrated into the master pro-
cessor are typically implemented in:

A. separate slave ICs.
B. software.

C. buses.

D. All of the above.

E. None of the above.

[a] What is the difference between a MMU and a memory controller?
[b] Can one embedded system incorporate both? Why or why not?

What is the difference between physical memory and logical memory?

[a] Whatis a memory map?

[b] What is the memory makeup of a system with the memory map shown in Figure
5-217

[c] Which memory components shown in the memory map of Figure 5-21 are typically
located on the board outside the master processor?

Address Range Accessed Device Port Width
0x00000000 - 0xO003FFFFF | Flash PROM Bank 1 32
0x00400000 - 0x007FFFFF | Flash PROM Bank 2 32
0x04000000 - 0x043FFFFF | DRAM 4Mbyte (1Meg x32-bit)it) 32
0x09000000 - 0x09003FFF | MPC Internal Memory Map 32

0x09100000 - 0x09100003 | BCSR - Board Control & Status Register 32
0x10000000 - 0x17FFFFFF | PCMCIA Channel 16

Figure 5-21: Memory map

. How can memory impact the performance of a system?

. Define five ways in which the bandwidth of main memory and/or the overall performance
of a memory subsystem can be improved.

252

CHAPTER

Board I/O
(Input/Output)

In This Chapter

Introducing board I/0

Discussing differences between serial and parallel I/O
Introducing interfacing to I/O

Discussing /O performance

Input/output (I/O) components on a board are responsible for moving information into and
out of the board to I/O devices connected to an embedded system. Board I/O can consist of
input components, which only bring information from an input device to the master proces-
sor; output components, which take information out of the master processor to an output
device; or components that do both (see Figure 6-1).

Data from CPU or input devices stored in
memory until a CPU or output device request

|
Brings data into the Embedded System ¢ ﬁ Gets data out of the Embedded System

Figure 6-1: Vlon Neumann—based 1/0 block diagram "

Memory

1 1
1 1
| EMBEDDED SYSTEM BOARD |
! 1
i i
1

Controls usage and manipulation of data | Master Processor | |
! I t i
1 1
' 5 System components commonly connected via buses i
1 1
' v) !
1

1

1

1

1

1

253

Chapter 6

Any electromechanical system, both embedded and non-embedded, whether conventional

or unconventional, can be connected to an embedded board and act as an I/O device. I/O is a
high-level group that can be subdivided into smaller groups of output devices, input devices,
and devices that are both input and output devices. Output devices receive data from board I/
O components and display that data in some manner, such as printing it to paper, to a disk, or
to a screen or a blinking LED light for a person to see. An input device such as a mouse, key-
board, or remote control transmits data to board I/O components. Some I/O devices can do
both, such as a networking device that can transmit data to and from the internet, for instance.
An I/0 device can be connected to an embedded board via a wired or wireless data transmis-
sion medium such as a keyboard or remote control, or can be located on the embedded board
itself, such as an LED.

Author note: The material in this section is similar to the material in Chapter 4, Section
4.2.3, Processor Input/Output (I/0), since aside from certain types of I/0 or components
of an I/0 subsystem that are integrated on an IC versus discretely located on a board
the basics are essentially the same.

Because I/O devices are so varied, ranging from simple circuits to other complete embedded
systems, board I/O components can fall under one or more of several different categories, the
most common including:

Networking and communications I/O (the physical layer of the OSI model—
see Chapter 2)

Input (keyboard, mouse, remote control, vocal, etc.)
Graphics and output I/O (touch screen, CRT, printers, LEDs, etc.)

Storage 1/0O (optical disk controllers, magnetic disk controllers, magnetic tape con-
trollers, etc.)

Debugging I/0 (BDM, JTAG, serial port, parallel port, etc.)

Real time and miscellaneous I/O (timers/counters, analog-to-digital converters and
digital-to-analog converters, key switches, and so on)

In short, board I/O can be as simple as a basic electronic circuit that connects the master
processor directly to an I/O device, such as a master processor’s I/O port to a clock or LED
located on the board, to more complex I/O subsystem circuitry that includes several units,
as shown in Figure 6-2. I/O hardware is typically made up of all or some combination of six
main logical units:

The transmission medium, a wireless or wired medium connecting the 1/0 device to
the embedded board for data communication and exchanges

Communication port, what the transmission medium connects to on the board or, if a
wireless system, what receives the wireless signal

254

Board I/0 (Input/Output)

: Other Controllers :
B 1

| ——
! B Controller

Master | 0| eemmemmmmmm——aa
! |
—>» Processor

1
EE— : Graphics Controller |
[AU
Lo |

LED <«

Monitor

Printer

Figure 6-2: Ports and device controllers on an embedded board

A communication interface, which manages data communication between master CPU
and 1I/0O device or I/O controller, and is responsible for encoding data and decoding
data to and from the logical level of an IC and the logical level of the I/O port. This
interface can be integrated into the master processor, or can be a separate IC.

An I/O controller, a slave processor that manages the I/O device
I/0 buses, the connection between the board I/0 and master processor

The master processor integrated 1/0

The I/0 on a board can thus range from a complex combination of components, as shown in
Figure 6-3a, to a few integrated I/O board components, as shown in Figure 6-3b.

Communication port
L]
: CRT
o —
\ 4
. Transmission
Memory Video Parallel medium
¢ ’ Integrated master CPU (Frame Buffer) > Controller s' Port o
Parallel Interface .
. . LCD
.
L]
L]
A .
° L]
° °
L]
L]
L]
: .
. I/0 bus
The master processor

integrated 1/0 and
communication interface

Figure 6-3a: Complex I/O subsystem

255

Chapter 6

? Figure 6-3b:
10 Port (Pin) Simple I/O subsystem &2
Master CPU

+V

cooop

The master processor
integrated /O

The actual make-up of an I/O system implemented on an embedded board, whether using
connectors and ports or using an 1/0 device controller, is dependent on the type of I/0 device
connected to, or located on, the embedded board. This means that, while other factors such as
reliability and expandability are important in designing an I/O subsystem, what mainly dic-
tates the details behind an I/O design are the features of the I/O device—its purpose within
the system—and the performance of the 1/0 subsystem, discussed in Section 6.3. Transmis-
sion mediums, buses, and master processor 1/O are beyond the scope of this section, and are
covered in Chapters 2 (transmission mediums), 7 (board buses) and 4 (processors). An I/O
controller is essentially a type of processor, so again see Chapter 4 for more details.

Within the various I/O categories—networking, debugging, storage, and so forth—board 1/0
is typically subgrouped according to how data is managed (transmitted). Note that the actual
subgroups may be entirely different depending on the architecture viewpoint, as related to
the embedded systems model. “Viewpoint” means that hardware and software can view,

and hence subgroup, board /0O differently. Within software, the subgroups can even differ
depending on the level of software—system software versus application software, operating
system versus device drivers, and so on. For example, in many operating systems board I/O is
considered either as block or character I/0O. In short, block I/O manages in fixed block sizes
and is addressable only in blocks. Character I/O, on the other hand, manages data in streams
of characters, the size of the character depending on the architecture—such as one byte, for
example.

From the hardware viewpoint, I/O manages (transmits and/or stores) data in serial, in parallel,
or both.

256

Board I/0 (Input/Output)

6.1 Managing Data: Serial vs. Parallel 1/0

Board I/O that can transmit and receive data in serial is made up of components in which
data (characters) are stored, transferred and received one bit at a time. Serial I/0 hardware is
typically made up of some combination of the six main logical units outlined at the start of
the chapter. Serial communication includes within its I/O subsystem a serial port and a serial
interface.

Serial interfaces manage the serial data transmission and reception between the master CPU
and either the I/O device or its controller. They include reception and transmission buffers to
store and encode or decode the data they are responsible for transmitting either to the mas-
ter CPU or an I/O device. Serial data transmission and reception schemes generally differ in
terms of the direction data can be transmitted and received, as well as the actual transmission/
reception process—in other words, how the data bits are transmitted and received within the
data stream.

Data can be transmitted between two devices in one of three directions: in a one-way
direction, in both directions but at separate times because they share the same transmission
line, and in both directions simultaneously. Serial I/O data communication that uses a simplex
scheme is one in which a data stream can only be transmitted—and thus received—in one
direction (see Figure 6-4a). A half duplex scheme is one in which a data stream can be trans-
mitted and received in either direction, but in only one direction at any one time (see Figure
6-4b). A full duplex scheme is one in which a data stream can be transmitted and received in
either direction simultaneously (see Figure 6-4c).

Embedded Board Printer
Serial Interface Serial Interface
Transfer Data > > Receive Data
(TxData) : i (RxData)
H Serial Port Serial Port H

E 3 Ground (Gnd)

Ground (Gnd)

Embedded Board ‘ ‘ dem
Serial Interface Serial Interface

Transfer Data Transfer Data

(TxData) (TxData)
RTS RTS
Serial Serial

Receive Data Port IRes Receive Data
(RxData) (RxData)

Ground (Gnd) Ground (Gnd)

Figure 6-4b: Half duplex transmission scheme example &3

257

Chapter 6

Embedded Board

Receive Data |
(RxData)

Serial Interface

Transfer Data
(TxData)

Ground (Gnd)

Serial
Port

Serial
Port

<

VoIP Phone

Serial Interface

: Transfer Data
i (TxData)

: Receive Data
i (RxData)

; Ground (Gnd)

Figure 6-4c: Full duplex transmission scheme example 3

Within the actual data stream, serial I/O transfers can occur either as a steady (continuous)
stream at regular intervals regulated by the CPU’s clock, referred to as a synchronous trans-
fer, or intermittently at irregular (random) intervals, referred to as an asynchronous transfer.

Sz\mpling‘in middle
of data bit period

STOP START
bits) 8 data bits il
Idle Idle Embedded System
Embedded System ol
. 0o o] 1 1 1fo 1 1 Receiver
Transmitter
MSB A LSB
Serial Frame

Figure 6-5: Asynchronous transfer sample diagram

In an asynchronous transfer (shown in Figure 6-5), the data being transmitted is typically
stored and modified within a serial interface’s transmission buffer. The serial interface at the
transmitter divides the data stream into groups, called packets, that typically range from either
4 to 8 bits per character or 5 to 9 bits per character. Each of these packets is then encapsulated
in frames to be transmitted separately. The frames are packets modified (before transmission)
by the serial interface to include a START bit at the start of the stream, and a STOP bit or bits
(this can be 1, 1.5, or 2 bits in length to ensure a transition from “1” to “0” for the START bit
of the next frame) at the end of the data stream being transmitted. Within the frame, after the
data bits and before the STOP bit, a parity bit may also be appended. A START bit indi-
cates the start of a frame, the STOP bit(s) indicates the end of a frame, and the parity is an
optional bit used for very basic error checking. Basically, parity for a serial transmission can
be NONE, for no parity bit and thus no error checking; EVEN, where the total number of bits
set to “1” in the transmitted stream, excluding the START and STOP bits, must be an even
number in order for the transmission to be a success; and ODD, where the total number of

258

Board I/0 (Input/Output)

bits set to “1” in the transmitted stream, excluding the START and STOP bits, must be an odd
number in order for the transmission to be a success. Between the transmission of frames, the
communication channel is kept in an idle state, meaning a logical level “1” or non-return to
zero (NRZ) state is maintained.

The serial interface of the receiver then receives frames by synchronizing to the START bit of
a frame, delays for a brief period, and then shifts in bits, one at a time, into its receive buffer
until reaching the STOP bit (s). In order for asynchronous transmission to work, the bit rate
(bandwidth) has to be synchronized in all serial interfaces involved in the communication.
The bit rate is defined as = (number of actual data bits per frame/total number of bits
per frame) * the baud rate. The baud rate is the total number of bits (regardless of type) per
some unit of time (kbits/ sec, Mbits/sec, etc.) that can be transmitted.

Both the transmitter’s serial interface and the receiver’s serial interface synchronize with
separate bit-rate clocks to sample data bits appropriately. At the transmitter, the clock starts
when transmission of a new frame starts, and continues until the end of the frame so that the
data stream is sent at intervals the receiver can process. At the receiving end, the clock starts
with the reception of a new frame, delaying when appropriate (in accordance with the bit
rate), and then sampling the middle of each data bit period of time, and then stopping when
receiving the frame’s STOP bit(s).

Next Frame Previous Frame Embedded System

Transmitter

Embedded System .
o of 1 1 1|_0| 1 1|i‘.. . Receiver
LSB

MSB

Serial Frame

Figure 6-6: Synchronous transfer sample diagram

In a synchronous transmission (as shown in Figure 6-6), there are no START or STOP bits
appended to the data stream, and there is no idle period. As with asynchronous transmissions,
the data rates for receiving and transmitting must be in sync. However, unlike the separate
clocks used in an asynchronous transfer, the devices involved in a synchronous transmission
are synchronizing off of one common clock, which does not start and stop with each new
frame. On some boards, there may be an entirely separate clock line for the serial interface
to coordinate the transfer of bits. In some synchronous serial interfaces, if there is no sepa-
rate clock line, the clock signal may even be transmitted along with the data bits. The UART
(universal asynchronous receiver-transmitter) is an example of a serial interface that does
asynchronous serial transmission, whereas SPI (serial peripheral interface) is an example of
a synchronous serial interface. Important Note: different architectures that integrate a UART
or other types of serial interfaces may have different names and types for the same type of

259

Chapter 6

interface, such as the MPC860 which has SMC (serial management controller) UARTs, for
example. Review the relevant documentation to understand the specifics.

Serial interfaces can either be separate slave ICs on the board, or integrated onto the mas-

ter processor. The serial interface transmits data to and from an I/O device via a serial port
(shown in Figures 6-4a, b, and c). Serial ports are serial communication (COM) interfaces
that are typically used to interconnect off-board serial I/O devices to on-board serial board
I/0. The serial interface is then responsible for converting data that is coming to and from the
serial port at the logic level of the serial port into data that the logic circuitry of the master
CPU can process.

One of the most common serial communication protocols defining how the serial port is
designed and what signals are associated with the different bus lines is RS-232.

Serial /0 Example 1: Networking and Communications: RS-232

One of the most widely implemented serial I/O protocols for either synchronous or asynchro-
nous transmission is the RS-232 or EIA-232 (Electronic Industries Association-232), which
is primarily based upon the Electronic Industries Association family of standards. These
standards define the major components of any RS-232 based system, which is implemented
almost entirely in hardware.

Application

Presentation

Figure 6-7: OSI model

Session

Transport

Netork

v Datal, fnk eeereeseseesessessesenssfressessiness

Ethernet
i Physical

The hardware components can all be mapped to the physical layer of the OSI model (see Fig-
ure 6-7). The firmware (software) required to enable RS-232 functionality maps to the lower
portion of the data-link, but will not be discussed in this section (see Chapter 8).

According to the EIA-232 standards, RS-232 compatible devices (shown in Figure 6-8) are
called either DTE (Data Terminal Equipment) or DCE (Data Circuit-terminating Equipment).
DTE devices are the initiators of a serial communication, such as a PC or embedded board.
DCE is the device that the DTE wants to communicate with, such as an I/O device connected
to the embedded board.

DTE DCE

Transmission Medium

Embedded System 1 < > Embedded System 2

Figure 6-8: Serial network diagram

260

Board I/0 (Input/Output)

The core of the RS-232 specification is called the RS-232 interface (see Figure 6-9). The
RS-232 interface defines the details of the serial port and the signals along with some
additional circuitry that maps signals from a synchronous serial interface (such as SPI) or an
asynchronous serial interface (such as UART) to the serial port, and by extension to the I/O
device itself. By defining the details of the serial port, RS-232 also defines the transmission
medium, which is the serial cable. The same RS-232 interface must exist on both sides of a
serial communication transmission (DTE and DCE or embedded board and I/0O device), con-
nected by an RS-232 serial cable in order for this scheme to work.

RS-232 System Model
Embedded Device
Master or Slave Processor
RS232 Interfac e
Serial Port UART
RS232 Cable

Figure 6-9: Serial components block diagram

The actual physics behind the serial port—the number of signals and their definitions—dif-
fers among the different EIA232 standards. The parent RS-232 standard defines a total of 25
signals, along with a connector, called a DB25 connector, on either end of a wired transmis-
sion medium, shown in Figure 6-10a. The EIA RS-232 Standard EIA574 defines only nine
signals (a subset of the original 25) that are compatible with a DB9 connector (shown in Fig-
ure 6-10b), whereas the EIA561 standard defines eight signals (again a subset of the original
RS-232 25 signals) compatible with an RJ45 connector (see Figure 6-10c).

bolio th® ¥ Giato r
DB25 Male
B) o Sec. Clear to Send Shield Test Mode
£ K ~
R | i = BHom wige | Dojwe Sec. Received Line Signal Detect — ' 35~y Transmitter Signal Timing (DTE Source)
i FG Frame GroundShi eld Ou_[In (Unassigned) —j, " Data Signal Rate Selector
2 BA TxD Transmit Data 12 In Out (reserved for testing) ——io. 5, Ring Indicator
3 BB RxD Receive Data —12 Out Tn (reserved for testing) 9. 21— Remote Loopback
1 CA RTS Request To Send T2 n Out Received Line Signal Detect — ’ «;—» DTE Ready
) TS | Char To Send ") T Ot -— Signal Ground — | 19— Sec. Request 1o Send
6| cc DSR__| Data Set Read! +12 DCE Ready — 5 17> Local Loopback)
T 7B G Signal Ground Clear to Send = & 1o Receiver Signal Timing (DCE Source)
8 | CF | DCD | Daw Carrier Detect 2 | ou Request to Send 2.7 15~ Sec. Recelved Data
- eceived Data N I ransmitter Signal Timing (ource
5 e o = Received D: : 4~ Transmitter Signal Timing (DCE Source)
ositive Test Yollage Transmitted Data Sec. Transmitted Data
10 Negative Test Voltage . /
Shicld
11 Not Assigned
12 sDCD_| Secondary DCD +12 Tn Out
13 SCTS | _Secondary CTS +12 In Out
14 STxD | Secondary TxD 12 Out_ | In bolHo th D # Ghtor
5 | DB TXC__| DCE Transmit Clock Tn Out) DB25 Female
16 SRxD_|_Scondary RxD 2 In Out Shield —_ Sec. Received Data
7 | Db RxC_| Receive Clock In Out Received Data — | 11~ Transmitter Signal Timing (DCE Source)
18 LL Local Loopback Transmitted Data —_ :;/V Sec. Transmitted Data
o SRTS | Sccondary RTS E) ouw | Clear to Send — 1" Receiver Signal Timing (DCE Source)
20 [cd DTR | Data Terminal Ready +12 Ou | In Request to Send : 15— Local Loopback
21 | RL 5Q Signal Quality +12 I | ouw DCE Ready —, g pee: Qlear o Send
2 | CE RI Ring Indicator w12 In Out T el S;g'v“‘F ﬁ.‘)"““f s n_y ETE RC‘I" back
23 SEL Speed Selector DTE In Out “C“C‘m;::; Lﬁz‘: m““'i 4 2 emote Loopbac
24 DA TCK Speed Selector DCE Out In ° . » Qe
c (reserved for testing) 4”1 % Rate Selector
5 [™™ TM | Test Mode 12 In Out (Unassignegy " . Signal Tming (DTE Source)

o &) s
Sec. Received Line Signal Detect s Shield Test Mode
Sec. Request to Send

Figure 6-10a: RS-232 signals and DB25 connector &4

261

Chapter 6

Leading Into DTE Device DB9 Male

Signal Ground 5

DTE Ready 4

Transmitted Data 3

Received Data 2

Received Line Signal Detect 1

9 Ring Indicator

8 Clear to Send

7 Request to Send

6 DCE Ready

Leading Into DCE Device DB9 Female

Received Line Signal Detect 1

Transmitted Data 2

Received Data 3

DTE Ready 4

Signal Ground 5

ONONONONG)

6 DCE Ready

7 Clear to Send

8 Request to Send

OO0O0O0

9 Ring Indicator

Figure 6-10b

Same Leading Into DTE Device and DCE Device

Request to Send
Clear to Send
Transmit Data
Receive Data

Signal Ground

Data Terminal Ready
Data Carrier Detect
Ring Indicator

DBY

Pin Name Signal Description Voltage DTE | DCE
1 109 DCD Data Carrier Detect +12 In Out
2 104 RxD Receive Data —12 Out In
3 103 TxD i ansn it Data -12 In Out
D R 4 108 DTR Data Terminal Reagl +12 Out In
5 102 (3] fBa 1Gro nd
6 107 DR Data 8t Read y +12
7 106 13 RTS Request@ 8n d +12 In Out
8 106 (&) Cear @ 8n d +12 In Out
9 125 RI Rindnd icator +12 In Out
- RS-232 signals and DB9 connector 4
DBY 9 fgt
Pin Name Signal Description Voltage DTE | DCE
1 125 RI Ring Indicator +12 In Out
2 109 DCD Data Carrier Detect +12 In Out
3 108 DTR Data Terminal Ready +12 Out In
4 102 [N Rmna 1Ground
5 104 RxD Receig Data 12 Out In
6 103 ™ i ansn it Data 12 In Out
7 106 (¢} Cear @ 8n d +12 In Out
8 105/13 RTS Request@ 8n d +12 In Out

Figure 6-10c: RS-232 signals and RJ45 connector &4

Two DTE devices can interconnect to each other using an internal wiring variation on serial
cables called null modem serial cables. Since DTE devices transmit and receive data on the
same pins, these null modem pins are swapped so that the transmit and receive connections
on each DTE device are coordinated.

262

Board I/0 (Input/Output)

Example: Motorola/Freescale MPC823 FADS Board RS-232 System Model

The serial interface on the Motorola/Freescale FADS board* is integrated in the master pro-
cessor, in this case the MPC823. To understand the other major serial component located on
the board, the serial port, one only has to read the board’s hardware manual.

Section 4.9.3 of The Motorola/Freescale 8xxFADS User’s Manual (Rev. 1) details the RS-232
system on the Motorola/Freescale FADS board:

“4.9.3 RS232 Ports

To assist user’s applications and to provide convenient communication channels with
both a terminal and a host computer, two identical RS232 ports are provided on the
FADS.

Use is done with 9 pins, female D-type stack connector, configured to be directly (via
a flat cable) connected to a standard IBM-PC-like RS232 connector.

DCD | 1
6 | DSR
X | 2
7 | RTS
RX | 3
8 | CTS
DIR | 4
9 | NC
GND | 5

Figure 6-11: RS-232 serial port connector

4.9.3.1 RS-232 Signal Description
In the following list:
DCD (O) — Data Carrier Detect
TX (O) — Transmit Data

LT}

From this manual, we can see that the FADS RS-232 port definition is based upon the EIA-
574 DB9 DCE female device connector definition.

*Note: The FADS board is a platform for hardware and software development around the MPCS8xx family of
Processors.

263

Chapter 6

Serial 1/0 Example 2: Networking and Communications: IEEE 802.11
Wireless LAN
The IEEE 802.11 family of networking standards are serial wireless LAN standards, and are

summarized in Table 6-1 below. These standards define the major components of a wireless
LAN system.

Table 6-1: 802.11 standards

IEEE 802.11 Standard

Description

802.11-1999 Root Standard for Information
Technology—Telecommunications and Informa-
tion Exchange between Systems—Local and
Metropolitan Area Network—Specific Require-
ments—Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
Specifications

The 802.11 standard was the first attempt to define how wireless data from a
network should be sent. The standard defines operations and interfaces at the
MAC (Media Access Control) and PHY (Physical interface) levels in a TCP/IP
network. There are three PHY layer interfaces defined (1 IR, and 2 radio:
Frequency-Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spec-
trum (DSSS)), and the three do not interoperate. Use CSMA/CA (carrier sense
multiple access with collision avoidance) as the basic medium access scheme for
link sharing, phase-shift keying (PSK) for modulation

802.11a-1999 “WiFi5” Amendment 1: High-
speed Physical Layer in the
5 GHz band

Operates at radio frequencies between 5 GHz and 6 GHz to prevent interference
with many consumer devices. Uses CSMA/CA (carrier sense multiple access
with collision avoidance) as the basic medium access scheme for link sharing.

As opposed to PSK, it uses a modulation scheme known as orthogonal fre-
quency-division multiplexing (OFDM) that provides data rates as high as 54
Mbps maximum.

802.11b-1999 “WiFi” Supplement to
802.11-1999,Wireless LAN MAC and PHY
specifications: Higher speed Physical Layer
(PHY) extension in the 2.4 GHz band

Backward compatible with 802.11. 11Mbps speed, one single PHY layer
(DSSS), uses CSMA/CA (carrier sense multiple access with collision avoid-
ance) as the basic medium access scheme for link sharing and complementary
code keying (CCK), which allows higher data rates and is less susceptible to
multipath-propagation interference.

802.11b-1999/Cor1-2001 Amendment 2:
Higher-speed Physical Layer (PHY) extension in
the 2.4 GHz band—Corrigendum 1

To correct deficiencies in the MIB definition of 802.11b.

802.11c IEEE Standard for Information
Technology—Telecommunications and informa-
tion exchange between systems—Local area
networks—Media access control (MAC) bridg-
es—Supplement for support by IEEE 802.11

Designated in 1998 to add a subclass under 2.5 Support of the Internal Sublayer
Service by specific MAC Procedures to cover bridge operation with IEEE 802.11
MAGCs. Allows the use of 802.11 access points to bridge across networks within
relatively short distances from each other(i.e., where there was a solid wall
dividing a wired network).

802.11d-2001Amendment to IEEE 802.11-1999,
(ISO/IEC 8802-11) Specification for Operation
in Additional Regulatory Domains

Internationalization—defines the physical layer requirements (channelization,
hopping patterns, new values for current MIB attributes, and other requirements)
to extend the operation of 802.11 WLANSs to new regulatory domains (countries).

802.11e Amendment to STANDARD [for] In-
formation Technology-Telecommunications and
information exchange between systems-Local
and metropolitan area networks-Specific require-
ments-Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
specifications: Medium Access Method (MAC)
Quality of Service Enhancements

Enhance the 802.11 Medium Access Control (MAC) to improve and manage
Quality of Service, provide classes of service, and efficiency enhancements in
the areas of the Distributed Coordination Function (DCF) and Point Coordination
Function (PCF). Defining a series of extensions to 802.11 networking to allow
for QoS operation. (i.e., to allow for adaptation for streaming audio or video via
a preallocated dependable portion of the bandwidth.)

802.11f-2003 IEEE Recommended Practice for
Multi-Vendor Access Point Interoperability via
an Inter-Access Point Protocol Across Distribu-
tion Systems Supporting IEEE 802.11 Operation

Standard to enable handoffs (constant operation while the mobile terminal is
actually moving) to be done in such a way as to work across access points from
a number of vendors. Includes recommended practices for an Inter-Access Point
Protocol (IAPP) which provides the necessary capabilities to achieve multi-ven-
dor Access Point interoperability across a Distribution System supporting IEEE
P802.11 Wireless LAN Links. This IAPP will be developed for the following
environment(s): (1) A Distribution System consisting of IEEE 802 LAN compo-
nents supporting an IETF IP environment. (2) Others as deemed appropriate.

264

Board I/0 (Input/Output)

Table 6-1: 802.11 standards (continued)

IEEE 802.11 Standard

Description

802.11g-2003 Amendment 4: Further Higher-
Speed Physical Layer Extension in the 2.4 GHz
Band

A higher speed(s) PHY extension to 802.11b—offering wireless transmission
over relatively short distances at up to 54 Mbps compared to the maximum 11
Mbps of the 802.11b standard and operates in the 2.4 GHz range Uses CSMA/
CA (carrier sense multiple access with collision avoidance) as the basic medium
access scheme for link sharing.

802.11h-2001 Spectrum and Transmit Power
Management Extensions in the 5GHz band in
Europe

Enhancing the 802.11 Medium Access Control (MAC) standard and 802.11a
High Speed Physical Layer (PHY) in the 5 GHz Band supplement to the
standard; to add indoor and outdoor channel selection for 5 GHz license exempt
bands in Europe; and to enhance channel energy measurement and reporting
mechanisms to improve spectrum and transmit power management (per CEPT
and subsequent EU committee or body ruling incorporating CEPT Recommenda-
tion ERC 99/23).

Looking into the tradeoffs involved in creating reduced-power transmission
modes for networking in the 5 GHz space—essentially allowing 802.11a to be
used by handheld computers and other devices with limited battery power avail-
able to them. Also, examining the possibility of allowing access points to reduce
power to shape the geometry of a wireless network and reduce interference
outside of the desired influence of such a network.

802.11i Amendment to STANDARD [for] In-
formation Technology-Telecommunications and
information exchange between systems-Local
and metropolitan area networks-Specific require-
ments-Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
specifications: Medium Access Method (MAC)
Security Enhancements

Enhances the 802.11 Medium Access Control (MAC) to enhance security and
authentication mechanisms, and improving the PHY-level security that is used on
these networks.

802.11j Amendment to STANDARD [FOR] In-
formation Technology-Telecommunications and
information exchange between systems-Local
and Metropolitan networks- Specific require-
ments—Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) speci-
fications: 4.9 GHz — 5 GHz Operation in Japan

The scope of the project is to enhance the 802.11 standard and amendments, to
add channel selection for 4.9 GHz and 5 GHz in Japan to additionally conform to
the Japanese rules for radio operation. to obtain Japanese regulatory approval by
enhancing the current 802.11 MAC and 802.11a PHY to additionally operate in
newly available Japanese 4.9 GHz and 5 GHz bands.

802.11k Amendment to STANDARD [FOR] In-
formation Technology-Telecommunications and
information exchange between systems-Local
and Metropolitan networks- Specific require-
ments-Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
specifications: Radio Resource Measurement of
Wireless LANs

This project will define Radio Resource Measurement enhancements to provide
interfaces to higher layers for radio and network measurements.

802.11ma _Standard for Information Technol-
ogy — Telecommunications and information
exchange between systems — Local and Metro-
politan networks — Specific requirements — Part
11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifica-
tions — Amendment x: Technical corrections and
clarifications

Incorporates accumulated maintenance changes (editorial and technical
corrections) into 802.11-1999, 2003 edition (incorporating 802.11a-1999,
802.11b-1999, 802.11b-1999 corrigendum 1-2001, and 802.11d-2001).

802.11n Amendment to STANDARD [FOR]
Information Technology-Telecommunications and
information exchange between systems-Local and
Metropolitan networks- Specific requirements-
Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications:
Enhancements for Higher Throughput

The scope of this project is to define an amendment that shall define standardized
modifications to both the 802.11 physical layers (PHY) and the 802.11 Medium
Access Control Layer (MAC) so that modes of operation can be enabled that

are capable of much higher throughputs, with a maximum throughput of at least
100Mbps, as measured at the MAC data service access point (SAP).

265

Chapter 6

The first step is to understand the main components of an 802.11 system, regardless of
whether these components are implemented in hardware or software. This is important since
different embedded architectures and boards implement 802.11 components differently. On
most platforms today, 802.11 standards are made up of root components that are implemented
almost entirely in hardware. The hardware components can all be mapped to the physical
layer of the OSI model, as shown in Figure 6-12. Any software required to enable 802.11
functionality maps to the lower section of the OSI data-link layer, but will not be discussed in
this section.

Application
Presentation
Session
Transport
802.2 ...
Network
Data-Link
s02.11 802.11 MAC
Physical R
IR DS FH
v v v
Infrared (IR) Pulse Position Direct Sequence Spread Spectrum Frequency Hopping Spread Spectrum
Modulation. This PHY provides 1 operating in the 2 400 - 2 483.5 MHz operating in the 2 400 - 2 483.5 MHz
Mbit/s with optional 2 Mbit/s. The 1 band (depends on local regulations). This band (depends on local regulations). This
Mbit/s version uses Pulse Position PHY provides both 1 and 2 Mbit/s PHY provides for 1 Mbit/s (with 2 Mbit/s
Modulation with 16 positions (16- operation. The 1 Mbit/s version uses optional) operation. The 1 Mbit/s version
PPM) and the 2 Mbit/s version uses 4- Differential Binary Phase Shift Keying uses 2 level Gaussian Frequency Shift
PPM. (DBPSK) and the 2 Mbit/s version uses Keying (GFSK) modulation and the 2
Differential Quadrature Phase Shift Mbit/s version uses 4 level GFSK.

Keying (DQPSK).

Figure 6-12: OSI model &5

Off-the-shelf wireless hardware modules supporting one or some combination or the 802.11
standards (i.e., 802.11a, 802.11b, 802.11g, etc.), have in many ways complicated the efforts to
commit to one wireless LAN standard. These modules also come in a wide variety of forms,
including embedded processor sets, PCMCIA, Compact Flash, and PCI formats. In general, as
shown in Figures 6-13a and b, embedded boards need to either integrate 802.11 functionality
as a slave controller or into the master chip, or the board needs to support one of the standard
connectors for the other forms (PCI, PCMCIA, Compact Flash, etc.). This means that 802.11
chipset vendors can either (1) produce or port their PC Card firmware for an 802.11 embed-
ded solution, which can be used for lower volume/more expensive devices or during product
development, or (2) the same vendor’s chipset on a standard PC card could be placed on the
embedded board, which can be used for devices that will be manufactured in larger volumes.

On top of the 802.11 chipset integration, an embedded board design needs to take into consid-
eration wireless LAN antenna placement and signal transmission requirements. The designer
must ensure that there are no obstructions to prevent receiving and transmitting data. When
802.11 is not integrated into the master CPU, such as with the System-on-Chip (SoC) shown
in Figure 6-13b, the interface between the master CPU and the 802.11 board hardware also
needs to be designed.

266

Board I/0 (Input/Output)

PCI, PCMCIA, or Compact Flash Card
°

Radio Hardware

Embedded Board

[X¥X] 2

Diversity Antennas.

PRISM 3 miniPCI 802.11a, g, and b

BALUN

—

] TxAGC

|
. Host

AXQ
Data

Clock

Latch Enable

Gain
HighiLow

CO Loop

Figure 6-13a: 802.11 sample hardware configurations with PCl card ¢

\i/ ARMY Based WiSoC for 802.11a, g, and b

ISL3893

Linux System

Yy

=
o s I
s X
@) uAP
S |02 MVC 1
o |MAC/BB Duivey 802.11a, b, g| || ZIF
o0
pCI || ||802.3(||802.3|[80211) | Baseband I
PCI =
§| 5'

Optional 2nd Radio

Backbone Infrastructure

Figure 6-13b: 802.11 sample hardware configurations with SoC &7

Parallel I/0

Components that transmit data in parallel are devices which can transfer data in multiple bits
simultaneously. Just as with serial I/O, parallel I/O hardware is also typically made up of
some combination of six main logical units, as introduced at the start of this chapter, except
that the port is a parallel port and the communication interface is a parallel interface.

Parallel interfaces manage the parallel data transmission and reception between the master
CPU and either the I/O device or its controller. They are responsible for decoding data bits
received over the pins of the parallel port (transmitted from the I/O device)—and receiving
data being transmitted from the master CPU, and then encoding these data bits onto the paral-

lel port pins.

267

Chapter 6

They include reception and transmission buffers to store and manipulate the data being
transferred. In terms of parallel data transmission and reception schemes, like serial I/O trans-
mission, they generally differ in terms of what direction data can be transmitted and received,
as well as the actual process of transmitting/receiving data bits within the data stream. In the
case of direction of transmission, as with serial I/O, parallel I/O uses simplex, half-duplex, or
full-duplex modes. Also, as with serial 1/O, parallel I/O devices can transmit data asynchro-
nously or synchronously. However, parallel I/O does have a greater capacity to transmit data
than serial I/0, because multiple bits can be transmitted or received simultaneously. Examples
of board I/O that transfer and receive data in parallel include: IEEE 1284 controllers (for
printer/display I/O devices—see Example 3), CRT ports, and SCSI (for storage I/O devices).
A protocol that can potentially support both parallel and serial I/O is Ethernet, presented in
Example 4.

Parallel I/0 Example 3: “Parallel” Output and Graphics I/0

Technically, the models and images that are created, stored, and manipulated in an embedded
system are the graphics. There are typically three logical components (engines) of I/O graph-
ics on an embedded board, as shown in Figure 6-14:

The geometric engine, which is responsible for defining what an object is. This
includes implementing color models, an object’s physical geometry, material and
lighting properties, and so on.

The rendering engine, which is responsible for capturing the description of objects.
This includes providing functionality in support of geometric transformations, projec-
tions, drawing, mapping, shading, illumination, and so on.

The raster and display engine, which is responsible for physically displaying the
object. It is in this engine that the output I/O hardware comes into play.

Embedded System

Display Pipeline

Output I/O [«
Device

Input I/O
Device

Figure 6-14: Graphical design engines

268

Board I/0 (Input/Output)

An embedded system can output graphics via softcopy (video) or hardcopy (on paper) means.
The contents of the display pipeline differ according to whether the output I/O device outputs
hard or soft graphics, so the display engine differs accordingly, as shown in Figures 6-15a and b.

Display Engine

Video

Controller

Parallel

Display
Pipeline

CRT

Port

Parallel Display Interface Memory
Controller il » (Frame Buffer)
) > or
Integrated Master CPU
Parallel Interface

,,,,,,,, o | LD

Display Engine

Parallel Display Interface

Controller Printer
or Eee »: Controller
Integrated Master CPU

o

Parallel
Port

Display Pipeline

Printer

Parallel Interface

1
1
1
1
1
1
1
1
PRI
1
1
1
1
1
1
1

Sanne r

Figure 6-15b: Display engine of hardcopy graphics example

The actual parallel port configuration differs from standard to standard in terms of the number
of signals and the required cable. For example, on the Net Silicon’s NET+ARMS50 embedded
board (see Figure 6-16), the master processor (an ARM7-based architecture) has an integrated
IEEE 1284 interface, a configurable MIC controller integrated in the master processor, to

transmit parallel I/O over four on-board parallel ports.

269

Chapter 6

- -~

/
--------- 7 PI0 50Pins Y PHY INT. (C

MIC Port:

l’ ENI/GPIO, 8+ 8 [
! 8

\

(]
1
<= I Port A J[Port B [[Port C |

1 *MIC Port g\ NET+20M -
\\ 33% = le;l?‘g(')s‘i‘?‘% 5 M 18
N o M~
S 407 SR | —
ke &
CASI-Csl *]:l;gIIC_(): Multi Interface Controller RST-
A270 RESET- AND
Cont’l Lines
ADDR/CONTL NET+20M/50
BUF BGA/PQFP 5
BCLK DEBUG ————
XTAL2
Al NET+ARM =g
Signals XTALL —_EE
2.5V H CORE, PLL /0 3.3V

Figure 6-16: NET+ARM50 embedded board parallel I/O &8

The IEEE 1284 specification defines a 40-signal port, but on the Net+ARMS50 board, data
and control signals are multiplexed to minimize the master processor’s pin count. Aside from
eight data signals DATA[8:1] (D, — D,), IEEE 1284 control signals include:

(13

PDIR, which is used for bidirectional modes and defines the direction of the external
data transceiver. Its state is directly controlled by the BIDIR bit in the IEEE 1284
Control register (0 state, data is driven from the external transceiver towards 1285,
the cable, and in the 1 state, data is received from the cable).

PIO, which is controlled by firmware. Its state is directly controlled by the PIO bit in
the IEEE 1284 Control register.

LOOPBACK, which configures the port in external loopback mode and can be used to
control the mux line in the external FCT646 devices (set to 1, the FCT646 transceiv-
ers drive inbound data from the input latch and not the real-time cable interface). Its
state is directly controlled by the LOOP bit in the IEEE 1284 Control register. The
LOOP strobe signal is responsible for writing outbound data into the inbound latch
(completing the loop back path). The LOOP strobe signal is an inverted copy of the
STROBE* signal.

STROBE* (nSTROBE), AUTOFD* (nAUTOFEED), INIT* (nINIT), HSELECT*
(nSELECTIN), *ACK (nACK), BUSY, PE, PSELECT (SELECT), *FAULT (nER-
ROR), ...”l¢2

270

Board I/0 (Input/Output)

Parallel and Serial I/0 Example 4: Networking and Communications—
Ethernet

One of the most widely implemented LAN protocols is Ethernet, which is primarily based
upon the IEEE 802.3 family of standards. These standards define the major components of
any Ethernet system. Thus, in order to fully understand an Ethernet system design, you first
need to understand the IEEE specifications. (Remember, this is not a book about Ethernet,
and there is a lot more involved than what is covered here. This example is about understand-
ing a networking protocol, and then being able to understand the design of a system based
upon a networking protocol, such as Ethernet.)

The first step is understanding the main components of an Ethernet system, regardless of
whether these components are implemented in hardware or software. This is important since
different embedded architectures and boards implement Ethernet components differently. On
most platforms, however, Ethernet is implemented almost entirely in hardware.

Application
Flg ure 6-17. Presentation
OSI mode/

Session
Transport
Network

i Bthernet

H Physical

The hardware components can all be mapped to the physical layer of the OSI model. The
firmware (software) required to enable Ethernet functionality maps to the lower section of the
OSI data-link layer, but will not be discussed in this section (see Chapter 8).

There are several Ethernet system models described in the IEEE 802.3 specification, so let us
look at a few to get a clear understanding of what some of the most common Ethernet hard-
ware components are.

271

Chapter 6

1 Mbps and 10 Mbps Ethernet System Model

Embedded Device

Master or Slave Processor

-

AUI

Ethernet Cable

Figure 6-18: Ethernet components diagram

Ethernet devices are connected to a network via Ethernet cables: thick coax (coaxial), thin
coax, twisted-pair, or fiber optic cables. These cables are commonly referred to by their IEEE
names. These names are made up of three components: the data transmission rate, the type of
signaling used, and either the cable type or cable length.

For example, a 10Base-T cable is an Ethernet cable that handles a data transmission rate of 10
Mbps (million bits per second), will only carry Ethernet signals (baseband signaling), and is

a twisted-pair cable. A 100Base-F cable is an Ethernet cable that handles a data transmission
rate of 100 Mbps, supports baseband signaling, and is a fiber-optic cable. Thick or thin coax
cables transmit at speeds of 10 Mbps, support baseband signaling, but differ in the length of
maximum segments cut for these cables (500 meters for thick coax, 200 meters for thin coax).
Thus, these thick coax cables are called 10Base-5 (short for 500), and thin coax cables are
called 10Base-2 (short for 200).

The Ethernet cable must then be connected to the embedded device. The type of cable, along
with the board I/O (communication interface, communication port, etc.), determines whether
the Ethernet I/O transmission is serial or parallel. The Medium Dependent Interface (MDI)
is the network port on the board into which the Ethernet cable plugs. Different MDIs exist for
the different types of Ethernet cables. For example, a 10Base-T cable has a RJ-45 jack as the
MDI. In the system model of Figure 6-18, the MDI is an integrated part of the transceiver.

272

Board I/0 (Input/Output)

A transceiver is the physical device that receives and transmits the data bits; in this case it

is the Medium Attachment Unit (MAU). The MAU contains not only the MDI, but the
Physical Medium Attachment (PMA) component as well. It is the PMA which “contains the
functions for transmission, reception, and” depending on the transceiver, “collision detection,
clock recovery and skew alignment” (p. 25 IEEE 802.3 Spec). Basically the PMA serializes
(breaks down into a bit stream) code groups received for transmission over the transmission
medium, or deserializes bits received from the transmission medium, and converts these bits
into code groups.

The transceiver is then connected to an Attachment Unit Interface (AUI), which carries the
encoded signals between an MAU and the Ethernet interface in a processor. Specifically, the

AUI is defined for up to 10 Mbps Ethernet devices, and specifies the connection between the
MAU and the Physical Layer Signaling (PLS) sub layer (signal characteristics, connectors,

cable length, etc.).

The Ethernet interface can exist on a master or slave processor, and contains the remaining
Ethernet hardware and software components. The Physical Layer Signaling (PLS) com-
ponent monitors the transmission medium, and provides a carrier sense signal to the Media
Access Control (MAC) component. It is the MAC that initiates the transmission of data, so it
checks the carrier signal before initiating a transmission, to avoid contention with other data
over the transmission medium.

Let’s start by looking at an embedded board for an example of this type of Ethernet system.

Example 1: Motorola/Freescale MPC823 FADS Board Ethernet System Model

Section 4.9.1 of The Motorola/Freescale 8xxFADS User’s Manual (Rev 1) details the Ethernet
system on the Motorola/Freescale FADS board:

“4.9.1 Ethernet Port

The MPC8xxFADS has an Ethernet port with a 10-Base-T interface. The communi-
cation port on which this resides is determined according to the MPC8xx type whose
routing is on the daughter board. The Ethernet port uses an MC68160 EEST 10
Base-T transceiver.

You can also use the Ethernet SCC pins, which are on the expansion connectors of
the daughter board and on the communication port expansion connector (P8) of the
motherboard. The Ethernet transceiver can be disabled or enabled at any time by
writing a 1 or a O to the EthEn bit in the BCSR1.”

From this paragraph, we know that the board has an RJ-45 jack as the MDI, and the
MC68160 enhanced Ethernet serial transceiver (EEST) is the MAU. The second paragraph, as
well as Chapter 28 of the PowerPC MPC823 User’s Manual tells us more about the AUI and
the Ethernet interface on the MPC823 processor.

273

Chapter 6

On the MPC823, a 7-wire interface acts as the AUI. The SCC2 is the Ethernet interface, and
“performs the full set of IEEE 802.3/Ethernet CSMA/CD media access control and channel
interface functions.” (See MPC823 PowerPC User’s Manual, p. 16-312.)

PPC 823
EEST MC68160
scc2

Tx TXD

TENA TENA (RTS)
RJ-45

TCLK TCLK(CLKx)

Rx RXD
RENA RENA (CD) ¢———

Ethernet Cable RCLK RCLK (CLKx) i PLS/Carrier Sense Signal is

CLSN CLSN ©TS) 4] logical OR of RENA and CLSN
LOOP Parallel VO

Figure 6-19: MPC823 Ethernet diagram

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

LAN devices that are able to transmit and receive data at a much higher rate than 10 Mbps
implement a different combination of Ethernet components. The IEEE 802.3u Fast Ethernet
(100 Mbps data rate) and the IEEE 802.3z Gigabit Ethernet (1000 Mbps data rate) systems
evolved from the original Ethernet system model (described in the previous section), and are
based on the system model in Figure 6-20.

10 Mbps, 100 Mbps and 1000 Mbps Ethernet System Model

Embedded Device
Master or Slave Processor

Ethernet
Interface

2
PHY

o | = 5

wv
o | v | W E £ 2 §
MDI 212|192 5| £& a
vl 2| 58 2
2| 7 g 2
] = 2

Ethernet Cable

Figure 6-20: Ethernet diagram

274

Board I/0 (Input/Output)

The MDI in this system is connected to the transceiver, not a part of the transceiver (as in the
previous system model). The Physical Layer Device (PHY) transceiver in this system contains
three components: the PMA (same as on the MAU transceiver in the 1/10 Mbps system model),
the Physical Coding Sub layer (PCS), and the Physical Medium Dependent (PMD).

The PMD is the interface between the PMA and the transmission medium (through the MDI).
The PMD is responsible for receiving serialized bits from the PMD and converting it to the
appropriate signals for the transmission medium (optical signals for a fiber optic, etc.). When
transmitting to the PMA, the PCS is responsible for encoding the data to be transmitted into the
appropriate code group. When receiving the code groups from the PMA, the PCS decodes the
code groups into the data format that can be understood and processed by upper Ethernet layers.

The Media Independent Interface (MII) and the Gigabit Media Independent Interface
(GMII) are similar in principle to the AUI, except they carry signals (transparently) between
the transceiver and the Reconciliation Sub layer (RS). Furthermore, the MII supports a LAN
data rate of up to 100 Mbps, while GMII (an extension of MII) supports data rates of up to
1000 Mps. Finally, the RS maps PLS transmission media signals to two status signals (carrier
presence and collision detection), and provides them to the Ethernet interface.

Example 2: Net Silicon ARM7 (6127001) Development Board Ethernet System Model

The Net+Works 6127001 Development Board Jumper and Component Guide from NetSilicon
has an Ethernet interface section on their ARM based reference board, and from this we can
start to understand the Ethernet system on this platform.

“Ethernet Interface

The 10/100 version of the 3V NET+Works Hardware Development Board provides
a full-duplex 10/100Mbit Ethernet Interface using the Enable 3V PHY chip. The
Enable 3V PHY interfaces to the NET+ARM chip using the standard MII interface.

The Enable 3V PHY LEDL (link indicator) signal is connected to the NET+ARM
PORTC6 GPIO signal. The PORT®6 input can be used to determine the current Ether-
net link status (The MII interface can also be used to determine the current Ethernet
link status)....”

From this paragraph we can determine that the board has an RJ-45 jack as the MDI, and the
Enable 3V PHY is the MAU. The NET+Works for NET+ARM Hardware Reference Guide,
Section 5 Ethernet Controller Interface tells us that the ARM7 based ASIC integrates an
Ethernet controller, and that the Ethernet Interface is actually composed of two parts: the Eth-
ernet Front End (EFE) and the Media Access Control (MAC) modules. Finally, Section 1.3 of
this manual tells us the Reconciliation Layer (RS) is integrated into the Media Independent
Interface (MII).

275

Chapter 6

Ethernet Cable

Enable 3V Phy

Ml

ARM7
2 m
s |3
= | g
£ £
1) 19

Figure 6-21: Net+ARM Ethernet block diagram

Example 3: Adastra Neptune x86 Board Ethernet System Model
While both the ARM and PowerPC platforms integrate the Ethernet interface into the main
processor, this x86 platform has a separate slave processor for this functionality. According to
the Neptune User’s Manual Rev A.2, the Ethernet controller the (“MAC Am79C791 10/100
Controller”) connects to two different transceivers, with each connected to either an AUI or
MII for supporting various transmission media.

B o8
Ethernet Cable

10/100 Base-T
Ethernet Cable

AUI to 10Base-2/5
Transceiver

Ethernet
12-pin
Header

10Base-2/5 AUI

Enable 3V Phy

RJ-45

M1l

“MAC” Am79C971
10/100 Network
Controller

Figure 6-22: x86 Ethernet diagram

276

PCI >

Board I/0 (Input/Output)

6.2 Interfacing the I/0 Components

As discussed at the start of this chapter, I/O hardware is made up of all or some combination
of integrated master processor 1/O, I/O controllers, a communications interface, a communi-
cation port, I/O buses, and a transmission medium (see Figure 6-26).

Communication port
.

3 CRT
o e
\ 4
. Transmission
Memory Video Parallel medium
Integrated master CPU > (Frame Buffer) > Controller " Port S
Parallel Interface
'. . LCD
L]
L]
K N
° L]
° °
L]
L]
. A
. 1/0 bus
The master processor

integrated 1/0 and
communication interface

Figure 6-23: Sample I/O subsystem

All of these components are interfaced (connected), and communication mechanisms imple-
mented via hardware, software, or both to allow for successful integration and function.

Interfacing the 1/0 Device with the Embedded Board

For off-board I/0O devices, such as keyboards, mice, LCDs, printers, and so on, a transmission
medium is used to interconnect the I/O device to an embedded board via a communication
port. Aside from the I/O schemes implemented on the board (serial versus parallel), whether

the medium is wireless (Figure 6-24b) or wired (Figure 6-24a), also impacts the overall
scheme used to interface the I/O device to the embedded board.

Tr‘tmsmixxrizm Medium
Received Line fgnal Detect 1 O O 6 DCE Ready
D___J
v
Transmitted Data 2 O O 7 Clear to 8nd .-
. .- —_ Received Line Signal Detector
Received Data 3 O O 8 Regest to 8nd)] Srial Cable — TransmitData
DTEReady 4 () () 9 Ring Indicator D]
D___J
fnal und 5 O .-
4 .

... Communication Port
(Serial Port)

Figure 6-24a: Wired transmission medium

277

Chapter 6

Infrared (IR) Wireless Transmission Medium

\ 3

Communication Port N N . . .

(IR Transmitter)

Figure 6-24b: Wireless transmission medium

As shown in Figure 6-24a, with a wired transmission medium between the I/O device and
embedded board, it is just a matter of plugging in a cable, with the right connector head,

to the embedded board. This cable then transmits data over its internal wires. Given an I/O
device, such as the remote control in Figure 6-24b, transmitting data over a wireless medium,
understanding how this interfaces to the embedded board means understanding the nature

of infrared wireless communication, since there are no separate ports for transmitting data
versus control signals (see Chapter 2). Essentially, the remote control emits electromagnetic
waves to be intercepted by the IR receiver on the embedded board.

The communication port would then be interfaced to an I/O controller, a communication
interface controller, or the master processor (with an integrated communication interface) via
an 1/0 bus on the embedded board (see Figure 6-25). An I/O bus is essentially a collection of
wires transmitting the data.

In short, an I/O device can be connected directly to the master processor via I/0 ports (pro-
cessor pins) if the I/O devices are located on the board, or can be connected indirectly using

a communication interface integrated into the master processor or a separate IC on the board
and the communication port. The communication interface itself is what is either connected
directly to the I/O device, or the device’s I/O controller. For off-board I/O devices, the relative
board I/0 components are interconnected via I/O buses.

278

Board I/0 (Input/Output)

: 1/0 Controller : C”-
1
| [. O D J Received Line Signal Detect
e e e ! pE— Received Line Signal Detect ___ ()-
- Transmit Data
o | ——— T D — o _omm I

----------- SEE (Ol ————— ceeceseneens — C”-
H | i Bus
1 Communication | H H O D__J
1 Interface P : : ()-
| Comellr | o emm
______________ s

Communication (4

Interface

Master CPU

Figure 6-25: Interfacing communication port to other board /O

Interfacing an I/0 Controller and the Master CPU

In a subsystem that contains an I/O controller to manage the I/O device, the design of the
interface between the I/O controller and master CPU—yvia a communications interface—is
based on four requirements:

An ability of the master CPU to initialize and monitor the 1/0 Controller. 1/0
controllers can typically be configured via control registers and monitored via status
registers. These registers are all located on the I/O controller. Control registers are
data registers that the master processor can modify to configure the I/O controller.
Status registers are read-only registers in which the master processor can get informa-
tion as to the state of the I/O controller. The master CPU uses these status and control
registers to communicate and/or control attached I/0O devices via the I/O controller.

A way for the master processor to request I/0. The most common mechanisms used
by the master processor to request I/O via the I/O controller are special I/O instruc-
tions (I/0 mapped) in the ISA and memory-mapped I/0, in which the 1/O controller
registers have reserved spaces in main memory.

A way for the 1/0 device to contact the master CPU. 1/0O controllers that have the
ability to contact the master processor via an interrupt are referred to as interrupt
driven I/O. Generally, an I/O device initiates an asynchronous interrupt requesting
signaling to indicate (for example) control and status registers can be read from or
written to. The master CPU then uses its interrupt scheme to determine when an
interrupt will be discovered.

279

Chapter 6

Some mechanism for both to exchange data. This refers to how data is actually
exchanged between the I/0 controller and the master processor. In a programmed
transfer, the master processor receives data from the I/O controller into its registers,
and the CPU then transmits this data to memory. For memory-mapped I/O schemes,
DMA (direct memory access) circuitry can be used to bypass the master CPU en-
tirely. DMA has the ability to manage data transmissions or receptions directly to and
from main memory and an I/O device. On some systems, DMA is integrated into the
master processor, and on others there is a separate DMA controller. Essentially, DMA
requests control of the bus from the master processor.

6.3 1/0 and Performance

I/0 performance is one of the most important issues of an embedded design. I/O can nega-
tively impact performance by bottlenecking the entire system. In order to understand the

type of performance hurdles I/O must overcome, it is important to understand that, with the
wide variety of I/O devices, each device will have its own unique qualities. Thus, in a proper
design, the engineer will have taken these unique qualities on a case by case basis into consid-
eration. Some of the most important shared features of I/O that can negatively impact board
performance include:

The data rates of the 1/0 devices. 1/0 devices on one board can vary in data rates
from a handful of characters per second with a keyboard or a mouse to devices that
can transmit in Mbytes per second (networking, tape, disk).

The speed of the master processor. Master processors can have clocks rates any-
where from tens of MHz to hundreds of MHz. Given an I/O device with an extremely
slow data rate, a master CPU could have executed thousands of times more data in
the time period that the I/0 needs to process a handful of bits of data. With extremely
fast I/0O, a master processor would not even be able to process anything before the I/O
device is ready to move forward.

How to synchronize the speed of the master processor to the speeds of 1/0. Given
the extreme ranges of performance, a realistic scheme must be implemented that
allows for either the I/O or master processor to process data successfully regardless
of how different their speeds. Otherwise, with an I/O device processing data much
slower than the master processor transmits, for instance, data would be lost by the I/O
device. If the device is not ready, it could hang the entire system if there is no mecha-
nism to handle this situation.

280

Board I/0 (Input/Output)

How I/0 and the master processor communicate. This includes whether there is an
intermediate dedicated I/O controller between the master CPU and I/O device that
manages I/O for the master processor, thus freeing up the CPU to process data more
efficiently. Relative to an I/O controller, it becomes a question whether the communi-
cation scheme is interrupt driven, polled, or memory mapped (with dedicated DMA
to, again, free up the master CPU). If interrupt-driven, for example, can I/O devices
interrupt other I/O, or would devices on the queue have to wait until previous devices
finished their turn, no matter how slow.

To improve I/O performance and prevent bottlenecks, board designers need to examine the
various I/O and master processor communication schemes to ensure that every device can be
managed successfully via one of the available schemes. For example, to synchronize slower
I/O devices and the master CPU, status flags or interrupts can be made available for all ICs so
that they can communicate their status to each other when processing data. Another example
occurs when I/0 devices are faster than the master CPU. In this case, some type of interface
(i.e., DMA) that allows these devices to bypass the master processor altogether could be an
alternative.

The most common units measuring performance relative to I/O include:

Throughput of the various I/O components (the maximum amount of data per unit
time that can be processed, in bytes per second). This value can vary for different
components. The components with the lowest throughput are what drives the perfor-
mance of the whole system.

The execution time of an I/0O component. The amount of time it takes to process all
of the data it is provided with.

The response time or delay time of an I/O component. It is the amount of time be-
tween a request to process data and the time the actual component begins processing.

In order to accurately determine the type of performance to measure, the benchmark has to
match how the I/O functions within the system. If the board will be accessing and process-
ing several larger stored data files, benchmarks will be needed to measure the throughput
between memory and secondary/tertiary storage medium. If the access is to files that are very
small, then response time is the critical performance measure, since execution times would be
very fast for small files, and the I/O rate would depend on the number of storage accesses per
second, including delays. In the end, the performance measured would need to reflect how the
system would actually be used, in order for any benchmark to be of use.

281

Chapter 6

6.4 Summary

In this chapter, an I/O subsystem was introduced as being some combination of a transmis-
sion medium, communication port, a communication interface, an I/O controller, I/O buses,
and the master processor’s integrated I/0O. Of this subsystem, a communication port, commu-
nication interface if not integrated into the master processor, I/O controller, and I/O buses are
the board I/O of the system. This chapter also discussed the integration of various I/O compo-
nents within the subsystem to each other. Networking schemes (RS-232, Ethernet, and IEEE
802.11) were provided as serial and parallel transmission I/O examples, as well as a graphics
example for parallel transmission. Finally, this chapter discussed the impact of board I/O on
an embedded system’s performance.

Next, Chapter 7: Board Buses discusses the types of buses that can be found on an embedded
board, and provides real-world examples of board bus hardware implementations.

282

Chapter 6 Problems

[a] What is the purpose of I/O on a board?
[b] List five categories of board I/O, with two real-world examples under each category.

Name and describe the six logical units into which I/O hardware can be classified.

In Figures 6-26a and b, indicate what I/O components fall under what I/O logical unit.

CRT
—]
Memory Video Parallel
Integrated master CPU ’ (Frame Buffer) ’ Controller > Port
Parallel Interf:
arallel Interface LCD

Figure 6-26a: Complex I/O subsystem

Master CPU

Figure 6-26b: Simple I/0 subsystem &1

283

Chapter 6

4. [a] Whatis the difference between serial and parallel I/O?
[b] Give areal-world I/O example of each.

5. [a] Whatis the difference between simplex, half-duplex, and full duplex transmission?
[b] Indicate which transmission scheme is shown in Figures 6-27a, b, and c.

Embedded Board ‘ ‘ Modem

Serial Interface Serial Interface

Transfer Data Transfer Data
(TxData) (TxData)
RTS

RTS
Serial Serial
Receive Data Port IRETE: Receive Data
(RxData) (RxData)
Ground (Gnd) Ground (Gnd)

Figure 6-27a: Transmission scheme example &3/

Embedded Board Printer

Serial Interface Serial Interface

Transfer Data : D _D Receive Data
(TxData) | : (RxData)

Serial Port Serial Port

Ground (Gnd)

Ground (Gnd)

Embedded Board ‘ ‘ VoIP Phone

Serial Interface Serial Interface

Transfer Data

Transfer Data
(TxData) (TxData)
Serial Serial
< Port Port >

Receive Data Receive Data
(RxData) (RxData)

Ground (Gnd) Ground (Gnd)

Figure 6-27c: Transmission scheme example ¢

6. [a] Whatis asynchronous transfer of serial data?
[b] Draw a diagram that describes how asynchronous transfer of serial data works.

284

Board I/0 (Input/Output)

10.
11.
12.

13.
14.

15.

16.

The baud rate is

A. the bandwidth of the serial interface.

B. the total number of bits that can be transmitted.

C. the total number of bits per unit time that can be transmitted.
D. None of the above.

[a] What is the bit rate of a serial interface?
[b] Write the equation.

[a] What is synchronous transfer of serial data?
[b] Draw and describe how synchronous transfer of serial data works.

[T/F] A UART is an example of a synchronous serial interface.
What is the difference between a UART and an SPI?

[a] What is a serial port?
[b] Give a real-world example of a serial 1/O protocol.

[c] Draw a block diagram of the major components defined by this protocol, and define
these components.

Where in the OSI model would the hardware components of an I/O interface map?

[a] What is an example of board I/O that can transmit and receive data in parallel?

[b] What is an example of an I/O protocol that can either transmit and receive data in
serial or in parallel?

[a] What is the I/O subsystem within the embedded system shown in Figure 6-28?
[b] Define and describe each engine.

Embedded System

Display Pipeline

Output /O [«
Device

Input /O
Device

Figure 6-28: Graphical design engines

Draw an example of a display engine producing softcopy graphics, and an example of a
display engine producing hardcopy graphics.

285

Chapter 6

17. [T/F] The IEEE 802.3 family of standards are LAN protocols.

18. [a] What layers does the Ethernet protocol map to within the OSI model?
[b] Draw and define the major components of a 10Mbps Ethernet subsystem.

19. For a system that contains an I/O controller to manage an I/O device, name at least two
requirements that the interface between the master processor and I/O controller is typi-
cally based upon.

20. How can board I/O negatively impact a system’s performance?

21. If there is no mechanism to synchronize the speed differences between 1/0 devices and
the master CPU, then:

data can be lost.

nothing can go wrong.

the entire system could crash.

A and C only.

None of the above.

monw»>

286

CHAPTER 7

Board Buses

In This Chapter

Defining the different types of buses
Discussing bus arbitration and handshaking schemes
Introducing PC and PCl bus examples

All of the other major components that make up an embedded board—the master processor,
I/O components, and memory—are interconnected via buses on the embedded board. As
defined earlier, a bus is simply a collection of wires carrying various data signals, addresses,
and control signals (clock signals, requests, acknowledgements, data type, etc.) between all
of the other major components on the embedded board, which include the I/O subsystems,
memory subsystem, and the master processor. On embedded boards, at least one bus intercon-
nects the other major components in the system (see Figure 7-1).

Video Processor

Figure 7-1:
Audio Processor General bus structure
2

PCBus | V37273

NVM

On more complex boards, multiple buses can be integrated on one board (see Figure 7-2). For
embedded boards with several buses connecting components that need to inter-communicate,
bridges on the board connect the various buses and carry information from one bus to another.
In Figure 7-2, the PowerManna PCI bridge is one such example. A bridge can automatically
provide a transparent mapping of address information when data is transferred from one bus
to another, implement different control signal requirements for various buses—acknowl-
edgment cycles, for example—as well as modify the data being transmitted if any transfer

287

Chapter 7

protocols differ bus to bus. For instance, if the byte ordering differs, the bridge can handle the
byte swapping.

‘ Cache ‘ ‘ Cache ‘

@ @ Figure 7-2:

MPC620 board with bridge """
MPC620 MPC620 Copyright of Freescale Semiconductor, Inc. 2004.
Used by permission.
s LT RN
Address ‘ ﬁ ‘ Dispatcher

‘ Address Data Path Switch ‘

300 S (N 2 T

PowerMANNA
PCI Bridge

o &

PCI Subsystem

Memory Link SYS 1/0

>

Board buses typically fall under one of three main categories: system buses, backplane buses
or 1/0 buses. System buses (also referred to as “main,” “local,” or “processor-memory” buses)
interconnect external main memory and cache to the master CPU and/or any bridges to the
other buses. System buses are typically shorter, higher speed, custom buses. Backplane buses
are also typically faster buses that interconnect memory, the master processor, and I/0O, all on
one bus. I/0 buses, also referred to as “expansion,” “external,” or “host” buses, in effect act as
extensions of the system bus to connect the remaining components to the master CPU, to each
other, to the system bus via a bridge, and/or to the embedded system itself, via an I/O com-
munication port. I/O buses are typically standardized buses that can be either shorter, higher
speed buses such as PCI and USB, or longer, slower buses such as SCSI.

The major difference between system buses and I/O buses is the possible presence of IRQ
(interrupt request) control signals on an I/O bus. There are a variety of ways I/O and the mas-
ter processor can communicate, and interrupts are one of the most common methods. An IRQ
line allows for I/O devices on a bus to indicate to the master processor that an event has taken
place or an operation has been completed by a signal on that IRQ bus line. Different I/O buses
can have different impacts on interrupt schemes. An ISA bus, for example, requires that each
card that generates interrupts must be assigned its own unique IRQ value (via setting switches
or jumpers on the card). The PCI bus, on the other hand, allows two or more 1/O cards to
share the same IRQ value.

Within each bus category, buses can be further divided into whether the bus is expandable or
non-expandable. An expandable bus (PCMCIA, PCI, IDE, SCSI, USB, and so on) is one in
which additional components can be plugged into the board on-the-fly, whereas a non-expand-
able bus (DIB, VME, I*C are examples) is one in which additional components cannot be
simply plugged into the board and then communicate over that bus to the other components.

288

Board Buses

While systems implementing expandable buses are more flexible because components can
be added ad-hoc to the bus and work “out of the box,” expandable buses tend to be more
expensive to implement. If the board is not initially designed with all of the possible types
of components that could be added in the future in mind, performance can be negatively
impacted by the addition of too many “draining” or poorly designed components onto the
expandable bus.

7.1 Bus Arbitration and Timing

Associated with every bus is some type of protocol that defines how devices gain access to
the bus (arbitration), the rules attached devices must follow to communicate over the bus
(handshaking), and the signals associated with the various bus lines.

Board devices obtain access to a bus using a bus arbitration scheme. Bus arbitration is based
upon devices being classified as either master devices (devices that can initiate a bus transac-
tion) or slave devices (devices which can only gain access to a bus in response to a master
device’s request). The simplest arbitration scheme is for only one device on the board—the
master processor—to be allowed to be master, while all other components are slave devices.
In this case, no arbitration is necessary when there can only be one master.

For buses that allow for multiple masters, some have an arbitrator (separate hardware cir-
cuitry) that determines under what circumstances a master gets control of the bus. There are
several bus arbitration schemes used for embedded buses, the most common being dynamic
central parallel, centralized serial (daisy-chain), and distributed self-selection.

Dynamic central parallel arbitration (shown in Figure 7-3a) is a scheme in which the arbi-
trator is centrally located. All bus masters connect to the central arbitrator. In this scheme,
masters are then granted access to the bus via a FIFO (first in, first out—see Figure 7-3b) or
priority-based system (see Figure 7-3c). The FIFO algorithm implements some type of FIFO
queue that stores a list of master devices ready to use the bus in the order of bus requests.
Master devices are added at the end of the queue, and are allowed access to the bus from the
start of the queue. One main drawback is the possibility of the arbitrator not intervening if a
single master at the front of the queue maintains control of the bus, never completing and not
allowing other masters to access the bus.

Device Device Device | seeweees » My | M; M | M
0 1 [N N M1l M2
I I /1 I
— 7/
busy
§ g § g % § Bus | @eeeeeeressnconacesi : Arbitratorg
SR EENE! 5 |2 :
—>
e
arb
Figure 7-3a: Figure 7-3b:
Dynamic central parallel arbitration 7-% FIFO-based arbitration

289

Chapter 7

HIGH

|

/ KEY
/ = preemption

Priority

| = Master completion

Time

LOW

Figure 7-3c: Priority-based arbitration

The priority arbitration scheme differentiates between masters based upon their relative
importance to each other and the system. Basically, every master device is assigned a priority,
which acts as an indicator of order of precedence within the system. If the arbitrator imple-
ments a preemption priority-based scheme, the master with the highest priority always can
preempt lower priority master devices when they want access to the bus, meaning a master
currently accessing the bus can be forced to relinquish it by the arbitrator if a higher priority
master wants the bus. Figure 7-3c shows three master devices (1, 2, 3 where master 1 is the
lowest priority device and master 3 is the highest); master 3 preempts master 2, and master 2
preempts master 1 for the bus.

Central-serialized arbitration, also referred to as daisy-chain arbitration, is a scheme in which
the arbitrator is connected to all masters, and the masters are connected in serial. Regardless
of which master makes the request for the bus, the first master in the chain is granted the bus,
and passes the “bus grant” on to the next master in the chain if/when the bus is no longer
needed (see Figure 7-4).

5
D ice B ice B ice 5
gnt 0 1 o000 N
_—
| [,]
arb elease 7y
- //
regst

Figure 7-4: Centralized serial/daisy-chain arbitration 7%

There are also distributed arbitration schemes, which means there is no central arbitrator and
no additional circuitry, as shown in Figure 7-5. In these schemes, masters arbitrate themselves
by trading priority information to determine if a higher priority master is making a request for
the bus, or even by removing all arbitration lines and waiting to see if there is a collision on
the bus, which means that the bus is busy with more than one master trying to use it.

290

Board Buses

Device Device Device
0 1 00 N
| [busy ,, |
7/
. . . /L
Arbitration lines removed/ Y request
- . 7/ .
collision detection based bus //// lines

Figure 7-5: Distributed arbitration via self-selection "%

Again, depending on the bus, bus arbitrators can grant a bus to a master atomically (until that
master is finished with its transmission) or allow for split transmissions, where the arbitrator
can preempt devices in the middle of transactions, switching between masters to allow other
masters to have bus access.

Once a master device is granted the bus, only two devices—a master and another device

in slave mode—communicate over that bus at any given time. There are only two types of
transactions that a bus device can do—READ (receive) and/or WRITE (transmit). These
transactions can take place either between two processors (a master and I/O controller,

for example) or processor and memory (a master and memory, for example). Within each
type of transaction, whether READ or WRITE, there can also be several specific rules that
each device needs to follow in order to complete a transaction. These rules can vary widely
between the types of devices communicating, as well as from bus to bus. These sets of rules,
commonly referred to as the bus handshake, form the basis of any bus protocol.

The basis of any bus handshake is ultimately determined by a bus’s timing scheme. Buses are
based upon one or some combination of syrnchronous or asynchronous bus timing schemes,
which allow for components attached to the bus to synchronize their transmissions. A synchro-
nous bus (such as that shown in Figure 7-6) includes a clock signal among the other signals
it transmits, such as data, address and other control information. Components using a syn-
chronous bus all are run at the same clock rate as the bus and (depending on the bus) data is
transmitted either on the rising edge or falling edge of a clock cycle. In order for this scheme
to work, components either must be in rather close proximity for a faster clock rate, or the
clock rate must be slowed for a longer bus. A bus that is too long with a clock rate that is too
fast (or even too many components attached to the bus) will cause a skew in the synchroniza-
tion of transmissions, because transmissions in such systems won’t be in sync with the clock.
In short, this means that faster buses typically use a synchronous bus timing scheme.

291

Chapter 7

SDA SCL

Figure 7-6: MICRO- | | |@--=---mm-n Carries Clock Signal
F°C bus with SCL clock 7 CONTROLLER
PCB83C528
PLL
SYNTHESIZER
| TSA5512
|
NON-VOLATILE
MEMORY
PCF8582E | I
M/S COLOUR
DECODER
| TDA9160A
I
STEREO/DUAL
SOUND
DECODER
TDA9840 | I
PICTURE
SIGNAL
IMPROVEMENT
| TDA4670
HI-FI AUDIO
PROCESSOR
TDA9860 | I
VIDEO
PROCESSOR
| TDA4685
TTTT

An asynchronous bus, such as the one shown in Figure 7-7, transmits no clock signal,

but transmits other (non-clock based) “handshaking” signals instead, such as request and
acknowledgment signals. While the asynchronous scheme is more complex for devices hav-
ing to coordinate request commands, reply commands, and so on, an asynchronous bus has no
problem with the length of the bus or a larger number of components communicating over the
bus, because a clock is not the basis for synchronizing communication. An asynchronous bus,
however, does need some other “synchronizer” to manage the exchange of information, and
to interlock the communication.

The two most basic protocols that start any bus handshaking are the master indicating or
requesting a transaction (a READ or WRITE) and the slave responding to the transaction
indication or request (for example, an acknowledgment/ACK or enquiry/ENQ). The basis of
these two protocols are control signals transmitted either via a dedicated control bus line or
over a data line. Whether it’s a request for data at a memory location, or the value of an I/O
controller’s control or status registers, if the slave responds in the affirmative to the master
device’s transaction request, then either an address of the data involved in the transaction

is exchanged via a dedicated address bus line or data line, or this address is transmitted as
part of the same transmission as the initial transaction request. If the address is valid, then

292

Board Buses

The SCSI specification defines 50 bus signals, half of which are tied to
ground. The 18 SCSI bus signals that are relevant to understanding SCSI
A transactions are shown below. Nine of these signals are used to initiate

and control transactions, and nine are used for data transfer (8 data bits
plus a parity bit).
Local bus Signal |Name Description
-to- /BSY |Busy Indicates that the bus is in use.
S(];.;EiIdBllS o /SEL Select The initiator uses this signal to select a target.
K /C/D Control/Data | The target uses this signal to indicate whether the information being transferred is

SCSI bus/ ‘S!S-pin control information (signal asserted) or data (signal negated).
IDE bus .1 parallel port avie] Input/Output | The target uses this signal to specify the direction of the data movement with re-

spect to the initiator. When the signal is asserted, data flows to the initiator; when
negated, data flows to the target.

- MSG Message This signal is used by the target during the message phase.
Other CD-ROM /RE R Th his signal request/acknowledge handshak
(650 MB) Q equest e target uses this signal to start a request/acknowledge handshake.
n . /ACK Acknowledge | This signal is used by the initiator to end a request/acknowledge handshake.
External floppy, High-density
#2 hard drive, storage /ATN Attention The initiator uses this signal to inform the target that the initiator has a message
scanner, etc. input device ready. The target retrieves the message, at its convenience, by transitioning to a

message-out bus phase.

/RST Reset This signal is used to clear all devices and operations from the bus, and force the
bus into the bus free phase. The Macintosh computer asserts this signal at startup.
SCSI peripheral devices should never assert this signal.

/DBO- Data Eight data signals, numbered O to 7, and the parity signal. Macintosh computers
/DB7, generate proper SCSI parity, but the original SCSI Manager does not detect parity
/DBP errors in SCSI transactions.

Figure 7-7: SCSI bus 74

a data exchange takes place over a data line (plus or minus a variety of acknowledgments
over other lines or multiplexed into the same stream). Again, note that handshaking protocols
vary with different buses. For example, where one bus requires the transmission of enquiries
and/or acknowledgments with every transmission, other buses may simply allow the broad-
cast of master transmissions to all bus (slave) devices, and only the slave device related to the
transaction transmits data back to the sender. Another example of differences between hand-
shaking protocols might be that, instead of a complex exchange of control signal information
being required, a clock could be the basis of all handshaking.

Buses can also incorporate a variety of transferring mode schemes, which dictate how the
bus transfers the data. The most common schemes are single, where an address transmission
precedes every word transmission of data, and blocked, where the address is transmitted only
once for multiple words of data. A blocked transferring scheme can increase the bandwidth of
a bus (without the added space and time for retransmitting the same address), and is some-
times referred to as burst transfer scheme. It is commonly used in certain types of memory
transactions, such as cache transactions. A blocked scheme, however, can negatively impact
bus performance in that other devices may have to wait longer to access the bus. Some of the
strengths of the single transmission scheme include not requiring slave devices to have buf-
fers to store addresses and the multiple words of data associated with the address, as well as
not having to handle any problems that could arise with multiple words of data either arriving
out of order or not directly associated with an address.

293

Chapter 7

Non-Expandable Bus: I>’C Bus Example

The I°C (Inter IC) bus interconnects processors that have incorporated an I°C on-chip inter-
face, allowing direct communication between these processors over the bus. A master/slave
relationship between these processors exists at all times, with the master acting as a master
transmitter or master receiver. As shown in Figure 7-8, the I?C bus is a two-wire bus with
one serial data line (SDA) and one serial clock line (SCL). The processors connected via I>*C
are each addressable by a unique address that is part of the data stream transmitted between
devices.

The I’C master initiates data transfer and generates the clock signals to permit the transfer.
Basically, the SCL just cycles between HIGH and LOW (see Figure 7-9).

The master then uses the SDA line (as SCL is cycling) to transmit data to a slave. A session
is started and terminated as shown in Figure 7-10, where a “START” is initiated when the
master pulls the SDA port (pin) LOW while the SCL signal is HIGH, whereas a “STOP” con-
dition is initiated when the master pulls the SDA port HIGH when SCL is HIGH.

With regard to the transmission of data, the I°C bus is a serial, 8-bit bus. This means that,
while there is no limit on the number of bytes that can be transmitted in a session, only
one byte (8 bits) of data will be moved at any one time, 1 bit at a time (serially). How this

SDA SCL

MICRO-
[2C Master - CONTROLLER
PCBS3C528
Fi 7-8 sk
_8- SYNTHESIZER
igure 7-8: e | e :
2 ' TSASS51
Sample analog TV board 73 ! ‘ .
‘
; NON-VOLATILE
MEMORY
ffffff R
PCF8582E)
M/S COLOUR
; DECODER
:* ””””””””””””” 1 > DA9160A
STEREO/DUAL
w SOUND
12C Slaves ----- (R > DECODER
' TDA9840 1 l
‘ PICTURE
. -{-T-TI» SIGNAL
IMPROVEMENT
1 TDA4670
HI-FI AUDIO
PROCESSOR
ffffff R
TDA9SG0 1

VIDEO
PROCESSOR

TDA4685

294

Board Buses

N ! MSC609
Figure 7-9: SCL cycles "%
[7‘ [7‘
[| ‘ [
| |
I - o -
| |
SDA o\ | A SDA
[‘ -- . |
| |
! ‘ ! :
| - | -
SCL | l \ / | l SCL
S : , P :
[[
STARTEondion STRondion

MBC622
Figure 7-10: PC START and STOP conditions "

translates into using the SDA and SCL signals is that a data bit is “read” whenever the SCL
signal moves from HIGH to LOW, edge to edge. If the SDA signal is HIGH at the point of an
edge, then the data bit is read as a “1”. If the SDA signal is LOW, the data bit read is a “0”.
An example of byte “00000001” transfer is shown in Figure 7-11a, while Figure 7-11b shows
an example of a complete transfer session.

| | !
| | !
[[dummy !

SDA : ! o acknowledge | !
e (HIGH) o
[| ! |
| | ! |
| | ! |

SCL [| 1 2 o 7 8 9 [|
s ACK S
L L

|[«<——— start byte 00000001 ———| MBC633

Figure 7-11a: PC data transfer example -3

295

Chapter 7

- : o o T
MSB o acknowledgement o 7ackn0wledgemem
signal from slave signal from receiver

T
I

I

|

I

| byte complete
I

: clock line held low while
I

I

|

|

|

. Lk !
interrupt within slave |
|

. A |

interrupts are serviced |

|

|

|

|

I

|

1

|

I

|

|

|

I

|

|

|

‘ _
SCL 1S | 1 2 7 8 9 l 1 2 3—8M

- — or |

I

_

LS ACK ACK I p
__ 1 __
START or STOP or
repeated START repeated START
condition condition

MSC608
Figure 7-11b: ’C complete transfer diagram

PCI (Peripheral Component Interconnect) Bus Example: Expandable

The latest PCI specification at the time of writing, PCI Local Bus Specification Revision 2.1,
defines requirements (mechanical, electrical, timing, protocols, etc.) of a PCI bus implemen-
tation. PCI is a synchronous bus, meaning that it synchronizes communication using a clock.
The latest standard defines a PCI bus design with at least a 33 MHz clock (up to 66 MHz)
and a bus width of at least 32 bits (up to 64 bits), giving a possible minimum throughput of
approximately 132 Mbytes/sec ((33 MHz * 32 bits) / 8)—and up to 528 Mbytes/sec maxi-
mum with 64-bit transfers given a 66-MHz clock. PCI runs at either of these clock speeds,
regardless of the clock speeds at which the components attached to it are running.

As shown in Figure 7-12, the PCI bus has two connection interfaces: an internal PCI inter-
face that connects it to the main board (to bridges, processors, etc.) via EIDE channels, and
the expansion PCI interface, which consists of the slots into which PCI adaptor cards (audio,
video, etc.) plug. The expansion interface is what makes PCI an expandable bus; it allows
for hardware to be plugged into the bus, and for the entire system to automatically adjust and
operate correctly.

296

Board Buses

Add-in Cards ~ Required
PCI
Signals
Processor 56K 2
System Modem
Expa MPEG |
Host XPS"*“’“ 3D Sound Video ./
Brid us Card apturé
ridge Bridee ar Capturé
Card
< ‘ ‘ PCI Local Bus ‘ '/ >
scst 100 Mbit 3D
Controller Ethemnet | Motherboard | | Graphics
Card
O
Figure 7-12:

Signal Name | Driven by Description
CLK Master Bus Clock (normally 33MHz; DC okay)
FRAME# Master Indicates start of a bus cycle
ADI[31:0] Master/Target Address/Data bus (multiplexed)
C/BE#[3:0] Master Bus command (address phase)
Byte enables (data phases)
IRDY# Master Ready signal from master
TRDY# Target Ready signal from target
DEVSEL# Target Address recognized
RST# Master System Reset
PAR Master/Target Parity on AD, C/BE#
STOP# Target Request to stop transaction
IDSEL Chip select during initialization transactions
PERR# Receiver Parity Error
SERR# Any Catastrophic system error
REQ# Request Bus
GNT# Bus Grant
PCl bus 71

Under the 32-bit implementation, the PCI bus is made up of 49 lines carrying multiplexed
data and address signals (32 pins), as well as other control signals implemented via the
remaining 17 pins (see table in Figure 7-12).

Because the PCI bus allows for multiple bus masters (initiators of a bus transaction), it imple-
ments a dynamic centralized, parallel arbitration scheme (see Figure 7-13). PCI’s arbitration
scheme basically uses the REQ# and GNT# signals to facilitate communication between
initiators and bus arbitrators. Every master has its own REQ# and GNT# pin, allowing the
arbitrator to implement a fair arbitration scheme, as well as determining the next target to be
granted the bus while the current initiator is transmitting data.

<

Deice Deice Deice
0 [2N N J N
Y b W [4
—— 7/
busy
b7 b7 b7
N N -
[Q Q
=12 2| |E S
g on O on on g
e = e
—>
> <
arb

Figure 7-13: PCl arbitration scheme 7%

297

Chapter 7

In general, a PCI transaction is made up of five steps:

1.
2.

An initiator makes a bus request by asserting a REQ# signal to the central arbitrator.
The central arbitrator does a bus grant to the initiator by asserting GNT# signal.

The address phase which begins when the initiator activates the FRAME# signal, and
then sets the C/BE[3:0]# signals to define the type of data transfer (memory or I/O
read or write). The initiator then transmits the address via the AD[31:0] signals at the
next clock edge.

After the transmission of the address, the next clock edge starts the one or more data
phases (the transmission of data). Data is also transferred via the AD[31:0] signals.
The C/BE[3:0], along with IRDY# and #TRDY signals, indicate if transmitted data is
valid.

Either the initiator or target can terminate a bus transfer through the deassertion of the
#FRAME signal at the last data phase transmission. The STOP# signal also acts to
terminate all bus transactions

Figures 7-14a and b demonstrate how PCI signals are used for transmission of information.

1

CLK Cycle 1 — The bus is idle.
CLK Cycle 2 — The initiator asserts a valid address and places a read com-

CLK —/_\—/_\—/ mand on the C/BE# signals.
— : #%* Start of address phase. **
FRAME# L . . R
| ' ~ CLK Cycle 3 — The initiator tri-states the address in preparation for the
AD -{Address {} Data-1_> Data-2 X Data-3 ’{']"" target driving read data. The initiator now drives valid byte enable
: H = information on the C/BE# signals. The initiator asserts IRDY# low in-
cie# ----i--(BusCmgX_ | BE#s H L dicating it is ready to capture read data. The target asserts DEVSEL#
e m - ™ H low (in this cycle or the next) as an acknowledgment it has positively
IRDY# I 2 i/ _\—E-[—_ decoded the address. The target drives TRDY# high indicating it is
X : iz E H H not yet providing valid read data.
TRDY# . = = E i = = H . . P
. < T IS = < = CLK Cycle 4 — The target provides valid data and asserts TRDY# low indi-
DEVSEL# | KI I & & & . cating to the initiator that data is valid. IRDY# and TRDY# are both
| low during this cycle causing a data transfer to take place.
< > < > < > <« > ** Start of first data phase occurs, and the initiator captures the data. **
2::’::5 Eﬁ(aase gﬂ;ase bata CLK Cycle 5 — The target deasserts TRDY# high indicating it needs more

time to prepare the next data transfer.

CLK Cycle 6 — Both IRDY# and TRDY# are low.

Start of next data phase occurs, and the initiator captures the data pro-
vided by the target. **

CLK Cycle 7 — The target provides valid data for the third data phase, but the
initiator indicates it is not ready by deasserting IRDY# high.

CLK Cycle 8 — The initiator re-asserts IRDY# low to complete the third data
phase. The initiator drives FRAME# high indicating this is the final
data phase (master termination).

BUS TRANSACTION ————————————————»

Final data phase occurs, the initiator captures the data provided by the
target, and terminates. **

CLK Cycle 9 - FRAME#, AD, and C/BE# are tri-stated, as IRDY#, TRDY#,
and DEVSEL# are driven inactive high for one cycle prior to being
tri-stated.

Figure 7-14a: PCl read example "

298

Board Buses

CLK Cycle 1 — The bus is idle.

1 2 3 4 5 6 7 8 9
CLK 4/-__//__/'__/’—_/__/?_/'__/__/* CLK Cycle 2 — The initiator asserts a valid address and places a write command
_ {‘1 on the C/BE# signals.
FRAME# ** Start of address phase. **
ap -—-+-——-(Address > Data-1 Data-2 Data-3 {} - CLK Cycle 3 — The initiator drives valid write data and byte enable signals. The
H H initiator asserts IRDY# low indicating valid write data is available. The
cipe# ----1(Bus Cmd BE#3 Birz X BE#S target asserts DEVSEL# low as an acknowledgment it has positively de-
. - « - coded the address (the target may not assert TRDY# before DEVSEL#).
IRDY# NI &a / i o The target drives TRDY# low indicating it is ready to capture data. Both
£ 2 2
TROY# S ?— é = 5 £ E—/_ﬁ . IRDY# and TRDY# fnre low.)
) = z = = E z P ** First data phase occurs with target capturing write data. **
DEVSEL# 2 - ° ° CLK Cycle 4 — The initiator provides new data and byte enables. Both IRDY#
and TRDY# are low.
Daa > *Daia Data ** Next data phase occurs with target capturing write data. **

Address

Phase Phase

Phase

Phase

BUS TRANSACTION

CLK Cycle 5 - The initiator deasserts IRDY# indicating it is not ready to pro-
vide the next data. The target deasserts TRDY# indicating it is not ready
to capture the next data.

CLK Cycle 6 —