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When Tammy Noergaard first told me she wanted to write a soup-to-nuts book about building
embedded systems I tried to dissuade her. This field is so vast, requiring insight into electron-
ics, logic circuits, computer design, software engineering, C, assembly, and far more. But as
we talked she showed me how the industry’s literature lacks a definitive work on the subject. I
warned her of the immensity of the project.

A year and many discussions later Fedex arrived with the review copy of this book. At over
700 pages it’s appropriately twice the size of almost any other opus on the subject. The book
you’re holding truly is “A Comprehensive Guide for Engineers and Programmers.” Sure, the
minutia of programming a PIC’s timer might have been left out, but the scope is vast and
important.

Tammy starts with the first principles of electronics and advances through software to the ex-
pensive end-phase of maintenance. She treats hardware and software as an integrated whole,
which sort of defines the nature of embedded systems. Ironically, though, developers are in-
creasingly specialized. More than a few software folks haven’t a clue about transistors while
too many EEs can’t accurately define middleware. I fear readers may skip those chapters that
don’t immediately pertain to the project at hand.

Resist any such temptation, gentle reader! Become a true master, an embedded sage, by
broadening your horizons to cover all aspects of this fascinating field. We engineers are
professionals; you and I know this in our hearts. Yet true professionals are those who learn
new things, who apply newly evolving technologies to solve problems. Consider doctors:
the discovery and production of penicillin in the 1940s changed the profession of medicine
forever. Any doc who ignored this new technology, who continued to practice using only the
skills learned in college, was suddenly rendered a butcher. Software and hardware developers
are faced with the same situation. C wasn’t taught when I went to school. The FPGA hadn’t
been invented. GOTOs were still just fine, thank you. We learned to program microprocessors
in machine code using primitive toolchains. Today—well, we know how much has changed.

The rate of change is increasing; change’s first derivative is an ever-escalating positive num-
ber. Professional developers will read this book from cover to cover, and will constantly seek
out other sources of information. If you’re not at least surfing through a half dozen techni-
cal magazines a month and reading a handful of books like this per year, then it won’t take a
Cretaceous asteroid to make you a dinosaur.

Foreword
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Some of this book might surprise you. Ten pages about reading datasheets? Fact is, datasheets
are dense formal compilations of contractual material. The vendor promises the part will do
x as long as we use it in an agreed-on manner. Violate any of perhaps thousands of specifica-
tions and the part will either not work or will be unreliable. With some parts dissipating 100
watts or more, even such arcana as thermal characteristics are as important as the device’s
instruction set.

Tammy’s generous use of examples elucidates the more obscure points. Engineering—wheth-
er hardware or software—is the art of building things and solving problems. The academics
can work with dry theory; we practicing developers often learn best by seeing how something
works. So the chapter on device drivers does explain the intricacies of building these often-
complex bits of code, but couples the explanation to a wealth of real-world examples.

Finally, Tammy’s words about the Architecture Business Cycle of embedded systems resonate
strongly with me. We don’t build these things just to have a good time (though we sure hope
to have one along the way), but to solve important business problems. Every decision we
make has business implications. Use too little horsepower and development costs skyrocket—
sometimes to the point of making the project unviable. A poor analysis of the problem that
leads you to toss in an excess of Flash might drive costs unacceptably high. Select a compo-
nent (hardware or software) from a failing company and your outfit may share in the vendor’s
demise.

Enjoy this book, and futureproof your career at the same time.

—Jack Ganssle

Foreword
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Introduction to Embedded Systems

The field of embedded systems is wide and varied, and it is difficult to pin down exact defi-
nitions or descriptions. However, Chapter 1 introduces a useful model that can be applied
to any embedded system. This model is introduced as a means for the reader to understand
the major components that make up different types of electronic devices, regardless of their
complexity or differences. Chapter 2 introduces and defines the common standards adhered to
when building an embedded system. Because this book is an overview of embedded systems
architecture, covering every possible standards-based component that could be implemented is
beyond its scope. Therefore, significant examples of current standards-based components were
selected, such as networking and Java, to demonstrate how standards define major components
in an embedded system. The intention is for the reader to be able to use the methodology
behind the model, standards, and real-world examples to understand any embedded system,
and to be able to apply any other standard to an embedded system’s design.
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C H A P T E R 1
A Systems Engineering Approach

to Embedded Systems Design

1.1 What Is an Embedded System?
An embedded system is an applied computer system, as distinguished from other types of com-
puter systems such as personal computers (PCs) or supercomputers. However, you will find
that the definition of “embedded system” is fluid and difficult to pin down, as it constantly
evolves with advances in technology and dramatic decreases in the cost of implementing vari-
ous hardware and software components. In recent years, the field has outgrown many of its
traditional descriptions. Because the reader will likely encounter some of these descriptions
and definitions, it is important to understand the reasoning behind them and why they may
or may not be accurate today, and to be able to discuss them knowledgeably. Following are a
few of the more common descriptions of an embedded system:

Embedded systems are more limited in hardware and/or software functionality than 
a personal computer (PC). This holds true for a significant subset of the embed-
ded systems family of computer systems. In terms of hardware limitations, this can
mean limitations in processing performance, power consumption, memory, hardware
functionality, and so forth. In software, this typically means limitations relative to a
PC—fewer applications, scaled-down applications, no operating system (OS) or a
limited OS, or less abstraction-level code. However, this definition is only partially
true today as boards and software typically found in PCs of past and present have
been repackaged into more complex embedded system designs.

An embedded system is designed to perform a dedicated function. Most embedded
devices are primarily designed for one specific function. However, we now see
devices such as personal data assistant (PDA)/cell phone hybrids, which are embed-
ded systems designed to be able to do a variety of primary functions. Also, the latest
digital TVs include interactive applications that perform a wide variety of general

In This Chapter

Define embedded system 
Introduce the design process 
Define an embedded systems architecture 
Discuss the impact of architecture
Summarize the remaining sections of the book
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functions unrelated to the “TV” function but just as important, such as e-mail, web
browsing, and games.

An embedded system is a computer system with higher quality and reliability require-
ments than other types of computer systems. Some families of embedded devices
have a very high threshold of quality and reliability requirements. For example, if a
car’s engine controller crashes while driving on a busy freeway or a critical medical
device malfunctions during surgery, very serious problems result. However, there are
also embedded devices, such as TVs, games, and cell phones, in which a malfunction
is an inconvenience but not usually a life-threatening situation.

Some devices that are called embedded systems, such as PDAs or web pads, are not 
really embedded systems. There is some discussion as to whether or not computer
systems that meet some, but not all of the traditional embedded system definitions are
actually embedded systems or something else. Some feel that the designation of these
more complex designs, such as PDAs, as embedded systems is driven by nontechnical
marketing and sales professionals, rather than engineers. In reality, embedded engi-
neers are divided as to whether these designs are or are not embedded systems, even
though currently these systems are often discussed as such among these same design-
ers. Whether or not the traditional embedded definitions should continue to evolve, or
a new field of computer systems be designated to include these more complex systems
will ultimately be determined by others in the industry. For now, since there is no new
industry-supported field of computer systems designated for designs that fall in between
the traditional embedded system and the general-purpose PC systems, this book
supports the evolutionary view of embedded systems that encompasses these types of
computer system designs.

Electronic devices in just about every engineering market segment are classified as embedded
systems (see Table 1-1). In short, outside of being “types of computer systems,” the only spe-
cific characterization that continues to hold true for the wide spectrum of embedded system
devices is that there is no single definition reflecting them all.

Table 1-1: Examples of embedded systems and their markets [1-1]

Market Embedded Device
Automotive Ignition System

Engine Control
Brake System (i.e., Antilock Braking System)

Consumer Electronics Digital and Analog Televisions
Set-Top Boxes (DVDs, VCRs, Cable Boxes, etc.)
Personal Data Assistants (PDAs)
Kitchen Appliances (Refrigerators, Toasters, Microwave Ovens)
Automobiles
Toys/Games
Telephones/Cell Phones/Pagers
Cameras
Global Positioning Systems (GPS)
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Market Embedded Device
Industrial Control Robotics and Control Systems (Manufacturing)
Medical Infusion Pumps

Dialysis Machines
Prosthetic Devices
Cardiac Monitors

Networking Routers
Hubs
Gateways

Office Automation Fax Machine
Photocopier
Printers
Monitors
Scanners

1.2 Embedded Systems Design
When approaching embedded systems architecture design from a systems engineering point
of view, several models can be applied to describe the cycle of embedded system design.
Most of these models are based upon one or some combination of the following development
models:[1-5]

The big-bang model, in which there is essentially no planning or processes in place
before and during the development of a system.

The code-and-fix model, in which product requirements are defined but no formal
processes are in place before the start of development.

The waterfall model, in which there is a process for developing a system in steps,
where results of one step flow into the next step.

The spiral model, in which there is a process for developing a system in steps, and
throughout the various steps, feedback is obtained and incorporated back into the
process.

This book supports the model shown in Figure 1-1, which I refer to as the Embedded Sys-
tems Design and Development Lifecycle Model. This model is based on a combination of the
popular waterfall and spiral industry models.[1-2] When I investigated and analyzed the many
successful embedded projects that I have been a part of or had detailed knowledge about over
the years, and analyzed the failed projects or those that ran into many difficulties meeting
technical and/or business requirements, I concluded that the successful projects contained at
least one common factor that the problem projects lacked. This factor is the process shown
in Figure 1-1, and this is why I introduce this model as an important tool in understanding an
embedded system’s design process.

As shown in Figure 1-1, the embedded system design and development process is divided into
four phases: creating the architecture, implementing the architecture, testing the system, and

Table 1-1: Examples of embedded systems and their markets [1-1] (continued)
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Figure 1-1: Embedded Systems Design and Development Lifecycle Model [1-2]

maintaining the system. Most of this book is dedicated to discussing phase 1, and the rest of
this chapter is dedicated to discussing why so much of this book has been devoted to creating
an embedded system’s architecture.

Within this text, phase 1 is defined as being made up of six stages: having a strong techni-
cal foundation (stage 1), understanding the Architectural Business Cycle (stage 2), defining
the architectural patterns and models (stage 3), defining the architectural structures (stage 4),
documenting the architecture (stage 5), and analyzing and reviewing the architecture (stage
6)[1-3]. Chapters 2–10 focus on providing a strong technical foundation for understanding the
major components of an embedded system design. Chapter 11 discusses the remaining stages
of phase 1, and Chapter 12 introduces the last three phases.

Product 
Concept 

Preliminar y Analysis
of  Requ irements 

Creation of
Architecture Design

Develop Versio n of
Architecture 

Deliver Versio n of
Architecture 

Review and Obtain
Feedback

Incorporat e 
Feedback

Deliver Final Versio n 
of Architecture

Develop [I mple ment] 
the Sy stem

Review and Test the 
Sy stem

Deliver and Maintain
the Sy stem

Incorporat e 
Feedback

Phase 1: Creating the Architecture

Phase 2: Impl ementing the Architecture

Phase 3: Testing the Sy stem

Phase 4: Maintaining the Sy stem
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1.3  An Introduction to Embedded Systems Architecture
The architecture of an embedded system is an abstraction of the embedded device, meaning
that it is a generalization of the system that typically doesn’t show detailed implementation
information such as software source code or hardware circuit design. At the architectural
level, the hardware and software components in an embedded system are instead represented
as some composition of interacting elements. Elements are representations of hardware and/or
software whose implementation details have been abstracted out, leaving only behavioral
and inter-relationship information. Architectural elements can be internally integrated within
the embedded device, or exist externally to the embedded system and interact with internal
elements. In short, an embedded architecture includes elements of the embedded system, ele-
ments interacting with an embedded system, the properties of each of the individual elements,
and the interactive relationships between the elements.

Architecture-level information is physically represented in the form of structures. A structure
is one possible representation of the architecture, containing its own set of represented ele-
ments, properties, and inter-relationship information. A structure is therefore a “snapshot” of
the system’s hardware and software at design time and/or at run-time, given a particular envi-
ronment and a given set of elements. Since it is very difficult for one “snapshot” to capture all
the complexities of a system, an architecture is typically made up of more than one structure.
All structures within an architecture are inherently related to each other, and it is the sum of
all these structures that is the embedded architecture of a device. Table 1-2 summarizes some
of the most common structures that can make up embedded architectures, and shows gener-
ally what the elements of a particular structure represent and how these elements interrelate.
While Table 1-2 introduces concepts to be defined and discussed later, it also demonstrates
the wide variety of architectural structures available to represent an embedded system. Ar-
chitectures and their structures—how they interrelate, how to create an architecture, and so
on—will be discussed in more detail in Chapter 11.
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Table 1-2: Examples of architectural structures [1-4]

Structure Types* Definition
Module Elements (referred to as modules) are defined as the different functional components

(the essential hardware and/or software that the system needs to function correctly)
within an embedded device. Marketing and sales architectural diagrams are typically
represented as modular structures, since software or hardware is typically packaged for
sale as modules (i.e., an operating system, a processor, a JVM, and so on).

Uses (also referred to as
subsystem and component)

A type of modular structure representing system at runtime in which modules are
inter-related by their usages (what module uses what other module, for example).

Layers A type of Uses structure in which modules are organized in layers (i.e., hierarchical) in
which modules in higher layers use (require) modules of lower layers.

Kernel Structure presents modules that use modules (services) of an operating system kernel
or are manipulated by the kernel.

Channel
Architecture

Structure presents modules sequentially, showing the module transformations through
their usages.

Virtual
Machine

Structure presents modules that use modules of a virtual machine.

Decomposition A type of modular structure in which some modules are actually subunits (decom-
posed units) of other modules, and inter-relations are indicated as such. Typically used
to determine resource allocation, project management (planning), data management
(encapsulation, privitization, etc.).

Class
(also referred to as generalization)

This is a type of modular structure representing software and in which modules are re-
ferred to as classes, and inter-relationships are defined according to the object-oriented
approach in which classes are inheriting from other classes, or are actual instances of a
parent class (for example). Useful in designing systems with similar foundations.

Component and
Connector

These structures are composed of elements that are either components (main hw/sw
processing units, such as processors, a Java Virtual Machine, etc.) or connectors
(communication mechanism that inter-connects components, such as a hw bus, or sw
OS messages, etc.).

Client/Server
(also referred to as distribution)

Structure of system at runtime where components are clients or servers (or objects),
and connectors are the mechanisms used (protocols, messages, packets, etc.) used to
intercommunicate between clients and servers (or objects).

Process
(also referred to as communicating processes)

This structure is a SW structure of a system containing an operating system. Com-
ponents are processes and/or threads (see Chapter 9 on OSes), and their connecters
are the inter-process communication mechanisms (shared data, pipes, etc.) Useful for
analyzing scheduling and performance.

Concurrency and Resource This structure is a runtime snap shot of a system containing an OS, and in which
components are connected via threads running in parallel (see Chapter 9, Operating
Systems). Essentially, this structure is used for resource management and to determine
if there are any problems with shared resources, as well as to determine what sw can
be executed in parallel.

Interrupt Structure represents the interrupt handling mechanisms in system.

Scheduling (EDF,
priority, round-
robin)

Structure represents the task scheduling mechanism of threads demonstrating the
fairness of the OS scheduler.

Memory This runtime representation is of memory and data components with the memory al-
location and deallocation (connector) schemes—essentially the memory management
scheme of the system.

Garbage
Collection

This structure represents the garbage allocation scheme (more in Chapter 2).

Allocation This structure represents the memory allocation scheme of the system (static or
dynamic, size, and so on).

Safety and Reliability This structure is of the system at runtime in which redundant components (hw and
sw elements) and their intercommunication mechanisms demonstrate the reliability
and safety of a system in the event of problems (its ability to recover from a variety
of problems).

Allocation A structure representing relationships between sw and/or hw elements, and external
elements in various environments.

Work Assignment This structure assigns module responsibility to various development and design teams.
Typically used in project management.

Implementation This is a sw structure indicating where the sw is located on the development system’s
file system.

Deployment This structure is of the system at runtime where elements in this structure are hw and
sw, and the relationship between elements are where the sw maps to in the hardware
(resides, migrates to, etc).

* Note that in many cases the terms “architecture” and “structure” (one snapshot) are sometimes used inter-
changeably, and this will be the case in this book.
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1.4 Why Is the Architecture of an Embedded System Important?
This book uses an architectural systems engineering approach to embedded systems because
it is one of the most powerful tools that can be used to understand an embedded systems
design or to resolve challenges faced when designing a new system. The most common of
these challenges include:

defining and capturing the design of a system

cost limitations

determining a system’s integrity, such as reliability and safety

working within the confines of available elemental functionality
(i.e., processing power, memory, battery life, etc.)

marketability and sellability

deterministic requirements

In short, an embedded systems architecture can be used to resolve these challenges early in
a project. Without defining or knowing any of the internal implementation details, the archi-
tecture of an embedded device can be the first tool to be analyzed and used as a high-level
blueprint defining the infrastructure of a design, possible design options, and design con-
straints. What makes the architectural approach so powerful is its ability to informally and
quickly communicate a design to a variety of people with or without technical backgrounds,
even acting as a foundation in planning the project or actually designing a device. Because
it clearly outlines the requirements of the system, an architecture can act as a solid basis for
analyzing and testing the quality of a device and its performance under various circumstances.
Furthermore, if understood, created, and leveraged correctly, an architecture can be used to
accurately estimate and reduce costs through its demonstration of the risks involved in imple-
menting the various elements, allowing for the mitigation of these risks. Finally, the various
structures of an architecture can then be leveraged for designing future products with similar
characteristics, thus allowing design knowledge to be reused, and leading to a decrease of
future design and development costs.

By using the architectural approach in this book, I hope to relay to the reader that defining
and understanding the architecture of an embedded system is an essential component of 
good system design. This is because, in addition to the benefits listed above:

1. Every embedded system has an architecture, whether it is or is not documented, 
because every embedded system is composed of interacting elements (whether hard-
ware or software). An architecture by definition is a set of representations of those 
elements and their relationships. Rather than having a faulty and costly architecture 
forced on you by not taking the time to define an architecture before starting develop-
ment, take control of the design by defining the architecture first.

2. Because an embedded architecture captures various views, which are representa-
tions of the system, it is a useful tool in understanding all of the major elements, why 
each component is there, and why the elements behave the way they do. None of the 
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elements within an embedded system works in a vacuum. Every element within a 
device interacts with some other element in some fashion. Furthermore, externally 
visible characteristics of elements may differ given a different set of other elements to 
work with. Without understanding the “whys” behind an element’s provided function-
ality, performance, and so on, it would be difficult to determine how the system would 
behave under a variety of circumstances in the real world. 

Even if the architectural structures are rough and informal, it is still better than nothing. As
long as the architecture conveys in some way the critical components of a design and their re-
lationships to each other, it can provide project members with key information about whether
the device can meet its requirements, and how such a system can be constructed successfully.

1.5 The Embedded Systems Model
Within the scope of this book, a variety of architectural structures are used to introduce
technical concepts and fundamentals of an embedded system. I also introduce emerging
architectural tools (i.e., reference models) used as the foundation for these architectural struc-
tures. At the highest level, the primary architectural tool used to introduce the major elements
located within an embedded system design is what I will refer to as the Embedded Systems
Model, shown in Figure 1-2.

Hardware Layer
(Required)

System Software Layer 
(Optional)

Application Software Layer 
(Optional)

Figure 1-2: Embedded Systems Model

What the Embedded Systems Model indicates is that all embedded systems share one simi-
larity at the highest level; that is, they all have at least one layer (hardware) or all layers
(hardware, system software and application software) into which all components fall. The
hardware layer contains all the major physical components located on an embedded board,
whereas the system and application software layers contain all of the software located on and
being processed by the embedded system.

This reference model is essentially a layered (modular) representation of an embedded
systems architecture from which a modular architectural structure can be derived. Regard-
less of the differences between the devices shown in Table 1-1, it is possible to understand
the architecture of all of these systems by visualizing and grouping the components within
these devices as layers. While the concept of layering isn’t unique to embedded system
design (architectures are relevant to all computer systems, and an embedded system is a type
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of computer system), it is a useful tool in visualizing the possible combinations of hundreds,
if not thousands, of hardware and software components that can be used in designing an
embedded system. In general, I selected this modular representation of embedded systems
architecture as the primary structure for this book for two main reasons:

1. The visual representation of the main elements and their associated functions. The
layered approach allows readers to visualize the various components of an embedded
system and their interrelationship.

2. Modular architectural representations are typically the structures leveraged to 
structure the entire embedded project. This is mainly because the various modules
(elements) within this type of structure are usually functionally independent. These
elements also have a higher degree of interaction, thus separating these types of ele-
ments into layers improves the structural organization of the system without the risk
of oversimplifying complex interactions or overlooking required functionality.

Sections 2 and 3 of this book define the major modules that fall into the layers of the Embed-
ded Systems Model, essentially outlining the major components that can be found in most
embedded systems. Section 4 then puts these layers together from a design and development
viewpoint, demonstrating to the reader how to apply the technical concepts covered in previ-
ous chapters along with the architectural process introduced in this chapter. Throughout this
book, real-world suggestions and examples are provided to present a pragmatic view of the
technical theories, and as the key teaching tool of embedded concepts. As you read these vari-
ous examples, in order to gain the maximum benefits from this text and to be able to apply the
information provided to future embedded projects, I recommend that the reader note:

the patterns that all these various examples follow, by mapping them not only to
the technical concepts introduced in the section, but ultimately to the higher-level
architectural representations. These patterns are what can be universally applied to
understand or design any embedded system, regardless of the embedded system de-
sign being analyzed.

where the information came from. This is because valuable information on embed-
ded systems design can be gathered from a variety of sources, including the internet,
articles from embedded magazines, the Embedded Systems Conference, data sheets,
user manuals, programming manuals, and schematics—to name just a few.

1.6 Summary
This chapter began by defining what an embedded system is, including in the definition the
most complex and recent innovations in the market. It then defined what an embedded sys-
tems architecture is in terms of the sum of the various representations (structures) of a system.
This chapter also introduced why the architectural approach is used as the approach to intro-
ducing embedded concepts in this book, because it presents a clear visual of what the system
is, or could be, composed of and how these elements function. In addition, this approach can
provide early indicators into what may and may not work in a system, and possibly improve
the integrity of a system and lower costs via reusability.
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The next chapter contains the first real-world examples of the book in reference to how indus-
try standards play into an embedded design. Its purpose is to show the importance of knowing
and understanding the standards associated with a particular device, and leveraging these
standards to understand or create an architecture.
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Chapter 1 Problems

1.  Name three traditional or not-so-traditional definitions of embedded systems.

2.  In what ways do traditional assumptions apply and not apply to more recent complex
embedded designs? Give four examples.

3.  [T/F] Embedded systems are all:
 A. medical devices.
 B.  computer systems.
 C.  very reliable.
 D. All of the above.
 E.  None of the above.

4.  [a]  Name and describe five different markets under which embedded systems
 commonly fall.

 [b]  Provide examples of four devices in each market.

5.  Name and describe the four development models which most embedded projects are
based upon.

6.  [a] What is the Embedded Systems Design and Development Lifecycle Model [draw it]?
 [b]  What development models is this model based upon?
 [c]  How many phases are in this model?
 [d]  Name and describe each of its phases.

7.  Which of the stages below is not part of creating an architecture, phase 1 of the
Embedded Systems Design and Development Lifecycle Model?

 A.  Understanding the architecture business cycle.
 B. Documenting the architecture.
 C. Maintaining the embedded system.
 D. Having a strong technical foundation.
 E. None of the above.

8.  Name five challenges commonly faced when designing an embedded system.

9.  What is the architecture of an embedded system?
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10.  [T/F] Every embedded system has an architecture.

11. [a]  What is an element of the embedded system architecture?
 [b]  Give four examples of architectural elements.

12. What is an architectural structure?

13. Name and define five types of structures.

14. [a]  Name at least three challenges in designing embedded systems.
 [b]  How can an architecture resolve these challenges?

15.  [a]  What is the Embedded Systems Model?
 [b]  What structural approach does the Embedded Systems Model take?
 [c]  Draw and define the layers of this model.
 [d]  Why is this model introduced?

16. Why is a modular architectural representation useful?

17. All of the major elements within an embedded system fall under:
 A. The Hardware Layer.
 B.  The System Software Layer.
 C. The Application Software Layer.
 D. The Hardware, System Software, and Application Software Layers.
 E. A or D, depending on the device.

18.  Name six sources that can be used to gather embedded systems design information.
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C H A P T E R 2
Know Your Standards

In This Chapter

Defining the meaning of standards
Listing examples of different types of standards
Discussing the impact of programming language standards on the architecture
Discussing the OSI model and examples of networking protocols
Using digital TV as an example that implements many standards

Some of the most important components within an embedded system are derived from
specific methodologies, commonly referred to as standards. Standards dictate how these
components should be designed, and what additional components are required in the system
to allow for their successful integration and function. As shown in Figure 2-1, standards can
define functionality that is specific to each of the layers of the embedded systems model, and
can be classified as market-specific standards, general-purpose standards, or standards that
are applicable to both categories.

Figure 2-1: Standards diagram

Standards that are strictly market-specific define functionality that is relative to a particular
group of related embedded systems that share similar technical or end user characteristics,
including:

Application Software Layer

System Software Layer

Hardware Layer

Market Specific
Standards

MHP   ATSC
DTV
HAVi
FDA

…

PJava
J2ME
SSL128
.NET

…

Ethernet
TCP/IP
HTTP

…

General Purpose
Standards
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Consumer Electronics. Typically includes devices used by consumers in their per-
sonal lives, such as PDAs (personal data assistants), TVs (analog and digital), games,
toys, home appliances (i.e., microwave ovens, dishwashers, washing machines), and
internet appliances.[2-1]

Medical. Defined as “...any instrument, apparatus, appliance, material or other article,
whether used alone or in combination, including the software necessary for its proper
application intended by the manufacturer to be used for human beings for the purpose
of:

 – diagnosis, prevention, monitoring, treatment or alleviation of disease,

 – diagnosis, monitoring, treatment, alleviation of or compensation for an injury or
 handicap,

 – investigation, replacement or modification of the anatomy or of a physiological
 process,

 – control of conception,

and which does not achieve its principal intended action in or on the human body by
pharmacological, immunological or metabolic means, but which may be assisted in
its function by such means...”

   —European Medical Device Directive (93/42/EEC) [2-14]

This includes dialysis machines, infusion pumps, cardiac monitors, drug delivery,
prosthetics, and so forth.[2-1]

Industrial Automation and Control. “Smart” robotic devices (smart sensors, motion
controllers, man/machine interface devices, industrial switches, etc.) used mainly in
manufacturing industries to execute a cyclic automated process.[2-1]

Networking and Communications. Intermediary devices connecting networked end
systems, devices such as hubs, gateways, routers and switches. This market segment
also includes devices used for audio/video communication, such as cell phones (in-
cludes cell phone/PDA hybrids), pagers, video phones and ATM machines.[2-1]

Automotive. Subsystems implemented within automobiles, such as entertainment
centers, engine controls, security, antilock brake controls and instrumentation.[2-1]

Aerospace and Defense. Systems implemented within aircraft or used by the military,
such as flight management, “smart” weaponry and jet engine control.[2-1]

Commercial Office/Home Office Automation. Devices used in an office setting, such
as printers, scanners, monitors, fax machines, photocopiers, printers and barcode
readers/writers.[2-1]
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Practical Tip

Embedded system market segments and their associated devices are always changing as new 
devices emerge and other devices are phased out. The market definitions can also vary from 
company to company semantically as well as how the devices are grouped by market seg-
ment. When I want a (very) quick overview of the current terms used to describe embedded 
markets and how devices are being vertically grouped, I go to three or four websites of leading 
embedded system software vendors. (In my engineering work, I have adopted the journalistic 
rule of checking with three or more independent sources to verify information.) Alternately, I
simply use a search engine with keywords “embedded market segments” and take a look at 
the latest developments in device grouping. 

Most market-specific standards, excluding networking and some TV standards, are only
implemented into embedded systems, because by definition they are intended for specific
groups of embedded devices. General-purpose standards, on the other hand, are typically not
intended for just one specific market of embedded devices; some are adopted (and in some
cases originated) in nonembedded devices as well. Programming language-based standards
are examples of general-purpose standards that can be implemented in a variety of embedded
systems as well as nonembedded systems. Standards that can be considered both market-spe-
cific as well as general purpose include networking standards and some television standards.
Networking functionality can be implemented in devices that fall under the networking
market space, such as hubs and routers; in devices across various markets, such as wireless
communication in networking devices, consumer electronics, etc.; and also in nonembedded
devices. Television standards have been implemented in PCs, as well as in traditional TVs and
set-top boxes.

Table 2-1 lists some current real-world standards, and some of the purposes behind their
implementations.



Chapter 2

20

Table 2-1: Examples of standards implemented in embedded systems

Standard Type Standard Purpose
Market 
Specific

Consumer
Electronics

JavaTV The Java TV Application Programming Interface (API) is
an extension of the Java platform that provides access to
functionality unique to a digital television receiver, such as:
audio video streaming, conditional access, access to in-band
and out-of-band data channels, access to service information
data, tuner control for channel changing, on-screen graphics
control, media-synchronization (allows interactive television
content to be synchronized with the underlying video and
background audio of a television program) and application
lifecycle control. (Enables content to gracefully coexist with
television programming content such as commercials).[2-3]

(See java.sun.com)
DVB (Digital Video Broadcast-
ing) – MHP (Multimedia Home
Platform)

Java-based standard used in digital TV designs. Introduces
components in the system software layer, as well as provides
recommendations for hardware and the types of applica-
tions that would be compatible with MHP. Basically, defines
a generic interface between interactive digital applications
and the terminals ranging from low-end to high-end set top
boxes, integrated digital TV sets and multimedia PCs on
which those applications execute. This interface decouples
different provider’s applications from the specific hardware
and software details of different MHP terminal implementa-
tions enabling digital content providers to address all types
of terminals. The MHP extends the existing DVB open
standards for broadcast and interactive services in all trans-
mission networks including satellite, cable, terrestrial and
microwave systems.[2-2]

(See www.mhp.org)
ISO/IEC 16500 DAVIC (Digital
Audio Visual Council)

DAVIC is an industry standard for end-to-end interoper-
ability of broadcast and interactive digital audio-visual
information, and of multimedia communication.[2-4]

(See www.davic.org or www.iso.ch)
ATSC (Advanced Television
Standards Committee) –
DASE (Digital TV Applications
Software Environment)

The DASE standard defines a system software layer that
allows programming content and applications to run on a
“common receiver.” Interactive and enhanced applications
need access to common receiver features in a platform-inde-
pendent manner. This environment provides enhanced and
interactive content creators with the specifications necessary
to ensure that their applications and data will run uniformly
on all brands and models of receivers. Manufacturers will
thus be able to choose hardware platforms and operating sys-
tems for receivers, but provide the commonality necessary to
support applications made by many content creators.[2-5]

(See www.atsc.org)
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Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type Standard Purpose
Market 
Specific
(cont.)

Consumer
Electronics
(cont.)

ATVEF (Advanced Television
Enhancement Forum) –
SMPTE (Society of Motion
Picture and Television Engineers)
DDE-1

The ATVEF Enhanced Content Specification defines fun-
damentals necessary to enable creation of HTML-enhanced
television content that can be reliably broadcast across any
network to any compliant receiver. ATVEF is a standard for
creating enhanced, interactive television content and delivering
that content to a range of television, set-top, and PC-based
receivers. ATVEF [SMPTE DDE-1] defines the standards used
to create enhanced content that can be delivered over a variety
of mediums—including analog (NTSC) and digital (ATSC)
television broadcasts—and a variety of networks, including
terrestrial broadcast, cable, and satellite.[2-6]

(See www.smpte.org/ or www.atvef.com)
DTVIA (Digital Television
Industrial Alliance of China)

DTVIA is an organization made up of leading TV manu-
facturers, research institutes and broadcasting academies
working on the key technologies and specifications for the
China TV industry to transfer from analog to digital. DTVIA
and Sun are working together to define the standard for next-
generation interactive digital television leveraging Sun’s Java
TV application programming interface (API) specification.[2-7]

(See http://java.sun.com/pr/2000/05/pr000508-02.html,
http://netvision.qianlong.com/8737/2003-6-4/39@878954.
htm, or contact Guo Ke Digital TV Industry Alliance (DT-
VIA), +86-10-64383425, email: guo-ke@btamail.net.cn)

ARIB-BML (Association of
Radio Industries and Business
of Japan)

ARIB in 1999 established their standard titled “Data Coding
and Transmission Specification for Digital Broadcasting” in
Japan, an XML-based specification. The ARIB B24 speci-
fication derives BML (broadcast markup language) from an
early working draft of the XHTML 1.0 Strict document type,
which it extends and alters.[2-7]

(See www.arib.or.jp)
OCAP (OpenCable Application
Forum)

The OpenCable Application Platform (OCAP) is a system
software layer that provides an interface enabling applica-
tion portability (applications written for OpenCable must
be capable of running on any network and on any hardware
platform, without recompilation). The OCAP specification is
built on the DVB MHP specification with modifications for
the North American Cable environment that includes a full
time return channel. A major modification to the MHP is the
addition of a Presentation Engine (PE), that supports HTML,
XML, ECMAScript. A bridge between the PE and the Java
Execution Engine (EE), enables PE applications to obtain
privileges and directly manipulate privileged operations.[2-8]

(See www.opencable.com)
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Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type Standard Purpose
Market 
Specific
(cont.)

Consumer
Electronics
(cont.)

OSGi (Open Services Gateway
Initiative)

The OSGi specification is designed to enhance all residential
networking standards, such as Bluetooth™, CAL, CEBus,
Convergence, emNET, HAVi™, HomePNA™, HomePlug™,
HomeRF™, Jini™ technology, LonWorks, UPnP, 802.11B
and VESA. The OSGi Framework and Specifications facili-
tate the installation and operation of multiple services on a
single Open Services Gateway (set-top box, cable or DSL
modem, PC, Web phone, automotive, multimedia gateway or
dedicated residential gateway).[2-9]

(See www.osgi.org)
OpenTV OpenTV has a proprietary DVB-compliant system software

layer, called EN2, for interactive television digital set-top
boxes. It complements MHP functionality. and provides
functionality that is beyond the scope of the current MHP
specification, such as HTML rendering and web browsing.
[2-10]

(See www.opentv.com)
MicrosoftTV MicrosoftTV is a proprietary interactive TV system software

layer that combines both analog and digital TV technolo-
gies with Internet functionality. MicrosoftTV Technologies
support current broadcast formats and standards, includ-
ing NTSC, PAL, SECAM, ATSC, OpenCable, DVB, and
SMPTE 363M (ATVEF specification) as well as Internet
standards such as HTML, XML, and so on.[2-11]

(See www.microsoft.com)
HAVi (Home Audio Video
Initiative)

HAVi provides a home networking standard for seamless
interoperability between digital audio and video consumer
devices, allowing all audio and video appliances within the
network to interact with each other and allow functions on
one or more appliances to be controlled from another appli-
ance, regardless of the network configuration and appliance
manufacturer.[2-12]

(See www.havi.org)
CEA (Consumer Electronics
Association)

Attempts to foster consumer electronics industry growth by
developing industry standards and technical specifications
that enable new products to come to market and encourage
interoperability with existing devices. Standards include
ANSI-EIA-639 Consumer Camcorder or Video Camera Low
Light Performance, CEA-CEB4 Recommended Practice for
VCR Specifications, and so on.[2-17]

(See www.ce.org)
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Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type Standard Purpose
Market 
Specific
(cont.)

Medical
Devices

FDA (USA) U.S. government standards for medical devices relating to the as-
pects of safety and/or effectiveness of the device. Class I devices
are defined as non-life sustaining. These products are the least
complicated and their failure poses little risk. Class II devices
are more complicated and present more risk than Class I, though
are also non-life sustaining. They are also subject to any specific
performance standards. Class III devices sustain or support life,
so that their failure is life threatening. Standards include areas of
anesthesia (i.e., Standard Specification for Minimum Performance
and Safety Requirements for Resuscitators Intended for Use with
Humans, Standard Specification for Ventilators Intended for Use
in Critical Care, etc.), cardiovascular/neurology (i.e., Intracranial
pressure monitoring devices, etc.), dental/ENT (i.e., Medical Elec-
trical Equipment – Part 2: Particular Requirements for the Safety
of Endoscope Equipment, etc.), plastic surgery (i.e., Standard
Performance and Safety Specification for Cryosurgical Medical
Instrumentation, etc.) ObGyn/Gastroenterology (i.e., Medical elec-
trical equipment – Part 2: Particular requirements for the safety of
haemodialysis, haemodiafiltration and haemofiltration equipment,
etc.), and so on.[2-13]

(See www.fda.gov/)
Medical Devices Directive
(EU)

European Medical Device Directive are standards for medical
devices for EU member states relating to the aspects of safety
and/or effectiveness of these devices. The lowest risk devices fall
into Class I (Internal Control of Production and compilation of
a Technical File compliance), whereas devices which exchange
energy with the patient in a therapeutic manner or are used to
diagnose or monitor medical conditions, are in Class IIa (i.e., ISO
9002 + EN 46002 compliance). If this is done in manner which
could be hazardous for the patient, then the device falls into Class
Iib (i.e., ISO 9001 + EN 46001). A device that connects directly
with the Central Circulatory System or the Central Nervous
System or contains a medicinal product, then the device falls into
Class III (i.e., ISO 9001 + EN 46001 compliance, compilation of a
Design Dossier).[2-14]

(See europa.eu.int)
IEEE1073 Medical Device
Communications

IEEE 1073 standards for medical device communication provide
plug-and-play interoperability at the point-of-care, optimized for
the acute care environment. The IEEE 1073 General Committee
is chartered under the IEEE Engineering in Medicine and Biology
Society, and works closely with other national and international
organizations, including HL7, NCCLS, ISO TC215, CEN TC251,
and ANSI HISB.[2-15]

(See www.ieee1073.org/)
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Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type Standard Purpose
Market 
Specific
(cont.)

Industrial
Control

DICOM (Digital Imaging and
Communications in Medicine)

The American College of Radiology (ACR) and the National
Electrical Manufacturers Association (NEMA) formed a
joint committee in 1983 to develop the DICOM standard
for transferring images and associated information between
devices manufactured by various vendors, specifically to:
• Promote communication of digital image information,
regardless of device manufacturer
• Facilitate the development and expansion of picture
archiving and communication systems (PACS) that can also
interface with other systems of hospital information
• Allow the creation of diagnostic information data bases that
can be interrogated by a wide variety of devices distributed
geographically.[2-16]

(See http://medical.nema.org/)
Department of Commerce (USA)
– Office of Microelectronics, 
Medical Equipment and 
Instrumentation

Maintains a website that contains the global medical device
regulatory requirements on a per country basis.

(See www.ita.doc.gov/td/mdequip/regulations.html)
(EU) The Machinery Directive
98/37/EC

EU directive for all machinery, moving machines, machine
installations, and machines for lifting and transporting
people, as well as safety components. In general, machinery
being sold or used in the EU must comply with applicable
mandatory Essential Health and Safety Requirements
(EHSRs) from a long list given in the directive, and must un-
dertake the correct conformity assessment procedure. Most
machinery, considered less dangerous can be self-assessed
by the supplier, and being able to assemble a Technical
File. The 98/37/EC applies to an assembly of linked parts
or components with at least one movable part—actuators,
controls, and power circuits, processing, treating, moving, or
packaging a material—several machines acting in combina-
tion, and so on.[2-18]

(See www.europa.eu.int)
IEC (International Electrotechni-
cal Commission 60204-1)

Applies to the electrical and electronic equipment of
industrial machines. Promotes the safety of persons who
come into contact with industrial machines, not only from
hazards associated with electricity (such as electrical shock
and fire), but also resulting from the malfunction of the
electrical equipment itself. Addresses hazards associated
with the machine and its environment. Replaces the second
edition of IEC 60204-1 as well as parts of IEC 60550 and
ISO 4336.[2-19]

(See www.iec.ch)
ISO (International Standards
Organization) Standards

Many standards in the manufacturing engineering segment,
such as ISO/TR 10450—Industrial automation systems and
integration—Operating conditions for discrete part manu-
facturing; Equipment in industrial environments, ISO/TR
13283 Industrial automation; Time-critical communications
architectures; User requirements and network management
for time-critical communications systems, and so on.[2-20]

(See www.iso.ch)
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Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type Standard Purpose
Market 
Specific
(cont.)

Networking
and Commu-
nications

TCP (Transmission Control Pro-
tocol)/IP (Internet Protocol)

Protocol stack based on RFCs (Request for Comments)
791(IP) & 793 (TCP) that define system software compo-
nents (more information in Chapter 10).

(See www.faqs.org/rfcs/)
PPP (Point-to-Point Protocol) System software component based on RFCs 1661, 1332, and

1334 (more information in Chapter 10).

(See www.faqs.org/rfcs/)
IEEE (Institute of Electronics
and Electrical Engineers) 802.3
Ethernet

Networking protocol that defines hardware and system
software components for local area networks (LANs) (more
information in Chapters 6 and 8).

(See www.ieee.org)
Cellular Networking protocols implemented within cellular phones,

such as CDMA (Code Division Multiple Access) and TDMA
(Time Division Multiple Access) typically used in the US.
TDMA is the basis of GSM (Global System for Mobile tele-
communications) European international standard, UMTS
(Universal Mobile Telecommunications System) broadband
digital standard (3rd generation)

(See http://www.cdg.org/ for the CDMA Development
Group, http://www.tiaonline.org/ for TDMA and GSM)

Automotive GM Global GM standards are used in the design, manufacture, qual-
ity control, and assembly of automotive components and
materials related to General Motors, specifically: adhesives,
electrical, fuels and lubricants, general, paints, plastics,
procedures, textiles, metals, metric and design.[2-27]

Standards can be purchased from HIS Global at:
http://www.ihs.com/standards/index.html

Ford Standards The Ford standards are from the Engineering Material
Specifications and Laboratory Test Methods volumes, the
Approved Source List Collection, Global Manufacturing
Standards, Non-Production Material Specifications, and the
Engineering Material Specs & Lab Test Methods Handbook.
[2-27]

Standards can be purchased from IHS Global at http://www.
ihs.com/standards/index.html

FMVSS (Federal Motor Vehicle
Safety Standards)

The Code of Federal Regulations (CFR) contains the text of
public regulations issued by the agencies of the U.S. Federal
government. The CFR is divided into several titles which
represent broad areas subject to Federal Regulation.[2-27]

see http://www.nhtsa.dot.gov/cars/rules/standards/safstan2.
htm USA National Highway Traffic Safety Administration
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Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type Standard Purpose
Market 
Specific
(cont.)

Automotive
(cont.)

OPEL Engineering Material
Specifications

OPEL’s standards are available in sections, such as: Metals,
Miscellaneous, Plastics and Elastomers, Materials of Body—
Equipment, Systems and Component Test Specifications, Test
Methods, Laboratory Test Procedures (GME/GMI), body and
electric, chassis, powertrain, road test procedures (GME/GMI),
body and electric, chassis, powertrain, process, paint & envi-
ronmental engineering materials, and so on.[2-27]

Standards can be purchased from HIS Global at:
http://www.ihs.com/standards/index.html

Jaguar Procedures and
Standards Collection

The Jaguar standards are available as a complete collection
or as individual standards collections such as: Jaguar-Test
Procedures Collection, Jaguar-Engine & Fastener Standards
Collection, Jaguar-Non-Metallic/Metallic Material Standards
Collection, Jaguar-Laboratory Test Standards Collection, etc.[2-27]

Standards can be purchased from IHS Global at http://www.ihs.
com/standards/index.html

ISO/TS 16949 – The Har-
monized Standard for the
Automotive Supply Chain

Jointly developed by the IATF (International Automotive Task
Force) members and forms the requirements for automotive
production and relevant service part organizations. Based on
ISO 9001:2000, AVSQ (Italian), EAQF (French), QS-9000
(U.S.) and VDA6.1 (German) automotive catalogs.[2-30]

(See http://www.iaob.org/)
Aerospace 
and Defense

SAE (Society of Automotive
Engineers) – The Engineer-
ing Society For Advancing
Mobility in Land Sea Air
and Space

SAE Aerospace Material Specifications, SAE Aerospace
Standards (includes Aerospace Standards (AS), Aerospace
Information Reports (AIR), and Aerospace Recommended
Practices (ARP)). [2-27]

(See www.sae.org)
AIA/NAS – Aerospace
Industries Association of
America, lnc.

This standards service includes National Aerospace Standards
(NAS) and metric standards (NA Series). It is an extensive
collection that provides standards for components, design and
process specifications for aircraft, spacecraft, major weap-
ons systems and all types of ground and airborne electronic
systems. It also contains procurement documents for parts and
components of high technology systems, including fasteners,
high pressure hoses, fittings, high-density electrical connectors,
bearings and more.[2-27]

(See http://www.aia-aerospace.org/)
Department of Defense
(DOD) –JTA (Joint Techni-
cal Architecture)

DOD initiatives, such as the Joint Technical Architecture (JTA)
permits the smooth flow of information necessary to achieve
interoperability, resulting in optimal readiness. The JTA was
established by the U.S. Department of Defense to specify a
minimal set of information technology standards, including
Web standards, to achieve military interoperability. [2-27]

(See http://www.disa.mil/main/jta.html)
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Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type Standard Purpose
Market 
Specific
(cont.)

Office
Automation

IEEE Std 1284.1-1997
IEEE Standard for Informa-
tion TechnologyTransport
Independent Printer/System
Interface (TIP/SI)

A protocol and methodology for software developers,
computer vendors, and printer manufacturers to facilitate the
orderly exchange of information between printers and host
computers are defined in this standard. A minimum set of
functions that permit meaningful data exchange is provided.
Thus a foundation is established upon which compatible
applications, computers, and printers can be developed, without
compromising an individual organization’s desire for design
innovation.[2-28]

(See www.ieee.org)
Postscript A programming language from Adobe that describes the

appearance of a printed page that is an industry standard for
printing and imaging. All major printer manufacturers make
printers that contain or can be loaded with Postscript software
(.ps file extensions).

(See www.adobe.com)
ANSI/AIM BC2-1995,
Uniform Symbology Speci-
fication for Bar Codes

For encoding general purpose all-numeric data. Reference
symbology for UCC/EAN Shipping Container Symbol.
Character encoding, reference decode algorithm and optional
check character calculation are included in this document.
This specification is intended to be significantly identical to
corresponding Commission for European Normalization (CEN)
specification.[2-29]

(See http://www.aimglobal.org/standards/aimpubs.htm)
General
Purpose

Networking HTTP (Hypertext Transfer
Protocol)

A World Wide Web (WWW) protocol defined by a number of
different RFCs, including RFC2616, 2016, 2069, 2109, and
so on—Application Layer networking protocol implemented
within browsers on any device, for example.

(See http://www.w3c.org/Protocols/Specs.html)
TCP (Transmission Control
Protocol)/IP (Internet
Protocol)

Protocol stack based on RFCs (Request for Comments) 791(IP)
& 793 (TCP) that define system software components (more
information in Chapter 10).

(See http://www.faqs.org/rfcs/)
IEEE (Institute of Electron-
ics and Electrical Engineers)
802.3 Ethernet

Networking protocol that defines hardware and system software
components for local area networks (LANs) (more information
in Chapters 6 and 8).

(See www.ieee.org)
Bluetooth Bluetooth Specifications are developed by the Bluetooth

Special Interest Group (SIG), which allows for developing
interactive services and applications over interoperable radio
modules and data communication protocols (more information
on Bluetooth in Chapter 10).[2-21]

(See www.bluetooth.org)
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Table 2-1: Examples of standards implemented in embedded systems (continued)

Standard Type Standard Purpose
General
Purpose
(cont.)

Program-
ming
Languages

pJava (Personal Java) Embedded Java standard from Sun Microsystems targeted
and larger embedded systems (more information in Section
2.1).

(See java.sun.com)
J2ME (Java 2 Micro Edition) Set of embedded standards from Sun Microsystems targeting

the entire range of embedded systems, both in size and verti-
cal markets (more information in Section 2.1).

(See java.sun.com)
.NET Compact Framework Microsoft-based system that allows an embedded system to

support applications written in several different languages,
including C# and Visual Basic (more information in Section
2.1).

(See www.microsoft.com)
HTML (Hyper Text Markup
Language)

Scripting language whose interpreter typically is imple-
mented in a browser, WWW protocol (more information in
Section 2.1).

(See www.w3c.org)
Security Netscape IETF (Internet Engi-

neering Task Force) SSL (Secure
Socket Layer) 128-bit Encryption

The SSL is a security protocol that provides data encryption,
server authentication, message integrity, and optional client
authentication for a TCP/IP connection, and is typically
integrated into browsers and web servers. There are different
versions of SSL (40-bit, 128-bit, etc.), with “128-bit” refer-
ring to the length of the “session key” generated by every
encrypted transaction (the longer the key, the more difficult it
is to break the encryption code). SSL relies on session keys,
as well as digital certificates (digital identification cards) for
the authentication algorithm.

(See http://wp.netscape.com/eng/ssl3/ for version 3 (latest
version at the time this book was written) of Netscape’s SSL
specification.

IEEE 802.10 Standards for
Interoperable LAN/MAN
Security (SILS)

Provides a group of specifications at the hardware and sys-
tem software layer to implement security in networks.

(See http://standards.ieee.org/getieee802/index.html)
Quality
Assurance

ISO 9000 Standards A set of quality management process standards when
developing products (not product standards in them-
selves) or providing a service, including ISO 9000:2000,
ISO 9001:2000, ISO 9004:2000, and so on. ISO 9001:2000
presents requirements, while ISO 9000:2000 and ISO
9004:2000 present guidelines.

(See www.iso.ch)
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Warning!

While Table 2-1 lists market-specific standards in the context of a single market, some mar-
ket-specific standards listed in this table have been implemented or adopted by other device 
market segments. This table simply shows “some” real-world examples. Furthermore, different 
countries, and even different regions of one country, may have unique standards for particular 
families of devices (i.e., DTV or cell phone standards; see Table 2-1). Also, in most industries, 
competing standards can exist for the same device, supported by competing interests. Find 
out who has adopted which standards and how these competing standards differ by using the 
Internet to look up published data sheets or manuals of the particular device, the documenta-
tion provided by the vendors of the components integrated within the device, or by attending 
the various tradeshows, seminars, and conferences associated with that particular industry 
or vendor, such as the Embedded Systems Conference (ESC), Java One, Real-Time Embedded 
and Computing Conference, Embedded Processor Forum, etc.

This warning note is especially important for hardware engineers, who may have come from 
an environment where certain standards bodies, such as IEEE, have a strong influence on what 
is adopted. In the embedded software field there is currently no single standards body that 
has the level of influence that IEEE has in the hardware arena.

The next three sections of this chapter contain real-world examples showing how specific
standards define some of the most critical components of an embedded system. Section 2.1
presents general-purpose programming language standards that can affect the architecture of
an embedded system. Section 2.2 presents networking protocols that can be implemented in a
specific family of devices, across markets, and in stand-alone applications. Finally, Section 2.3
presents an example of a consumer appliance that implements functionality from a number
of different standards. These examples demonstrate that a good starting point in demystify-
ing the design of an embedded system is to simply derive from industry standards what the
system requirements are and then determine where in the overall system these derived com-
ponents belong.
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2.1 An Overview of Programming Languages and 
Examples of Their Standards

Why Use Programming Languages as a Standards Example?

In embedded systems design, there is no single language that is the perfect solution for every 
system. Programming language standards, and what they introduce into an embedded systems 
architecture, are used as an example in this section, because a programming language can 
introduce an additional component into an embedded architecture. In addition, embedded 
systems software is inherently based on one or some combination of multiple languages. The
examples discussed in-depth in this section, such as Java and the .NET Compact Framework, 
are based upon specifications that add additional elements to an embedded architecture. Other 
languages which can be based upon a variety of standards, such as ANSI C vs. Kernighan and 
Ritchie C, aren’t discussed in-depth because using these languages in an embedded design 
does not usually require introducing an additional component into the architecture.

Note: Details of when to use what programming language and the pros and cons of such 
usage are covered in Chapter 11. It is important for the reader to first understand the vari-
ous components of an embedded system before trying to understand the reasoning behind 
using certain components over others at the design and development level. Language choice 
decisions aren’t based on the features of the language alone, and are often dependent on 
the other components within the system.

The hardware components within an embedded system can only directly transmit, store, and
execute machine code, a basic language consisting of ones and zeros. Machine code was used
in earlier days to program computer systems, which made creating any complex application
a long and tedious ordeal. In order to make programming more efficient, machine code was
made visible to programmers through the creation of a hardware-specific set of instructions,
where each instruction corresponded to one or more machine code operations. These hard-
ware-specific sets of instructions were referred to as assembly language. Over time, other
programming languages, such as C, C++, Java, etc., evolved with instruction sets that were
(among other things) more hardware-independent. These are commonly referred to as high-
level languages because they are semantically further away from machine code, they more
resemble human languages, and are typically independent of the hardware. This is in contrast
to a low-level language, such as assembly language, which more closely resembles machine
code. Unlike high-level languages, low-level languages are hardware dependent, meaning
there is a unique instruction set for processors with different architectures. Table 2-2 outlines
this evolution of programming languages.
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Table 2-2: Evolution of programming languages [2-22]

Language Details

1st Generation Machine code Binary (0,1) and hardware dependent.
2nd Generation Assembly language Hardware-dependent representing corresponding binary

machine code.
3rd Generation HOL (high-order

languages)/procedural
languages

High-level languages with more English-like phrases
and more transportable, such as C, Pascal, etc.

4th Generation VHLL (very high level
languages)/non-
procedural languages

“Very” high-level languages: object-oriented languages
(C++, Java,…), database query languages (SQL), etc.

5th Generation Natural languages Programming similar to conversational languages,
typically used in artificial intelligence (AI). Still in the
research and development phases in most cases—not
yet applicable in mainstream embedded systems.

Note: Even in systems that implement some higher-level languages, some portions of embedded systems software 
are implemented in assembly language for architecture-specific or optimized-performance code. 

Because machine code is the only language the hardware can directly execute, all other languages
need some type of mechanism to generate the corresponding machine code. This mechanism
usually includes one or some combination of preprocessing, translation, and interpretation.
Depending on the language, these mechanisms exist on the programmer’s host system (typically
a nonembedded development system, such as a PC or Sparc station), or the target system (the
embedded system being developed). See Figure 2-2.

Figure 2-2: Host and target system diagram

Preprocessing is an optional step that occurs before either the translation or interpretation
of source code, and whose functionality is commonly implemented by a preprocessor. The
preprocessor’s role is to organize and restructure the source code to make translation or inter-
pretation of this code easier. As an example, in languages like C and C++, it is a preprocessor
that allows the use of named code fragments, such as macros, that simplify code development
by allowing the use of the macro’s name in the code to replace fragments of code. The pre-
processor then replaces the macro name with the contents of the macro during preprocessing.
The preprocessor can exist as a separate entity, or can be integrated within the translation or
interpretation unit.
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Many languages convert source code, either directly or after having been preprocessed
through use of a compiler, a program that generates a particular target language—such as
machine code and Java byte code—from the source language (see Figure 2-3).

Figure 2-3: Compilation diagram

A compiler typically “translates” all of the source code to some target code at one time. As
is usually the case in embedded systems, compilers are located on the programmer’s host
machine and generate target code for hardware platforms that differ from the platform the
compiler is actually running on. These compilers are commonly referred to as cross-compil-
ers. In the case of assembly language, the compiler is simply a specialized cross-compiler
referred to as an assembler, and it always generates machine code. Other high-level language
compilers are commonly referred to by the language name plus the term “compiler,” such as
“Java compiler” and “C compiler.” High-level language compilers vary widely in terms of
what is generated. Some generate machine code, while others generate other high-level code,
which then requires what is produced to be run through at least one more compiler or inter-
preter, as discussed later in this section. Other compilers generate assembly code, which then
must be run through an assembler.

After all the compilation on the programmer’s host machine is completed, the remaining
target code file is commonly referred to as an object file, and can contain anything from ma-
chine code to Java byte code (discussed later in this section), depending on the programming
language used. As shown in Figure 2-4, after linking this object file to any system libraries
required, the object file, commonly referred to as an executable, is then ready to be trans-
ferred to the target embedded system’s memory.
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How Does the Executable Get from the Host to the Target?

A combination of mechanisms are used to accomplish this. Details on memory and how files are 
executed from it will be discussed in more detail in Section II, while the different transmission 
mediums available for transmitting the executable file from a host system to an embedded 
system will be discussed in more detail in the next section of this chapter (Section 2.2). Finally, 
the common development tools used will be discussed in Chapter 12. 

Examples of Programming Languages that Affect an Embedded Architecture: 
Scripting Languages, Java, and .NET

Where a compiler usually translates all of the given source code at one time, an interpreter
generates (interprets) machine code one source code line at a time (see Figure 2-5).

Figure 2-4: C Example compilation/linking steps and object file results
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One of the most common subclasses of interpreted programming languages are scripting
languages, which include PERL, JavaScript, and HTML. Scripting languages are high-level
programming languages with enhanced features, including:

More platform independence than their compiled high-level language counterparts.[2-23]

Late binding, which is the resolution of data types on-the-fly (rather than at compile
time) to allow for greater flexibility in their resolution.[2-23]

Importation and generation of source code at runtime, which is then executed
immediately.[2-23]

Optimizations for efficient programming and rapid prototyping of certain types of
applications, such as internet applications and graphical user interfaces (GUIs).[2-23]

With embedded platforms that support programs written in a scripting language, an additional
component—an interpreter—must be included in the embedded system’s architecture to allow
for “on-the-fly” processing of code. Such is the case with the embedded system architectural
software stack shown in Figure 2-6, where an internet browser can contain both an HTML
and JavaScript interpreter to process downloaded web pages.

Figure 2-5: Interpretation diagram

Figure 2-6: HTML and Javascript in the application layer

Source L1

Source L2

Source L3

Source L4

Source L5

Source L6

Target Cod e for
Source L1

Target Cod e for
Source L2

Target Cod e for
Source L3

………….

HHaarrddwwaarree LLaayyeerr

Browser

Application Software

Layer

RReeaall AAuuddiiooHHTTMMLL44.0 DDOOMM 00SSSSLL 112288 BBiitt EEnnccrryyppttiioonn CCSSSS 11

……
JJaavvaa SSccrriipptt HHTTTTPP

SSyysstteemm SSooffttwwaarree LLaayyeerr



Know Your Standards

35

While all scripting languages are interpreted, not all interpreted languages are scripting lan-
guages. For example, one popular embedded programming language that incorporates both
compiling and interpreting machine code generation methods is Java. On the programmer’s
host machine, Java must go through a compilation procedure that generates Java byte code
from Java source code (see Figure 2-7).

Figure 2-7: Embedded Java compilation 
and linking diagram

Java byte code is target code intended to be platform independent. In order for the Java
byte code to run on an embedded system, a Java Virtual Machine (JVM) must exist on
that system. Real-world JVMs are currently implemented in an embedded system in one of
three ways: in the hardware, in the system software layer, or in the application layer (see
Figure 2-8).

Figure 2-8: JVMs and the Embedded Systems Model

Size, speed, and functionality are the technical characteristics of a JVM that most impact an
embedded system design, and two JVM components are the primary differentiators between
embedded JVMs: the JVM classes included within the JVM, and the execution engine that
contains components needed to successfully process Java code (see Figure 2-9).
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The JVM classes shown in Figure 2-9 are compiled libraries of Java byte code, commonly
referred to as Java APIs (application program interfaces). Java APIs are application indepen-
dent libraries provided by the JVM to, among other things, allow programmers to execute
system functions and reuse code. Java applications require the Java API classes, in addition to
their own code, to successfully execute. The size, functionality, and constraints provided by
these APIs differ according to the Java specification they adhere to, but can include memory
management features, graphics support, networking support, and so forth. Different standards
with their corresponding APIs are intended for different families of embedded devices (see
Figure 2-10).

Figure 2-9: Internal JVM components

Figure 2-10: J2ME family of devices
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In the embedded market, recognized embedded Java standards include J Consortium’s Real-
Time Core Specification, and Personal Java (pJava), Embedded Java, Java 2 Micro Edition
(J2ME) and The Real-Time Specification for Java from Sun Microsystems.

Figures 2-11a and b show the differences between the APIs of two different embedded Java
standards.

Figure 2-11a: pJava 1.2 API components diagram

Figure 2-11b: J2ME CLDC 1.1/MIDP 2.0 API components diagram
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Table 2-3 shows several real-world JVMs and the standards they adhere to.

Table 2-3: Real-world examples of JVMs based on embedded Java standards

Embedded Java Standards Java Virtual Machines

Personal Java (pJava) Tao Group’s Intent (www.tao-group.com)
Insignia’s pJava Jeode (www.insignia.com)
NSICom CrE-ME (www.nsicom.com)
Skelmir’s pJava Cee-J (www.skelmir.com)

Embedded Java Esmertec Embedded Java Jeode (www.esmertec.com)
Java 2 Micro Edition (J2ME) Esmertec’s Jbed for CLDC/MIDP and Insignia’s CDC Jeode

(www.esmertec.com and www.insignia.com)
Skelmir’s Cee-J CLDC/MIDP and CDC (www.skelmir.com)
Tao Group’s Intent (www.tao-group.com) CLDC & MIDP

Note: Information in table was gathered at the time this book was written and is subject to change; check with 
specific vendors for latest information.

Within the execution engine (shown in Figure 2-12), the main differentiators that impact the
design and performance of JVMs that support the same specification are:

The garbage collector (GC), which is responsible for deallocating any memory no
longer needed by the Java application.

The unit that processes byte codes, which is responsible for converting Java byte
codes into machine code through interpretation, compilation (commonly referred to
as way-ahead-of-time or WAT), or just-in-time (JIT), an algorithm that combines both
compiling and interpreting. A JVM can implement one or more of these byte code
processing algorithms within its execution engine.
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Garbage Collection

Why Talk About Garbage Collection?

While this section discusses garbage collection within the context of Java, I use it as a separate 
example because garbage collection isn’t unique to the Java language. A garbage collector 
can be implemented in support of other languages, such as C and C++[2-24], that don’t typically 
add an additional component to the system. When creating a garbage collector to support 
any language, it becomes part of an embedded system’s architecture.

An application written in a language such as Java cannot deallocate memory that has been
allocated for previous use (as can be done in native languages, such as using “free” in the C
language, though as mentioned above, a garbage collector can be implemented to support
any language). In Java, only the GC (garbage collector) can deallocate memory no longer in
use by Java applications. GCs are provided as a safety mechanism for Java programmers so
they do not accidentally deallocate objects that are still in use. While there are several gar-
bage collection schemes, the most common are based upon the copying, mark and sweep, and
generational GC algorithms.

Figure 2-12: Internal execution engine components
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The copying garbage collection algorithm (shown in Figure 2-13) works by copying refer-
enced objects to a different part of memory, and then freeing up the original memory space of
unreferenced objects. This algorithm uses a larger memory area in order to work, and usually
cannot be interrupted during the copy (it blocks the system). However, it does ensure that
what memory is used is used efficiently by compacting objects in the new memory space.

Figure 2-13: Copying GC

The mark and sweep garbage collection algorithm (shown in Figure 2-14) works by “mark-
ing” all objects that are used, and then “sweeping” (deallocating) objects that are unmarked.
This algorithm is usually nonblocking, meaning the system can interrupt the garbage collec-
tor to execute other functions when necessary. However, it doesn’t compact memory the way
a copying garbage collector does, leading to memory fragmentation, the existence of small,
unusable holes where deallocated objects used to exist. With a mark and sweep garbage col-
lector, an additional memory compacting algorithm can be implemented, making it a mark
(sweep) and compact algorithm.

Figure 2-14: Mark and sweep (no compaction) garbage collector diagram
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Finally, the generational garbage collection algorithm (shown in Figure 2-15) separates ob-
jects into groups, called generations, according to when they were allocated in memory. This
algorithm assumes that most objects that are allocated by a Java program are short-lived, thus
copying or compacting the remaining objects with longer lifetimes is a waste of time. So, it
is objects in the younger generation group that are cleaned up more frequently than objects in
the older generation groups. Objects can also be moved from a younger generation to an older
generation group. Different generational garbage collectors also may employ different algo-
rithms to deallocate objects within each generational group, such as the copying algorithm or
mark and sweep algorithms described previously.

Figure 2-15: Generational garbage collector diagram
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As mentioned at the start of this section, most real-world embedded JVMs implement some
form of either the copying, mark and sweep, or generational algorithms (see Table 2-4).

Table 2-4: Real-world examples of JVMs based on the garbage collection algorithms

Garbage Collector Java Virtual Machine

Copying NewMonic’s Perc (www.newmonics.com)
Mark & Sweep Skelmir’s Cee-J (www.skelmir.com)

Esmertec’s Jbed (www.esmertec.com)
NewMonics’ Perc (www.newmonics.com)
Tao Group’s Intent (www.tao-group.com)

Generational Skelmir’s Cee-J (www.skelmir.com)

Note: Information in table was gathered at the time this book was written and is subject to change; check with 
specific vendors for latest information.

Processing Java Bytecode

Why Talk About How Java Processes Bytecode?

This section is included because Java is an illustration of many different real-world techniques 
that are used to translate source code into machine code in a variety of other languages. For 
example, in assembly, C, and C++, the compilation mechanisms exist on the host machine,
whereas HTML scripting language source is interpreted directly on the target (with no com-
pilation needed). In the case of Java, Java source code is compiled on the host into Java byte 
code, which then can be interpreted or compiled into machine code, depending on the JVM’s 
internal design. Any mechanism that resides on the target, which translates Java byte code 
into machine code, is part of an embedded system’s architecture. In short, Java’s translation 
mechanisms can exist both on the host and on the target, and so act as examples of various 
real-world techniques that can be used to understand how programming languages in general 
impact an embedded design.

The JVM’s primary purpose in an embedded system is to process platform-independent Java
byte code into platform-dependent code. This processing is handled in the execution engine
of the JVM. The three most common byte code processing algorithms implemented in an
execution engine to date are interpretation, just-in-time (JIT) compiling, and way-ahead-of-
time/ahead-of-time compiling (WAT/AOT).
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With interpretation, every time the Java program is loaded to be executed, every byte code
instruction is parsed and converted to native code, one byte code at a time, by the JVM’s
interpreter. Moreover, with interpretation, redundant portions of the code are reinterpreted
every time they are run. Interpretation tends to have the lowest performance of the three
algorithms, but it is typically the simplest algorithm to implement and to port to different
types of hardware.

A JIT compiler, on the other hand, interprets the program once, and then compiles and stores
the native form of the byte code at runtime, thus allowing redundant code to be executed
without having to reinterpret. The JIT algorithm performs better for redundant code, but it can
have additional runtime overhead while converting the byte code into native code. Additional
memory is also used for storing both the Java byte codes and the native compiled code. Varia-
tions on the JIT algorithm in real-world JVMs are also referred to as translators or dynamic
adaptive compilation (DAC).

Figure 2-16: Interpreter diagram

Figure 2-17: JIT diagram
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Finally, in WAT/AOT compiling, all Java byte code is compiled into the native code at com-
pile time, as with native languages, and no interpretation is done. This algorithm performs at
least as well as the JIT for redundant code and better than a JIT for nonredundant code, but as
with the JIT, there is additional runtime overhead when additional Java classes dynamically
downloaded at runtime have to be compiled and introduced to the system. WAT/AOT can also
be a more complex algorithm to implement.

As seen in Table 2-5, there are real-world JVM execution engines that implement each of
these algorithms, as well as execution engine hybrids that implement some or all of these
algorithms.

Table 2-5: Real-world examples of JVMs based on the various byte code processing algorithms

Byte Code Processing Java Virtual Machine

Interpretation Skelmir Cee-J (www.skelmir.com)
NewMonics Perc (www.newmonics.com)
Insignia’s Jeode (www.insignia.com)

JIT Skelmir Cee-J (two types of JITS) (www.skelmir.com)
Tao Group’s Intent (www.tao-group.com) – translation
NewMonics Perc (www.newmonics.com)
Insignia’s Jeode DAC (www.insignia.com)

WAT/AOT NewMonics Perc (www.newmonics.com)
Esmertec’s Jbed (www.esmertec.com)

Note: Information in table was gathered at the time this book was written and is subject to change; check with 
specific vendors for latest information.

Figure 2-18: WAT/AOT diagram
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Scripting languages and Java aren’t the only high-level languages that can automatically
introduce an additional component within an embedded system. The .NET Compact Frame-
work from Microsoft allows applications written in almost any high-level programming
language (such as C#, Visual Basic and Javascript) to run on any embedded device, indepen-
dent of hardware or system software design. Applications that fall under the .NET Compact
Framework must go through a compilation and linking procedure that generates a CPU-
independent intermediate language file, called MSIL (Microsoft Intermediate Language),
from the original source code file (see Figure 2-19). For a high-level language to be compat-
ible with the .NET Compact Framework, it must adhere to Microsoft’s Common Language 
Specification, a publicly available standard that anyone can use to create a compiler that is
.NET compatible.

Figure 2-19: .NET Compact Framework execution model
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2.2 Standards and Networking

Why Use Networking as a Standards Example?

A network, by definition, is two or more connected devices that can send and/or receive data. 
If an embedded system needs to communicate with any other system, whether a develop-
ment host machine, a server, or another embedded device, it must implement some type of 
connection (networking) scheme. In order for communication to be successful, there needs 
to be a scheme that interconnecting systems agree upon, and so networking protocols (stan-
dards) have been put in place to allow for interoperability. As shown in Table 2-1, networking 
standards can be implemented in embedded devices specifically for the networking market, 
as well as in devices from other market segments that require networking connectivity, even 
if just to debug a system during the development phase of a project. 

Understanding what the required networking components are for an embedded device re-
quires two steps:

Understanding the entire network into which the device will connect.

Using this understanding, along with a networking model, such as the OSI (Open
Systems Interconnection) model discussed later in this section, to determine the
device’s networking components.

Figure 2-20: .NET Compact Framework and the Embedded Systems Model
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Understanding the entire network is important, because key features of the network will
dictate the standards that need to be implemented within an embedded system. Initially, an
embedded engineer should, at the very least, understand three features about the entire net-
work the device will plug into: the distance between connected devices, the physical medium
connecting the embedded device to the rest of the network, and the network’s overall struc-
ture (see Figure 2-21).

Figure 2-21: Network block diagram 
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Physical Medium
In a network, devices are connected with transmission mediums that are either bound or
unbound. Bound transmission mediums are cables or wires and are considered “guided”
mediums since electromagnetic waves are guided along a physical path (the wires). Unbound
transmission mediums are wireless connections, and they are considered unguided mediums
because the electromagnetic waves that are transmitted are not guided via a physical path, but
are transmitted through a vacuum, air, and/or water.

In general, the key characteristics that differentiate all transmission mediums whether wired
or wireless are:

The type of data the medium can carry (i.e., analog or digital).

How much data the medium can carry (capacity).

How fast the medium can carry the data from source to destination (speed).

How far the medium can carry the data (distance). For example, some mediums are
lossless, meaning no energy is lost per unit distance traveled, while others are lossy
mediums, which means a significant amount of energy is lost per unit distance trav-
eled. Another example is the case of wireless networks, that are inherently subject to
the laws of propagation, where given a constant amount of power, signal strengths
decrease by the square of a given distance from the source (i.e., if distance = 2 ft., the
signal becomes four times weaker; if distance = 10 ft., the signal is 100 times weaker,
and so on).

How susceptible the medium is to external forces (interference such as electromag-
netic interference (EMI), radio frequency interference (RFI), weather, and so forth).

Note: the direction a transmission medium can transmit data (that is, data being able to travel in only one direc-
tion vs. bidirectional transmission) is dependent on the hardware and software components implemented within 
the device, and is typically not dependent on the transmission medium alone. This will be discussed later in this 
section.

Understanding the features of the transmission medium is important, because these impact the
overall network’s performance, affecting such variables as the network’s bandwidth (data rate
in bits per second) and latency (the amount of time it takes data to travel between two given
points, including delays). Tables 2-6a and b summarize a few examples of wired (bound) and
wireless (unbound) transmission mediums, as well as some of their features.
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Table 2-6a: Wired transmission mediums [2-25]

Medium Features
Unshielded
Twisted Pair
(UTP)

Copper wires are twisted into pairs and used to transmit analog or digital signals. Limits in length
(distance) depending on the desired bandwidth. UTP used in telephone/telex networks; can support
both analog and digital. Different categories of cables (3, 4, and 5) where CAT3 supports a data rate of
up to 16 Mbps, CAT4 up to 20 MHz, and CAT5 up to 100 Mbps. Requires amplifiers every 5–6 km for
analog signals, and repeaters every 2–3 km for digital signals (over long distances signals lose strength
and are mistimed).

Relatively easy and cheap to install, but with a security risk (can be tapped into). Subject to external
electromagnetic interference. Can act as antennas receiving EMI/RFI from sources such as electric
motors, high-voltage transmission lines, vehicle engines, radio or TV broadcast equipment. These
signals, when superimposed on a data stream, may make it difficult for the receiver to differenti-
ate between valid data and EMI/RFI-induced noise (especially true for long spans that incorporate
components from multiple vendors). Crosstalk occurs when unwanted signals are coupled between
“transmit” and “receive” copper pairs, creating corrupted data and making it difficult for the receiver
to differentiate between normal and coupled signals. Lightning can be a problem when it strikes
unprotected copper cable and attached equipment (energy may be coupled into the conductor and can
propagate in both directions).

Coaxial Baseband and broadband coaxial cables differ in features. Generally, coaxial cables are copper-wire
and aluminum-wire connections that are used to transmit both analog and digital signals. Baseband
coaxial commonly used for digital—cableTV/cable modems. Broadband used in analog (telephone)
communication.

Coaxial cable cannot carry signals beyond several thousand feet before amplification is required (i.e.,
by repeaters or boosters); higher data rates than twisted-pair cabling (several hundred Mbps and up to
several km). Coaxial cables not secure (can be tapped into), but are shielded to reduce interference and
therefore allow higher analog transmissions.

Fiber Optic Clear, flexible tubing that allows laser beams to be transmitted along the cable for digital transmissions.

Fiber optic mediums have a GHz (bandwidth) transmission capability up to 100 km.

Because of their dielectric nature, optical fibers are immune to both EMI and RFI and cross-talk rarely
occurs. Optical-fiber cables do not use metallic conductors for transmission, so all-dielectric, optical-
fiber communications are less susceptible to electrical surges even if struck directly by lightning.

More secure—difficult to tap into, but typically more costly than other terrestrial solutions.
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Table 2-6b: Wireless transmission mediums [2-26]

Medium Features
Terrestrial
Microwave

Classified as SHF (super high frequency). Transmission signal must be line of sight, meaning
high-frequency radio (analog or digital) signals are transmitted via a number of ground stations and
transmission between stations must be in a straight line that is unobstructed ground—often used in
conjunction with satellite transmission. The distance between stations is typically 25–30 miles, with
the transmission dishes on top of high buildings or on high points like hill tops. The use of the low
GHz frequency range 2–40 GHz provides higher bandwidths (i.e., 2 GHz band has approx 7 MHz
bandwidth whereas 18 GHz band has approx 220 MHz bandwidth) than those available using lower
frequency radio waves.

Satellite
Microwave

Satellites orbit above the earth and act as relay stations between different ground stations and embed-
ded devices (their antennas) that are within the satellite’s line-of-sight and area covered (footprint),
where the size and shape of the footprint on the earth’s surface vary with the design of the satellite.

The ground station receives analog or digital data from some source (internet service provider, broad-
caster, etc.) and modulates it onto a radio signal that it transmits to the satellite, as well as controls
the position and monitors the operations of the satellite. At the satellite, a transponder receives the
radio signal, amplifies it and relays it to a device’s antenna inside its footprint. Varying the footprint
changes the transmission speeds, where focusing the signal on a smaller footprint increases transmis-
sion speeds. The large distances covered by a signal can also result in propagation delays of several
seconds.

A typical GEO (geosynchronous earth orbit) satellite (a satellite that orbits about 36,000 kilometers
above the equator—the speed of the satellite is matched to the rotation of the Earth at the equator)
contains between 20 and 80 transponders, each capable of transmitting digital information of up to
about 30–40 Mbps.

Broadcast Radio Uses a transmitter and a receiver (of the embedded device) tuned to a specific frequency for the trans-
fer of signals. Broadcast communication occurs within a local area, where multiple sources receive
one transmission. Subject to frequency limitations (managed by local communications companies and
government) to ensure no two transmissions on the same frequency. Transmitter requires large anten-
nas; frequency range of 10 kHz–1 GHz subdivided into LF (low frequency), MF (medium frequency),
HF (high frequency), UHF (ultra high frequency) or VHF (very high frequency) bands.

Higher frequency radio waves provide larger bandwidths (in the Mbps) for transmission, but they have
less penetrating power than lower frequency radio waves (with bandwidths as low as in the kbps).

IR (Infrared) Point-to-point link of two IR lasers lined up; blinking of laser beam reflects bit representations. THz
(1,000GHz – 2 × 1011 Hz – 2 × 1014 Hz) range of frequencies, with up to 20 Mbps bandwidth. Cannot
have obstructions, more expensive, susceptible to bad weather (clouds, rain) and diluted by sunlight,
difficult to “tap” (more secure).

Used in small, open areas with a typical transmission distance of up to 200 meters.

Cellular
Microwave

Works in UHF band—variable—depends on whether there are barriers. Signals can penetrate build-
ings/barriers, but degradation occurs and reduces the required distance the device must be from the cell
site.
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The Network’s Architecture
The relationship between connected devices in a network determines the network’s overall
architecture. The most common architecture types for networks are peer-to-peer, client/
server, and hybrid architectures.

Peer-to-peer architectures are network implementations in which there is no centralized area
of control. Every device on the network must manage its own resources and requirements.
Devices all communicate as equals, and can utilize each other’s resources. Peer-to-peer
networks are usually implemented as LANs because, while simpler to implement, this archi-
tecture creates security and performance issues related to the visibility and accessibility of
each device’s resources to the rest of the network.

Client/server architectures are network implementations in which there is a centralized
device, called the server, in control that manages most of the network’s requirements and
resources. The other devices on the network, called clients, contain fewer resources and
must utilize the server’s resources. The client/server architecture is more complex than the
peer-to-peer architecture and has the single critical point of failure (the server). However,
it is more secure than the peer-to-peer model, since only the server has visibility into other
devices. Client/server architectures are also usually more reliable, since only the server has
to be responsible for providing redundancy for the network’s resources in case of failures.
Client/server architectures also have better performance, since the server device in this type of
network usually needs to be more powerful in order to provide the network’s resources. This
architecture is implemented in either LANs or WANs.

Hybrid architectures are a combination of the peer-to-peer and client/server architecture mod-
els. This architecture is also implemented in both LANs and WANs.

Note: A network’s architecture is not the same as its topology. A network’s topology is the physical arrangement 
of the connected devices, which is ultimately determined by the architecture, the transmission medium (wired vs. 
wireless), and the distance between the connected devices of the particular network.

Open Systems Interconnection (OSI) Model 
To demonstrate the dependencies between the internal networking components of an embed-
ded system and the network’s architecture, the distance between connected devices, and the
transmission medium connecting the devices, this section associates networking components
with a universal networking model, in this case the Open Systems Interconnection (OSI) Ref-
erence model. All the required networking components in a device can be grouped together
into the OSI model, which was created in the early 1980s by the International Organization
for Standardization (ISO). As shown in Figure 2-22, the OSI model represents the required
hardware and software components within a networked device in the form of seven layers:
physical, data-link, network, transport, session, presentation, and application layers. In rela-
tion to the Embedded Systems Model (Figure 1-1), the physical layer of the OSI model maps
to the hardware layer of the Embedded Systems Model, the application, presentation, and ses-
sion layers of the OSI model map to the application software layer of the Embedded Systems
Model, and the remaining layers of the OSI model typically map to the system software layer
of the embedded systems model.
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The key to understanding the purpose of each layer in the OSI model is to grasp that net-
working is not simply about connecting one device to another device. Instead, networking
is primarily about the data being transmitted between devices or, as shown in Figure 2-23,
between the different layers of each device.

In short, a networking connection starts with data originating at the application layer of one
device and flowing downward through all seven layers, with each layer adding a new bit of
information to the data being sent across the network. Information, called the header (shown
in Figure 2-24), is appended to the data at every layer (except for the physical and application
layers) for peer layers in connected devices to process. In other words, the data is wrapped
with information for other devices to unwrap and process.

The data is then sent over the transmission medium to the physical layer of a connected
device, and then up through the connected device’s layers. These layers then process the
data (that is, strip the headers, reformat, etc.) as the data flows upward. The functionality
and methodologies implemented at each layer based on the OSI model are also commonly
referred to as networking protocols.

Figure 2-22: OSI and Embedded Systems Model block diagram

System Software Layer

Data-Link Laye r

Network Laye r

Transport Laye r

Hardware LayerPhysical Laye r

Application Software Layer

Session Laye r

Presentation Laye r

OSI Model

Application Laye r



Know Your Standards

53

Figure 2-23: OSI model data flow diagram
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Figure 2-24: Header diagram
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The OSI Model and Real-World Protocol Stacks

Remember that the OSI model is simply a reference tool to use in understanding real-world
networking protocols implemented in embedded devices. Thus, it isn’t always the case that
there are seven layers, or that there is only one protocol per layer. In reality, the functionality
of one layer of the OSI model can be implemented in one protocol, or it can be implemented
across multiple protocols and layers. One protocol can also implement the functionality of
multiple OSI layers as well. While the OSI model is a very powerful tool to use to understand
networking, in some cases a group of protocols may have their own name and be grouped
together in their own proprietary layers. For example, shown in Figure 2-25 is a TCP/IP pro-
tocol stack that is made up of four layers: the network access layer, internet layer, transport
layer, and the application layer. The TCP/IP application layer incorporates the functionality of
the top three layers of the OSI model (the application, presentation, and session layers), and
the network access layer incorporates two layers of the OSI model (physical and data link).
The internet layer corresponds to the network layer in the OSI model, and the transport layers
of both models are identical.

As another example, the wireless application protocol (WAP) stack (shown in Figure 2-26)
provides five layers of upper layer protocols. The WAP application layer maps to the ap-
plication layer of the OSI model, as do the transport layers of both models. The session and
transaction layers of the WAP model map to the OSI session layer, and WAP’s security layer
maps to OSI’s presentation layer.

The final example in this section is the Bluetooth protocol stack (shown in Figure 2-27),
which is a three-layer model made up of Bluetooth-specific as well as adopted protocols from
other networking stacks, such as WAP and/or TCP/IP. The physical and lower data-link lay-
ers of the OSI model map to the transport layer of the Bluetooth model. The upper data-link,
network, and transport layers of the OSI model map to the middleware layer of the Bluetooth
model, and the remaining layers of the OSI model (session, presentation, and application)
map to the application layer of the Bluetooth model.
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Figure 2-25: TCP/IP, OSI models and Embedded Systems Model block diagram

Figure 2-26: WAP, OSI and Embedded Systems Model block diagram
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OSI Model Layer 1: Physical Layer 

The physical layer represents all of the networking hardware physically located in an em-
bedded device. Physical layer protocols defining the networking hardware of the device are
located in the hardware layer of the Embedded Systems Model (see Figure 2-28). Physical
layer hardware components connect the embedded system to some transmission medium. The
distance between connected devices, as well as the network’s architecture, are important at
this layer, since physical layer protocols can be classified as either LAN protocols or WAN
protocols. LAN and WAN protocols can then be further subdivided according to the transmis-
sion medium connecting the device to the network (wired or wireless).

The physical layer defines, manages, and processes, via hardware, the data signals—the
actual voltage representations of 1’s and 0’s—coming over the communication medium. The
physical layer is responsible for physically transferring the data bits over the medium received
from higher layers within the embedded system, as well as for reassembling bits received
over the medium for higher layers in the embedded system to process (see Figure 2-29).

Figure 2-27: Bluetooth, OSI and Embedded Systems Model block diagram
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Figure 2-28: Physical layer protocols in the Embedded Systems Model

Figure 2-29: Physical layer data flow block diagram
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OSI Model Layer 2: Data-Link Layer 

The data-link layer is the software closest to the hardware (physical layer). Thus, it includes,
among other functions, any software needed to control the hardware. Bridging also occurs
at this layer to allow networks interconnected with different physical layer protocols—for
example, Ethernet LAN and an 802.11 LAN—to interconnect.

Like physical layer protocols, data-link layer protocols are classified as either LAN protocols,
WAN protocols, or protocols that can be used for both LANs and WANs. Data-link layer pro-
tocols that are reliant on a specific physical layer may be limited to the transmission medium
involved, but in some cases (for instance, PPP over RS-232 or PPP over Bluetooth’s RF-
COMM), data-link layer protocols can be ported to very different mediums if there is a layer
that simulates the original medium the protocol was intended for, or if the protocol supports
hardware-independent upper-data-link functionality. Data-link layer protocols are implement-
ed in the system software layer, as shown in Figure 2-30.

Figure 2-30: Data-link layer protocols 
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The data-link layer is responsible for receiving data bits from the physical layer and format-
ting these bits into groups, called data-link frames. Different data-link standards have varying
data-link frame formats and definitions, but in general this layer reads the bit fields of these
frames to ensure that entire frames are received, that these frames are error free, that the
frame is meant for this device by using the physical address retrieved from the networking
hardware on the device, and where this frame came from. If the data is meant for the device,
then all data-link layer headers are stripped from the frame, and the remaining data field,
called a datagram, is passed up to the networking layer. These same header fields are append-
ed to data coming down from upper layers by the data-link layer, and then the full data-link
frame is passed to the physical layer for transmission (see Figure 2-31).

Figure 2-31: Data-link layer data flow block diagram
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OSI Model Layer 3: Network Layer 

Network layer protocols, like data-link layer protocols, are implemented in the system software
layer, but unlike the lower data-link layer protocols, the network layer is typically hardware
independent and only dependent on the data-link layer implementations (see Figure 2-32).

At the OSI network layer, networks can be divided into smaller sub-networks, called seg-
ments. Devices within a segment can communicate via their physical addresses. Devices in
different segments, however, communicate through an additional address, called the network 
address. While the conversion between physical addresses and network addresses can occur
in data-link layer protocols implemented in the device (i.e., ARP, RARP, etc.), network layer
protocols can also convert between physical and networking addresses, as well as assign
networking addresses. Through the network address scheme, the network layer manages data-
gram traffic and any routing of datagrams from the current device to another.
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Like the data-link layer, if the data is meant for the device, then all network layer headers are
stripped from the datagrams, and the remaining data field, called a packet, is passed up to the
transport layer. These same header fields are appended to data coming down from upper lay-
ers by the network layer, and then the full network layer datagram is passed to the data-link
layer for further processing (see Figure 2-33). Note that the term “packet” is sometimes used
to discuss data transmitted over a network, in general, in addition to data processed at the
transport layer.

Figure 2-32: Network Layer protocols in the Embedded Systems Model
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Figure 2-33: Network layer data flow block diagram

Layer 4Transport Layer

Layer 2Data-link Layer

Network Layer

Layer 3

  Packet

Network Headers Stripped

        [da ta]

Network Header Appended to  Data Field

Network Datagram 110110 11001101 110001100001101101110111011101110001100111000001100101000111
[IP Versi on] [h eader len][ data type][data len][ frag info] [# hops][u pper layer][check sum][s our ce IP][de st IP][data]

Datagram



Know Your Standards

61

OSI Model Layer 4: Transport Layer 

Transport layer protocols (shown in Figure 2-34) sit on top of and are specific to the network
layer protocols. They are typically responsible for establishing and dissolving communica-
tion between two specific devices. This type of communication is referred to as point-to-point
communication. Protocols at this layer allow for multiple higher-layer applications running
on the device to connect point-to-point to other devices. Some transport layer protocols can
also ensure reliable point-to-point data transmission by ensuring that packets are received and
transmitted in the correct order, are transmitted at a reasonable rate (flow control), and the
data within the packets are not corrupted. Transport layer protocols can provide the acknowl-
edgments to other devices upon receiving packets, and request packets to be retransmitted if
an error is detected.

Figure 2-34: Transport layer protocols in the Embedded Systems Model
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In general, when the transport layer processes a packet received from lower layers, then all
transport layer headers are stripped from the packets, and the remaining data fields from one
or multiple packets are reassembled into other packets, also referred to as messages, and
passed to upper layers. Messages/packets are received from upper layers for transmission,
and are divided into separate packets if too long. The transport layer header fields are then
appended to the packets, and passed down to lower layers for further processing (see Figure
2-35).
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OSI Model Layer 5: Session Layer 

The connection between two networking applications on two different devices is called a
session. Where the transport layer manages the point-to-point connection between devices
for multiple applications, the management of a session is handled by the session layer, as
shown in Figure 2-36. Generally, sessions are assigned a port (number), and the session layer
protocol must separate and manage each session’s data, regulate the data flow of each ses-
sion, handle any errors that arise with the applications involved in the session, and ensure the
security of the session—for example, that the two applications involved in the session are the
right applications.

Figure 2-35: Transport layer data flow block diagram
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Figure 2-36: Session layer protocols in the Embedded Systems Model
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When the session layer processes a message/packet received from lower layers, then all
session layer headers are stripped from the messages/packets, and the remaining data field
is passed to upper layers. Messages that are received from upper layers for transmission are
appended with session layer header fields and passed down to lower layers for further pro-
cessing (see Figure 2-37).

Figure 2-37: Session layer data flow block diagram
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OSI Model Layer 6: Presentation Layer 

Protocols at the presentation layer are responsible for translating data into formats that higher
applications can process, or translating data going to other devices into a generic format for
transmission. Generally, data compression/decompression, data encryption/decryption, and
data protocol/character conversions are implemented in presentation layer protocols. Relative
to the Embedded Systems Model, presentation layer protocols are usually implemented in
networking applications found in the application layer as shown in Figure 2-38.

Basically, a presentation layer processes a message received from lower layers, and then all
presentation layer headers are stripped from the messages, and the remaining data field is
passed to upper layers. Messages that are received from upper layers for transmission are
appended with presentation layer header fields and passed down to lower layers for further
processing (see Figure 2-39).
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Figure 2-38: Presentation layer protocols in the Embedded Systems Model

Figure 2-39: Presentation layer data flow block diagram
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OSI Model Layer 7: Application Layer 

A device initiates a network connection to another device at the application layer (shown in
Figure 2-40). In other words, application layer protocols are either used directly as network
applications by end-users or the protocols are implemented in end-user network applications
(see Chapter 10). These applications “virtually” connect to applications on other devices.

Figure 2-40: Application layer protocols in the Embedded Systems Model
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data stream (a process called data broadcasting or data casting). This application data can
either be unrelated to the video/audio TV content (noncoupled), related to video/audio TV
content in terms of content but not in time (loosely coupled), or entirely synchronized with
TV audio/video (tightly coupled).

The type of application data embedded is dependent on the capabilities of the DTV receiver
itself. While there are a wide variety of DTV receivers, most fall under one of three catego-
ries: enhanced broadcast receivers, which provide traditional broadcast TV enhanced with
graphics controlled by the broadcast programming; interactive broadcast receivers, capable
of providing e-commerce, video-on-demand, e-mail, and so on through a return channel on
top of “enhanced” broadcasting; and multi-network receivers that include internet and local
telephony functionality on top of interactive broadcast functionality. Depending on the type of
receiver, DTVs can implement general-purpose, market-specific, and/or application-specific
standards all into one DTV/set-top box (STB) system architecture design (shown in Table 2-7).

Table 2-7: Examples of DTV standards

Standard Type Standard

Market Specific Digital video broadcasting (DVB) – multimedia home platform (MHP)
Java TV
Home audio/video interoperability (HAVi)
Digital Audio Video Council (DAVIC)
Advanced Television Standards Committee (ATSC)/Digital TV Applications
Software Environment (DASE)
Advanced Television Enhancement Forum (ATVEF)
Digital Television Industrial Alliance of China (DTVIA)
Association of Radio Industries and Business of Japan (ARIB-BML)
OpenLabs OpenCable application platform (OCAP)
Open services gateway initiative (OSGi)
OpenTV
MicrosoftTV

General Purpose HTTP (hypertext transfer protocol) – in browser applications
POP3 (post office protocol) – in e-mail application
IMAP4 (Internet message access protocol) – in e-mail application
SMTP (simple mail transfer protocol) – in e-mail application
Java
Networking (terrestrial, cable, and satellite)
POSIX
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2.4 Summary
The purpose of this chapter was to show the importance of industry-supported standards when
trying to understand and implement embedded system designs and concepts. The program-
ming language, networking, and DTV examples provided in this chapter demonstrated how
standards can define major elements within an embedded architecture. The programming lan-
guage example provided an illustration of general-purpose standards that can be implemented
in a wide variety of embedded devices. These examples specifically included Java, showing
how a JVM was needed at the application, system, or hardware layer, and the .NET Compact
Framework, for languages such as C# and Visual Basic, which demonstrated a program-
ming language element that must be integrated into the systems software layer. Networking
provided an example of standards that can be general purpose, specific to a family of devices
(market driven), or specific to an application (http in a browser, for instance). In the case of
networking, both the embedded systems and the OSI models were referenced to demonstrate
where certain networking protocols fit into an embedded architecture. Finally, the digital TV
STB example illustrated how one device implemented several standards that defined embed-
ded components in all layers.

Figure 2-41: DTV standards in the Embedded Systems Model
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These standards then can define several of the major components that are implemented in all
layers of the DTV Embedded Systems Model, as shown in Figure 2-41.
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Chapter 3, Embedded Hardware Building Blocks and the Embedded Board, is the first chapter
of Section II: Embedded Hardware. Chapter 3 introduces the fundamental elements found on
an embedded board and some of the most common basic electrical components that make up
these elements, as well as those that can be found independently on a board.
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Chapter 2 Problems

1.  How can embedded system standards typically be classified?

2.  [a]  Name and define four groups of market-specific standards.
 [b]  Give three examples of standards that fall under each of the four market-specific

 groups.

3.  [a]  Name and define four classes of general-purpose standards.
 [b]  Give three examples of standards that fall under each of the four general-purpose

 groups.

4.  Which standard below is neither a market-specific nor a general-purpose embedded
systems standard?

 A. HTTP – Hypertext Transfer Protocol.
 B. MHP – Multimedia Home Platform.
 C. J2EE – Java 2 Enterprise Edition.
 D. All of the above.
 E. None of the above.

5.  [a]  What is the difference between a high-level language and a low-level language?
 [b]  Give an example of each.

6.  [Select] A compiler can be located on:
 A. a target.
 B. a host.
 C. on a target and/or on a host.
 D. None of the above.

7.  [a]  What is the difference between a cross-compiler and a compiler?
 [b]  What is the difference between a compiler and an assembler?

8.  [a]  What is an interpreter?
 [b]  Give two examples of interpreted languages.

9.  [T/F] All interpreted languages are scripting languages but not all scripting languages are
interpreted.
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10.  [a]  In order to run Java, what is required on the target?
 [b]  How can the JVM be implemented in an embedded system?

11.  Which standards below are embedded Java standards?
 A. pJava – Personal Java.
 B.  RTSC – Real Time Core Specification.
 C.  HTML – Hypertext Markup Language.
 D. A and B only.
 E.  A and C only.

12. What are the two main differences between all embedded JVMs?

13. Name and describe three of the most common byte processing schemes.

14.  [a]  What is the purpose of a GC?
 [b]  Name and describe two common GC schemes.

15  [a]  Name three qualities that Java and scripting languages have in common.
 [b]  Name two ways that they differ.

16.  [a]  What is the .NET Compact Framework?
 [b]  How is it similar to Java?
 [c]  How is it different?

17.  What is the difference between LANs and WANs?

18.  What are the two types of transmission mediums that can connect devices?

19.  [a]  What is the OSI model?
 [b]  What are the layers of the OSI model?
 [c]  Give examples of two protocols under each layer.
 [d]  Where in the Embedded Systems Model does each layer of the OSI model fall?

Draw it.

20.  [a]  How does the OSI model compare to the TCP/IP model?
 [b]  How does the OSI model compare to Bluetooth?
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Embedded Hardware

Section II consists of five chapters that introduce the fundamental hardware components
of an embedded board and show how these components function together. The information
reflected in this chapter is not intended to prepare the reader to create a detailed board
design, but it will provide an architectural overview of some of the most important
elements of an embedded board, and information as to the function of these components.
Chapter 3 introduces the major hardware components of an embedded board using the
von Neumann model, the Embedded Systems Model, and real-world boards as references. Chap-
ters 4 through 7 discuss the major hardware components of an embedded board in detail.

Wherever possible, the theoretical information introduced is directly related to actual
embedded hardware, because it is the underlying physics of embedded hardware that directly
impacts board design. Understanding the major hardware elements of an embedded board is
critical to understanding the entire system’s architecture, because ultimately the capabilities
of an embedded device are limited or enhanced by what the hardware is capable of.
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C H A P T E R 3
Embedded Hardware Building Blocks

and the Embedded Board

In This Chapter

Introducing the importance of being able to read a schematic diagram
Discussing the major components of an embedded board
Introducing the factors that allow an embedded device to work
Discussing the fundamental elements of electronic components

3.1 Lesson One on Hardware: Learn to Read a Schematic!
This section is especially important for embedded software engineers and programmers.
Before diving into the details, note that it is important for all embedded designers to be able
to understand the diagrams and symbols that hardware engineers create and use to describe
their hardware designs to the outside world. These diagrams and symbols are the keys to
quickly and efficiently understanding even the most complex hardware design, regardless of
how much or little practical experience one has in designing real hardware. They also contain
the information an embedded programmer needs to design any software that requires compat-
ibility with the hardware, and they provide insight to a programmer as to how to successfully
communicate the hardware requirements of the software to a hardware engineer.

There are several different types of engineering hardware drawings, including:

Block diagrams, which typically depict the major components of a board (processors,
buses, I/O, memory) or a single component (a processor, for example) at a systems
architecture or higher level. In short, a block diagram is a basic overview of the hard-
ware, with implementation details abstracted out. While a block diagram can reflect
the actual physical layout of a board containing these major components, it mainly
depicts how different components or units within a component function together at
a systems architecture level. Block diagrams are used extensively throughout this
book (in fact, Figures 3-5a through 3-5e later in this chapter are examples of block
diagrams), because they are the simplest method in which to depict and describe the
components within a system. The symbols used within a block diagram are simple,
such as squares or rectangles for chips, and straight lines for buses. Block diagrams
are typically not detailed enough for a software designer to be able to write all of
the low-level software accurately enough to control the hardware (without a lot of
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headaches, trial and error, and even some burned-out hardware!). However, they are
very useful in communicating a basic overview of the hardware, as well as providing
a basis for creating more detailed hardware diagrams.

Schematics. Schematics are electronic circuit diagrams that provide a more detailed
view of all of the devices within a circuit or within a single component—everything
from processors down to resistors. A schematic diagram is not meant to depict the
physical layout of the board or component, but provides information on the flow of
data in the system, defining what signals are assigned where—which signals travel on
the various lines of a bus, appear on the pins of a processor, and so on. In schematic
diagrams, schematic symbols are used to depict all of the components within the sys-
tem. They typically do not look anything like the physical components they represent
but are a type of “shorthand” representation based on some type of schematic symbol
standard. A schematic diagram is the most useful diagram to both hardware and soft-
ware designers when trying to determine how a system actually operates, to debug
hardware, or to write and debug the software managing the hardware. See Appendix
B for a list of commonly used schematic symbols.

Wiring diagrams. These diagrams represent the bus connections between the major
and minor components on a board or within a chip. In wiring diagrams, vertical and
horizontal lines are used to represent the lines of a bus, and either schematic symbols
or more simplified symbols (that physically resemble the other components on the
board or elements within a component) are used. These diagrams may represent an
approximate depiction of the physical layout of a component or board.

Logic diagrams/prints. Logic diagrams/prints are used to show a wide variety of
circuit information using logical symbols (AND, OR, NOT, XOR, and so on), and
logical inputs and outputs (the 1’s and 0’s). These diagrams do not replace sche-
matics, but they can be useful in simplifying certain types of circuits in order to
understand how they function.

Timing diagrams. Timing diagrams display timing graphs of various input and output
signals of a circuit, as well as the relationships between the various signals. They are
the most common diagrams (after block diagrams) in hardware user manuals and data
sheets.

Regardless of the type, in order to understand how to read and interpret these diagrams, it
is first important to learn the standard symbols, conventions, and rules used. Examples of
the symbols used in timing diagrams are shown in Table 3-1, along with the conventions for
input/output signals associated with each of the symbols.
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Table 3-1: Timing diagrams symbol table [3-9]

Symbol Input Signals Output Signals

Input signal must be valid Output signal will be valid

Input signal doesn’t affect sys-
tem, will work regardless

Indeterminate output signal

Garbage signal (nonsense) Output signal not driven
(floating), tristate, HiZ, high
impedance

If the input signal rises Output signal will rise

If the input signal falls Output signal will fall

An example of a timing diagram is shown in Figure 3-1. In this figure, each row represents
a different signal. In the case of the signal rising and falling symbols within the diagram, the
rise time or fall time is indicated by the time it takes for the signal to move from LOW to
HIGH or vice-versa (the entire length of the diagonal line of the symbol). When comparing
two signals, a delay is measured at the center of the rising or falling symbols of each signal
being compared. In Figure 3-1, there is a fall time delay between signals B and C and signals
A and C in the first falling symbol. When comparing the first falling symbol of signals A and
B in the figure, no delay is indicated by the timing diagram.

Figure 3-1: Timing diagram example
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Rise Time Fall Time
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Schematic diagrams are much more complex than their timing diagram counterparts. As intro-
duced earlier this chapter, schematics provide a more detailed view of all of the devices within a
circuit or within a single component. Figure 3-2 shows an example of a schematic diagram.

Figure 3-2: Schematic diagram example [3-7]

In the case of schematic diagrams, some of the conventions and rules include:

A title section located at the bottom of each schematic page, listing information that
includes, but is not limited to, the name of the circuit, the name of the hardware en-
gineer responsible for the design, the date, and a list of revisions made to the design
since its conception.

The use of schematic symbols indicating the various components of a circuit
(see Appendix B).

Along with the assigned symbol comes a label that details information about the
component (i.e., size, type, power ratings, etc.). Labels for components of a symbol,
such as the pin numbers of an IC, signal names associated with wires, and so forth
are usually located outside of the schematic symbol.

Abbreviations and prefixes are used for common units of measurement (i.e., k for
kilo or 103, M for mega or 106) and these prefixes replace writing out the units and
larger numbers.

Functional groups and subgroups of components are typically separated onto
different pages.
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I/O and Voltage Source/Ground Terminals. In general, positive voltage supply ter-
minals are located at the top of the page, and negative supply/ground at the bottom.
Input components are usually on the left, and output components are on the right.

Finally, while this book provides an introduction into understanding the various diagrams and
recognizing schematic symbols and the devices they represent, it does not replace research-
ing more specifics on the particular diagrams used by your organization, whether through
additional reading or purchasing software, or asking the hardware engineers responsible for
creating the diagrams what conventions and rules are followed. (For instance, indicating the
voltage source and ground terminals on a schematic isn’t required, and may not be part of
the convention scheme followed by those responsible for creating the schematics. However, a
voltage source and a ground are required for any circuit to work, so don’t be afraid to ask.) At
the very least, the block and schematic diagrams should contain nothing unfamiliar to anyone
working on the embedded project, whether they are coding software or prototyping the hard-
ware. This means becoming familiar with everything from where the name of the diagram is
located to how the states of the components shown within the diagrams are represented.

One of the most efficient ways of learning how to learn to read and/or create a hardware dia-
gram is via the Traister and Lisk method[3-10], which involves:

Step 1. Learning the basic symbols that can make up the type of diagram, such as timing
or schematic symbols. To aid in the learning of these symbols, rotate between this
step and steps 2 and/or 3.

Step 2. Reading as many diagrams as possible, until reading them becomes boring (in
that case rotate between this step and steps 1 and/or 3) or comfortable (so there is no
longer the need to look up every other symbol while reading).

Step 3. Writing a diagram to practice simulating what has been read, again until it either
becomes boring (which means rotating back through steps 1 and/or 2) or comfortable.
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3.2 The Embedded Board and the von Neumann Model
In embedded devices, all the electronics hardware resides on a board, also referred to as a
printed wiring board (PW) or printed circuit board (PCB). PCBs are often made of thin sheets
of fiberglass. The electrical path of the circuit is printed in copper, which carries the electrical
signals between the various components connected on the board. All electronic components that
make up the circuit are connected to this board, either by soldering, plugging in to a socket, or
some other connection mechanism. All of the hardware on an embedded board is located in the
hardware layer of the Embedded Systems Model (see Figure 3-3).

Figure 3-3: Embedded board and
the Embedded Systems Model
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At the highest level, the major hardware components of most boards can be classified into
five major categories:

Central Processing Unit (CPU) – the master processor

Memory – where the system’s software is stored

Input Device(s) – input slave processors and relative electrical components

Output Device(s) – output slave processors and relative electrical components

Data Pathway(s)/Bus(es) – interconnects the other components, providing a “high-
way” for data to travel on from one component to another, including any wires, bus 
bridges, and/or bus controllers
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These five categories are based upon the major elements defined by the von Neumann model
(see Figure 3-4), a tool that can be used to understand any electronic device’s hardware
architecture. The von Neumann model is a result of the published work of John von Neumann
in 1945, which defined the requirements of a general-purpose electronic computer. Because
embedded systems are a type of computer system, this model can be applied as a means of
understanding embedded systems hardware.

Figure 3-4: Embedded system board organization [3-11]

Based upon the von Neumann architecture model (also referred to as the Princeton architecture). 

Master Processor

Memory

OutputInputBRINGS DATA INTO THE EMBEDDED SYSTEM TAKES DATA OUT OF  THE EMBEDDED SYSTEM

DATA FROM CPU OR INPUT DEVICES STORED IN
MEMORY UNTIL A CPU OR OUTPUT DEVICE REQUEST

5 SYSTEM  COMPONENTS COMMONLY CONNECTED VIA  BUSES

EMBEDDED SYSTEM BOARD

CONTROLS USAGE AND MANIPULATION OF DATA

While board designs can vary widely as demonstrated in the examples of Figures 3-5a,
b, c, and d, all of the major elements on these embedded boards—and on just about any 
embedded board—can be classified as either the master CPU(s), memory, input/output, or bus
components.



Chapter 3

84

Flash Memory RAM Memory
256K×32

Application
Specifi c

Hardware

System Bus 8/16/32

10Base-T   Thinnet 10/100Base-T    Serial

IEEE 1284,
Shared RAM,

Re gister-
Mode

10Base-T
Xcvr

Thinnet
Xcvr

100Base-T
Xcvr

RS232
Xcv r

16646
Xcvr

MIIEthernet

NET+ARM Chip

Figure 3-5a: AMD/National Semiconductor x86 reference board [3-1]

© 2004 Advanced Micro Devices, Inc. Reprinted with permission.

Figure 3-5b: Net Silicon ARM7 reference board [3-2]
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Figure 3-5c: Ampro MIPS reference board [3-3]

Figure 3-5d: Ampro PowerPC reference board [3-4]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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In order to understand how the major components on an embedded board function, it is useful
to first understand what these components consist of and why. All of the components on an
embedded board, including the major components introduced in the von Neumann model,
are made up of one or some combination of interconnected basic electronic devices, such as
wires, resistors, capacitors, inductors, and diodes. These devices also can act to connect the
major components of a board together. At the highest level, these devices are typically classi-
fied as either passive or active components. In short, passive components include devices such
as wires, resistors, capacitors and inductors that can only receive or store power. Active com-
ponents, on the other hand, include devices such as transistors, diodes, and integrated circuits
(ICs) that are capable of delivering as well as receiving and storing power. In some cases,
active components themselves can be made up of passive components. Within the passive and
active families of components, these circuit devices essentially differ according to how they
respond to voltage and current.
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3.3 Powering the Hardware
Power is the rate that energy is expended or work is performed. This means that in alternating
current (AC) and direct current (DC) circuits, the power associated with each element on the
board equals the current through the element multiplied by the voltage across the element
(P = VI). Accurate power and energy calculations must be done for all elements on an embed-
ded board to determine the power consumption requirements of that particular board. This is
because each element can only handle a certain type of power, so AC-DC converters, DC-AC
converters, direct AC-AC converters, and so on may be required. Also, each element has a
limited amount of power that it requires to function, that it can handle, or that it dissipates.
These calculations determine what type of voltage source can be used on a board, and how
powerful the voltage source needs to be.

In embedded systems, both AC and DC voltage sources are used, because each current
generation technique has its pros and cons. AC is easier to generate in large amounts us-
ing generators driven by turbines turned by everything from wind to water. Producing large
amounts of DC from electrochemical cells (batteries) is not as practical. Also, because
transmitting current over long transmission lines results in a significant loss of energy due
to the resistance of the wire, most modern electric company facilities transmit electricity to
outlets in AC current since AC can be transformed to lower or higher voltages much more
easily than DC. With AC, a device called a transformer, located at the service provider, is
used to efficiently transmit current over long distances with lower losses. The transformer is
a device that transfers electrical energy from one circuit to another, and can make changes to
the current and voltage during the transfer. The service provider transmits lower levels of cur-
rent at a higher voltage rate from the power plant, and then a transformer at the customer site
decreases the voltage to the value required. On the flip-side, at very high voltages, wires offer
less resistance to DC than AC, thus making DC more efficient to transmit than AC over very
long distances.

Some embedded boards integrate or plug into power supplies. Power supplies can be either
AC or DC. To use an AC power supply to supply power to components using only DC, an
AC-to-DC converter can be used to convert AC to the lower DC voltages required by the
various components on an embedded board, which typically require 3.3, 5, or 12 volts.

(Note: Other types of converters, such as DC-to-DC, DC-to-AC, or direct AC-to-AC can be 
used to handle the required power conversions for devices that have other requirements.)    
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Other embedded boards or components on a board (such as non-volatile memory, discussed
in more detail in Chapter 5) rely on batteries as voltage sources, which can be more practical
for providing power because of their size. Battery-powered boards don’t rely on a power plant
for energy, and they allow portability of embedded devices that don’t need to be plugged into
an outlet. Also, because batteries supply DC current, no mechanism is needed to convert AC
to DC for components that require DC, as is needed with boards that rely on a power supply
and outlet supplying AC. Batteries, however, have a limited life and must be either recharged
or replaced.

A Quick Comment on Analog vs. Digital Signals
A digital system processes only digital data, which is data represented by only 0’s and 1’s. On
most boards, two voltages represent “0” and “1”, since all data is represented as some com-
bination of 1’s and 0’s. No voltage (0 volts) is referred to as ground, VSS, or low, and 3, 5, or
12 volts are commonly referred to as VCC, VDD or HIGH. All signals within the system are
one of the two voltages, or are transitioning to one of the two voltages. Systems can define
“0” as low and “1” as high, or some range of 0–1 volts as LOW, and 4–5 volts as HIGH, for
instance. Other signals can base the definition of a “1” or “0” on edges (low-to-high) or (high-
to-low).

Because most major components on an embedded board, such as processors, inherently
process the 1’s and 0’s of digital signals, a lot of embedded hardware is digital by nature.
However, an embedded system can still process analog signals, which are continuous—that
is, not only 1’s and 0’s but values in between as well. Obviously, a mechanism is needed on
the board to convert analog signals to digital signals. An analog signal is digitized by a sam-
pling process, and the resulting digital data can be translated back into a voltage “wave” that
mirrors the original analog waveform.

Real-World Advice

Inaccurate Signals: Problems with Noise in Analog and Digital Signals

One of the most serious problems in both the analog and digital signal realm involves noise 
distorting incoming signals, thus corrupting and affecting the accuracy of data. Noise is generally 
any unwanted signal alteration from an input source, any part of the input signal generated 
from something other than a sensor, or even noise generated from the sensor itself. Noise is a 
common problem with analog signals. Digital signals, on the other hand, are at greater risk if 
the signals are not generated locally to the embedded processor, so any digital signals coming 
across a longer transmission medium are the most susceptible to noise problems.

Analog noise can come from a wide variety of sources—radio signals, lightning, power lines, 
the microprocessor, the analog sensing electronics themselves, etc. The same is true for digital 
noise, which can come from mechanical contacts used as computer inputs, dirty slip rings that 
transmit power/data, limits in accuracy/dependability of input source, and so forth.
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The key to reducing either analog or digital noise is: 1) to follow basic design guidelines to 
avoid problems with noise. In the case of analog noise this includes not mixing analog and 
digital grounds, keeping sensitive electronic elements on the board a sufficient distance from 
elements switching current, limiting length of wires with low signal levels/high impedance, 
etc. With digital signals, this means routing signal wires away from noise-inducing high cur-
rent cables, shielding wires, transmitting signals using correct techniques, etc.; 2) to clearly 
identify the root cause of the problem, which means exactly what is causing the noise. With 
point 2), once the root cause of the noise has been identified, a hardware or software fix 
can be implemented. Techniques for reducing analog noise include filtering out frequencies 
not needed and averaging the signal inputs, whereas digital noise is commonly addressed via 
transmitting correction codes/parity bits, and/or adding additional hardware to the board to 
correct any problems with received data.

—Based on the articles by Jack Ganssle “Minimizing Analog Noise” (May 1997), 
“Taming Analog Noise” (Nov. 1992) and “Smoothing Digital Inputs” (Oct. 1992) 

Embedded Systems Programming Magazine

3.4 Basic Hardware Materials: 
Conductors, Insulators, and Semiconductors

All electronic devices used on a board or that come into contact with an embedded board
(such as networking transmission mediums) are made up of materials that are generally
classified as conductors, insulators, or semiconductors. These categories differ according to
the ability of the materials to conduct an electric current. While conductors, insulators, and
semiconductors will all conduct given the right environment, conductors are materials that
have fewer impediments to an electric current (meaning they more easily lose/gain valence
electrons), and they (coincidentally) have three or fewer valence electrons (see Figure 3-6).

Figure 3-6: Conductors
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Most metals are conductors, because most metallic elements have a crystalline makeup that
doesn’t require a lot of energy to free the valence electrons of their atoms. The atomic lat-
tice (structure) of these metals is composed of atoms that are bound so tightly together that
valence electrons aren’t closely associated with any individual atom. This means that valence
electrons are equally attached to surrounding atoms, and the force attaching them to an indi-
vidual nucleus is practically nil. Thus, the amount of energy at room temperature to free these
electrons is relatively small. Buses and wired transmission mediums are examples of one or
more wires made up of conductive metallic material. A wire, in a schematic diagram, is typi-
cally represented by a straight line: “ ” (see Appendix B); in other electronic diagrams 
(i.e., block) they can also be represented as arrows “ ” .

Insulators typically have five or more valence electrons (see Figure 3-7), and impede an
electric current. This means that they are less likely to lose or gain valence electrons without
a great deal of applied energy to the material. For this reason, insulators are typically not the
main materials used in buses. Note that some of the best insulators, like conductive metals,
are very regular in their crystal lattice and their atoms do tightly bond. The main difference
between a conductor and insulator lies in whether the energy of the valence electrons is
enough to overcome any barriers between atoms. If this is the case, these electrons are free
floating in the lattice. With an insulator, like NaCl for example (sodium chloride, a.k.a. table
salt), the valence electrons would have to overcome a tremendous electric field. In short, in-
sulators require greater amounts of energy at room temperature to free their valence electrons
in comparison to conductors. Non-metals, such as air, paper, oil, plastic, glass, and rubber, are
usually considered insulators.

Figure 3-7: Insulators
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Air Transmissions via Electromagnetic Waves

The ability of an insulator, air, to transmit data is the basis of wireless communication. Data is 
transmitted specifically through electromagnetic waves that have the ability to induce a cur-
rent in a receiving antenna. An antenna is basically a conducting wire that contains a vibrating 
current that radiates electromagnetic energy into its surroundings. In short, electromagnetic 
waves are created when an electric charge oscillates at the speed of light, such as within an 
antenna. The oscillation of an electric charge can be caused by many things—heat, AC circuitry, 
and so on—but in essence, all elements above the temperature of absolute zero emit some 
electromagnetic radiation. So, heat (for example) can generate electromagnetic radiation, 
because the higher the temperature, the faster the electrons oscillate per unit of time, and 
thus the more electromagnetic energy emitted. 

When the electromagnetic wave is emitted, it travels through the empty space, if any, between 
atoms (of air, of materials, etc.). The electromagnetic radiation is absorbed by that atom, 
causing its own electrons to vibrate and, after a time, emit a new electromagnetic wave of 
the same frequency as the wave it absorbed. It is, of course, usually intended at some point 
for some type of receiver to intercept one of these waves, but the remaining electromagnetic 
waves will continue to travel indefinitely at the speed of light (though they do weaken the 
further they travel from their original source—the amplitude/strength of a wave is inversely 
proportional to the square of the distance). It is for this reason that the different types of wire-
less mediums (satellite vs. Bluetooth for instance, discussed in Chapter 2) have their limitations 
in terms of the types of devices and networks they are used in and where their receivers need 
to be located. 

Semiconductors usually have four valence electrons, and are classified as materials whose
base elements have a conductive nature that can be altered by introducing other elements into
their structure. This means that semiconductive material has the ability to behave both as a
conductor and as an insulator. Elements such as silicon and germanium can be modified in
such a manner that they have a resistance about halfway between insulators and conductors.
The process of turning these base elements into semiconductors starts with the purification
of these elements. After purification, these elements have a crystalline structure in which
atoms are rigidly locked together in a lattice with the electrons unable to move, making them
strong insulators. These materials are then doped to enhance their abilities to conduct elec-
trons. Doping is the process of introducing impurities, which in turn interweaves the silicon
or germanium insulator structure with the conductive features of the donor. Certain impurities
(like arsenic, phosphorus, antimony, etc.), called donors, create a surplus of electrons creating
an N-type semiconductor, while other impurities called acceptors, such as boron, produce a
shortage of electrons, creating a P-type semiconductor material (see Figures 3-8a and b).

Note that the fact that semiconductors usually have four valence electrons is a coincidence
(silicon and germanium both have four valence electrons, for example). A semiconductor
is defined by the energy of the valence electron with respect to the barriers between lattice
atoms.
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Figure 3-8b: N-type semiconductor
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3.5 Common Passive Components on Boards and in Chips: 
Resistors, Capacitors, and Inductors

Passive electronic components, including wires, can be integrated (along with semiconductive
devices, discussed later in this chapter) to form processors and memory chips. These compo-
nents can also be a part of the circuitry (input circuitry, output circuitry, and so on) found on
the board. The next several sub-sections introduce passive components commonly found on
an embedded board, mainly the resistor, the capacitor, and the inductor.

3.5.1 The Resistor
Even the best of conductors will offer some resistance to current flow. Resistors are devices
made up of conductive materials that have had their conductivity altered in some fashion to
allow for an increase in resistance. For example, carbon-composition resistors are created
by the mixing of carbon (the conductor) with an insulating material (the impurity). Another
technique used in creating resistors is to change the physical shape of the material to alter its
resistance, such as winding a wire into a coil, as is the case in wire-wound resistors. There are
several different types of resistors in addition to wire-wound and carbon-composition, includ-
ing current-limiting, carbon film, foil filament wound, fuse and metal film, to name a few.
Regardless of type, all resistors provide the same inherent function, to create a resistive force
in a circuit. Resistors are a means, within an AC or DC circuit, to control the current or volt-
age by providing some amount of resistance to the current or voltage that flows across them.

Because resistors, as reflected in Ohm’s Law (V = IR), can be used to control current and
voltage, they are commonly used in a variety of circuitry both on boards and integrated into
processor or memory chips when needed to achieve a particular bias (voltage or current level)
for some type of circuitry the resistors are connected to. This means that a set of resistors
networked properly to perform a certain function—for example, as attenuators, voltage divid-
ers, fuses, heaters, and so on—provides a specific voltage or current value adjustment that is
required for some type of attached circuitry.

Given two resistors with identical resistances, depending on how the resistor was made, a
set of properties is considered when selecting between the two for use in a particular circuit.
These properties include:

Tolerance in %, which represents at any one time how much more or less precise the
resistance of the resistor is at any given time, given its labeled resistance value. The
actual value of resistance should not exceed + or – the labeled tolerance. Typically,
the more sensitive a particular circuit is to error, the tighter (smaller) the tolerances
that are used.
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Power rating. When a current encounters resistance, heat, along with some other
forms of energy at times, such as light, is generated. The power rating indicates how
much power a resistor can safely dissipate. Using a low-powered resistor in a higher-
powered circuit can cause a melt-down of that resistor, as it is not able to release the
generated heat from the current it carries as effectively as a higher-powered resistor
can.

Reliability level rating in %, meaning how much change in resistance might occur in
the resistor for every 1000 hours of resistor use.

Temperature coefficient of resistance, or TCR. The resistivity of materials that make
up the resistor can vary with changes in temperature. The value representing a change
in resistance relative to changes in temperature is referred to as the temperature coef-
ficient. If a resistor’s resistivity doesn’t change in response to a temperature change, it
has a “0” temperature coefficient. If a resistor’s resistivity increases when the tem-
perature increases and decreases when the temperature decreases, then that resistor
has a “positive” temperature coefficient. If a resistor’s resistivity decreases when the
temperature increases, and increases when the temperature decreases, then that resis-
tor has a “negative” temperature coefficient. For example, conductors typically have
a “positive” temperature coefficient, and are usually most conductive (have the least
resistance) at room temperature, while insulators typically have fewer freed valence
electrons at room temperature. Thus, resistors made up of particular materials that
display some characteristic at “room temperature,” and a measurably different one at
warmer or cooler temperatures, impact what types of systems they ultimately may be
used in (mobile embedded devices vs. indoor embedded devices, for example).

While there are many different ways to make resistors, each with their own properties, at the
highest level there are only two types of resistors: fixed and variable. Fixed resistors are resis-
tors that are manufactured to have only one resistance value. Fixed resistors come in many
different types and sizes depending on how they are made (see Figure 3-9a), though in spite
of the differences in physical appearances, the schematic symbol representing fixed resistors
remains the same depending on the schematic standard supported (Figure 3-9b).

Figure 3-9a:
Fixed resistors 

Figure 3-9b:
Fixed resistor schematic symbols

USA/Japan

Europe



Embedded Hardware Building Blocks and the Embedded Board

95

For fixed resistors with bodies that are too small to contain their printed property values, the
values are calculated from color coded bands located physically on the resistor’s body. These
color coded bands appear as either vertical stripes, used on fixed resistors with axial leads as
shown in Figure 3-10a, or in various locations on the body, used on fixed resistors with radial
leads as shown in Figure 3-10b.   

Figure 3-10a:
Fixed resistors with axial leads

Figure 3-10b:
Fixed resistors with radial leads

A resistor may also include additional color coded bands representing its various properties,
such as reliability level ratings, temperature coefficient, tolerance, and so on. While different
types of fixed resistors have different numbers and types of bands, the color definitions are
typically the same. Tables 3-2a, b, c, and d show the various types of bands that can be found
on the body of a fixed resistor along with their meanings.

Table 3-2a: Resistor color code digits
and multiplier table [3-6]

Table 3-2b:
Temperature coefficient [3-6]

Color of 
Band

Digits Multiplier Color of 
Band

Temperature 
coefficient

Black 0 1 Brown 100 ppm
Brown 1 10 Red 50 ppm
Red 2 100 Orange 15 ppm
Orange 3 1K Yellow 25 ppm
Yellow 4 10K
Green 5 100K
Blue 6 1M
Purple 7 10M
Grey 8 100M
White 9 1000M
Silver - 0.01
Gold - 0.1
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Color of 
Band

Reliability
Level (%)

Color of 
Band

Tolerance 
(%)

Brown 1% Silver ± 10%
Red 0.1% Gold ± 5%
Orange 0.01% Brown ± 1%
Yellow 0.001% Red ± 2%

Green ± 0.5%
Blue ± 0.25%
Purple ± 0.1%

To understand how the color coding works, let’s take an example of a 5-band carbon com-
position resistor with axial leads, in which the bands are arranged as vertical stripes on the
resistor’s body, with associated colors bands as shown in Figure 3-11. Bands 1 and 2 are
digits, band 3 is the multiplier, band 4 is tolerance, and band 5 is reliability. Note that resis-
tors can vary widely in the number and meanings of the bands, and that this is one specific
example in which we’re given the information and are told how to use the tables to determine
resistance and other various properties. This resistor’s first three bands are red = 2, green
= 5, and brown = 10. Thus, this resistor has a resistance of 250 (2 and 5 of the red and
green bands are the first and second digits, the third brown band “ 10” value is the multiplier
which is used to multiply “25” by 10, resulting in the value of 250). Taking into account
the resistor’s tolerance reflected by the red band or 2%, this resistor has a resistance value
of 250 2%. The fifth band in this example is a yellow band, reflecting a reliability of
0.001%. This means that the resistance of this resistor might change by 0.001% from the
labeled value (250 2% in this case) for every 1000 hours of use. Note: The amount of 
resistance provided by a resistor is measured in ohms ( ).

1st Digit

2nd Digit

Multiplier

Tolerance
Reliability

Ye l low
Red

Bro wn

Green

Red

Figure 3-11:
5-band fixed resistor with axial leads example

Table 3-2c:
Reliability level (%1000 HR) [3-6] Table 3-2d: Tolerance [3-6]
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Variable resistors vary their resistance on-the-fly, as opposed to manufactured fixed resistors.
Resistance can be varied manually (potentiometers), by changes in light (photosensitive/photo
resistor), by changes in temperature (thermally sensitive/termistor), and so on. Figures 3-12a
and b show what some variable resistors physically look like, as well as how they are symbol-
ized in schematics.

3.5.2 The Capacitor
Capacitors are made up of conductors typically in the form of two parallel metal plates sepa-
rated by an insulator, which is a dielectric such as air, ceramic, polyester, mica, and so forth,
as shown in Figure 3-13a.

Figure 3-12a: Variable resistor’s appearance

Figure 3-12b: Variable resistor’s schematic symbols

Figure 3-13a: Capacitor Figure 3-13b: Capacitor in circuit
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Electric
Field
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When each of the plates is connected to an AC voltage source (see Figure 3-13b), the plates
accumulate opposing charges, positive in one plate and negative in the other. Electrons are
surrounded by electric fields produced by that charge. An electric field emanates outwardly
and downwardly from the source, in this case the charged plate, diminishing in field strength
as it gets further from the source. The electric field created between the two plates acts to
temporarily store the energy and keep the plates from discharging. If a wire were to connect
the two plates, current would flow until both plates were no longer charged—or as is the case
with AC voltage sources, when the polarity changes, the plates then discharge.

In short, capacitors store energy in electric fields. Like the resistor, they impede the flow of
energy, but unlike the resistor, which dissipates some of this energy intentionally and is typi-
cally used in both AC and DC circuits, the capacitor is more commonly used in AC circuits,
and gives this same energy back to the circuit in its original form (electrically) when the
plates are discharged. Note that, depending on how the capacitor is made, manufacturing
imperfections may result in a capacitor not functioning perfectly, causing some unintentional
loss of energy in the form of heat.

Any two conductors located in close proximity can act as capacitors (with air being the 
dielectric). This phenomena is called inter-electrode capacitance. It is for this reason that in 
some devices (involving radio frequencies) this phenomena is minimized by enclosing some 
electronic components. 

A set of properties is considered when selecting capacitors for use in a particular circuit,
namely:

Temperature coefficient of capacitance. Similar in meaning to TCR (temperature
coefficient of resistance). If a capacitor’s conductance doesn’t change in response to
a temperature change, it has a “0” temperature coefficient. If a capacitor’s capaci-
tance increases when the temperature increases, and decreases when the temperature
decreases, then that capacitor has a “positive” temperature coefficient. If a capacitor’s
capacitance decreases when the temperature increases, and increases when the tem-
perature decreases, then that capacitor has a “negative” temperature coefficient.

Tolerance in %, which represents at any one time how much more or less precise the
capacitance of a capacitor is at any given time given its labeled capacitance value (the
actual value of capacitance should not exceed + or – the labeled tolerance).
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As with resistors, capacitors can be integrated into a chip, and depending on the capacitor,
used in everything from DC power supplies to radio receivers and transmitters. Many differ-
ent types of capacitors exist (variable, ceramic, electrolytic, epoxy, and so on), differing by
the material of the plates and dielectric and, like resistors, by whether they can be adjusted
on-the-fly (see Figures 3-14a and b).

Figure 3-14a: Capacitors

Figure 3-14b: Capacitor’s schematic symbols

3.5.3 Inductors
Inductors, like capacitors, store electrical energy in AC circuits. With capacitors, however,
energy is temporarily stored in an electric field, whereas inductors temporarily store energy
in a magnetic field. These magnetic fields are produced by the movement of electrons, and
can be visualized as rings surrounding an electric current (see Figure 3-15a). The direction of
electron flow determines the direction of the magnetic field (see Figure 3-15b).

+

Non-Polarized/Bipolar Fixed Fixed Polarized Variable
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All materials, even conductors, have some resistance and thus give off some energy. Some of
this energy is stored within the magnetic fields surrounding the wire. Inductance is the storage
of energy within the magnetic field surrounding a wire with a current flowing through it (and
like capacitance, can occur unintentionally). When a change occurs in the current stream, as
happens in an AC circuit, the magnetic field changes and thus “induces a force on a charged
object” (Faraday’s Law of Induction). Any expansion, due to a current increase, means an
increase in the energy stored by the inductor, whereas a collapse of a magnetic field, due to a
lack of current, will release that energy back into the circuit. Changes in current are reflected
in how inductance is measured. Measured in units of henries (H), inductance is the ratio
between the rate of current change and the voltage across the inductor.

As mentioned, all wires with some current have some sort of inductance, however minimal.
Because magnetic flux is much higher for a coiled wire than for a straighter wire, most com-
mon inductors are made up of a coiled wire, although, again, inductors can be made up of a
single wire or set of wires. Adding some type of core other than air, such as ferrite or pow-
dered iron within the coiled-up wire increases the magnetic flux density many times over.
Figures 3-16a and b show some common inductors and their schematic symbol counterparts.

–     Battery    +
El ectron
Flow

El ectron Flow

El ectron Flow

Figure 3-15a: Magnetic fields Figure 3-15b: Direction of magnetic fields

Figure 3-16a:
Inductor’s appearance

Figure 3-16b:
Inductor’s schematic symbols
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The properties that define inductance include the number of individual coils (the more coils,
the larger the inductance), the diameter of the coils (which is directly proportional to induc-
tance), the overall shape of the coil (cylindrical/solenoidal, doughnut-shaped/toroidal, and so
on), and the overall length of the coiled wire (the longer it is, the smaller the inductance).

3.6 Semiconductors and the Active Building Blocks
of Processors and Memory

While P-type and N-type semiconductors are the basic types of semiconductors, as discussed
in Section 3.4, they are not usually very useful on their own. These two types must be com-
bined in order to be able to do anything practical. When P-type and N-type semiconductors
are combined, the contact point, called the P-N Junction, acts as a one-way gate to allow
electrons to flow within the device in a direction dependent on the polarity of the materials.
P and N-type semiconductive materials form some of the most common basic electronic
devices that act as the main building blocks in processor and memory chips: diodes and
transistors.

3.6.1 Diodes
A diode is a semiconductor device made up of two materials, one P-type and one N-type,
joined together. A terminal is connected to each of the materials, called an anode, labeled “A”
in the schematic symbol in Figure 3-17b, and a cathode, labeled “C” in the schematic in Figure
3-17b.

Figure 3-17b: Diode schematic symbols

ZenerPhotodiode/Photosensiti veLED (Light Emitting Diode)Diode

C AC AC AC A

Figure 3-17a: Diode and light emitting diode (LED)
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These materials work together to allow current to flow in only one direction. Current flows
through a diode from the anode to cathode as long as the anode has a higher (positive) volt-
age; this phenomena is called forward biasing. Current flows in this condition because the
electrons flowing from the voltage source are attracted to the P-type material of the diode
through the N-type material (see Figure 3-18a).

When current will not flow through the diode because the cathode has a higher (positive)
voltage than the anode, the diode acts like a variable capacitor, whose capacitance changes
depending on the amount of reverse voltage. This is called reverse biasing. In this case (as
shown in Figure 3-18b), the electrons are pulled away from the P-type material in the diode,
creating a depletion region, a section surrounding the P-N junction that has no charge and
acts as an insulator, resisting current flow.

There are several different types of diodes, each with their own common uses, such as recti-
fier diodes that convert AC to DC by keeping the polarity constant, PIN diodes as switches,
zener diodes for voltage regulation, and so on. Some of the most recognizable diodes on a
board are the Light Emitting Diodes or LEDs, shown in Figure 3-19. LEDs are the blinking
or steady lights that can indicate anything from PowerON, to problems with the system, to
remote-control signals, depending on how they are designed. LEDs are designed to emit vis-
ible or infrared (IR) light when forward biased in a circuit.

As a final note, keep in mind that higher forms of semiconductor logic are based upon the
diode depletion effect. This effect generates a region where the barrier is higher than the aver-
age valence electron energy, and the barrier can be influenced by voltage.

Figure 3-18a:
Diode in forward bias

Figure 3-18b:
Diode in reverse bias
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Figure 3-19:
LED in forward bias + –

P-T ype N-Type

Cu rrent Flow

PN Ju nction encased in doped shell

When electrons move  into P- Type
Material, Ph otons emitted

3.6.2 Transistors
“Transistor” is the contraction for current-transferring resistor.[3-5] Transistors are made up of
some combination of P-type and N-type semiconductor material, with three terminals con-
necting to each of the three materials (see Figure 3-20a). It is the combination and versatility
of these materials that, depending on the type of transistor, allow them to be used for a variety
of purposes, such as current amplifiers (amplification), in oscillators (oscillation), in high-
speed integrated circuits (ICs, to be discussed later this chapter), and/or in switching circuits
(DIP switches, push buttons, and so on commonly found on off-the-shelf reference boards
for example). While there are several different types of transistors, the two main types are the
bipolar junction transistor (BJT) and the field effect transistor (FET).

The BJT, also referred to as the bipolar transistor, is made up of three alternating types of
P-type and N-type material, and are subclassed based on the combination of these materi-
als. There are two main subclasses of bipolar transistors, PNP and NPN. As implied by their
names, a PNP BJT is made up of two sections of P-type materials, separated by a thin section
of N-type material, whereas the NPN bipolar transistor is made up of two sections of N-type
material, separated by a thin section of P-type material. As shown in Figures 3-20a and b,
each of these sections has an associated terminal (electrode): an emitter, base, and a collector.

Figure 3-20a: NPN BJT “OFF” Figure 3-20b: PNP BJT “OFF”
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When the NPN BJT is OFF (as shown in Figure 3-20a), electrons in the emitter cannot bypass
the P-N junction to flow to the collector, because there is no biasing voltage (0 volts) at the
base to pressure electrons over the junctions.

To turn the NPN BJT “ON” (as shown in Figure 3-21a), a positive voltage and input cur-
rent must be applied at the base so escaping electrons from the emitter are attracted to the
P-type base, and, because of the thinness of the P-type material, these electrons then flow to
the collector. This then creates a (positive) current flow from the collector to the emitter. This
current flow is a combination of the base current and collector current, and so, the larger the
base voltage, the greater the emitter current flow. Figure 3-21b shows the NPN BJT schematic
symbol, which includes an arrow indicating the direction of output current flow from the
emitter when the transistor is ON.

When the PNP BJT is OFF (as shown in Figure 3-20b), electrons in the collector cannot
bypass the PN junction to flow to the emitter, because the 0 volts at the base is placing just
enough pressure to keep electrons from flowing. To turn the PNP BJT ON (as shown in Fig-
ure 3-22a), a negative base voltage is used to decrease pressure and allow a positive current
flow out of the collector, with a small output current flowing out of the base, as well. Figure
3-22b shows the PNP BJT schematic symbol, which includes an arrow indicating the direc-
tion of current flow into the emitter and out the collector terminal when the transistor is ON.

Figure 3-21a: NPN BJT “ON” Figure 3-21b: NPN BJT schematic symbol
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Figure 3-22a: PNP BJT “ON” Figure 3-22b: PNP BJT schematic symbol
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In short, PNP and NPN BJTs work in the same manner, given the opposite directions of cur-
rent flow, the P and N type material makeup, and the voltage polarities applied at the base.

Like the BJT, the FET is made up of some combination of P-type and N-type semiconductor
material. Like the BJT, FETs have three terminals, but in FETs these terminals are called a
source, a drain/sink, and a gate (see Figure 3-22). In order to function, FETs do not require a
biasing current, and are controlled via voltage alone. Beyond this, there are several subtypes
of FETs that function and are designed differently, the most common falling under the fami-
lies of the metal-oxide-semiconductor field-effect transistor (MOSFET) and the junction
field-effect transistor (JFET).

There are several types of MOSFETs, the main two subclasses of which are enhancement
MOSFETs and depletion MOSFETs. Like BJTs, enhancement-type MOSFETs become less
resistant to current flow when voltage is applied to the gate. Depletion-type MOSFETs have
the opposite reaction to voltage applied to the gate: they become more resistant to current
flow. These MOSFET subclasses can then be further divided according to whether they are
P-channel or N-channel transistors (see Figure 3-23a, b, c, and d).

Figure 3-23a:
N-channel enhancement MOSFET “OFF”

Figure 3-23c:
P-channel enhancement MOSFET “OFF”

Figure 3-23b:
N-channel depletion MOSFET “OFF”

Figure 3-23d:
P-channel depletion MOSFET “OFF”
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In N-channel enhancement MOSFETs, the source and drains are N-type (– charge)
semiconductor material and sit on top of P-type material (+ charge). In P-channel enhance-
ment MOSFETs, the source and drains are P-type (+ charge) semiconductor material and sit
on top of N-type material (– charge).When no voltage is applied to the gate, these transistors
are in the OFF state (see Figure 3-23a and c), because there is no way for current to flow from
the source to the drain (for N-channel enhancement MOSFETs) or from drain to source for
P-channel enhancement MOSFETs.

N-channel depletion MOSFETs are in the “OFF” state when a negative voltage is applied to
the gate (as shown in Figure 3-23b) to create a depletion region, an area in which no current
can flow, making it more difficult for electrons to flow through the transistor because of a
smaller available channel for current to flow through. The more negative the voltage applied
to the gate, the larger the depletion region, and the smaller the channel available for electron
flow. As seen in Figure 3-23d, the same holds true for a P-channel depletion MOSFET, except
because of the reversed type (polarity) of materials, the voltage applied at the gate to turn the
transistor OFF is positive instead of negative.

The N-channel enhancement MOSFET is in the ON state when “+” (positive) voltage is
applied to the gate of the transistor. This is because electrons in the P-type material are
attracted to the area under the gate when the voltage is applied, creating an electron channel
between the drain and source. So, with the positive voltage on the other side of the drain, a
current flows from the drain (and gate) to the source over this electron channel. P-channel
enhancement MOSFETs, on the other hand, are in the ON state when “–” (negative) voltage
is applied to the gate of the transistor. This is because electrons from the negative voltage
source are attracted to the area under the gate when the voltage is applied, creating an elec-
tron channel between the source and drain. So, with the positive voltage on the other side of
the source, current flows from the source to the drain (and gate) over this electron channel
(see Figures 3-24a and c).

Because depletion MOSFETs are inherently conductive, when there is no voltage applied to
the gates of an N-channel or P-channel depletion MOSFET, there is a wider channel in which
electrons are free to flow through the transistor from, in the case of an N-channel depletion
MOSFET, the source to the drain and, in the case of the P-channel depletion MOSFET, the
drain to the source. In these cases, the MOSFET depletion transistors are in the “ON” state
(see Figures 3-24b and d).



Embedded Hardware Building Blocks and the Embedded Board

107

As seen in Figure 3-25, the schematic symbols for the MOSFET enhancement and depletion
N-channel and P-channel transistors contain an arrow that indicates the direction of current
flow for N-channel MOSFET depletion and enhancement transistors (into the gate, and with
what is coming into the drain, output to the source), and P-channel MOSFET depletion and
enhancement transistors (into the source, and out of the gate and drain) when these transistors
are ON.

Figure 3-24a:
N-channel enhancement MOSFET “ON”

Figure 3-24c:
P-channel enhancement MOSFET “ON”

Figure 3-24b:
N-channel depletion MOSFET “ON”

Figure 3-24d: 
P-channel depletion MOSFET “ON”
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Figure 3-25: MOSFET schematic symbols
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The JFET transistors are subclassed as either N-channel or P-channel JFETs, and like deple-
tion-type MOSFETs, become more resistive to current flow when voltage is applied to their
gates. As shown in Figure 3-26a, an N-channel JFET is made up of the drain and source
connecting to N-type material, with the gate connecting to two P-type sections on either
side of the N-type material. A P-channel JFET has the opposite configuration, with the drain
and source connecting to P-type material, and the gate connecting to two N-type sections on
either side of the P-type material (see Figure 3-26b).

Figure 3-26a: N-channel JFET “OFF” Figure 3-26b: P-channel JFET “OFF”
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In order to turn the N-channel JFET transistor “OFF”, a negative voltage must be applied to
the gate (as shown in Figure 3-26a) to create a depletion region, an area in which no current
can flow, making it more difficult for electrons to flow through the transistor because of a
smaller available channel for current to flow through. The more negative the voltage applied
to the gate, the larger the depletion region, and the smaller the channel available for electron
flow. As seen in Figure 3-26b, the same holds true for a P-channel JFET, except because of
the reversed type of materials, the voltage applied at the gate to turn the transistor OFF is
positive instead of negative.

When there is no voltage applied to the gates of an N-channel or P-channel JFET, there is a
wider channel in which electrons are free to flow through the transistor from, in the case of an
N-channel JFET, the source to the drain and, in the case of the P-channel JFET, the drain to
the source. In this case, the JFET transistors are in the “ON” state (see Figures 3-27a and b).

As seen in Figure 3-28, the schematic symbols for the JFET N-channel and P-channel transis-
tors contain an arrow that indicates the direction of current flow for N-channel (into the gate,
and with what is coming into the drain, output to the source) and P-channel (into the source,
and out of the gate and drain) when these transistors are ON.
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Again, there are other types of transistors (such as unijunction) but essentially the major
differences between all transistors include size (FETs can typically be designed to take up
less space than BJTs, for instance), price (FETs can be cheaper and simpler to manufacture
than BJTs, because they are only controlled via voltage), usage (FETs and unijunctions are
typically used as switches, BJTs in amplification circuits), and so on. In short, transistors are
some of the most critical elements in the design of more complex circuitry on an embedded
board. The next several pages will indicate how they are used.

Figure 3-27a: N-channel JFET “ON” Figure 3-27b: P-channel JFET “ON”
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Figure 3-28: JFET N-channel and P-channel schematic symbols

P-Channel

D

G

N-Channel

D

S

G



Chapter 3

110

3.6.3 Building More Complex Circuitry from the Basics: Gates
Transistors that can operate as switches, such as MOSFETs, are operating in one of two
positions at any one time: ON (1) or OFF (0). MOSFETs are implemented in a switched elec-
tronic circuit in which the switch (the transistor) controls the flow of electrons over the wire
by (if an nMOS) being ON (completing the circuit path) or OFF (breaking the circuit path), or
vice-versa if a pMOS. It is because embedded hardware communicates via various combina-
tions of bits (0’s and 1’s) that transistors like the MOSFET are used in circuits that can store
or process bits, since these types of transistors can function as a switch that is either a value
of “0” or “1”. In fact, transistors, along with other electronic components such as diodes and
resistors are the main “building blocks” of more complex types of electronic switching cir-
cuits, called logical circuits or gates. Gates are designed to perform logical binary operations,
such as AND, OR, NOT, NOR, NAND, XOR, and so on. Being able to create logic circuits
is important, because these operations are the basis of all mathematical and logical functions
used by the programmer and processed by the hardware. Reflecting logical operations, gates
are designed to have one or more input(s) and one output, supporting the requirements to
perform logical binary operations. Figures 3-29a and b outline some examples of the truth
tables of some logical binary operations, as well as one of the many possible ways transistors
(MOSFETs are again used here as an example) can build such gates.

Figure 3-29a: Truth tables of logical binary operations

AND OR NOT               NAND NOR      XOR
I1 I2 O  I1 I2 O  I1 O  I1 I2 O  I1 I2 O  I1 I2 O
0 0 0  0 0 0  0 1  0 0 1  0 0 1  0 0 0
0 1 0  0 1 1  1 0  0 1 1  0 1 0  0 1 1
1 0 0  1 0 1     1 0 1  1 0 0  1 0 1
1 1 1  1 1 1     1 1 0  1 1 0  1 1 0

…
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In the static CMOS (complementary metal-oxide semiconductor) logic method of implementing gates, both 
nMOS and pMOS gates are used in the design. (For simplicity and electrical reasons, transistors of the 
same polarity are often not mixed, but grouped separately, where transistors of one polarity type pull output 
a certain way with some input value, and the other pulls output the other way, given the same input.) The 
CMOS method is sequential-based, meaning there are no clocks in the circuit, and that circuit outputs are 
based upon all past and current inputs (as opposed to the combinatorial method whose output is based 
upon input at some moment in time). Sequential vs. combinatorial gates will be discussed in more detail 
later this section. The NOT Gate is simplest to understand, so we start with this example. 

**Note: inputs (I1 and I2) are inputs to the transistor gates. For P-channel (pMOS) enhancement transis-
tors, the transistor is ON when gate is OFF, whereas for the N-channel (nMOS) enhancement transistor 
the transistor is ON when gate is ON. 

Figure 3-29b: CMOS (MOSFET) gate transistor design examples [3-12]

NOT Gate

I1 O

Schematic
Symbol

0,  nMOS T2 is OFF -- pMOS T1 is ON -- and with VDD will pull O =1.
1, pMOS T1 is OFF -- nMOS T2 is ON -- but Vss/Gnd will pull O = 0.
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NOR Gate

I1 = 0 , I2 = 0 then O = 1
When I1 = 0   pMOS T2 is ON (pulled up by VDD ) – nMOS T4 is OFF
           I2 = 0  nMOS T1 is OFF -- pMOS T3 is ON(pulled up by VDD )
           O determined by T1, T3, or T4 being ON – so  O = 1 since T3 is ON

I1

I2

O

Schematic
Symbol

VDD

VSS

T1

T2

T3

T4

I1 = 0 , I2 = 1 then O = 0
When I1 = 0   pMOS T2 is ON (pulled up by VDD ) – nMOS T4 is OFF
           I2 = 1  nMOS T1 is ON but pulled to 0  by Vss/GND -- pMOS T3 is OFF
           O determined by T1, T3, or T4 being ON – so  O = 0 since no transistors pulled ON

I1 = 1 , I2 = 0 then O = 0
When I1 = 1   pMOS T2 is OFF – nMOS T4 is ON but pulled to 0  by Vss/GND
          I2 = 0  nMOS T1 is OFF -- pMOS T3 is ON(pulled up by VDD )
           O determined by T1, T3, or T4 being ON – so  O = 0 since no transistors pulled ON

I1 = 1 , I2 = 1 then O = 0
When I1 = 1   pMOS T2 is OFF – nMOS T4 is ON but pulled to 0  by Vss/GND
          I2 = 1  nMOS T1 is ON but pulled to 0 by Vss/GND -- pMOS T3 is OFF
           O determined by T1, T3, or T4 being ON – so  O = 0 since no transistors pulled ON

OR Gate

Schematic
Symbol

O

I1

I2

VDD

VSS

  I1 = 0, I2 = 0 then O = 0
I1 (0) “NOR” I2 (0) resulted in O=1, thus inverted is O=0

T1

T2

T3

T4

T5

T6

I1 = 0 , I2 = 1 then O = 1
I1(0) “NOR” I2 (1) Resulted in O=0, thus inverted is O = 1

I1 = 1 , I2 = 0 then O = 1
I1(1) “NOR” I2 (0) Resulted in O=0, thus inverted is O = 1

Note : This is circuit is a NOR gate with an  inverter at the end of circuit.(T5 and T6)

I1 = 1 , I2 = 1 then O = 1
I1(1) “NOR” I2 (1) Resulted in O=0, thus inverted is O = 1

Figure 3-29b: CMOS (MOSFET) gate transistor design examples [3-12] (continued)
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Figure 3-29b: CMOS (MOSFET) gate transistor design examples [3-12] (continued)

NAND Gate
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I1 = 0 , I2 = 0 then O = 1
When I1 = 0   pMOS T1 is ON (pulled up by VDD ) – nMOS T3 is OFF
      I2 = 0  nMOS T4 is OFF -- pMOS T2 is ON(pulled up by VDD )
      O determined by T1, T2, or T3 being ON – so O = 1 since T1 and T2 is ON

I1 = 0 , I2 = 1 then O = 1
When I1 = 0   pMOS T1 is ON (pulled up by VDD ) – nMOS T3 is OFF
      I2 = 1  nMOS T4 is ON but pulled to 0  by Vss/GND -- pMOS T2 is OFF
      O determined by T1, T2, or T3 being ON – so O = 1 since T1 is ON

I1 = 1 , I2 = 0 then O = 1
When I1 = 1   pMOS T1 is OFF – nMOS T3 is ON but pulled to 0  by Vss/GND
           I2 = 0  nMOS T4 is OFF -- pMOS T2 is ON(pulled up by VDD )
           O determined by T1, T2, or T3 being ON – so  O = 1 since T2 is ON

I1 = 1 , I2 = 1 then O = 0
When I1 = 1   pMOS T1 is OFF – nMOS T3 is ON but pulled to 0  by Vss/GND
I2 = 1  nMOS T4 is ON but pulled to 0  by Vss/GND -- pMOS T2 is OFF
      O determined by T1, T2, or T3 being ON – so O = 0 since no transistors pulled ON
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Note : This is circuit is a NAND gate with an  inverter a t the end of circuit.(T5 and T6)

  I1 = 0, I2 = 0 then O = 0
I1 (0) “NAND” I2 (0) resulted in O=1, thus inverted is O=0

I1 = 0 , I2 = 1 then O = 0
I1(0) “NAND” I2 (1) Resulted in O=1, thus inverted is O = 0

I1 = 1 , I2 = 0 then O = 0
I1(1) “NAND” I2 (0) Resulted in O=1, thus inverted is O = 0

I1 = 1 , I2 = 1 then O = 1
I1(1) “NAND” I2 (1) Resulted in O=0, thus inverted is O = 1
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Sequential Logic and the Clock

Logic gates can be combined in many different ways to perform more useful and complex
logic circuits (called sequential logic), such as circuits that have some type of memory. In
order to accomplish this, there must be a sequential series of procedures to be followed to
store and retrieve data at any moment in time. Sequential logic is typically based upon one
of two models: a sequential or combinational circuit design. These models differ in what
triggers their gate(s) into changing state, as well as what the results are of a changed state
(output). All gates exist in some defined “state,” which is defined as the current values associ-
ated with the gate, as well as any behavior associated with the gate when the values change.

Figure 3-30: Sequential circuit diagram

Sequential Circuit
Inputs

I1
I2

Output
O

Figure 3-31: Clock signal of synchronous sequential circuits

Ti me

Rising
Edge

Fa lling
  Edge

Pulse
Wi dt h

1 Cycle

As shown in Figure 3-30, sequential circuits provide output that can be based upon current
input values, as well as previous input and output values in a feedback loop. Sequential
circuits can change states synchronously or asynchronously depending on the circuit. Asyn-
chronous sequential circuits change states only when the inputs change. Synchronous
sequential circuits change states based upon a clock signal generated by a clock generator
connected to the circuit.

Almost every embedded board has an oscillator, a circuit whose sole purpose is generating
a repetitive signal of some type. Digital clock generators, or simply clocks, are oscillators
that generate signals with a square waveform (see Figure 3-31). Different components may
require oscillators that generate signals of various waveforms, such as sinusoidal, pulsed, saw
tooth, and so on to drive them. In the case of components driven by a digital clock, it is the
square waveform. The waveform forms a square, because the clock signal is a logical signal
that continuously changes from 0 to 1 or 1 to 0. The output of the synchronous sequential
circuit is synchronized with that clock.
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Commonly used sequential circuits (synchronous and asynchronous) are multivibrators, logic
circuits designed so that one or more of its outputs are fed back as input. The subtypes of
multivibrators—astable, monostable or bistable—are based upon the states in which they hold
stable. Monostable (or oneshot) multivibrators are circuits that have only one stable state,
and produce one output in response to some input. The bistable multivibrator has two stable
states (0 or 1), and can remain in either state indefinitely, whereas the astable multivibra-
tor has no state in which it can hold stable. Latches are examples of bistable multivibrators.
Latches are multivibrators, because signals from the output are fed back into inputs, and they
are bistable because they have only one of two possible output states they can hold stable at: 0
or 1. Latches come in several different subtypes (S-R, Gated S-R, D Latch, etc.). Figure 3-32
demonstrates how the basic logical gates are combined to make different types of latches.

Figure 3-32: Latches [3-8]

S

C

R

(Q)

Q

Gated S-R NOR Latch

D

C

(Q)

Q

Gated D Latch

One of the most commonly used types of latches in processors and memory circuitry is the
flip-flop. Flip-flops are sequential circuits that derived their name because they function by
alternating (flip-flopping) between both states (0 and 1), and the output is then switched (from
0-to-1 or from 1-to-0, for example). There are several types of flip-flops, but all essentially
fall under either the asynchronous or synchronous categories. Flip-flops, and most sequential
logic, can be made from a variety of different gate combinations, all achieving the same type
of results. Figure 3-33 is an example of a synchronous flip-flop, specifically an edge-triggered
D flip-flop. This type of flip-flop changes state on the rising edge or falling edge of a square-
wave enable signal—in other words, it only changes states, thus changing the output, when it
receives a trigger from a clock.
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I1 I2 O

Figure 3-33: D flip-flop diagram [3-8]

Combinational Logic
Inputs Outputs

Flip-Flop

CLK

Initial  or Current
State

Next State

Q D

CLR

C

D

PRE

(Q)

Q

Figure 3-34:
Combinational circuit (no feedback loop) [3-9]

Like the sequential circuit, combinational circuits can have one or more input(s) and only
one output. However, both models primarily differ in that a combinatorial circuit’s output is
dependent only on inputs applied at that instant, as a function of time, and “no” past condi-
tions. A sequential circuit’s output, on the other hand, can be based upon previous outputs
being fed back into the input, for instance. Figure 3-34 shows an example of a combinational
circuit, which is essentially a circuit with no feedback loop.

All of the various logic gates introduced in the last sections, along with the other electronic
devices discussed in this chapter so far, are the building blocks of more complex circuits that
implement everything from the storage of data in memory to the mathematical computations
performed on data within a processor. Memory and processors are all inherently complex
circuits, explicitly integrated circuits (ICs).
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3.7 Putting It All Together: The Integrated Circuit (IC)
Gates, along with the other electronic devices that can be located on a circuit, can be com-
pacted to form a single device, called an integrated circuit (IC). ICs, also referred to as chips,
are usually classified into groups according to the number of transistors and other electronic
components they contain, as follows:

SSI (small scale integration) containing up to 100 electronic components per chip.

MSI (medium scale integration) containing between 100–3,000 electronic compo-
nents per chip.

LSI (large scale integration) containing 3,000–100,000 electronic components per
chip.

VLSI (very large scale integration) containing between 100,000–1,000,000 electronic
components per chip.

ULSI (ultra large scale integration) containing over 1,000,000 electronic components
per chip.

ICs are physically enclosed in a variety of packages that includes SIP, DIP, flat pack, and oth-
ers. (See Figure 3-35.) They basically appear as boxes with pins protruding from the body of
the box. The pins connect the IC to the rest of the board.

Figure 3-35: IC packages

SIP DIP

flat pack metal can
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Physically packaging so many electronic components in an IC has its advantages as well as
drawbacks. These include:

Size. ICs are much more compact than their discrete counterparts, allowing for
smaller and more advanced designs.

Speed. The buses interconnecting the various IC components are much, much smaller
(and thus faster) than on a circuit with the equivalent discrete parts.

Power. ICs typically consume much less power than their discrete counterparts.

Reliability. Packaging typically protects IC components from interference (dirt, heat,
corrosion, etc.) far better than if these components were located discretely on a board.

Debugging. It is usually simpler to replace one IC than try to track down one compo-
nent that failed among 100,000 (for example) components.

Usability. Not all components can be put into an IC, especially those components
that generate a large amount of heat, such as higher value inductors or high-powered
amplifiers.

In short, ICs are the master processors, slave processors, and memory chips located on
embedded boards (see Figure 3-36a through e).

Figure 3-36a: AMD/National Semiconductor x86 reference board [3-1]

© 2004 Advanced Micro Devices, Inc. Reprinted with permission.
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Figure 3-36b: Net Silicon ARM7 reference board [3-2]
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Figure 3-36c: Ampro MIPS reference board [3-3]
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Figure 3-36d: Ampro PowerPC reference board [3-4]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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Figure 3-36e: Mitsubishi analog TV reference board
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3.8 Summary
The purpose of this chapter was to discuss the major functional hardware components of an
embedded board. These components were defined as the master processor, memory, I/O, and
buses—the basic components that make up the von Neumann model. The passive and active
electrical elements that make up the von Neumann components, such as resistors, capacitors,
diodes, and transistors, were also discussed in this chapter. It was demonstrated how these
basic components can be used to build more complex circuitry, such as gates, flip-flops, and
ICs, that can be integrated onto an embedded board. Finally, the importance of and how to
read hardware technical documentation, such as timing diagrams and schematics, was intro-
duced and discussed.

The next chapter, Chapter 4: Embedded Processors, covers the design details of embedded
processors by introducing the different ISA models, as well as how the von Neumann model
is applicable to implementing an ISA in the internal design of a processor.
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Chapter 3 Problems

1. [a]  What is the von Neumann model?
 [b]  What are the main elements defined by the von Neumann model?
 [c]  Given the block diagrams in Figures 3-37a and b, and data sheet information on the

accompanying CD under Chapter 3, files “ePMC-PPC” and “sbcARM7”, identify
where the major elements in this diagram would fall relative to the von Neumann
model.

Figure 3-37a: PowerPC board block diagram [3-13]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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Figure 3-37b: ARM board block diagram [3-14]

2. [a]  Given the simple flashlight shown in Figure 3-38, draw a corresponding schematic
diagram.

Figure 3-38: Simple flashlight [3-15]
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 [b]  Read the schematic diagram in Figure 3-39, and identify the symbols in the diagram.

Figure 3-39: Schematic diagram example [3-7]

3.  [a]  What are the basic materials that all components on an embedded board are
composed of?

 [b]  What are the major differences between these materials?
 [c]  Give two examples of each type of material.

4. Finish the sentence: A wire is:
 A.  not an insulator.
 B.  a conductor.
 C.  a semiconductor.
 D.  Both A and B.
 E.  None of the above.

5.  [T/F] A surplus of electrons exists in a P-type semiconductor.

6.  [a] What is the difference between a passive circuit element and an active circuit
element?

 [b]  Name three examples of each.

7.  [a]  Define and explain the various properties of the fixed resistor in Figure 3-40 by
reading its color-coded bands and referencing Tables 3-3 a, b, c, and d.

 [b]  Calculate its resistance.
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Color of 
Band

Digits Multiplier Color of 
Band

Temperature 
coefficient

Black 0 1 Brown 100 ppm
Brown 1 10 Red 50 ppm
Red 2 100 Orange 15 ppm
Orange 3 1K Yellow 25 ppm
Yellow 4 10K
Green 5 100K
Blue 6 1M
Purple 7 10M
Grey 8 100M
White 9 1000M
Silver - 0.01
Gold - 0.1

Table 3-3a: Resistor color code digits 
and multiplier table [3-6]

Table 3-3c:
Reliability level (%1000 HR) [3-6] Table 3-3d: Tolerance [3-6]

1st Digit

2nd Digit

Multiplier

Tolerance
Reliability

Orange
Gold

Brown

Green

Red

Figure 3-40: 
Fixed resistor

Color of 
Band

Tolerance 
(%)

Silver ± 10%
Gold ± 5%
Brown ± 1%
Red ± 2%
Green ± 0.5%
Blue ± 0.25%
Purple ± 0.1%

Color of 
Band

Reliability
Level (%)

Brown 1%
Red 0.1%
Orange 0.01%
Yellow 0.001%

Table 3-3b:
Temperature coefficient [3-6]
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8.  Where do capacitors store energy?
 A. In magnetic fields.
 B. In electric fields.
 D.  None of the above.
 E.  All of the above.

9.  [a]  Where do inductors store energy?
 [b]  What happens to an inductor when the current stream changes?

10.  What feature does not affect the inductance of a wire?
 A.  The diameter of the wire.
 B.  The diameter of the coils.
 B.  The number of individual coils.
 C.  The type of material the wire is made of.
 D.  The overall length of the coiled wire.
 E.  None of the above.

11.  What is the PN junction?

12.  [a]  What is an LED?
 [b]  How does an LED work?

13.  [a]  What is a transistor?
 [b]  What is a transistor made of?

14. [T/F] The NPN-BJT transistor shown in Figure 3-41 is OFF.

N P N
Emitter

Base

Collector

PN Junction forward-biased

V+ +V

Figure 3-41: NPN BJT transistor
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15.  Which figure, of Figures 3-42a through d, shows a P-channel depletion MOSFET that is
ON?

Figure 3-42a: MOSFET 1 Figure 3-42b: MOSFET 2
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P

N N

DrainGate
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P                                  P
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Gate
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V+

+V

N

N

Depl etion
Re gi on

Figure 3-42c: MOSFET 3 Figure 3-42d: MOSFET 4

16.  [a]  What are gates?
 [b]  What are gates typically designed to perform?
 [c]  Draw the truth tables for the logical binary operations NOT, NAND, and AND.

17.  [a]  Draw and describe a NOT gate built from CMOS (MOSFET) transistors.
 [b]  Draw and describe a NAND gate built from CMOS (MOSFET) transistors.
 [c]  Draw and describe an AND gate built from CMOS (MOSFET) transistors.

 [Hint: this circuit is a NAND gate with an inverter at the end of the circuit.]

18.  What is a flip-flop?
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19  [a]  What is an IC?
 [b]  Name and describe the classes of ICs according to the number of electronic

components they contain.

20.  Identify at least five ICs in Figures 3-37a and b under problem 1 of this section.
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C H A P T E R 4
Embedded Processors

In This Chapter

What an ISA is and what it defines
Discussion of the internal processor design as related to the von Neumann model
Introduction to processor performance

Processors are the main functional units of an embedded board, and are primarily responsible
for processing instructions and data. An electronic device contains at least one master proces-
sor, acting as the central controlling device, and can have additional slave processors that work
with and are controlled by the master processor. These slave processors may either extend the
instruction set of the master processor or act to manage memory, buses, and I/O (input/output)
devices. In the block diagram of an x86 reference board, shown in Figure 4-1, the Atlas STPC
is the master processor, and the super I/O and ethernet controllers are slave processors.

Figure 4-1: Ampro’s Encore 400 board [4-1]
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As shown in Figure 4-1, embedded boards are designed around the master processor. The
complexity of the master processor usually determines whether it is classified as a micro-
processor or a microcontroller. Traditionally, microprocessors contain a minimal set of
integrated memory and I/O components, whereas microcontrollers have most of the sys-
tem memory and I/O components integrated on the chip. However, keep in mind that these
traditional definitions may not strictly apply to recent processor designs. For example, micro-
processors are increasingly becoming more integrated.

Why Use an Integrated Processor?

While some components, like I/O, may show a decrease in performance when integrated into 
a master processor as opposed to remaining a dedicated slave chip, many others show an 
increase in performance because they no longer have to deal with the latencies involved with 
transmitting data over buses between processors. An integrated processor also simplifies the 
entire board design since there are fewer board components, resulting in a board that is simpler 
to debug (fewer points of failure at the board level). The power requirements of components 
integrated into a chip are typically a lot less than those same components implemented at the 
board level. With fewer components and lower power requirements, an integrated processor 
may result in a smaller and cheaper board. On the flip side, there is less flexibility in adding, 
changing, or removing functionality since components integrated into a processor cannot be 
changed as easily as if they had been implemented at the board level.

There are literally hundreds of embedded processors available, and not one of them cur-
rently dominates embedded system designs. Despite the sheer number of available designs,
embedded processors can be separated into various “groups” called architectures. What
differentiates one processor group’s architecture from another is the set of machine code
instructions that the processors within the architecture group can execute. Processors are
considered to be of the same architecture when they can execute the same set of machine
code instructions. Table 4-1 lists some examples of real-world processors and the architecture
families they fall under.
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Table 4-1: Real-world architectures and processors

Architecture Processor Manufacturer

AMD Au1xxx Advanced Micro Devices, …
ARM ARM7, ARM9, … ARM, …
C16X C167CS, C165H, C164CI, … Infineon, …
ColdFire 5282, 5272, 5307, 5407, … Motorola/Freescale, …
I960 I960 Vmetro, …
M32/R 32170, 32180, 32182, 32192, … Renesas/Mitsubishi, …
M Core MMC2113, MMC2114, … Motorola/Freescale
MIPS32 R3K, R4K, 5K, 16, … MTI4kx, IDT, MIPS Technologies, …
NEC Vr55xx, Vr54xx, Vr41xx NEC Corporation, …
PowerPC 82xx, 74xx,8xx,7xx,6xx,5xx,4xx IBM, Motorola/Freescale, …
68k 680x0 (68K, 68030, 68040, 68060, …),

683xx
Motorola/Freescale, …

SuperH (SH) SH3 (7702,7707, 7708,7709), SH4
(7750)

Hitachi, …

SHARC SHARC Analog Devices, Transtech DSP,
Radstone, …

strongARM strongARM Intel, …
SPARC UltraSPARC II Sun Microsystems, …
TMS320C6xxx TMS320C6xxx Texas Instruments, …
x86 X86 [386,486,Pentium (II, III,

IV)…]
Intel, Transmeta, National
Semiconductor, Atlas, …

TriCore TriCore1, TriCore2, … Infineon, …

4.1 ISA Architecture Models
The features that are built into an architecture’s instruction set are commonly referred to as
the Instruction Set Architecture or ISA. The ISA defines such features as the operations that
can be used by programmers to create programs for that architecture, the operands (data) that
are accepted and processed by an architecture, storage, addressing modes used to gain access
to and process operands, and the handling of interrupts. These features are described in more
detail below, because an ISA implementation is a determining factor in defining important
characteristics of an embedded design, such as performance, design time, available function-
ality, and cost.



Chapter 4

132

Operations

Operations are made up of one or more instructions that execute certain commands. (Note
that operations are commonly referred to simply as instructions.) Different processors can
execute the exact same operations using a different number and different types of instruc-
tions. An ISA typically defines the types and formats of operations.

Types of Operations

 Operations are the functions that can be performed on the data, and they typically include
computations (math operations), movement (moving data from one memory location/reg-
ister to another), branches (conditional/unconditional moves to another area of code to
process), input/output operations (data transmitted between I/O components and master
processor), and context switching operations (where location register information is
temporarily stored when switching to some routine to be executed and after execution, by
the recovery of the temporarily stored information, there is a switch back to executing the
original instruction stream).

 The instruction set on a popular lower-end processor, the 8051, includes just over 100
instructions for math, data transfer, bit variable manipulation, logical operations, branch
flow and control, and so on. In comparison, a higher end MPC823 (Motorola/Freescale
PowerPC) has an instruction set a little larger than that of the 8051, but with many of
the same types of operations contained in the 8051 set along with an additional handful,
including integer operations/floating-point (math) operations, load and store operations,
branch and flow control operations, processor control operations, memory synchroni-
zation operations, PowerPC VEA operations, and so on. Figure 4-2a lists examples of
common operations defined in an ISA.

Figure 4-2a: Sample ISA operations

Math and Logical

Add
Subtract
Multiply
Divide
AND
OR

XOR
…..

Shift/Rotate

Logical Shift Right
Logical Shift Left

Rotate Right
Rotate Left

…..

Load/Store

Stack PUSH
Stack POP

Load
Store
…..

Compare Instructions…
Move Instructions…

Branch Instructions …
…..

 In short, different processors can have similar types of operations, but usually have dif-
ferent overall instruction sets. As mentioned above, what is also important to note is
that different architectures can have operations with the same purpose (add, subtract,
compare, etc.), but the operations may have different names or internally operate much
differently, as seen in Figures 4-2b and c.
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Operation Formats

 The format of an operation is the actual number and combination of bits (1’s and 0’s) that
represent the operation, and is commonly referred to as the operation code or opcode.
MPC823 opcodes, for instance, are structured the same and are all 6 bits long (0–63 deci-
mal) (see Figure 4-3a). MIPS32/MIPS I opcodes are also 6 bits long, but the opcode can
vary as to where it is located, as shown in Figure 4-3b. An architecture, like the SA-1100
which is based upon the ARM v4 Instruction Set, can have several instruction set formats
depending on the type of operation being performed (see Figure 4-3c).

Figure 4-2b:
MPC823 compare operation [4-2]  

Copyright of Freescale Semiconductor, Inc.
2004. Used by permission.

a EXTS(rA)
b EXTS(rB)
if a<b then c  0b100
else if a>b then c  0b010
else c 0b001
CR[4 * crfD-4 *crfD +3]  c || XER[SO}

CMP crfD,L,rA,rB …

The MIPS32/MIPS 1 compare 
operation is a floating point 
operation. The value in floating 
point register fs is compared to 
the value in floating point reg-
ister ft. The MIPS I architecture 
defines a single floating point 
condition code, implemented 
as the coprocessor 1 condition 
signal (Cp1Cond) and the C bit in 
the FP Control/Status register.

if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or
QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then
less false
equal false
unordered true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then
SignalException(InvalidOperation)
endif
else
less ValueFPR(fs, fmt) <fmt ValueFPR(ft, fmt)
equal ValueFPR(fs, fmt) =fmt ValueFPR(ft, fmt)
unordered false
endif
condition (cond2 and less) or (cond1 and equal)
or (cond0 and unordered)
SetFPConditionCode(cc, condition)

C.cond.S fs, ft
C.cond.D fs, ft …

Figure 4-2c: MIPS32/MIPS I – compare operation [4-3]

Figure 4-3a: MPC823 “CMP” operation size [4-2]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

CMP crfD,L,rA,rB
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C condS fs, ft
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Operands

 Operands are the data that operations manipulate. An ISA defines the types and for-
mats of operands for a particular architecture. For example, in the case of the MPC823
(Motorola/Freescale PowerPC), SA-1110 (Intel StrongARM), and many other architec-
tures, the ISA defines simple operand types of bytes (8 bits), halfwords (16 bits), and
words (32 bits). More complex data types such as integers, characters, or floating point
are based on the simple types shown in Figure 4-4.

Figure 4-3b: MIPS32/MIPS I “CMP” and “ADD” operation sizes and locations [4-4]

Figure 4-3c: SA-1100 instruction [4-5]

Instruction Type
Data Processing1 / PSR Transfer

Multiply
Long Multiply

Swap
Load & Store Byte/Word

Halfword Transfer : Immediate Offset
Halfword Transfer : Register Offset

Branch
Branch Exchange

Coprocessor Data Transfer
Coprocessor Data Operation

Coprocessor Register Transfer
Software Interrupt

…

1 - Data Processing OpCodes

31 2827 1615 87 0

Cond 0 0 I Opcode S Rn Rd Operand2

Cond 0 0 0 0 0 0 A S  Rd Rn Rs 1 0 0 1  Rm

Cond 0 0 0 0 1  U A S  RdHi RdLo Rs 1 0 0 1  Rm

Cond 0 0 0 1 0  B 0 0  Rn Rd 0 0 0 0  1 0 0 1  Rm

Cond 0 1 I P U B W L Rn Rd Offset

Cond 1 0 0 P U S W L Rn Register List

Cond 0 0 0 P U 1 W L Rn Rd Offset 1 1 S H 1 Offset2

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm

Cond 1 0 1 L       Offset

Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn

Cond 1 1 0 P U N W L Rn CRd CPNum Offset

Cond 1 1 1 0 Op1 CRn CRd CPNum Op2 0 CRm

Cond 1 1 1 0 Op1 L CRn Rd CPNum Op2 1 CRm

Cond 1 1 1 1 SWI Number

0000 = AND − Rd: = Op1 AND Op2
0001 = EOR − Rd: = Op1 EOR Op2
0010 = SUR − Rd: = Op1 − Op2
0011 = RSB − Rd: = Op2 − Op1
0100 = ADD − Rd: = Op1 + Op2
0101 = ADC − Rd: = Op1 + Op2 + C
0110 = SEC − Rd: = Op2 − Op1 + C −1
0111 = RSC − Rd: = Op2 − Op1 + C − 1
1000 = TST − set condition codes on Op1 AND Op2
1001 = TEQ − set condition codes on Op1 EOR Op2
1010 = CMP − set condition codes on Op1 − Op2
1011 = CMN − set condition codes on Op1 + Op2
1100 = ORR − Rd: = Op1 OR Op2
1101 = MOV − Rd: = Op2
1110 = BIC − Rd: = Op1 AND NOT Op2
1111 = MVN − Rd: = NOT Op2 
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 An ISA also defines the operand formats (how the data looks) that a particular architec-
ture can support, such as binary, decimal and hexadecimal. See Figure 4-5 for an example
showing how an architecture can support various operand formats.

Figure 4-4: Simple operand types

Figure 4-5: Operand formats pseudocode example

MOV  registerX, 10d  ; Move decimal value 10 into register X
MOV  registerX, $0Ah  ; Move hexadecimal value A (decimal 10) to register X
MO
.....

V  registerX, 00001010b ; Move binary value 00001010 (decimal 10 ) to register X

Storage

 The ISA specifies the features of the programmable storage used to store the data being
operated on, primarily:

A. The organization of memory used to store operands. Memory is simply an array
of programmable storage, like that shown in Figure 4-6, that stores data, including
operations, operands, and so on.

 The indices of this array are locations referred to as memory addresses, where each
location is a unit of memory that can be addressed separately. The actual physical or
virtual range of addresses available to a processor is referred to as the address space.

 An ISA defines specific characteristics of the address space, such as whether it is:

Linear. A linear address space is one in which specific memory locations are rep-
resented incrementally, typically starting at “0” thru 2N-1, where N is the address
width in bits.

byte

halfword

word

0 7

0 15

0 31
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Figure 4-6: Block diagram of memory array [4-6]
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Segmented. A segmented address space is a portion of memory that is divided
into sections called segments. Specific memory locations can only be accessed by
specifying a segment identifier, a segment number that can be explicitly defined
or implicitly obtained from a register, and specifying the offset within a specific
segment within the segmented address space.

 The offset within the segment contains a base address and a limit, which map to
another portion of memory that is set up as a linear address space. If the offset is
less than or equal to the limit, the offset is added to the base address, giving the
unsegmented address within the linear address space.

Containing any special address regions.

Limited in any way.

 An important note regarding ISAs and memory is that different ISAs not only define
where data is stored, but also how data is stored in memory—specifically in what
order the bits (or bytes) that make up the data is stored, or byte ordering. The two
byte-ordering approaches are big-endian, in which the most significant byte or bit is
stored first, and little-endian, in which the least significant bit or byte is stored first.

 For example:

68000 and SPARC are big-endian

x86 is little-endian

ARM, MIPS and PowerPC can be configured as either big-endian or little-endian
using a bit in their machine state registers

B. Register Set 

 A register is simply fast programmable memory normally used to store operands
that are immediately or frequently used. A processor’s set of registers is commonly
referred to as the register set or the register file. Different processors have differ-
ent register sets, and the number of registers in their sets vary between very few to
several hundred (even over a thousand). For example, the SA-1110 register set has
37 32-bit registers, whereas the MPC823, on the other hand, has about a few hundred
registers (general-purpose, special purpose, floating point registers, etc.).

C. How Registers Are Used

 An ISA defines which registers can be used for what transactions, such as special
purpose, floating point, and which can be used by the programmer in a general fash-
ion (general purpose registers).
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 As a final note on registers, one of many ways processors can be referenced is
according to the size (in bits) of data that can be processed and the size (in bits) of
the memory space that can be addressed in a single instruction by that processor.
This specifically relates back to the basic building block of registers, the flip-flop, but
this will be discussed in more detail in Section 4.2.

 Commonly used embedded processors support 4-bit, 8-bit, 16-bit, 32-bit, and/or
64-bit processing, as shown in Table 4-2. Some processors can process larger
amounts of data and can access larger memory spaces in a single instruction, such
as 128-bit architectures, but they are not commonly used in embedded designs.

Table 4-2: “x-bit” architecture examples

“X”-Bit Architecture

4 Intel 4004, …
8 Mitsubishi M37273, 8051, 68HC08, Intel

8008/8080/8086, …
16 ST ST10, TI MSP430, Intel 8086/286, …
32 68K, PowerPC, ARM, x86 (386+), MIPS32, …

Addressing Modes

Addressing modes define how the processor can access operand storage. In fact, the usage
of registers is partly determined by the ISA’s Memory Addressing Modes. The two most
common types of addressing mode models are the:

Load-Store Architecture, which only allows operations to process data in registers,
not anywhere else in memory. For example, the PowerPC architecture has only one
addressing mode for load and store instructions: register plus displacement (support-
ing register indirect with immediate index, register indirect with index, etc.).

Register-Memory Architecture, which allows operations to be processed both within
registers and other types of memory. Intel’s i960 Jx processor is an example of an ad-
dressing mode architecture that is based upon the register-memory model (supporting
absolute, register indirect, etc.).

Interrupts and Exception Handling

Interrupts (also referred to as exceptions or traps depending on the type) are mecha-
nisms that stop the standard flow of the program in order to execute another set of code
in response to some event, such as problems with the hardware, resets, and so forth. The
ISA defines what if any type of hardware support a processor has for interrupts. (Note:
because of their complexity, interrupts will be discussed in more detail in Section 4.2. 
later in this chapter.) 
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There are several different ISA models that architectures are based upon, each with their
own definitions for the various features. The most commonly implemented ISA models are
application-specific, general purpose, instruction-level parallel, or some hybrid combination
of these three ISAs.

4.1.1 Application-Specific ISA Models
Application-specific ISA models define processors that are intended for specific embedded
applications, such as processors made only for TVs. There are several types of application-
specific ISA models implemented in embedded processors, the most common models being:

Controller Model

 The Controller ISA is implemented in processors that are not required to perform
complex data manipulation, such as video and audio processors that are used as slave
processors on a TV board, for example (see Figure 4-7).

Figure 4-7: Analog TV board example with controller ISA implementations

M37273
Controller ISA
Architecture

Video Processor

Audio Processor

NVM

Tuner

I2C Bus

Datapath Model

 The Datapath ISA is implemented in processors whose purpose is to repeatedly
perform fixed computations on different sets of data, a common example being digital
signal processors (DSPs), shown in Figure 4-8.
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Finite State Machine with Datapath (FSMD) Model

 The FSMD ISA is an implementation based upon a combination of the Datapath
ISA and the Controller ISA for processors that are not required to perform complex
data manipulation and must repeatedly perform fixed computations on different sets
of data. Common examples of an FSMD implementation are application-specific
integrated circuits (ASICs) shown in Figure 4-9, programmable logic devices (PLDs),
and field-programmable gate-arrays (FPGAs, which are essentially more complex
PLDs).

Figure 4-8: Board example with datapath ISA implementation—digital cellphone [4-7]
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Figure 4-9: Board example with FSMD ISA implementation—solid-state digital camcorder [4-8]
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Java Virtual Machine (JVM) Model

 The JVM ISA is based upon one of the Java Virtual Machine standards discussed in
Chapter 2, Sun Microsystem’s Java Language. As described in Chapter 2, real-world
JVMs can be implemented in an embedded system via hardware, such as in aJile’s
aj-80 and aj-100 processors, for example (Figure 4-10).

Figure 4-10: JVM ISA implementation example [4-9]
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4.1.2 General-Purpose ISA models
General-purpose ISA models are typically implemented in processors targeted to be used in
a wide variety of systems, rather than only in specific types of embedded systems. The most
common types of general-purpose ISA architectures implemented in embedded processors
are:

Complex Instruction Set Computing (CISC) Model

 The CISC ISA, as its name implies, defines complex operations made up of several
instructions. Common examples of architectures that implement a CISC ISA are
Intel’s x86 and Motorola/Freescale’s 68000 families of processors.
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Reduced Instruction Set Computing (RISC) Model

 In contrast to CISC, the RISC ISA usually defines:

 – an architecture with simpler and/or fewer operations made up of fewer instructions.

 – an architecture that has a reduced number of cycles per available operation.

 Many RISC processors have only one-cycle operations, whereas CISCs typically
have multiple cycle operations. ARM, PowerPC, SPARC, and MIPS are just a few
examples of RISC-based architectures.

Figure 4-11: CISC ISA implementation example [4-10]

© 2004 Advanced Micro Devices, Inc. Reprinted with permission.
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Final Note on CISC vs. RISC

In the area of general-purpose computing, note that many current processor designs fall 
under the CISC or RISC category primarily because of their heritage. RISC processors have 
become more complex, while CISC processors have become more efficient to compete with 
their RISC counterparts, thus blurring the lines between the definition of a RISC versus a CISC
architecture. Technically, these processors have both RISC and CISC attributes, regardless of 
their definitions.

4.1.3 Instruction-Level Parallelism ISA Models
Instruction-level Parallelism ISA architectures are similar to general-purpose ISAs, except
that they execute multiple instructions in parallel, as the name implies. In fact, instruction-
level parallelism ISAs are considered higher evolutions of the RISC ISA, which typically
has one-cycle operations, one of the main reasons why RISCs are the basis for parallelism.
Examples of instruction-level parallelism ISAs include:

Figure 4-12: RISC ISA implementation example [4-11]
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Single Instruction Multiple Data (SIMD) Model

 The SIMD Machine ISA is designed to process an instruction simultaneously on
multiple data components that require action to be performed on them.

Figure 4-13: SIMD ISA implementation example [4-12]
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Superscalar Machine Model

 The superscalar ISA is able to process multiple instructions simultaneously within
one clock cycle through the implementation of multiple functional components
within the processor.

Figure 4-14: Superscalar ISA implementation example [4-13]
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Very Long Instruction Word Computing (VLIW) Model

 The VLIW ISA defines an architecture in which a very long instruction word is made
up of multiple operations. These operations are then broken down and processed in
parallel by multiple execution units within the processor.

Figure 4-15: VLIW ISA implementation example—(VLIW) Trimedia-based DTV board [4-14]
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4.2 Internal Processor Design
The ISA defines what a processor can do, and it is the processor’s internal interconnected
hardware components that physically implement the ISA’s features. Interestingly, the funda-
mental components that make up an embedded board are the same as those that implement
an ISA’s features in a processor: a CPU, memory, input components, output components,
and buses. As mentioned in Figure 4-16, these components are the basis of the von Neumann
model.
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Of course, many current real-world processors are more complex in design than the von Neu-
mann model has defined. However, most of these processors’ hardware designs are still based
upon von Neumann components, or a version of the von Neumann model called the Harvard
architecture model. These two models primarily differ in one area, and that is memory. A
von Neumann architecture defines a single memory space to store instructions and data. A
Harvard architecture defines separate memory spaces for instructions and data; separate data
and instruction buses allow for simultaneous fetches and transfers to occur. The main rea-
soning behind using von Neumann versus a Harvard-based model for an architecture design
is performance. Given certain types of ISAs, like Datapath model ISAs in DSPs, and their
functions, such as continuously performing fixed computations on different sets of data, the
separate data and instruction memory allow for an increase in the amount of data per unit of
time that can be processed, given the lack of competing interests of space and bus accesses
for transmissions of data and instructions.

Figure 4-16: Von Neumann-based processor diagram
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As mentioned previously, most processors are based upon some variation of the von Neu-
mann model (in fact, the Harvard model itself is a variation of the von Neumann model).
Real-world examples of Harvard-based processor designs include ARM’s ARM9/ARM10,
MPC860, 8031, and DSPs (see Figure 4-18a), while ARM’s ARM7 and x86 are von Neu-
mann-based designs (see Figure 4-18b).

Figure 4-17: Von Neumann vs. Harvard architectures
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Figure 4-18a: Harvard architecture example – MPC860 [4-15]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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While the MPC860 is a complex processor design, it is still based upon the fundamental components of the 
Harvard model: the CPU, instruction memory, data memory, I/O, and buses.
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Why Talk About the von Neumann Model?

The von Neumann model not only impacts the internals of a processor (what you don’t see) 
but it shapes what you do see and what you can access within a processor. As discussed in 
Chapter 3, ICs—and a processor is an IC—have protruding pins that connect them to the board. 
While different processors vary widely in the number of pins and their associated signals, the 
components of the von Neumann model, both at the board and at the internal processor level, 
also define the signals that all processors have. As shown in Figure 4-19, to accommodate 
board memory, processors typically have address and data signals to read and write data to 
and from memory. In order to communicate to memory or I/O, a processor usually has some 
type of READ and WRITE pins to indicate it wants to retrieve or transmit data. 

Of course there are other pins not explicitly defined by von Neumann that are required for 
practical purposes, such as a synchronizing mechanism like a clock signal to drive a processor, 
and some method of powering and grounding of the processor. However, regardless of the 
differences between processors, the von Neumann model essentially drives what external pins 
all processors have.

x86 is a complex processor design based upon the von Neumann model where, unlike the MPC860 processor, 
instructions and data share the same memory space.

(Continued on next page.)

Figure 4-18b: Von Neumann architecture example – x86 {4-16]
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4.2.1 Central Processing Unit (CPU)
The semantics of this section can be a little confusing, because processors themselves are
commonly referred to as CPUs, but it is actually the processing unit within a processor that is
the CPU. The CPU is responsible for executing the cycle of fetching, decoding, and executing
instructions (see Figure 4-20). This three-step process is commonly referred to as a three-
stage pipeline, and most recent CPUs are pipelined designs.

Figure 4-20: Fetch, decode and execution cycle of CPU
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While CPU designs can widely differ, understanding the basic components of a CPU will
make it easier to understand processor design and the cycle shown in Figure 4-20. As defined
by the von Neumann model, this cycle is implemented through some combination of four
major CPU components:

the arithmetic logic unit (ALU) – implements the ISA’s operations

registers – a type of fast memory
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Figure 4-19:
Von Neumann and processor pins
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the control unit (CU) – manages the entire fetching and execution cycle

the internal CPU buses – interconnect the ALU, registers, and the CU 

Looking at a real-world processor, these four fundamental elements defined by the von Neu-
mann model can be seen within the CPU of the MPC860 (see Figure 4-21).

Figure 4-21: The MPC860 CPU – the PowerPC core [4-15]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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Remember: Not all processors have these components as strictly defined by the von Neumann model, but will 
have some combination of these components under various aliases somewhere on the processor. Remember 
that this model is a reference tool the reader can use to understand the major components of a CPU design.

Internal CPU Buses

The CPU buses are the mechanisms that interconnect the CPU’s other components: the ALU,
the CU, and registers (see Figure 4-22). Buses are simply wires that interconnect the various
other components within the CPU. Each bus’s wire is typically divided into logical functions,
such as data (which carries data, bi-directionally, between registers and the ALU), address
(which carries the locations of the registers that contain the data to be transferred), control
(which carries control signal information, such as timing and control signals, between the
registers, the ALU, and the CU), and so on.

Note: To avoid redundancy, buses will be discussed in more detail in Chapter 7.
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Arithmetic Logic Unit (ALU)

The arithmetic logic unit (ALU) implements the comparison, mathematical and logical opera-
tions defined by the ISA. The format and types of operations implemented in the CPU’s ALU
can vary depending on the ISA. Considered the core of any processor, the ALU is responsible
for accepting multiple n-bit binary operands and performing any logical (AND, OR, NOT,
etc.), mathematical (+, –, *, etc.), and comparison (=, <, >, etc.) operations on these operands.

The ALU is a combinational logic circuit that can have one or more inputs and only one
output. An ALU’s output is dependent only on inputs applied at that instant, as a function of
time, and “no” past conditions (see Chapter 3 on gates). The basic building block of most
ALUs (from the simplest to the multifunctional) is considered the full adder, a logic circuit
that takes three 1-bit numbers as inputs and produces two 1-bit numbers. How this actually
works will be discussed in more detail later this section.

To understand how a full adder works, let us first examine the mechanics of adding binary
numbers (0’s and 1’s) together:

In the PowerPC Core, there is a Control Bus that carries the control signals between the ALU, CU, and regis-
ters. What the PowerPC calls “source buses,” are the data buses that carry the data between registers and the 
ALU. There is an additional bus called the write-back which is dedicated to writing back data received from a 
source bus directly back from the load/store unit to the fixed or floating point registers. 
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Figure 4-22: PowerPC core and buses [4-15]
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Starting with two 1-bit numbers, adding them will produce, at most, a 2-bit number:

X0 Y0 S0 Cout

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

This simple addition of two 1-bit numbers can be executed via a half-adder circuit, a logical
circuit that takes two 1-bit numbers as inputs and produces a 2-bit output. Half-adder circuits,
like all logical circuits, can be designed using several possible combinations of gates, such as
the possible combinations shown in Figure 4-23a.

0b + 0b = 0b
0b + 1b = 0b
1b + 0b = 1b
1b + 1b = 10b (or 2d) In binary addition of 2 1-bit numbers, when the

count exceeds 10 (the binary of 2 decimal), the 1 (Cout) is carried and added
to the next row of numbers thus resulting in a 2-bit number.

Figure 4-23a: Half-adder logic circuits [4-21]

Half Adder using XOR and AND gates Half Adder using NOR and AND gates

X0
S0 S0

Cout

Cout

Y0

X0

Y0

Figure 4-23b: Half-adder logic symbol [4-21]
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In order to add a larger number, the adder circuit must increase in complexity, and this is
where the full adder comes into play. When trying to add two-digit numbers, for example, a
full adder must be used in conjunction with a half adder. The half adder takes care of adding
the first digits of the two numbers to be added (i.e., x0, y0, and so on)—the full adder’s three
1-bit inputs are the second digits of the two numbers to be added (i.e., x1, y1,…) along with
the carry (Cin) in from the half adder’s addition of the first digits. The half adder’s output is
the sum (S0) along with the carry out (Cout) of the first digit’s addition operation; the two 1-bit
outputs of the full adder are the sum (S1) along with the carry out (Cout) of the second dig-
its’ addition operation. Figure 4-24a shows the logic equations and truth table, Figure 4-24b
shows the logic symbol, and Figure 4-24c shows an example of a full adder at the gate level,
in this case, a combination XOR and NAND gates.

Figure 4-24a: Full adder truth table and logic equations [4-20]

Figure 4-24b: Full adder logic symbol [4-20]

Sum (S) = XY Cin + XY’C in’ + X’YC in’ + X’Y’ Cin’

Carry Out (Cout) = XY + X Cin = Y Cin

X Y Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

        X               Y

Cout FA           Cn

                 S

X

Y

Cin

S

Cout

Figure 4-24c: Full adder gate-level circuit [4-20]
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To add larger numbers, additional full adders can then be integrated (cascaded) to the half-
adder/full-adder hybrid circuit (see Figure 4-25). The example shown in this figure is the
basis of the ripple-carry adder (one of many types of adders), in which “n” full adders are
cascaded so the carry produced by the lower stages propagates (ripples) through to the higher
stages in order for the addition operation to complete successfully.

Figure 4-25: Cascaded adders

       Cin …         Cin

     Xn  …  X1 X0

+   Yn  … Y1 Y0

----------------------------------

      Sn  …   S1   S0

          +     …       +       +
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        X               Y
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                 S

        X               Y
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                 S

        X               Y

Cout Cin Cin CinCout Cout CoutFA

                 S

X1 X0 Y0Y1X2 Y2Xn Yn

Sn S2 S1 S0

Multifunction ALUs that provide addition operations, along with other mathematical and
logical operations, are designed around the adder circuitry, with additional circuitry incorpo-
rated for performing subtraction, logical AND, logical OR, and so on (see Figure 4-26a). The
logic diagram shown in Figure 4-26b is an example of two stages of an n-bit multifunction
ALU. The circuit in Figure 4-26 is based on the ripple-carry adder that was just described.
In the logic circuit in Figure 4-26b, control inputs k0, k1, k2, and cin determine the function
performed on the operand or operands. Operand inputs are X = xn−1 …x1x0 and Y = yn−1 …y1y0

and the output is sum (S) = sn−1…s1s0.
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Control Inputs Result Function
k2 k1 k0 cin

0 0 0 0 S = X Transfer X
0 0 0 1 S = X + 1 Increment X
0 0 1 0 S = X + Y Addition
0 0 1 1 S = X + Y + 1 Add with Carry In
0 1 0 0 S = X – Y – 1 Subtract with Borrow
0 1 0 1 S = X – Y Subtraction
0 1 1 0 S = X – 1 Decrement X
0 1 1 1 S = X Transfer X
1 0 0 … S = X OR Y Logical OR
1 0 1 … S = X XOR Y Logical XOR
1 1 0 … S = X AND Y Logical AND
1 1 1 … S = NOT X Bit-wise Compliment

Figure 4-26a: Multifunction ALU truth table and logic equations [4-20]

Figure 4-26b: Multifunction ALU gate-level circuitry [4-20]
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Where the ALU saves the generated results varies with different architectures. With the
PowerPC shown in Figure 4-25, results are saved in a register called an Accumulator. Results
can also be saved in memory (on a stack or elsewhere), or in some hybrid combination of these
locations.

Figure 4-27: PowerPC core and the ALU [4-15]
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In the PowerPC core, the ALU is part of the “Fixed Point Unit” that implements all fixed-point instructions 
other than load/store instructions. The ALU is responsible for fixed-point logic, add, and subtract instruction 
implementation. In the case of the PowerPC, generated results of the ALU are stored in an Accumulator. Also, 
note that the PowerPC has an IMUL/IDIV unit (essentially another ALU) specifically for performing multipli-
cation and division operations.

Registers

Registers are simply a combination of various flip-flops that can be used to temporarily store
data or to delay signals. A storage register is a form of fast programmable internal processor
memory usually used to temporarily store, copy, and modify operands that are immediately
or frequently used by the system. Shift registers delay signals by passing the signals between
the various internal flip-flops with every clock pulse.

Registers are made up of a set of flip-flops that can be activated either individually or as a set.
In fact, it is the number of flip-flops in each register that is actually used to describe a proces-
sor (for example, a 32-bit processor has working registers that are 32 bits wide containing 32
flip-flops, a 16-bit processor has working registers that are 16 bits wide containing 16 flip-
flops, and so on). The number of flip-flops within these registers also determines the width of
the data buses used in the system. Figure 4-28 shows an example of how eight flip-flops could
comprise an 8-bit register, and thus impact the size of the data bus. In short, registers are
made up of one flip-flop for every bit being manipulated or stored by the register.
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Figure 4-28a: 8-bit register with 8 D flip-flops example [4-21]

Figure 4-28b: Example of gate level circuit of flip-flop [4-21]
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While ISA designs do not all use registers in the same way to process the data, storage typi-
cally falls under one of two categories, either general purpose or special purpose (see Figure
4-29). General purpose registers can be used to store and manipulate any type of data deter-
mined by the programmer, whereas special purpose registers can only be used in a manner
specified by the ISA, including holding results for specific types of computations, having pre-
determined flags (single bits within a register that can act and be controlled independently),
acting as counters (registers that can be programmed to change states—that is, increment—
asynchronously or synchronously after a specified length of time), and controlling I/O ports
(registers managing the external I/O pins connected to the body of the processor and to board
I/O). Shift registers are inherently special purpose, because of their limited functionality.

Figure 4-29: PowerPC core and register usage [4-15]
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The PowerPC Core has a “Register Unit” which contains all registers visible to a user. PowerPC processors 
generally have two types of registers: general-purpose and special-purpose (control) registers.
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The number of registers, the types of registers, and the size of the data that these registers can
store (8-bit, 16-bit, 32-bit, and so forth) varies depending on the CPU, according to the ISA
definitions. In the cycle of fetching and executing instructions, the CPU’s registers have to be
fast, so as to quickly feed data to the ALU, for example, and to receive data from the CPUs
internal data bus. Registers are also multi-ported so as to be able to both receive and transmit
data to these CPU components. The next several pages of this section will give some real-
world examples of how some common registers in architectures can be designed, specifically
flags and counters.

Example 1: Flags

Flags are typically used to indicate to other circuitry that an event or a state change has
occurred. In some architectures, flags can be grouped together into specific flag registers,
while in other architectures, flags comprise some part of several different types of registers.

To understand how a flag works, let’s examine a logic circuit that can be used in designing a
flag. Given a register, for instance, let us assume that bit 0 is a flag (see Figures 4-30a and b)
and the flip-flop associated with this flag bit is a set-reset (SR) flip-flop, the simplest of data-
storage asynchronous sequential digital logic. The (cross NAND) SR flip-flop is used in this
example to asynchronously detect an event that has occurred in attached circuitry via the set
(S) or reset (R) input signal of the flip-flop. When the set/reset signal changes from 0 to 1 or
1 to 0, it immediately changes the state of the flip-flop, which results, depending on the input,
in the flip-flop setting or resetting.

Figure 4-30a: N-bit register with flag and SR flip-flop example [4-21]
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Figure 4-30b: SR flip-flop gate-level circuit example [4-21]
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Example 2: Counters

As mentioned at the beginning of this section, registers can also be designed to be counters,
programmed to increment or decrement either asynchronously or synchronously, such as with
a processor’s program counter (PC) or timers, which are essentially counters that count clock
cycles. An asynchronous counter is a register whose flip-flops are not driven by the same
central clock signal. Figure 4-31a shows an example of a 8-bit MOD-256 (modulus-256)
asynchronous counter using JK flip-flops (which has 128 binary states—capable of count-
ing between 0 and 255, 128 * 2 = 256). This counter is a binary counter, made up of 1’s and
0’s, with 8 digits, one flip-flop per digit. It loops counting between 00000000 and 11111111,
recycling back to 00000000 when 11111111 is reached, ready to start over with the count.
Increasing the size of the counter—the maximum number of digits the counter can count
to—is only a matter of adding an additional flip-flop for every additional digit.
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Figure 4-31a: 8-bit MOD-256 asynchronous counter example [4-21]

Figure 4-31b:
JK flip-flop truth table [4-21]

PRE CLR CLK J K Q Q Mode
0 1 x x x 1 0 Preset
1 0 x x x 0 1 Clear
0 0 x x x 1 1 Unused
1 1 − 0 0 Q0 Q0 Hold
1 1 − 0 1 0 0 Reset
1 1 − 1 0 0 0 Set
1 1 − 1 1 Q0 Q0 Toggle
1 1 − 0.1 1 1 Q0 Q0 Hold

Q

PRE

K

Q

CLR

CLK

J

Figure 4-31c:
JK flip-flop gate level diagram [4-21]
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All the flip flops of the counter are fixed in toggle mode; looking at the counter’s truth table in
4-31b under toggle mode, the flip-flop inputs (J and K) are both = 1 (HIGH). In toggle mode,
the first flip-flop’s output (Q0) switches to the opposite of its current state at each active clock
HIGH-to-LOW (falling) edge (see Figure 4-32).

Figure 4-32: First flip-flop CLK timing waveform for MOD-256 counter
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As seen from Figure 4-32, the result of toggle mode is that Q0, the output of the first flip-flop,
has half the frequency of the CLK signal that was input into its flip-flop. Q0 becomes the CLK
signal for the next flip-flop in the counter. As seen from the timing diagram in Figure 4-33,
Q1, the output of the second flip-flop signal has half the frequency of the CLK signal that was
input into it (one-quarter of the original CLK signal).

Figure 4-33: Second flip-flop CLK timing waveform for MOD-256 counter
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This cycle in which the output signals for the preceding flip-flops become the CLK signals
for the next flip-flops continues until the last flip-flop is reached. The division of the CLK
signal originally input into the first flip-flop can be seen in Figure 4-31a. The combination of
output switching of all the flip-flops on the falling edges of the outputs of the previous flip-
flop, which acts as their CLK signals, is how the counter is able to count from 00000000 to
11111111 (see Figure 4-34).

Figure 4-34: All flip-flop CLK timing waveforms for MOD-256 counter
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With synchronous counters, all flip-flops within the counter are driven by a common clock
input signal. Again using JK flip-flops, Figure 4-35 demonstrates how a MOD256 synchro-
nous counter circuitry differs from a MOD-256 asynchronous counter (the previous example).

Figure 4-35: 8-bit MOD-256 synchronous counter example [4-21]
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The five additional AND gates (note: two of the five AND gates are not explicitly shown due
to the scale of the diagram) in the synchronous counter example in Figure 4-35 serve to put
the flip-flops either in HOLD mode if inputs J and K = 0 (LOW) or in TOGGLE mode if
inputs J and K = 1 (HIGH). Refer to JK flip-flop truth table in Figure 4-30b. The synchronous
counter in this example works because the first flip-flop is always in TOGGLE mode at the
start of the count 00000000, while the rest are in HOLD mode. When counting (0 to 1 for
the first flip-flop), the next flip-flop is then TOGGLED, leaving the remaining flip-flops on
HOLD. This cycle continues (2–4 for the second flip-flop, 4–8 for the third flip-flop, 8–15 for
the fourth flip-flop, 15–31 for the fifth flip-flop, and so on) until all counting is completed to
11111111 (255). At that point, all the flip-flops have been toggled and held accordingly.
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Control Unit (CU)

The control unit (CU) is primarily responsible for generating timing signals, as well as
controlling and coordinating the fetching, decoding, and execution of instructions in the
CPU. After the instruction has been fetched from memory and decoded, the control unit then
determines what operation will be performed by the ALU, and selects and writes signals
appropriate to each functional unit within or outside of the CPU (i.e., memory, registers,
ALU, etc.). To better understand how a processor’s control unit functions, let’s examine more
closely the control unit of a PowerPC processor.

Example: PowerPC Sequencer Unit

Figure 4-36: PowerPC core and the CU [4-15]
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As shown in Figure 4-36, the PowerPC core’s CU is called a “sequencer unit,” and is the heart
of the PowerPC core. The sequencer unit is responsible for managing the continuous cycle of
fetching, decoding, and executing instructions while the PowerPC has power, including such
tasks as:

Provides the central control of the data and instruction flow among the other major
units within the PowerPC core (CPU), such as registers, ALU and buses.

Implements the basic instruction pipeline.

Fetches instructions from memory to issue these instructions to available execution
units.

Maintains a state history for handling exceptions.
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Like many CUs, the PowerPC’s sequencer unit isn’t one physically separate, explicitly
defined unit; rather, it is made up of several circuits distributed within the CPU that all work
together to provide the managing capabilities. Within the sequencer unit these components
are mainly an address generation unit (provides address of next instruction to be processed), a
branch prediction unit (processes branch instructions), a sequencer (provides information and
centralized control of instruction flow to the other control sub-units), and an instruction queue
(stores the next instructions to be processed and dispatches the next instructions in the queue
to the appropriate execution unit).

The CPU and the System (Master) Clock

A processor’s execution is ultimately synchronized by an external system or master clock, 
located on the board.The master clock is an oscillator along with a few other components,
such as a crystal. It produces a fixed frequency sequence of regular on/off pulse signals
(square waves), as seen in Figure 4-37. The CU, along with several other components on an
embedded board, depends on this master clock to function. Components are driven by either
the actual level of the signal (a “0” or a “1”), the rising edge of a signal (the transition from
“0” to “1”), and/or the falling edge of the signal (the transition from “1” to “0”). Different
master clocks, depending on the circuitry, can run at a variety of frequencies, but typically
must run so the slowest component on the board has its timing requirements met. In some
cases, the master clock signal is divided by the components on the board to create other clock
signals for their own use.

Figure 4-37: Clock signal 

In the case of the CU, for instance, the signal produced by the master clock is usually divided
or multiplied within the CPU’s CU to generate at least one internal clock signal. The CU then
uses internal clock signals to control and coordinate the fetching, decoding, and execution of
instructions.
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4.2.2 On-Chip Memory

Author note: The material covered in this section is very similar to that in Chapter 5: Board 
Memory, since, aside from certain types of memory and memory management components, 
the memory integrated within an IC is similar to memory located discretely on a board.

The CPU goes to memory to get what it needs to process, because it is in memory that all of
the data and instructions to be executed by the system are stored. Embedded platforms have a
memory hierarchy, a collection of different types of memory, each with unique speeds, sizes,
and usages (see Figure 4-38). Some of this memory can be physically integrated on the pro-
cessor, such as registers, read-only memory (ROM), certain types of random access memory
(RAM), and level-1 cache.

Figure 4-38: Memory hierarchy
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On-chip ROM is memory integrated into a processor that contains data or instructions that
remain even when there is no power in the system, due to a small, longer-life battery, and
therefore is considered to be nonvolatile memory (NVM). The content of on-chip ROM usu-
ally can only be read by the system it is used in.

To get a clearer understanding of how ROM works, let’s examine a sample logic circuit of
8 × 8 ROM, shown in Figure 4-39. This ROM includes three address lines (log28) for all
eight words, meaning the 3-bit addresses ranging from 000 to 111 will each represent one of
the eight bytes. (Note that different ROM designs can include a wide variety of addressing
configurations for the exact same matrix size, and this addressing scheme is just an example
of one such scheme.) D0 through D7 are the output lines from which data is read, one output
line for each bit. Adding additional rows to the ROM matrix increases its size in terms of the
number of address spaces, whereas adding additional columns increases a ROM’s data size
(the number of bits per address) it can store. ROM size specifications are represented in the
real world identically to what is used in this example, where the matrix reference (8 × 8,
16k × 32, and so on) reflects the actual size of ROM where the first number, preceding the
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“×”, is the number of addresses, and the second number, after the “×”, reflects the size of the
data (number of bits) at each address location—8 = byte, 16 = half word, 32 = word, and so
on. Also, note that in some design documentation, the ROM matrix size may be summarized.
For example, 16 kB (kBytes) of ROM is 16K × 8 ROM, 32 MB of ROM is 32 M × 8 ROM,
and so on.

Figure 4-39: 8 x 8 ROM logic circuit [4-6]
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In this example, the 8 × 8 ROM is an 8 × 8 matrix, meaning it can store eight different 8-bit
bytes, or 64 bits of information. Every intersection of a row and column in this matrix is a
memory location, called a memory cell. Each memory cell can contain either a bipolar or
MOSFET transistor (depending on the type of ROM) and a fusible link (see Figure 4-40).
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When a programmable link is in place, the transistor is biased ON resulting in a 1 being
stored. All ROM memory cells are typically manufactured in this configuration. When writing
to ROM, a “0” is stored by breaking the programmable link. How links are broken depends
on the type of ROM. How to read from a ROM depends on the ROM, but in this example,
the chip enable (CE) line is toggled (HIGH to LOW) to allow the data stored to be output via
D0–D7 after having received the 3-bit address requesting the row of data bits (see Figure 4-41).

Finally, the most common types of on-chip ROM include:

MROM (mask ROM), which is ROM (with data content) that is permanently etched
into the microchip during the manufacturing of the processor, and cannot be modified
later.

PROMs (programmable ROM), or OTPs (one-time programmables), which is a type
of ROM that can be integrated on-chip, that is one-time programmable by a PROM
programmer (in other words, it can be programmed outside the manufacturing factory).

EPROM (erasable programmable ROM), which is ROM that can be integrated on a
processor, in which content can be erased and reprogrammed more than once (the
number of times erasure and re-use can occur depends on the processor). The content
of EPROM is written to the device using special separate devices and erased, either
selectively or in its entirety using other devices that output intense ultraviolet light
into the processor’s built-in window.

EEPROM (electrically erasable programmable ROM), which, like EPROM, can be
erased and reprogrammed more than once. The number of times erasure and re-use
can occur depends on the processor. Unlike EPROMs, the content of EEPROM can
be written and erased without using any special devices while the embedded system
is functioning. With EEPROMs, erasing must be done in its entirety, unlike EPROMs,
which can be erased selectively.

 A cheaper and faster variation of the EEPROM is Flash memory. Where EEPROMs
are written and erased at the byte level, Flash can be written and erased in blocks
or sectors (a group of bytes). Like EEPROM, Flash can be erased while still in the
embedded device.

Figure 4-40: 8 x 8 MOSFET and bipolar memory cells [4-21]
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Figure 4-41: 8 x 8 reading ROM circuit [4-21]
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1 0 0 0 1 1 1 1 0 1 1 1 
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Random-Access Memory (RAM)

RAM (random access memory), commonly referred to as main memory, is memory in which
any location within it can be accessed directly (randomly, rather than sequentially from some
starting point), and whose content can be changed more than once (the number depending on
the hardware). Unlike ROM, contents of RAM are erased if RAM loses power, meaning RAM
is volatile. The two main types of RAM are static RAM (SRAM) and dynamic RAM (DRAM).

As shown in Figure 4-42a, SRAM memory cells are made up of transistor-based flip-flop
circuitry that typically holds its data due to a moving current being switched bi-directionally
on a pair of inverting gates in the circuit, until power is cut off or the data is overwritten.

bitbit

word

Figure 4-42a: 6 Transistor SRAM cell [4-26]

To get a clearer understanding of how SRAM works, let us examine a sample logic circuit of
4K x8 SRAM shown in Figure 4-42b.

In this example, the 4K × 8 SRAM is a 4K × 8 matrix, meaning it can store 4096 (4 × 1024)
different 8-bit bytes, or 32768 bits of information. As shown in the diagram below, 12 address
lines (A0–A11) are needed to address all 4096 (000000000000b–111111111111b) possible ad-
dresses, one address line for every address digit of the address. In this example, the 4K × 8 SRAM
is set up as a 64 × 64 array of rows and columns where addresses A0–A5 identifying the row,
and A6–A11 identifying the column. As with ROM, every intersection of a row and column in
the SRAM matrix is a memory cell, and in the case of SRAM memory cells, they can contain
flip-flop circuitry mainly based on semiconductor devices such as polysilicon load resistors,
bipolar transistors, and/or CMOS transistors. There are eight output lines (D0–D7), a byte for
every byte stored at an address.

In this SRAM example, when the chip select (CS) is HIGH, then memory is in standby mode
(no read or writes are occurring). When CS is toggled to LOW and write-enable input (WE)
is LOW, then a byte of data is written through the data input lines (D0–D7) at the address indi-
cated by the address lines. Given the same CS value (LOW) and WE is HIGH, then a byte of
data is being read from the data output lines (D0–D7) at the address indicated by the address
lines (A0–A7).



Embedded Processors

171

As shown in Figure 4-43, DRAM memory cells are circuits with capacitors that hold a charge
in place (the charges or lack thereof reflecting data). DRAM capacitors need to be refreshed
frequently with power in order to maintain their respective charges, and to recharge capacitors
after DRAM is read (reading DRAM discharges the capacitor). The cycle of discharging and
recharging of memory cells is why this type of RAM is called dynamic.

Figure 4-42b: 4K x 8 SRAM logic circuit [4-21]
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Figure 4-43: DRAM (capacitor-based) memory cell [4-21]
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Given a sample logic DRAM circuit of 16K x8, this RAM configuration is a two-
dimensional array of 128 rows and 128 columns, meaning it can store 16384 (16 × 1024)
different 8-bit bytes, or 131072 bits of information. With this address configuration, larger
DRAMs can either be designed with 14 address lines (A0–A13) needed to address all 16384
(000000000000b–11111111111111b) possible addresses—one address line for every address
digit of the address—or these address lines can be multiplexed, or combined into fewer lines
to share, with some type of data selection circuit managing the shared lines. Figure 4-44
demonstrates how a multiplexing of address lines could occur in this example.

Figure 4-44: 16K x 8 SRAM logic circuit [4-21]
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The 16K × 8 DRAM is set up with addresses A0–A6 identifying the row, and A7–A13 identify-
ing the column. In this example, the ROW address strobe (RAS) line is toggled (from HIGH
to LOW) for A0–A6 to be transmitted, and then the Column Address Strobe (CAS) line is
toggled (from HIGH to LOW) for A7–A7 to be transmitted. After this point the memory cell is
latched and ready to be written to or read from.

There are eight output lines (D0–D7), a byte for every byte stored at an address. When the
write enable (WE) input line is HIGH, data can be read from output lines D0–D7 and when
WE is LOW, data can be written to input lines D0–D7,.

One of the major differences between SRAM and DRAM lies in the makeup of the DRAM
memory array itself. The capacitors in the memory array of DRAM are not able to hold a
charge (data). The charge gradually dissipates over time, thus requiring some additional
mechanism to refresh DRAM, in order to maintain the integrity of the data. This mechanism
reads the data in DRAM before it is lost, via a sense amplification circuit that senses a charge
stored within the memory cell, and writes it back onto the DRAM circuitry. Ironically, the
process of reading the cell also discharges the capacitor, even though reading the cell in the
first place is part of the process of correcting the problem of the capacitor gradually discharg-
ing in the first place. A memory controller (see Section 5.4, Memory Management for more
information) in the embedded system typically manages a DRAM’s recharging and discharg-
ing cycle by initiating refreshes and keeping track of the refresh sequence of events. It is this
refresh cycling mechanism that discharges and recharges memory cells that gives this type of
RAM its name—“dynamic” RAM (DRAM)—and the fact that the charge in SRAM stays put
is the basis for its name, “static” RAM (SRAM). It is this same additional recharge circuitry
that makes DRAM slower in comparison to SRAM. (Note that SRAM is usually slower than
registers, because the transistors within the flip-flop are usually smaller, and thus do not carry
as much current as those typically used within registers.)

SRAMs also usually consume less power than DRAMs, since no extra energy is needed for a
refresh. On the flip side, DRAM is typically cheaper than SRAM, because of its capacitance-
based design, in comparison to its SRAM flip-flop counterpart (more than one transistor).
DRAM also can hold more data than SRAM, since DRAM circuitry is much smaller than
SRAM circuitry and more DRAM circuitry can be integrated into an IC.

DRAM is usually the “main” memory in larger quantities, and is also used for video RAM
and cache. DRAMs used for display memory are also commonly referred to as frame buffers.
SRAM, because it is more expensive, is typically used in smaller quantities, but because it is
also the fastest type of RAM, it is used in external cache (see Section 5.2) and video memory
(when processing certain types of graphics, and given a more generous budget, a system can
implement a better-performing RAM).

Table 4-3 summarizes some examples of different types of integrated RAM and ROM used
for various purposes in ICs.
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Table 4-3: On-chip memory [4-27]

Main Memory Video Memory Cache

SRAM NA RAMDAC (Random-Access Memory
Digital-to-Analog Converter)

RAMDAC processors are used in video
cards for display systems without true color,
to convert digital image data into analog
display data for analog displays, such as
CRTs (cathode ray tubes). The built-in
SRAM contains the color palette table that
provides the RGB (Red/Green/Blue) on
version values used by the DACs (digital-
to-analog converters), also built into the
RAMDAC, to change the digital image data
into the analog signals for the display units.

SRAM has been used for both
level-1 and level-2 caches. A type of
SRAM, called BSRAM (Burst/Syn-
chBurst Static Random-Access
Memory), that is synchronized with
either the system clock or a cache
bus clock, has been primarily used
for level-2 cache memory. (See
Section 4.2.)

DRAM SDRAM (Synchronous Dynamic Ran-
dom-Access Memory) is DRAM that is
synchronized with the microprocessor’s
clock speed (in MHz). Several types of
SDRAMs are used in various systems,
such as the JDEC SDRAM (JEDEC
Synchronous Dynamic Random-Access
Memory), PC100 SDRAM (PC100
Synchronous Dynamic Random-Access
Memory), and DDR SDRAM (Double
Data Rate Synchronous Dynamic
Random-Access Memory). ESDRAM
(Enhanced Synchronous Dynamic Ran-
dom-Access Memory) is SDRAM that
integrates SRAM within the SDRAM,
allows for faster SDRAM (basically the
faster SRAM portion of the ESDRAM
is checked first for data, then if not
found, the remaining SDRAM portion
is searched).

RDRAM (On-Chip Rambus Dynamic
Random-Access Memory) and MDRAM
(On-Chip Multibank Dynamic Random-Ac-
cess Memory) are DRAMs commonly used
as display memory that store arrays of bit
values (pixels of the image on the display).
The resolution of the image is determined
by the number of bits that have been defined
per each pixel.

Enhanced Dynamic Random-Ac-
cess Memory (EDRAM) integrates
SRAM within the DRAM, and is
usually used as level-2 cache (see
Section 4.2). The faster SRAM
portion of EDRAM is searched first
for the data, and if not found there,
then the DRAM portion of EDRAM
is searched.

DRDRAM (Direct Rambus Dy-
namic Random-Access Memory)
and SLDRAM (SyncLink Dynamic
Random-Access Memory) are DRAMs
whose bus signals (see Section 2.1, 
Memory Buses for more information)
can be integrated and accessed on one
line, thus decreasing the access time
(since synchronizing operations on
multiple lines are not necessary).

FPM DRAM (Fast Page Mode Dynamic
Random-Access Memory), EDORAM/
EDO DRAM (Data Output Random-Ac-
cess/Dynamic Random-Access Memory),
and BEDO DRAM (Data Burst Extended
Data Output Dynamic Random-Access
Memory). . . .

FRAM (Ferroelectric Random-Access
Memory) is nonvolatile DRAM, mean-
ing data isn’t lost from DRAM when
power is shut off. FRAM has a lower
power requirement than other types
of SRAM, DRAM, and some ROMs
(Flash), and is targeted for smaller
handheld devices (PDAs, phones, etc.).

FPM DRAM (Fast Page Mode Dynamic
Random-Access Memory), EDORAM/
EDO DRAM (Data Output Random-
Access/Dynamic Random-Access
Memory), and BEDO DRAM (Data
Burst Extended Data Output Dynamic
Random-Access Memory). . . .
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Cache (Level-1 Cache)

Cache is the level of memory between the CPU and main memory in the memory hierarchy
(see Figure 4-45). Cache can be integrated into a processor or can be off-chip. Cache exist-
ing on-chip is commonly referred to as level-1 cache, and SRAM memory is usually used as
level-1 cache. Because (SRAM) cache memory is typically more expensive due to its speed,
processors usually have a small amount of cache, whether on-chip or off-chip.

Figure 4-45: Level-1 cache in the memory hierarchy
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Using cache has become popular in response to systems that display a good locality of refer-
ence, meaning that these systems in a given time period access most of their data from a
limited section of memory. Cache is used to store subsets of main memory that are used or
accessed often. Some processors have one cache for both instructions and data, while other
processors have separate on-chip caches for each.

Figure 4-46: Level-1 cache in the von Neumann and Harvard models
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Different strategies are used when writing to and reading data from level-1 cache and main-
memory. These strategies include transferring data between memory and cache in either
one-word or multiword blocks. These blocks are made up of data from main memory, as well
as the location of that data in main memory (called tags).

In the case of writing to memory, given some memory address from the CPU, this address
is translated to determine its equivalent location in level-1 cache, since cache is a snapshot
of a subset of memory. Writes must be done in both cache and main memory to ensure that
cache and main memory are consistent (have the same value). The two most common write
strategies to guarantee this are write-through, in which data is written to both cache and main
memory every time, and write-back, in which data is initially only written into cache, and
only when it is to be bumped and replaced from cache is it written into main memory.

When the CPU wants to read data from memory, level-1 cache is checked first. If the data is
in cache, it is called a cache hit. The data is returned to the CPU and the memory access pro-
cess is complete. If the data is not located in level-1 cache, it is called cache miss. Off-chip
caches (if any) are then checked for the data desired. If this is a miss, then main memory is
accessed to retrieve and return the data to the CPU.

Data is usually stored in cache in one of three schemes:

Direct Mapped, where data in cache is located by its associated block address in 
memory (using the “tag” portion of the block).

Set Associative, where cache is divided into sets into which multiple blocks can be 
placed. Blocks are located according to an index field that maps into a cache’s par-
ticular set.

Full Associative, where blocks are placed anywhere in cache, and must be located by 
searching the entire cache every time.

In systems with memory management units (MMU) to perform the translation of addresses
(see Section 4.2), cache can be integrated between the CPU and the MMU, or the MMU and
main memory. There are advantages and disadvantages to both methods of cache integration
with an MMU, mostly surrounding the handling of DMA (direct memory access), which is
the direct access of off-chip main memory by slave processors on the board without going
through the main processor. When cache is integrated between the CPU and MMU, only the
CPU accesses to memory affect cache; therefore DMA writes to memory can make cache
inconsistent with main memory unless CPU access to memory is restricted while DMA data
is being transferred or cache is being kept updated by other units within the system besides
the CPU. When cache is integrated between the MMU and main memory, more address trans-
lations need to be done, since cache is affected by both the CPU and DMA devices.
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On-Chip Memory Management 

Many different types of memory can be integrated into a system, and there are also differenc-
es in how software running on the CPU views memory addresses (logical/virtual addresses) 
and the actual physical memory addresses (the two-dimensional array or row and column).
Memory managers are ICs designed to manage these issues, and in some cases are integrated
onto the master processor.

The two most common types of memory managers that are integrated into the master proces-
sor are memory controllers (MEMC) and memory management units (MMUs). A memory
controller (MEMC) is used to implement and provide glueless interfaces to the different
types of memory in the system, such as cache, SRAM, and DRAM, synchronizing access to
memory and verifying the integrity of the data being transferred. Memory controllers access
memory directly with the memory’s own physical (two-dimensional) addresses. The con-
troller manages the request from the master processor and accesses the appropriate banks,
awaiting feedback and returning that feedback to the master processor. In some cases, where
the memory controller is mainly managing one type of memory, it may be referred to by that
memory’s name (such as DRAM controller, cache controller, and so forth).

Memory management units (MMUs) are used to translate logical addresses into physical
addresses (memory mapping), as well as handle memory security, control cache, handle
bus arbitration between the CPU and memory, and generate appropriate exceptions. Figure
4-47 shows the MPC860, which has both an integrated MMU (in the core) and an integrated
memory controller (in the system interface unit).

Figure 4-47: Memory management and the MPC860 [4-15]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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In the case of translated addresses, the MMU can use level-1 cache on the processor, or por-
tions of cache allocated as buffers for caching address translations, commonly referred to as
the translation lookaside buffer or TLB, to store the mappings of logical addresses to physi-
cal addresses. MMUs also must support the various schemes in translating addresses, mainly
segmentation, paging, or some combination of both schemes. In general, segmentation is the
division of logical memory into large variable-size sections, whereas paging is the dividing up
of logical memory into smaller fixed-size units.

The memory protection schemes then provide shared, read/write, or read-only accessibility to
the various pages and/or segments. If a memory access is not defined or allowed, an interrupt
is typically triggered. An interrupt is also triggered if a page or segment isn’t accessible dur-
ing address translation (i.e., in the case of a paging scheme, a page fault, etc.). At that point
the interrupt would need to be handled; the page or segment would need to be retrieved from
secondary memory, for example.

The scheme supporting segmentation and/or paging of the MMU typically depends on the
software—that is, the operating system. See Chapter 9: Operating System for more on virtual
memory and how MMUs are used along with the system software to manage virtual memory.

Memory Organization

Memory organization includes not only the makeup of the memory hierarchy of the particular
platform, but also the internal organization of memory, specifically what different portions
of memory may or may not be used for, as well as how all the different types of memory are
organized and accessed by the rest of the system. For example, some architectures may split
memory so that a portion stores only instructions and another only stores data. The SHARC
DSP contains integrated memory that is divided into separate memory spaces (sections of
memory) for data and programs (instructions). In the case of the ARM architectures, some are
based upon the von Neumann model (for example, ARM7), which means it has one memory
space for instructions and data, whereas other ARM architectures (namely ARM9) are based
upon the Harvard model, meaning memory is divided into a section for data and a separate
section for instructions.

The master processor, along with the software, treats memory as one large one-dimensional
array, called a Memory Map (see Figure 4-48). This map serves to clearly define what address
or set of addresses are occupied by what components.

Figure 4-48a:
Memory map
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Within this memory map, an architecture may define multiple address spaces accessible to
only certain types of information. For example, some processors may require at a specific
location—or given a random location—a set of offsets to be reserved as space for its own
internal registers (see Figure 4-48b). The processor may also allow specific address spaces
accessible to only internal I/O functionality, instructions (programs), and/or data.

4.2.3 Processor Input/Output (I/O)

Author note: The material in this section is similar to material in Chapter 6: Board I/O, since 
aside from certain types of I/O or components of an I/O subsystem that are integrated on an 
IC versus discretely located on a board—the basics are essentially the same.

Input/output components of a processor are responsible for moving information to and from
the processor’s other components to any memory and I/O outside of the processor, on the
board (see Figure 4-49). Processor I/O can either be input components that only bring infor-
mation into the master processor, output components that bring information out of the master
processor, or components that do both (see Figure 4-48).

Virtually any electromechanical system, embedded and nonembedded, conventional (key-
board, mouse, etc.) as well as unconventional (power plants, human limbs, etc.), can be
connected to an embedded board and act as an I/O device. I/O is a high-level group that can
be subdivided into smaller groups of either output devices, input devices, or devices that are
both input and output devices. Output devices can receive data from board I/O components
and display that data in some manner, such as printing it to paper, to a disk, or to a screen, or
a blinking LED light for a person to see. An input device transmits data to board I/O com-
ponents, such as a mouse, keyboard, or remote control. I/O devices can do both, such as a
networking device that can transmit data to and from the Internet, for instance. An I/O device
can be connected to an embedded board via a wired or wireless data transmission medium,
such as a keyboard or remote control, or can be located on the embedded board itself, such as
an LED.

Figure 4-48b: MPC860 registers within memory map [4-15]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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000 SIU module configuration register (SIUMCR) 32 bits
004 System Protection Control Register (SYPCR) 32 bits

008-00D Reserved 6 bytes
00E Software Service Register (SWSR) 16 bits
010 SIU Interrupt Pending Register (SIPEND) 32 bits
014 SIU Interrupt Mask Register (SIMASK) 32 bits
018 SIU Interrupt Edge/Level Register (SIEL) 32 bits
01C SIU Interrupt Vector Register (SIVEC) 32 bits
020 Transfer Error Status Register (TESR) 32 bits
…. …. ….0000 0000

FFFF FFFF
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Because I/O devices can be such a wide variety of electromechanical systems, ranging from
simple circuits to another embedded system entirely, processor I/O components can be orga-
nized into categories based on the functions they support, the most common including:

Networking and communications I/O (the physical layer of the OSI model – see
Chapter 2)

Input (keyboard, mouse, remote control, voice, etc.)

Graphics and output I/O (touch screen, CRT, printers, LEDs, etc.)

Storage I/O (optical disk controllers, magnetic disk controllers, magnetic tape con-
trollers, etc.)

Debugging I/O (BDM, JTAG, serial port, parallel port, etc.)

Real-time and miscellaneous I/O (timers/counters, analog-to-digital converters and
digital-to-analog converters, key switches, and so on)

Figure 4-49: Processor I/O diagram
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In short, an I/O subsystem can be as simple as a basic electronic circuit that connects the
master processor directly to an I/O device (such as a master processor’s I/O port to a clock
or LED located on the board) to more complex I/O subsystem circuitry that includes several
units, as shown in Figure 4-50. I/O hardware is typically made up of all or some combination
of six main logical units:

The transmission medium, wireless or wired medium connecting the I/O device to the
embedded board for data communication and exchanges

A communication port, which is what the transmission medium connects to on the
board, or if a wireless system, what receives the wireless signal

A communication interface, which manages data communication between master
CPU and I/O device or I/O controller; also responsible for encoding data and decod-
ing data to and from the logical level of an IC and the logical level of the I/O port.
This interface can be integrated into the master processor, or can be a separate IC.

An I/O controller, a slave processor that manages the I/O device

I/O buses, the connection between the board I/O and master processor

The master processor integrated I/O

Figure 4-50: Ports and device controllers on an embedded board
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This means that the I/O on the board can range from a complex combination of components, as
shown in Figure 4-51a, to a few integrated I/O board components, as shown in Figure 4-51b.

Figure 4-51a: Complex I/O subsystem

Figure 4-51b: Simple I/O subsystem [4-30]
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Transmission mediums, buses, and board I/O are beyond the scope of this section, and are
covered in Chapter 2 (transmission mediums), Chapter 7 (board buses) and Chapter 6 (board
I/O), respectively. I/O controllers are a type of processor (see Section 4.1, ISA Architecture 
Models). An I/O device can be connected directly to the master processor via I/O ports (pro-
cessor pins) if the I/O devices are located on the board, or can be connected indirectly via a
communication interface integrated into the master processor or a separate IC on the board.
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As seen from the sample circuit in Figure 4-52, an I/O pin is typically connected to some
type of current source and switching device. In this example it’s a MOSFET transistor. This
sample circuit allows for the pin to be used for both input and output. When the transistor is
turned OFF (open switch), the pin acts as an input pin, and when the switch is ON it operates
as an output port.

Figure 4-52: I/O port sample circuit [4-24]
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A pin or sets of pins on the processor can be programmed to support particular I/O functions
(for example, Ethernet port receiver, serial port transmitter, bus signals, etc.), through a mas-
ter processor’s control registers (see Figure 4-53).

In the case of the MPC860, the I/O such as Ethernet and RS-232 are implemented by the SCC registers, RS-232 
by SMC2, and so on. The configuration of pins occurs in software, and so will be discussed in Chapter 8.

Figure 4-53: MPC860 reference platform and I/O [4-25]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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Within the various I/O categories (networking, debugging, storage, and so forth), processor
I/O is typically subgrouped according to how data is managed. Note that the actual subgroups
may be entirely different depending on the architecture viewpoint, as related to the embed-
ded systems model. Here “viewpoint” means that hardware and software can view (and hence
subgroup) I/O differently. Within software, the subgroups can even differ depending on the
level of software (i.e., system software versus application software, operating system versus
device drivers, and so on). For example, in many operating systems, I/O is considered to be
either block or character I/O. Block I/O stores and transmits data in fixed block sizes, and is
addressable only in blocks. Character I/O, on the other hand, manages data in streams of char-
acters, the size of the character depending on the architecture—such as one byte, for example.

From a hardware viewpoint, I/O manages (transmits and/or stores) data in serial, in parallel,
or both.

Managing I/O Data: Serial vs. Parallel I/O

Processor I/O that can transmit and receive serial data is made up of components in which
data is stored, transferred and/or received one bit at a time. Serial I/O hardware is typically
made up of some combination of the six main logical units outlined at the start of the chap-
ter; serial communication then includes within its I/O subsystem a serial port and a serial
interface. 

Serial interfaces manage the serial data transmission and reception between the master CPU
and either the I/O device or its controller. They include reception and transmission buffers to
store and encode or decide the data they are responsible for transmitting either to the master
CPU or an I/O device. In terms of serial data transmission and reception schemes, they gener-
ally differ as to what direction data can be transmitted and received, as well as in the actual
process of how the data bits are transmitted (and thus received) within the data stream.

Data can be transmitted between two devices in one of three directions: one way, in both
directions but at separate times because they share the same transmission line, and in both
directions simultaneously. A simplex scheme for serial I/O data communication is one in
which a data stream can only be transmitted—and thus received—in one direction (see Figure
4-54a). A half duplex scheme is one in which a data stream can be transmitted and received
in either direction, but in only one direction at any one time (see Figure 4-54b). A full duplex
scheme is one in which a data stream can be transmitted and received in either direction,
simultaneously (see Figure 4-54c).

Figure 4-54a: Simplex transmission scheme example [4-18]
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Within the actual data stream, serial I/O transfers can occur either as a steady (continuous)
stream at regular intervals regulated by the CPU’s clock, referred to as a synchronous trans-
fer, or intermittently at irregular (random) intervals, referred to as an asynchronous transfer.

Figure 4-54b: Half duplex transmission scheme example [4-18]
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Figure 4-54c: Full duplex transmission scheme example [4-18]

Figure 4-55: Asynchronous transfer sample diagram
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In an asynchronous transfer (shown in Figure 4-55), the data being transmitted can be stored
and modified within a serial interface’s transmission buffer or registers. The serial interface at
the transmitter divides the data stream into packets that typically range from either 4–8 or 5–9
bits, the number of bits per character. Each of these packets is then encapsulated in frames
to be transmitted separately. The frames are packets that are modified before transmission by
the serial interface to include a START bit at the start of the stream, and a STOP bit or bits
(i.e., can be 1, 1.5, or 2 bits in length to ensure a transition from “1” to “0” for the START bit
of the next frame) at the end of the data stream being transmitted. Within the frame, after the
data bits and before the STOP bit, a parity bit may also be appended. A START bit indicates
the start of a frame, the STOP bit(s) indicates the end of a frame, and the parity is an optional
bit used for very basic error checking. Basically, parity for a serial transmission can be NONE
(for no parity bit and thus no error checking), EVEN (where the total number of bits set to
“1” in the transmitted stream, excluding the START and STOP bits, needs to be an even num-
ber for the transmission to be a success), and ODD (where the total number of bits set to “1”
in the transmitted stream, excluding the START and STOP bits, needs to be an odd number
for the transmission to be a success).

Between the transmission of frames, the communication channel is kept in an idle state,
meaning a logical level “1” or non-return to zero (NRZ) state is maintained.

The serial interface of the receiver then receives frames by synchronizing to the START bit of
a frame, delays for a brief period, and then shifts in bits, one at a time, into its receive buffer
until reaching the STOP bit (s). In order for asynchronous transmission to work, the bit rate
(bandwidth) has to be synchronized in all serial interfaces involved in the communication.
The bit rate is defined as:

(number of actual data bits per frame/total number of bits per frame) * the baud rate. 

The baud rate is the total number of bits, regardless of type, per unit of time (kbits/sec,
Mbits/sec, etc.) that can be transmitted.

Both the transmitter’s serial interface and the receiver’s serial interface synchronize with
separate bit-rate clocks to sample data bits appropriately. At the transmitter, the clock starts
when transmission of a new frame starts, and continues until the end of the frame so that the
data stream is sent at intervals the receiver can process. At the receiving end, the clock starts
with the reception of a new frame, delaying when appropriate, in accordance with the bit rate,
sampling the middle of each data bit period of time, and then stopping when receiving the
frame’s STOP bit(s).
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In a synchronous transmission (as shown in Figure 4-56), there are no START or STOP bits
appended to the data stream, and there is no idle period. As with asynchronous transmis-
sions, the data rates on the receiving and transmitting have to be in sync. However, unlike the
separate clocks used in an asynchronous transfer, the devices involved in a synchronous trans-
mission are synchronizing off of one common clock which does not start and stop with each
new frame (and on some boards there may be an entirely separate clock line for the serial
interface to coordinate the transfer of bits). In some synchronous serial interfaces, if there is
no separate clock line, the clock signal may even be transmitted along with the data bits.

The UART (universal asynchronous receiver-transmitter) is an example of a serial interface
that does asynchronous serial transmission, whereas SPI (serial peripheral interface) is an
example of a synchronous serial interface. Note: different architectures that integrate a UART 
or other types of serial interfaces can have varying names for the same type of interface, such 
as the MPC860 which has SMC (serial management controller) UARTs, for example. Review 
the relevant documentation to understand the specifics.

Serial interfaces can either be separate slave ICs on the board, or integrated onto the master
processor. The serial interface transmits data to and from an I/O device via a serial port (see
Chapter 6). Serial ports are serial communication (COM) interfaces that are typically used
to interconnect off-board serial I/O devices to on-board serial board I/O. The serial interface
is then responsible for converting data that is coming to and from the serial port at the logic
level of the serial port into data that the logic circuitry of the master CPU can process.

Processor Serial I/O Example 1: 
An Integrated Universal Asynchronous Receiver-Transmitter (UART) 

The UART (universal asynchronous receiver-transmitter) is an example of a full duplex serial
interface that can be integrated into the master processor and that does asynchronous serial
transmission. As mentioned earlier, the UART can exist in many variations and under many
names; however, they are all based upon the same design—the original 8251 UART control-
ler implemented in older PCs. A UART (or something like it) must exist on both sides of the
communication channel, in the I/O device as well as on the embedded board, in order for this
communication scheme to work.

Figure 4-56: Synchronous transfer sample diagram
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In this example, we look at the MPC860 internal UART scheme since the MPC860 has more
than one way to implement a UART. The MPC860 allows for two methods to configure a
UART, either using an SCC (serial communication controller) or an SMC (serial manage-
ment controller). Both of these controllers reside in the PowerPC’s Communication Processor
Module (shown in Figure 4-57) and can be configured to support a variety of different com-
munication schemes, such as Ethernet, HDLC, etc. for the SCC, and transparent, GCI, etc. for
SMCs. In this example, however, we are only examining both being configured and function-
ing as a UART.

Figure 4-57: MPC860 UARTs [4-25]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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MPC860 SCC in UART Mode

As introduced at the start of this section, in an asynchronous transfer, the data being transmit-
ted can be stored and modified within a serial interface’s transmission buffer. With the SCCs
on the MPC860, there are two UART FIFO (first-in-first-out) buffers, one for receiving data
for the processor and one for transmitting data to external I/O (see Figures 4-58a and b). Both
buffers are typically allocated space in main memory.
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As can be seen in Figures 4-58a and b, along with the reception and transmission buffers,
there are control registers to define the baud rate, the number of bits per character, the parity,
and the length of the stop bit, among other things. As shown in Figures 4-58a and b, as well
as 4-59, there are five pins, extending out from the PowerPC chip, that the SCC is connected
to for data transmission and reception: transmit (TxD), receive (RxD), carrier detect (CDx),
collision on the transceiver (CTSx), and request-to-send (RTS). How these pins work together
is described in the next few paragraphs.
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Figure 4-58a: SCC in receive mode [4-25]

Figure 4-58b: SCC in transmit mode [4-25]
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In either receive or transmit modes, the internal SCC clock is activated. In asynchronous
transfers, every UART has its own internal clock that, though unsynchronized with the clock
in the UART of the external I/O device, is set at the same baud rate as that of the UART it is
in communication with. The carrier detect (CDx) is then asserted to allow the SCC to receive
data, or the collision on the transceiver (CTSx) is asserted to allow the SCC to transmit data.

As mentioned, data is encapsulated into frames in asynchronous serial transmissions. When
transmitting data, the SDMA transfers the data to the transmit FIFO and the request-to-send
pin asserts (because it is a transmit control pin and asserts when data is loaded into the trans-
mit FIFO). The data is then transferred (in parallel) to the shifter. The shifter shifts the data
(in serial) into the delimiter, which appends the framing bits (i.e., start bits, stop bits, and so
on). The frame is then sent to the encoder for encoding before transmission. In the case of an
SCC receiving data, the framed data is then decoded by the decoder and sent to the delimiter
to strip the received frame of nondata bits, such as start bit, stop bit(s), and so on. The data
is then shifted serially into the shifter, which transfers (in parallel) the received data into the
receive data FIFO. Finally, the SDMA transfers the received data to another buffer for contin-
ued processing by the processor.

MPC860 SMC in UART Mode

As shown in Figure 4-60a, the internal design of the SMC differs greatly from the internal
design of the SCC (shown in Figures 5-58a and b), and in fact has fewer capabilities than an
SCC. An SMC has no encoder, decoder, delimiter, or receive/transmit FIFO buffers. It uses
registers instead. As shown in Figure 4-60b, there are only three pins that an SMC is connect-
ed to: a transmit pin (SMTXDx), a receive pin (SMRXDx), and sync signal pin (SMSYN).
The sync pin is used in transparent transmissions to control receive and transmit operations.

Figure 4-59: SCC pinouts [4-25]
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Data is received via the receive pin into the receive shifter, and the SDMA then transfers the
received data from the receive register. Data to be transmitted is stored in the transmit regis-
ter, and then moved into the shifter for transmission over the transmit pin. Note that the SMC
does not provide the framing and stripping of control bits (i.e., start bit, stop bit(s), and so on)
that the SCC provides.

Processor Serial I/O Example: An Integrated Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) is an example of a full-duplex serial interface that can be
integrated into the master processor and that does synchronous serial transmission. Like the
UART, an SPI needs to exist on both sides of the communication channel (in the I/O device,
as well as on the embedded board) in order for this communication scheme to work. In this
example, we examine the MPC860 internal SPI, which resides in the PowerPC’s Communica-
tion Processor Module (shown in Figure 4-61).
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Figure 4-61: MPC860 SPI [4-15]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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In a synchronous serial communication scheme, both devices are synchronized by the same
clock signal generated by one of the communicating devices. In such a case, a master-slave
relationship develops in which the master generates the clock signal which it and the slave
device, adheres to. It is this relationship that is the basis of the four pins that the MPC860 SPI
is connected to (as shown in Figure 4-62b): the master out/slave in or transmit (SPIMOSI),
master in/slave out or receive (SPIMISO), clock (SPICLK), and slave select (SPISEL).

Figure 4-62a: SPI [4-25] Figure 4-62b: SPI pins [4-25]
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When the SPI operates in a master mode, it generates the clock signals, while in slave mode,
it receives clock signals as input. SPIMOSI in master mode is an output pin, SPMISO in
master mode is an input pin, SPICLK supplies an output clock signal in master mode that
synchronizes the shifting of received data over the SPIMISO pin or shifts out transmitted
data over SPIMOSI. In slave mode, SPIMOSI is an input pin, SPIMISO is an output pin, and
SPICLK receives a clock signal from the master synchronizing the shifting of data over the
transmit and receive pins. The SPISEL is also relevant in slave mode, because it enables input
into the slave.

How these pins work together, along with the internal components of the SPI, are shown
in Figure 4-62a. Essentially, data is received or transmitted via one shift register. If data is
received, it is then moved into a receive register. The SDMA then transfers the data into a
receive buffer that usually resides in main memory. In the case of a data transmission, the
SDMA moves the data to be transmitted from the transfer buffer in main memory to the trans-
mit register. SPI transmission and reception occurs simultaneously; as data is received into
the shift register, it shifts out data that needs to be transmitted.
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Parallel I/O

I/O components that transmit data in parallel allow data to be transferred in multiple bits
simultaneously. Just as with serial I/O, parallel I/O hardware is also typically made up of
some combination of six main logical units, as introduced at the start of this chapter, except
that the port is a parallel port and the communication interface is a parallel interface. 

Parallel interfaces manage the parallel data transmission and reception between the master
CPU and either the I/O device or its controller. They are responsible for decoding data bits
received over the pins of the parallel port, transmitted from the I/O device, and receiving data
being transmitted from the master CPU, and then encoding these data bits onto the parallel
port pins.

They include reception and transmission buffers to store and manipulate the data they are
responsible for transmitting either to the master CPU or an I/O device. Parallel data transmis-
sion and reception schemes, like serial I/O transmission, generally differ in terms of what
direction data can be transmitted and received, as well as the actual process of how the actual
data bits are transmitted (and thus received) within the data stream. In the case of direction of
transmission, as with serial I/O, parallel I/O uses simplex, half-duplex, or full-duplex modes.
Again, like serial I/O, parallel I/O can be transmitted asynchronously or synchronously.
Unlike serial I/O, parallel I/O does have a greater capacity to transmit data, because multiple
bits can be transmitted or received simultaneously. Examples of I/O devices that transfer and
receive data in parallel include IEEE1284 controllers (for printer/display I/O devices), CRT
ports, and SCSI (for storage I/O devices).

Interfacing the Master Processor with an I/O Controller

When the communication interface is integrated into the master processor, as is the case with
the MPC860, it is a matter of connecting the identical pins for transmitting data and receiving
data from the master processor to an I/O controller. The remaining control pins are then con-
nected according to their function. In Figure 4-63a, for instance, the RTS (request to send) on
the PowerPC is connected to transmit enable (TENA) on the Ethernet controller, since RTS
is automatically asserted if data is loaded into the transmit FIFO, indicating to the controller
that data is on its way. The CTS (collision on the transceiver) on the PowerPC is connected to
the CLSN (clear to send) on the Ethernet controller and the CD (carrier detect) is connected
to the RENA (receive enable) pin, since when either CD or CTS are asserted, a transmission
or data reception can take place. If the controller does not clear to send or receive enable to
indicate data is on its way to the PowerPC, no transmission or reception can take place. Fig-
ure 4-63b shows a MPC860 SMC interfaced to an RS-232 IC, which takes the SMC signals
(transmit pin (SMTXDx) and receive pin (SMRXDx)) and maps them to an RS-232 port in this
example.
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Finally, Figure 4-63c shows an example of a PowerPC SPI in master mode interfaced with
some slave IC, in which the SPIMISO (master in/slave out) is mapped to SPISO (SPI slave
out). Since in master mode SPIMISO is an input port, SPIMOSI (master out/slave in) is
mapped to SPISI (slave in). Since SPIMOSI in master mode is an output port, SPICLK is
mapped to SPICK (clock) since both ICs are synchronized according to the same clock, and
SPISEL is mapped to SPISS (Slave Select input) which is only relevant if the PowerPC is in
slave mode. If it were the other way around (that is, PowerPC in slave mode and slave IC in
master mode), the interface would map identically.

Finally, for a subsystem that contains an I/O controller to manage the I/O device, the interface
between an I/O Controller and master CPU (via a communications interface) is based on four
requirements:

An ability for the master CPU to initialize and monitor the I/O Controller. I/O
controllers can typically be configured via control registers and monitored via status
registers. These registers are all located on the I/O controller itself. Control registers
can be modified by the master processor to configure the I/O controller. Status reg-
isters are read-only registers in which the master processor can get information as to
the state of the I/O controller. The master CPU uses these status and control registers
to communicate and/or control attached I/O devices via the I/O controller.
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Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Figure 4-63b: MPC860 SMC interfaced 
to RS-232 [4-25]

Copyright of Freescale Semiconductor, Inc. 2004. 
Used by permission.

Figure 4-63c: MPC860 SPI interfaced to ROM [4-25]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Interface
Example MPC860 MCM2814

EEPROM

SPISO

SPISI

SPICK

SPISS

SPIMISO

SPIMOSI

SPICLK

Port Pin



Embedded Processors

195

A way for the master processor to request I/O. The most common mechanisms used
by the master processor to request I/O via the I/O controller are special I/O instruc-
tions (I/O mapped) in the ISA and memory-mapped I/O, in which the I/O controller
registers have reserved spaces in main memory.

A way for the I/O device to contact the master CPU. I/O controllers that have the
ability to contact the master processor via an interrupt are referred to as interrupt
driven I/O. Generally, an I/O device initiates an asynchronous interrupt requesting
signaling to indicate (for example) that control and status registers can be read from
or written to. The master CPU then uses its interrupt scheme to determine when an
interrupt will be discovered.

Some mechanism for both to exchange data. This refers to the process by which
data is actually exchanged between the I/O controller and the master processor. In a
programmed transfer, the master processor receives data from the I/O controller into
its registers, and the CPU then transmits this data to memory. For memory-mapped
I/O schemes, DMA (direct memory access) circuitry can be used to bypass the master
CPU entirely. DMA has the ability to manage data transmissions or receptions direct-
ly to and from main memory and an I/O device. On some systems, DMA is integrated
into the master processor, and on others there is a separate DMA controller.

Note: More on I/O with examples of components will be covered in Chapter 6: Board I/O. 
Some (unintegrated) processors have I/O components that work in conjunction with board 
I/O, so there is a great deal of overlapping information.

Interrupts

Interrupts are signals triggered by some event during the execution of an instruction stream
by the master processor. This means they can be initiated asynchronously, for external hard-
ware devices, resets, power failures, or synchronously for instruction-related activities such as
system calls, or illegal instructions. These signals cause the master processor to stop executing
the current instruction stream and start the process of handling (processing) the interrupt.

The three main types of interrupts are software, internal hardware, and external hardware.
Software interrupts are explicitly triggered internally by some instruction within the cur-
rent instruction stream being executed by the master processor. Internal hardware interrupts,
on the other hand, are initiated by an event that is a result of a problem with the current
instruction stream that is being executed by the master processor because of the features (or
limitations) of the hardware, such as illegal math operations like overflow or divide-by-zero,
debugging (single-stepping, breakpoints), invalid instructions (opcodes), and so on. Inter-
rupts that are raised (requested) by some internal event to the master processor (basically,
software and internal hardware interrupts) are also commonly referred to as exceptions or
traps (depending on the type of interrupt). Finally, external hardware interrupts are interrupts
initiated by hardware other than the master CPU (i.e., board buses, I/O, etc.). What actually
triggers an interrupt is typically determined by the software via register bits that activate or
deactivate potential interrupt sources in the initialization device driver code.
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For interrupts that are raised by external events, the master processor is either wired via
an input pin(s), called an IRQ (Interrupt Request Level) pin or port, to outside intermedi-
ary hardware (i.e., interrupt controllers), or directly to other components on the board with
dedicated interrupt ports that signal the master CPU when they want to raise the interrupt.
These types of interrupts are triggered in one of two ways: level-triggered or edge-triggered.
A level-triggered interrupt is initiated when the interrupt request (IRQ) signal is at a certain
level (i.e., HIGH or LOW—see Figure 4-64a). These interrupts are processed when the CPU
finds a request for a level-triggered interrupt when sampling its IRQ line, such as at the end of
processing each instruction.

Edge-triggered interrupts trigger when a change occurs on its IRQ line (from LOW to HIGH/
rising edge of signal or from HIGH to LOW/falling edge of signal—see Figure 8-64b). Once
triggered, these interrupts latch into the CPU until processed.

Fetch Decode Execute Fetch Decode Execute Fetch Decode ExecuteCPU

IRQ

Level Triggered IRQ Sampling

Fetch Decode Execute Fetch Decode Execute Fetch Decode ExecuteCPU

IRQ

Falling Edge Trigger for Edge
Triggered Interrupt Rising Edge Trigger for Edge

Triggered Interrupt

Figure 4-64a: Level-triggered interrupts [4-24]

Figure 4-64b: Edge-triggered interrupts [4-24]

Both types of interrupts have their strengths and drawbacks. With a level-triggered interrupt,
as shown in Figure 4-65a, if the request is being processed and has not been disabled before
the next sampling period, the CPU would try to service the same interrupt again. On the flip
side, if the level-triggered interrupt were triggered and then disabled before the CPU’s sample
period, the CPU would never note its existence and would therefore never process it. Edge
level interrupts can have problems if they share the same IRQ line, if they are triggered in the
same manner at about the same time (say before the CPU could process the first interrupt),
resulting in the CPU being able to detect only one of the interrupts (see Figure 4-65b).

Because of these drawbacks, level-triggered interrupts are generally recommended for inter-
rupts that share IRQ lines, whereas edge-triggered interrupts are typically recommended for
interrupt signals that are very short or very long.
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At the point an IRQ of a master processor receives a signal that an interrupt has been raised,
the interrupt is processed by the interrupt handling mechanisms within the system. These
mechanisms are made up of a combination of both hardware and software components. In
terms of hardware, an interrupt controller can be integrated onto a board or within a proces-
sor to mediate interrupt transactions in conjunction with software. Architectures that include
an interrupt controller within their interrupt handling schemes include the 268/386 (x86)
architectures that use two PICs (Intel’s Programmable Interrupt Controller); MIPS32, which
relies on an external interrupt controller; and the MPC860 (shown in Figure 4-66a), which
integrates two interrupt controllers, one in the CPM and one in its SIU. For systems with no
interrupt controller (such as the Mitsubishi M37267M8 TV microcontroller shown in Figure
4-66b), the interrupt request lines are connected directly to the master processor, and interrupt
transactions are controlled via software and some internal circuitry (registers, counters, etc.).

Figure 4-65a: Level-triggered interrupts drawbacks [4-24]

Fetch Decode Execute Fetch Decode Execute Fetch Decode ExecuteCPU

IRQ

IRQ still active for same interrupt
at 2 sampling periods

Level Triggered 
IRQ Sampling

IRQ inactive before 
CPUsampling period

Figure 4-65b: Edge-triggered interrupts drawbacks [4-24]
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Figure 4-66a: Motorola/Freescale MPC860 interrupt controllers [4-25]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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Interrupt acknowledgment, or IACK, is typically handled by the master processor when an
external device triggers an interrupt. Because IACK cycles are a function of the local bus,
the IACK function of the master CPU depends on interrupt policies of system buses, as well
as the interrupt policies of components within the system that trigger the interrupts. With
respect to the external device triggering an interrupt, the interrupt scheme depends on whether
that device can provide an interrupt vector (a place in memory that holds the address of
an interrupt’s ISR). For devices that cannot provide the interrupt vector, master processors
implement an auto-vectored interrupt scheme and acknowledgment is done via software. An
interrupt vectored scheme is implemented to support peripherals that can provide an interrupt
vector over a bus, and acknowledgment is automatic. Some IACK register on the master CPU
informs the device, requesting the interrupt to stop requesting interrupt service, and provides
the master processor with what it needs to process the correct interrupt (such as the interrupt
number, vector number, and so forth). Based upon the activation of an external interrupt pin,
an interrupt controller’s interrupt select register, a device’s interrupt select register, or some
combination of these, the master processor can determine which ISR to execute. After the ISR
completes, the master processor resets the interrupt status by adjusting the bits in the pro-
cessor’s status register or an interrupt mask in the external interrupt controller. The interrupt
request and acknowledge mechanisms are determined by the device requesting the interrupt
(since it determines which interrupt service to trigger), the master processor, and the system
bus protocols.

Mitsubishi
Circuitry 8-3

M37267M8

Ports (P4)

Interrupt Input  Pins

  INT1 INT2
RE1

32usec

16usec

Control 
Unit

RE2

INT2

INT1

8-bit Binary 
up Counter

Interrupt Interval
Determination RegisterRE2

Selection Gate: Connected to
black colored portiot rest

Data Bus

Figure 4-66b: Mitsubishi M37267M8 circuitry [4-22]
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Keep in mind that this is a general introduction to interrupt handling, covering some of the
key features found in a variety of schemes. The overall interrupt handling scheme can vary
widely from architecture to architecture. For example, PowerPC architectures implement an
auto-vectored scheme, with no interrupt vector base register. The 68000 architecture supports
both auto-vectored and interrupt vectored schemes, whereas MIPS32 architectures have no
IACK cycle, and so the interrupt handler handles the triggered interrupts.

All available interrupts within a processor have an associated interrupt level, which is the
priority of that interrupt within the system. Typically, interrupts starting at level “1” are the
highest priority within the system, and incrementally from there (2,3,4,…) the priorities of the
associated interrupts decrease. Interrupts with higher levels (priorities) have precedence over
any instruction stream being executed by the master processor. This means that not only do
interrupts have precedence over the main program, but they also have precedence over inter-
rupts with lower priorities as well.

The master processor’s internal design determines the number and types of interrupts avail-
able, as well as the interrupt levels (priorities) supported within an embedded system. In
Figure 4-67a, the MPC860 CPM, SIU, and PowerPC core all work together to implement
interrupts on the MPC823 processor. The CPM allows for internal interrupts (two SCCs, two
SMCs, SPI, I2C, PIP, general-purpose timers, two IDMAs, one SDMA, one RISC Timers)
and 12 external pins of port C, and drives the interrupt levels on the SIU. The SIU receives in-
terrupts from eight external pins (IRQ0-7), and eight internal sources, for a total of 16 sources

Figure 4-67a: Motorola/Freescale MPC860 interrupt pins and table [4-25]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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of interrupts (one of which can be the CPM), and drives the IREQ input to the core. When the
IREQ pin is asserted, external interrupt processing begins. The priority levels are shown in
Figure 4-67b.

Figure 4-67b: Motorola/Freescale MPC860 interrupt levels [4-25]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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In another architecture, such as the 68000, (shown in Figures 4-68a and b) there are eight
levels of interrupts (0–7), and interrupts at level 7 are the highest priority. The 68000 interrupt
table (Figure 4-68b) contains 256 32-bit vectors.
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Figure 4-68a:
Motorola/Freescale 68K IRQs [4-23]

Figure 4-68b:
Motorola/Freescale 68K IRQs table [4-23]
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0 000 Reset Initial Interrupt Stack Pointer
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2 008 Access Fault
3 00C Address Error

4 010 Illegal Instruction
5 014 Integer Divide by Zero
6 018 CHK, CHK2 instructio n
7 01C FTRAPcc, TRAPcc, TRAPV instruction s

8 020 Privilege Violation
9 024 Trace
10 028 Line 1010 Emulator (Unimplemented A-Line Opcode)
11 02C Line 1111 Emulator (Unimplemented F-line Opcode )

12 030 (Unassigned, Reserv ed)
13 034 Coprocessor Protocol Violation
14 038 Format Error
15 03C Uninitialized Interrupt
16−23 040−050 (Unassigned, Reserv ed)
24 060 Spurious Interrupt
25 064 Level 1 Interrupt Autovector
26 068 Level 2 Interrupt Autovector
27 06C Level 3 Interrupt Auto vector

28 070 Level 4 Interrupt Autovector
29 074 Level 5 Interrupt Auto vector
30 078 Level 6 Interrupt Autovector
31 07C Level 7 Interrupt Auto vector
32−47 080−08C TRAP #0 D 15 Instructor Vectors
48 0C0 FP Branch or Set on Unordered Conditio n
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51 0CC FP Underflo w
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59−63 0ECD0FC (Unassigned, Reserv ed)
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Figure 4-69a: Mitsubishi M37267M8 8-bit TV microcontroller interrupts [4-22]

M37267M8

P44 can be used as external interrupt pin INT1.

P41/MXGcan be used as external interrupt pin INT2.

The M37267M8 architecture (shown in Figure 4-69a) allows for interrupts to be caused by
16 events (13 internal, two external shown in the figure above, and one software) whose
priorities and usages are summarized in Figure 4-69b.
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Interrupt Source Priority Interrupt Causes

RESET 1 (nonmaskable)
CRT 2 Occurs after character block display to CRT is completed
INT1 3 External Interrupt ** the processor detects that the level of

a pin changes from 0 (LOW) to 1 (HIGH), or 1 (HIGH) to 0
(LOW) and generates an interrupt request.

Data Slicer 4 Interrupt occurs at end of line specified in caption position
register

Serial I/O 5 Interrupt request from synchronous serial I/O function
Timer 4 6 Interrupt generated by overflow of timer 4
Xin & 4096 7 Interrupt occurs regularly w/ a f(Xin)/4096 period.
Vsync 8 An interrupt request synchronized with the vertical sync signal
Timer 3 9 Interrupt generated by overflow of timer 3
Timer 2 10 Interrupt generated by overflow of timer 2
Timer 1 11 Interrupt generated by overflow of timer 1
INT2 12 External Interrupt ** the processor detects that the level of

a pin changes from 0 (LOW) to 1 (HIGH), or 1 (HIGH) to 0
(LOW) and generates an interrupt request.

Multimaster I2C Bus
interface

13 Related to I2C bus interface

Timer 5 & 6 14 Interrupt generated by overflow of timer 5 or 6
BRK instruction 15 (nonmaskable software)

Several different priority schemes are implemented in various architectures. These schemes
commonly fall under one of three models: the equal single level (where the latest interrupt to
be triggered gets the CPU), the static multilevel (where priorities are assigned by a priority
encoder, and the interrupt with the highest priority gets the CPU), and the dynamic multilevel
(where a priority encoder assigns priorities, and the priorities are reassigned when a new
interrupt is triggered).

After the interrupt is acknowledged, the remaining interrupt handling process as described
above is typically handled via software, and so the discussion of interrupts will be continued
in Chapter 8: Device Drivers.

4.2.4 Processor Buses
Like the CPU buses, the processor’s buses interconnect the processor’s major internal com-
ponents (in this case the CPU, memory and I/O as shown in Figure 4-70) together, carrying
signals between the different components.

Figure 4-69b: Mitsubishi M37267M8 8-bit TV microcontroller interrupt table [4-22]
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A key feature of processor buses is their width which is (the number of bits that can be
transmitted at any one time). This can vary depending on both the buses implemented within
the processor—for example: x86 contains bus widths of 16/32/64, 68K has 8/16/32/ 64 bit
buses, MIPS 32 has 32 bit buses, and so forth—as well as the ISA register size definitions.
Each bus also has a bus speed (in MHz) that impacts the performance of the processor. Buses
implemented in real-world processor designs include the U, peripheral, and CPM buses in the
MPC8xx family of processors, and the C and X buses in the x86 Geode.

To avoid redundancy, buses are covered in more detail in Chapter 7: Board Buses, and more 
examples are provided there.

4.3 Processor Performance
There are several measures of processor performance, but are all based upon the processor’s
behavior over a given length of time. One of the most common definitions of processor
performance is a processor’s throughput, the amount of work the CPU completes in a given
period of time.

Figure 4-70: MPC860 processor buses [4-15]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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In the case of the MPC860, the processor buses include the U-bus interconnecting the system interface unit 
(SIU), the communications processor module (CPM), and the PowerPC core. Within the CPM, there is a 
peripheral bus, as well. Of course, this includes the buses within the CPU.
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As discussed in Section 2.1, a processor’s execution is ultimately synchronized by an external
system or master clock, located on the board. The master clock is simply an oscillator pro-
ducing a fixed frequency sequence of regular on/off pulse signals that is usually divided or
multiplied within the CPU’s CU (control unit) to generate at least one internal clock signal
running at a constant number of clock cycles per second, or clock rate, to control and coordi-
nate the fetching, decoding, and execution of instructions. The CPU’s clock rate is expressed
in MHz (megahertz).

Using the clock rate, the CPU’s execution time, which is the total time the processor takes
to process some program in seconds per program (total number of bytes), can be calculated.
From the clock rate, the length of time a CPU takes to complete a clock cycle is the inverse
of the clock rate (1/clock rate), called the clock period or cycle time and expressed in seconds
per cycle. The processor’s clock rate or clock period is usually located in the processor’s
specification documentation.

Looking at the instruction set, the CPI (average number of clock cycles per instruction) can
be determined in several ways. One way is to obtain the CPI for each instruction (from the
processor’s instruction set manual) and multiplying that by the frequency of that instruction,
and then adding up the numbers for the total CPI.

CPI = (CPI per instruction * instruction frequency)

At this point the total CPU’s execution time can be determined by:

CPU execution time in seconds per program = (total number of instructions per 
program or instruction count) * (CPI in number of cycle cycles/instruction) * (clock 
period in seconds per cycle) = ((instruction count) * (CPI in number of cycle cycles/
instruction)) / (clock rate in MHz)

The processor’s average execution rate, also referred to as throughput or bandwidth, reflects
the amount of work the CPU does in a period of time and is the inverse of the CPU’s execu-
tion time:

CPU throughput (in bytes/sec or MB/sec) = 1 / CPU execution time = CPU performance

Knowing the performance of two architectures (Geode and SA-1100, for example), the
speedup of one architecture over another can then be calculated as follows:

Performance(Geode) / Performance (SA-1100) = Execution Time (SA-1100) / Execu-
tion Time (Geode) = “X”, therefore, Geode is “X” times faster than SA-1100

Other definitions of performance besides throughput include:

A processor’s responsiveness, or latency, which is the length of elapsed time a pro-
cessor takes to respond to some event.



Embedded Processors

205

A processor’s availability,which is the amount of time the processor runs normally
without failure; reliability, the average time between failures or MTBF (mean time
between failures); and recoverability, the average time the CPU takes to recover from
failure or MTTR (mean time to recover).

On a final note, a processor’s internal design determines a processor’s clock rate and the CPI;
thus a processor’s performance depends on which ISA is implemented and how the ISA is
implemented. For example, architectures that implement Instruction-level Parallelism ISA
models have better performance over the application-specific and general-purpose based
processors because of the parallelism that occurs within these architectures. Performance can
be improved because of the actual physical implementations of the ISA within the processor,
such as implementing pipelining in the ALU. (Note: There are variations on the full adder 
that provide additional performance improvements, such as the carry lookahead adder (CLA), 
carry completion adder, conditional sum adder, carry select adder, and so on. In fact, some 
algorithms that can improve the performance of a processor do so by designing the ALU to 
be able to process logical and mathematical instructions at a higher throughput—a technique 
called pipelining.) The increasing gap between the performance of processors and memory
can be improved by cache algorithms that implement instruction and data prefetching (es-
pecially algorithms that make use of branch prediction to reduce stall time), and lockup-free
caching. Basically, any design feature that allows for either an increase in the clock rate or
decrease in the CPI will increase the overall performance of a processor.

4.3.1 Benchmarks
One of the most common performance measures used for processors in the embedded market
is millions of instructions per seconds or MIPS.

MIPS = Instruction Count / (CPU execution time * 106) = Clock Rate / (CPI * 106)

The MIPS performance measure gives the impression that faster processors have higher MIPS
values, since part of the MIPS formula is inversely proportional to the CPU’s execution time.
However, MIPS can be misleading when making this assumption for a number of reasons,
including:

Instruction complexity and functionality aren’t taken into consideration in the MIPS
formula, so MIPS cannot compare the capabilities of processors with different ISAs.

MIPS can vary on the same processor when running different programs (with varying
instruction count and different types of instructions).

Software programs called benchmarks can be run on a processor to measure its performance;
the performance discussion will continue in Section IV, Putting It All Together.
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4.4 Reading a Processor’s Datasheet
A processor’s datasheet provides key areas of useful processor information.

Author note: I don’t assume that what I read from a vendor is 100% accurate, until I 
have seen the processor running and verified the features myself.

Datasheets exist for almost any component, both hardware and software, and the information
they contain varies between vendors. Some datasheets are a couple of pages long and list only
the main features of a system, while others contain over 100 pages of technical information.
In this section, I have used the MPC860EC rev. 6.3 datasheet, which is 80 pages, to sum-
marize some of the key areas of useful information in a processor’s datasheet. The reader can
then use it as an example for reading other processor datasheets, which typically have similar
overviews and technical information.

Section 2 of MPC860 Datasheet Example: Overview of the Processor’s Features

Figure 4-71a shows a block diagram of the MPC860, which is described in the datasheet’s
feature list shown in Figure 4-71b. As shown in the various shaded and unshaded sections of the
overview, everything from the description of the physical IC packaging to the major features of
the processor’s internal memory scheme is summarized. The remaining sections of the data-
sheet also provide a wide variety of information, including providing recommendations as to
how the MPC860 should be integrated onto a PCB such as: VDD pins should be provided with
low-impedance paths to the board’s supply, GND pins should be provided with low-impedance
paths to ground, all unused inputs/signals that will be inputs during reset should be pulled up, to
providing electrical specifications for the IEEE 1149.1 JTAG timings, the AC and DC electrical
specifications for the CPM, the AC electrical specifications for the UTOPIA interface, the AC
electrical specifications for the fast Ethernet controller (FEC), and so on.

Figure 4-71a: MPC860 processor block diagram [4-15]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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• Embedded single-issue, 32-bit PowerPC core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose

registers (GPRs)

— The core performs branch prediction with conditional prefetch without conditional execution.

— 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache

– 16-Kbyte instruction caches are four-way, set-associative with 256 sets; 4-Kbyte instruction caches are two-way, set-

associative with 128 sets.

– 8-Kbyte data caches are two-way, set-associative with 256 sets; 4-Kbyte data caches are two-way, set-associative with

128 sets.

– Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks.

– Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and are lockable on a

cache block basis.

— MMUs with 32-entry TLB, fully-associative instruction, and data TLBs

— MMUs support multiple page sizes of 4-, 16-, and 512-Kbytes, and 8-Mbytes; 16 virtual address spaces and 16

protection groups

— Advanced on-chip-emulation debug mode

• Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)

• 32 address lines

• Operates at up to 80 MHz

• Memory controller (eight banks)

— Contains complete dynamic RAM (DRAM) controller

— Each bank can be a chip select or RAS to support a DRAM bank.

— Up to 15 wait states programmable per memory bank

— Glueless interface to DRAM, SIMMS, SRAM, EPROM, Flash EPROM, and other memory devices

— DRAM controller programmable to support most size and speed memory interfaces

— Four CAS lines, four WE lines, and one OE line

— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)

— Variable block sizes (32 Kbyte to 256 Mbyte)

— Selectable write protection

— On-chip bus arbitration logic

• General-purpose timers

— Four 16-bit timers or two 32-bit timers

— Gate mode can enable/disable counting

— Interrupt can be masked on reference match and event capture.

• System integration unit (SIU)

— Bus monitor

— Software watchdog

— Periodic interrupt timer (PIT)

— Low-power stop mode

— Clock synthesizer

— Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture

— Reset controller

— IEEE 1149.1 test access port (JTAG)

Datasheet Overview

Memory Management

External Data Bus Width and Support

On-chip Memory

Memory Management

SIU features (timers, ports, etc.)

Figure 4-71b: MPC860 overview from datasheet [4-17]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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• Interrupts

— Seven external interrupt request (IRQ) lines

— 12 port pins with interrupt capability

— 23 internal interrupt sources

— Programmable priority between SCCs

— Programmable highest priority request

• 10/100 Mbps Ethernet support, fully compliant with the IEEE 802.3u Standard (not available when

using ATM over UTOPIA interface)

• ATM support compliant with ATM forum UNI 4.0 specification

— Cell processing up to 50–70 Mbps at 50-MHz system clock

— Cell multiplexing/demultiplexing

— Support of AAL5 and AAL0 protocols on a per-VC basis. AAL0 support enables OAM and software implementation of

other protocols.

— ATM pace control (APC) scheduler, providing direct support for constant bit rate (CBR) and unspecified bit rate (UBR)

and providing control mechanisms enabling software support of available bit rate (ABR)

— Physical interface support for UTOPIA (10/100-Mbps is not supported with this interface) and byte-aligned serial (for

example, T1/E1/ADSL)

— UTOPIA-mode ATM supports level-1 master with cell-level handshake, multi-PHY (up to four physical layer devices),

connection to 25-, 51-, or 155-Mbps framers, and UTOPIA/system clock ratios of 1/2 or 1/3.

— Serial-mode ATM connection supports transmission convergence (TC) function for T1/E1/ADSL lines, cell delineation,

cell payload scrambling/descrambling, automatic idle/unassigned cell insertion/stripping, header error control (HEC)

generation, checking, and statistics.

• Communications processor module (CPM)

— RISC communications processor (CP)

— Communication-specific commands (for example, GRACEFUL –STOP-TRANSMIT, ENTER-HUNT-MODE, and

RESTART-TRANSMIT)

— Supports continuous mode transmission and reception on all serial channels

— Up to 8 Kbytes of dual-port RAM

— 16 serial DMA (SDMA) channels

— Three parallel I/O registers with open-drain capability

• Four baud-rate generators (BRGs)

— Independent (can be tied to any SCC or SMC)

— Allows changes during operation

— Autobaud support option

• Four serial communications controllers (SCCs)

— Ethernet/IEEE 802.3 optional on SCC1–4, supporting full 10-Mbps operation (available only on specially programmed

devices)

— HDLC/SDLC (all channels supported at 2 Mbps)

— HDLC bus (implements an HDLC-based local area network (LAN))

— Asynchronous HDLC to support point-to-point protocol (PPP)

— AppleTalk

— Universal asynchronous receiver transmitter (UART)

— Synchronous UART

— Serial infrared (IrDA)

— Binary synchronous communication (BISYNC)

— Totally transparent (bit streams)

— Totally transparent (frame-based with optional cyclic redundancy check (CRC))

Datasheet Overview

Interrupt Scheme

I/O NetworkingFeatures

CPM Features

CPM I/O

CPM I/O

CPM Internal Memory and Memory Management

Figure 4-71b: MPC860 overview from datasheet [4-17] (continued)
Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.



Embedded Processors

209

• Two SMCs (serial management channels)

— UART

— Transparent

— General circuit interface (GCI) controller

— Can be connected to the time-division multiplexed (TDM) channels

• One SPI (serial peripheral interface)

— Supports master and slave modes

— Supports multimaster operation on the same bus

• One I2C (inter-integrated circuit) port

— Supports master and slave modes

— Multiple-master environment support

• Time-slot assigner (TSA)

— Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation

— Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined

— 1- or 8-bit resolution

— Allows independent transmit and receive routing, frame synchronization, and clocking

— Allows dynamic changes

— Can be internally connected to six serial channels (four SCCs and two SMCs)

• Parallel interface port (PIP)

— Centronics interface support

— Supports fast connection between compatible ports on the MPC860 or the MC68360

• PCMCIA interface

— Master (socket) interface, release 2.1 compliant

— Supports two independent PCMCIA sockets

— Supports eight memory or I/O windows

• Low power support

— Full on—all units fully powered

— Doze—core functional units disabled except time base decrementer, PLL, memory controller, RTC, and CPM in low-

power standby

— Sleep—all units disabled except RTC and PIT, PLL active for fast wake up

— Deep sleep—all units disabled including PLL except RTC and PIT

— Power down mode—all units powered down except PLL, RTC, PIT, time base, and decrementer

• Debug interface

— Eight comparators: four operate on instruction address, two operate on data address, and two operate on data

— Supports conditions: =.< >

— Each watchpoint can generate a break-point internally.

• 3.3-V operation with 5-V TTL compatibility except EXTAL and EXTCLK

• 357-pin ball grid array (BGA) package

Datasheet Overview

CPM Features

CPM I/O

External Bus Support

CPM I/O

Debugging Support

Voltage Source/Power Information

IC Packaging

Figure 4-71b: MPC860 overview from datasheet [4-17] (continued)
Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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Section 3 of MPC860 Datasheet Example: Maximum Tolerated Ratings

This section of the MPC860 datasheet provides information on the maximum voltage and
temperature ranges that this processor can be exposed to (for the MPC860, shown in Table
4-4a). The maximum tolerated temperature for processors is the maximum temperature a
processor can withstand without damage, whereas the maximum tolerated voltage is the
maximum voltage a processor can withstand without damage.

Different processors will have their own maximum tolerated voltage and power ratings
(as seen from Table 4-4b the tables for the maximum temperatures and voltages of the
NET+ARM processor).

Table 4-4a: MPC860 processor maximum tolerated voltage and temperature ratings [4-17]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

(GND = 0 V)

Rating Symbol Value Unit
Supply voltage1 VDDH −0.3 to 4.0 V

VDDL −0.3 to 4.0 V
KAPWR −0.3 to 4.0 V

VDDSYN −0.3 to 4.0 V
Input voltage2 Vin GND − 0.3 to VDDH V

Temperature3 (standard) TA(min) 0 °C
Tj(max 95 °C

Temperature3 (extended) TA(min) −40 °C
Tj(max) 95 °C

Storage temperature range Tsig −55 to 150 °C
1 The power supply of the device must start its ramp from 0.0 V.
2 Functional operating conditions are provided with the DC electrical specifications in Table 4-4b. Absolute

maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond
those listed may affect device reliability or cause permanent damage to the device.
Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage.
This restriction applies to power-up and normal operation (that is, if the MPC860 is unpowered, voltage greater
than 2.5 V must not be applied to its inputs).

3 Minimum temperatures are guaranteed as ambient temperature, TA. Maximum temperatures are guaranteed
as junction temperature, Tj.
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Section 4 of MPC860 Datasheet Example: Thermal Characteristics

The thermal characteristics of a processor indicate what type of thermal design requirements
need to be taken into consideration for using that processor on a particular board. Table 4-5
shows the thermal characteristics of the MPC860; more information on thermal manage-
ment is contained in Sections 5 and 7. A processor that exceeds the ranges of its absolute and
functional temperature limits runs the risk of having logical errors, a degradation in perfor-
mance, changes in operating characteristics, and/or even permanent physical destruction of
the processor.

A processor’s temperature is a result of both the embedded board it resides on, as well as its
own thermal characteristics. A processor’s thermal characteristics depend on the size and ma-
terial used to package the IC, the type of interconnection to the embedded board, the presence
and type of mechanism used for cooling the processor (heat sink, heat pipes, thermoelectric
cooling, liquid cooling, etc.) as well as the thermal constraints imposed on the processor by
the embedded board, such as power density, thermal conductivity/airflow, local ambient tem-
perature, heat sink size, and so on.

Characteristic Symbol Min Max Unit
Thermal Resistance − Junction to Ambient JA 31 °C/W
Operating Junction Temperature TJ −40 100 °C
Operating Ambient Temperature TA −40 85 °C
Storage Temperature TSTG −60 150 °C
Internal Core Power @ 3.3V − Cache Enabled PINT 15 mW / MHz
Internal Core Power @ 3.3V − Cache Disabled PINT 9 mW / MHz

Sym Parameter Conditions Min Max Unit

VDD3 DC supply voltage Core and
standard I/Os

−0.3 4.6 V

VI DC input voltage, 3.3 V I/Os −0.3 VDD3+0.3, 4.6 max V
VO DC output voltage, 3.3 V I/Os −0.3 VDD3+0.3, 4.6 max V

TEMP Operating free air temperature
range

Industrial −40 +85 °C

TSIG Storage Temperature −60 +150 °C

Table 4-4b: NET+ARM processor maximum tolerated voltage and temperature ratings [4-17]
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Table 4-5: MPC860 processor thermal characteristics [4-17]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Rating Environment Symbol Rev A Rev
B, C, D

Unit

Junction-to-ambient 1 Natural con-
vection

Single-layer
board (1s)

R JA
2 31 40 °C/W

Four-layer
board (2s2p)

R JMA
3 20 25

Airflow (200
ft/min)

Single-layer
board (1s)

R JMA
3 26 32

Four-layer
board (2s2p)

R JMA
3 16 21

Junction-to-board 4 R JB 8 15
Junction-to-case 5 R JC 5 7
Junction-to-package top 6 Natural con-

vection
JT 1 2

Airflow (200
ft/min)

2 3

1 Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.

2 Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
3 Per JEDEC JESD51-6 with the board horizontal.
4 Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is

measured on the top surface of the board near the package.
5 Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method

(MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad pack-
ages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the
junction to the exposed pad without contact resistance.

6 Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2.

Section 5 of MPC860 Datasheet Example: Power Dissipation

The thermal management of an embedded board includes the technologies, processes, and
standards that must be implemented in order to remove heat that results from the power dis-
sipation of a board component like a processor from individual components on an embedded
board. The heat must be transferred in a controlled way to the board’s cooling mechanism,
which is a device that keeps the board components from overheating by insuring that the tem-
peratures of board components stay within functional temperature limits.

A processor’s power dissipation results in an increase in temperature relative to the tem-
perature of a reference point, with the increase depending on the net thermal resistance
(opposition to the flow of expended heat energy, specified as the degree of temperature rise
per unit of power) between the junction the die within the processor package, and a reference
point. In fact, one of the most important factors that determines how much power a processor
can handle is thermal resistance (more on thermal resistance in Section 7).
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Table 4-6 provides MPC860’s power dissipation for the processor running at a variety of
frequencies, as well as in modes where the CPU and bus speeds are equal (1:1) or where CPU
frequency is twice the bus speed (2:1).

Table 4-6: MPC860 processor power dissipation [4-17]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Die Revision Frequency (MHz) Typical 1 Maximum 2 Unit
A.3 and previous 25 450 550 mW

40 700 850 mW

50 870 1050 mW
B.1 and C.1 33 375 TBD mW

50 575 TBD mW
66 750 TBD mW

D.3 and D.4
(1:1 mode)

50 656 735 mW
66 TBD TBD mW

D.3 and D.4
(2:1 mode)

66 722 762 mW
80 851 909 mW

1 Typical power dissipation is measured at 3.3 V.
2 Maximum power dissipation is measured at 3.5 V.

Both the thermal characteristics for the MPC860, shown in Table 4-5, that indicate what
maximum junction temperature this processor needs to stay below, as well as the power dis-
sipation levels for the processor, shown in Table 4-6, will determine what reliable thermal
mechanisms are needed on the board in order to maintain the PowerPC’s junction temperature
within acceptable limits. (Note: developing a reliable thermal solution for the entire board 
means the thermal requirements for all board components are taken in consideration, not just 
those of the processors.)

Section 6 of MPC860 Datasheet Example: DC characteristics

Table 4-7 outlines the electrical DC characteristics of the MPC860, which are the specific op-
erating voltage ranges for this processor. Within this table, these characteristics generally are:

The operating voltage (the first two entries in Table 4-7) of a processor is the voltage
applied from the power supply to the power pin (i.e., Vdd, Vcc, etc.) on the processor.

The input high voltage (the third entry in Table 4-7) is the voltage range for all input
pins, except EXTAL and EXTLCK, at logic level high, where voltages exceeding the
maximum value can damage the processor, whereas voltages less the minimum value
are typically interpreted as a logic level low or undefined.

The input low voltage (the fourth entry in Table 4-7) is the voltage range for all input
pins at logic level low, where voltages below the minimum stated value can damage
or cause the processor to behave unreliably, whereas voltages greater than the maxi-
mum value are typically interpreted as a logic level high or undefined.
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The EXTAL and EXTLCK input high voltage (the fifth entry in Table 4-7) are the
maximum and minimum voltages for these two pins, and voltage values have to
remain between these ranges to avoid damaging the processor.

The various input leakage currents for different Vin (entries 6–8) mean that when the
input voltage is between the required range, a leakage current flows on various ports,,
except for pins TMS, TRST, DSCK, and DSDI.

The output high voltage (the ninth entry in Table 4-7) states the minimum high-out-
put voltage is not less than 2.4 V when the processor is sourcing a current of 2.0 mA,
except on XTAL, XFC, and open-drain pins.

The output low voltage (the last entry in Table 4-7) states the maximum low-output
voltage is not higher than .5 V when the processor is sourcing various currents on
various pins.

Table 4-7: MPC860 processor DC characteristics [4-17]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Characteristic Symbol Min Max Unit

Operating voltage at 40 MHz or less VDDH, VDDL, VDDSYN 3.0 3.6 V

KAPWR
(power-down mode)

2.0 3.6 V

KAPWR
(all other operating

modes)

VDDH − 0.4 VDDH V

Operating voltage greater than
40 MHz

VDDH, VDDL, KAPWR,
VDDSYN

3.135 3.465 V

KAPWR
(power-down mode)

2.0 3.6 V

KAPWR
(all other operating
modes)

VDDH − 0.4 VDDH V

Input high voltage (all inputs except
EXTAL and EXTCLK)

VIH 2.0 5.5 V

Input low voltage VIL GND 0.8 V

EXTAL, EXTCLK input high voltage VIHC 0.7 × (VDDH) VDDH

+ 0.3
V



Embedded Processors

215

Input leakage current, Vin = 5.5 V
(except TMS, TRST, DSCK, and
DSDI pins)

Iin — 100 A

Input leakage current, Vin = 3.6 V
(except TMS, TRST, DSCK, and
DSDI pins)

Iin — 10 A

Input leakage current, Vin = 0 V (ex-
cept TMS, TRST, DSCK, and DSDI
pins)

Iin — 10 A

Input capacitance 1 Cin — 20 pF

Output high voltage, IOH = −2.0 mA,
VDDH = 3.0 V (except XTAL, XFC, and
open-drain pins)

VOH 2.4 — V

Output low voltage
IOL = 2.0 mA, CLKOUT
IOL = 3.2 mA 2

IOL = 5.3 mA 3

IOL = 7.0 mA, TXD1/PA14, TXD2/
PA12
IOL = 8.9 mA, TS, TA, TEA, BI, BB,
FIRESET, SRESET

VOL — 0.5 V

1 Input capacitance is periodically sampled.
2 A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1),

IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3,
RXD1/PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/
CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/
CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/ PA1, L1TCLKB/TOUT4/CLK8/PA0, RE-
JCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/
PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21,
SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19, L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/
PB15, RSTRT1/PB14, L1ST1/RTS1/DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/
PC12, CTS1/PC11, TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, SDACK2/L1TSYNCB/PC7, L1RSYNCB/PC6,
SDACK1/L1TSYNCA/PC5, L1RSYNCA/PC4, PD15, PD14, PD13, PD12, PD11, PD10, PD9, PD8, PD5, PD6, PD7, PD4,
PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3]

3 BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/IOWR,
WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/
CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/
MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30)

Table 4-7: MPC860 processor DC characteristics [4-17] (continued) 
Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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Section 7 of MPC860 Datasheet Example: Thermal Calculation and Measurement

As mentioned in Section 5, thermal resistance is one of the most important factors that
determine how much power a processor can handle. In this datasheet, the specified thermal
parameters for the MPC860 (shown in Figure 4-72) are the thermal resistance estimates from
junction-to-ambient (R JA), from junction-to-case (R JC), and from junction-to-board (R JB).
For these equations, PD = (VDD * IDD) + PI/O is assumed where

 PD = power dissipation in package

 PI/O = power dissipation of the I/O drivers.

 VDD = supply voltage

 IDD = supply current

Figure 4-72: MPC860 processor thermal parameters [4-17]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Junction (Die)

Case

Ambient (Air)
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Heat Sink

Junction-to-Ambient Thermal Resistance

This is an industry standard value that provides an estimation of thermal performance. The
processor’s junction temperature, TJ (which is the average temperature of the die within the
package in Celsius), can be obtained from the equation:

TJ = TA + (R JA * PD) where:

TA = ambient temperature (ºC) is the temperature of the undistributed ambient air sur-
rounding the package, usually measured at some fixed distance away from the
processor package.

R JA = package junction-to-ambient thermal resistance (ºC/W)

PD = power dissipation in package



Embedded Processors

217

Junction-to-Case Thermal Resistance

The junction-to-case thermal resistance estimates thermal performance when a heat sink is
used or where a substantial amount of heat is dissipated from the top of the processor’s pack-
age. Typically, in these scenarios, the thermal resistance is expressed as:

R JA = R JC + R CA (the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance) where:

R JA = junction-to-ambient thermal resistance (ºC/W)

R JC = junction-to-case thermal resistance (ºC/W).
Note: R JC is device related and cannot be influenced by the user.

R CA = case-to-ambient thermal resistance (ºC/W).
Note: The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, R CA.

Junction-to-Board Thermal Resistance

The junction-to-board thermal resistance estimates thermal performance when most of the
heat is conducted to the embedded board. Given a known board temperature and assuming
heat lost to air can be negated, a junction temperature estimation can be made using the fol-
lowing equation:

TJ = TB + (R JB * PD) where:

TB = board temperature (ºC)

R JA = junction-to-board thermal resistance (ºC/W)

PD = power dissipation in package

When board temperature is not known, then a thermal simulation is recommended. When an
actual prototype is available, the junction temperature can then be calculated via:

TJ = TT + ( JT * PD) where:

JT = thermal characterization parameter from a measurement of temperature from the
top center of processor’s packaging case.
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4.5 Summary
This chapter discusses what an embedded processor is and what it is made up of. It began
by introducing the concept of the instruction set architecture (ISA) as the main differentiator
between processors, and went on to discuss what an ISA defines, as well as what common
types of processors fall under what type of ISA model (application specific, general purpose,
or instruction level parallel). After the ISA discussion, the second main section of this chapter
discusses how the features of an ISA are physically implemented in a processor. With this, the
von Neumann model once again came into play, since the same major types of components
that can be found on an embedded board can also be found at the IC (processor) level. Finally,
this chapter wrapped up with a discussion on how processor performance is typically mea-
sured, as well as insight into how to read a processor’s datasheet.

The next chapter, Chapter 5, introduces the hardware basics on board memory and also dis-
cusses the impact of board memory on an embedded system’s performance.
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Chapter 4 Problems

1.  [a]  What is an ISA?
 [b]  What features does an ISA define?

2.  [a]  Name and describe the three most common ISA models on which architectures are
based?

 [b]  Name and describe two types of ISAs that fall under each of the three ISA models.
 [c]  Give four real-world processors that fall under the types of ISAs listed in [b].

3.  [a]  What do the main components of a board and the internal design of a processor
have in common in reference to the von Neumann?

4. [T/F] The Harvard model is derived from the von Neumann model.

5.  Indicate whether Figures 4-73a and b are von Neumann-based or Harvard-based proces-
sors. Explain your reasoning.

Figure 4-73a: 
ARM9 processor [4-28]
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Figure 4-73b: ARM7 processor [4-29]

6.  According to the von Neumann model, list and define the major components of the CPU.

7.  [a]  What is a register?
 [b]  Name and describe the two most common types of registers.

8.  What are the active electrical elements that registers are made of?

9.  A processor’s execution is ultimately synchronized by what board mechanism?
 A.  System clock.
 B.  Memory.
 C.  I/O bus.
 D.  Network slave controller.
 E.  None of the above.

10.  Draw and describe the memory hierarchy of an embedded system.

11. What are the types of memory that can be integrated into a processor?

12.  [a]  What is the difference between ROM and RAM?
 [b]  Give two examples of each.

13.  [a]  What are the three most common schemes used to store and retrieve data in cache?
 [b]  What is the difference between a cache hit and cache miss?
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14.  Name and describe the two most common types of units that manage memory.

15.  What is the difference between physical memory and logical memory?

16.  [a]  What is the memory map?
 [b]  What is the memory makeup of a system with the memory map shown in Figure

4-74?
 [c]  Which memory components shown in the memory map of Figure 4-74 are typically

integrated into the master processor?

Figure 4-74: Memory map [4-25]

Address Range Accessed Device Port Width

0×00000000 - 0×003FFFFF Flash PROM Bank 1 32
0×00400000 - 0×007FFFFF Flash PROM Bank 2 32
0×04000000 - 0×043FFFFF DRAM 4Mbyte (1Meg ×32-bit)it) 32
0×09000000 - 0×09003FFF MPC Internal Memory Map 32
0×09100000 - 0×09100003 BCSR - Board Control & Status Register 32
0×10000000 - 0×17FFFFFF PCMCIA Channel 16

17. Name and describe the six logical units used to classify I/O hardware.

18.  [a]  What is the difference between serial and parallel I/O?
 [b]  Give a real-world example of each.

19.  In a system that contains an I/O controller to manage an I/O device, name at least two
requirements that the interface between the master processor and I/O controller is typi-
cally based upon.

20.  What is the difference between a processor’s execution time and throughput?
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C H A P T E R 5
Board Memory

In This Chapter

Defining the various types of board memory
Discussing memory management of onboard memory
Discussing memory performance

As first introduced in Chapter 4, embedded platforms can have a memory hierarchy, a col-
lection of different types of memory, each with unique speeds, sizes, and usages (see Figure
5-1). Some of this memory can be physically integrated on the processor, like registers and
certain types of primary memory, which is memory connected directly to or integrated in the
processor such as ROM, RAM, and level-1 cache. Types of memory that can be integrated
into a processor were introduced in Chapter 4. In this chapter, it is memory that is typically
located outside of the processor, or that can both be either integrated into the processor or
located outside the processor, that is discussed. This includes other types of primary memory,
such as ROM, level-2+ cache, and main memory, and secondary/tertiary memory, which is
memory that is connected to the board but not the master processor directly, such as
CD-ROM, floppy drives, hard drives, and tape.

Figure 5-1: Memory hierarchy
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Cache
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Note: The material in this section is similar to material in Chapter 4 covering on-chip memory, since the basics of 
memory operation are essentially the same whether the memory is integrated into an IC or located discretely on a 
board.
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Primary memory is typically a part of a memory subsystem (shown in Figure 5-2) made up of
three components:

The memory IC

An address bus

A data bus

Figure 5-2: Hardware primary memory subsystem
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Data Interface

Data Bus

Data In Data Out

Address BusAddress In

In general, a memory IC is made up of three units: the memory array, the address decoder,
and the data interface. The memory array is actually the physical memory that stores the data
bits. While the master processor, and programmers, treat memory as a one-dimensional array,
where each cell of the array is a row of bytes and the number of bits per row can vary, in
reality physical memory is a two-dimensional array made up of memory cells addressed by a
unique row and column, in which each cell can store 1 bit (as shown in Figure 5-3).

The locations of each of the cells within the two-dimensional memory array are commonly
referred to as the physical memory addresses, made up of the column and row parameters.
The main basic hardware building blocks of memory cells depend on the type of memory, to
be discussed later in this chapter.

The remaining major component of a memory IC, the address decoder, locates the address
of data within the memory array, based on information received over the address bus, and
the data interface provides the data to the data bus for transmission. The address and data
buses take address and data to and from the memory address decoder and data interface of the
memory IC (buses are discussed in more detail in Chapter 7: Board Buses).
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Memory ICs that can connect to a board come in a variety of packages, depending on the type
of memory. Types of packages include dual inline packages (DIPs), single in-line memory
modules (SIMMs), and dual in-line memory modules (DIMMs). As shown in Figure 5-4a, DIPs
are packages enclosing the IC, made up of ceramic or plastic
material, with pins protruding from two opposing sides of
the package. The number of pins can vary between memory
ICs, but actual pinouts of the various memory ICs have been
standardized by JEDEC (Joint Electronic Device Engineering
Committee) to simplify the process of interfacing external
memory ICs to processors.

Figure 5-3: (ROM) memory array [5-1]
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SIMMs and DIMMs (shown in Figures 5-4b and c) are mini modules (PCBs) that hold sev-
eral memory ICs. SIMMs and DIMMs have protruding pins from one side (both on the front
and back) of the module that connect into a main embedded motherboard. The configurations
of SIMMs and DIMMs can both vary in the size of the memory ICs on the module (256KB,
1MB, etc.). For example, a 256K × 8 SIMM is a module providing 256K (256 * 1025)
addresses of one byte each. To support a 16-bit master processor, for example, two of these
SIMMs would be needed; to support a 32-bit architecture, four SIMMs of this configuration
would be needed, and so on.

The number of pins protruding from SIMMs and DIMMs can vary as well (30 pin, 72 pin,
168 pin, etc.). The advantage of a SIMM or DIMM having more pins is that it allows for
fewer modules needed to support larger architectures. So, for example, one 72-pin SIMM
(256K × 32) would replace the four 30-pin SIMMs (256K × 8) for 32-bit architectures. Final-
ly, the main difference between SIMMs and DIMMs is how the pins function on the module:
on SIMMs the two pins on either side of the board are connected, creating one contact,
whereas on DIMMs opposing pins are each independent contacts (see Figures 5-4b and c).

Figure 5-4b: 30-pin SIMM example [5-1] Figure 5-4c: 168-pin DIMM example [5-1]
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At the highest level, both primary and secondary memory can be divided into two groups,
non-volatile or volatile. Non-volatile memory is memory that can store data after the main
power source to the board has been shut off (usually due to a small, on-board, longer-life
battery source). Volatile memory loses all of its “bits” when the main power source on the
board has been shut off. On embedded boards, there are two types of non-volatile memory
families—read-only memory (ROM) and auxiliary memory—and one family of volatile
memory, random-access memory (RAM). The different types of memories, discussed in the
next several sections, each provide a unique purpose within the system.

5.1 Read-Only Memory (ROM)
Read-only memory (ROM) is a type of non-volatile memory that can be used to store data on
an embedded system permanently, typically through a smaller on-board battery source that is
separate from the board’s main power source. The type of data stored on ROM in an embed-
ded system is (at the very least) the software required by the device to function in the field
after being shipped out of the factory. The contents of ROM can typically only be read by the
master processor; however, depending on the type of ROM, the master processor may or may
not be able to erase or modify the data located in ROM.

Basically, a ROM circuit works by accepting column and row address inputs, as shown in
Figure 5-5. Each cell (addressed by one column and row combination) stores a 1 or 0 depend-
ing on some voltage value. In fact, every ROM cell is designed to hold only either a 1 or 0
permanently using the voltage source attached. An integrated decoder uses the row/column
inputs to select the specific ROM cell. While the actual storage and selection mechanisms are
dependent on the type of components used in building the ROM (i.e., diodes, MOS, bipolar,
and so forth—the basic building blocks introduced in Chapter 3), all types of ROM can exist
as external (chips) to the master CPU.

The circuit in Figure 5-5 includes three address lines (log28) for all eight words, meaning the
3-bit addresses ranging from 000 to 111 each represent one of the 8 bytes. Note that different
ROM designs can include a wide variety of addressing configurations for the exact same
matrix size, and this addressing scheme is just an example of one such scheme. D0 through D7

are the output lines from which data is read, one output line for each bit. Adding additional
rows to the ROM matrix increases its size in terms of the number of address spaces, whereas
adding additional columns increases a ROM’s data size, or the number of bits per address, it
can store. ROM sizes are identified in the real world by a matrix reference (i.e., 8 × 8,
16K × 32, ...), reflecting the actual size of ROM. The first number is the number of addresses,
and the second number (after the “×”) reflects the size of the data, or number of bits, at each
address location (that is, 8 = one byte, 16 = half word, 32 = word, and so on). Also note that
in some design documentation, the ROM matrix size may be summarized. For example,
16 kB (kBytes) of ROM is 16K × 8 ROM, 32 MB of ROM is 32 M × 8 ROM, and so on.
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In this example, the 8 × 8 ROM is an 8 × 8 matrix, meaning it can store eight different 8-bit
words, or 64 bits of information. Every intersection of a row and column in this matrix is a
memory location, called a memory cell. Each memory cell can contain either a bipolar or
MOSFET transistor (depending on the type of ROM) and a fusible link (see Figure 5-6).

Figure 5-5: 8 x 8 ROM logic circuit [5-1]
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When a programmable link is in place, the transistor is biased ON, resulting in a “1” being
stored. All ROM memory cells are typically manufactured in this configuration. When writing
to ROM, a “0” is stored by breaking the programmable link. How links are broken depends
on the type of ROM; this is discussed at the end of this section during the summary of differ-
ent types of ROMs. How to read from a ROM depends on the ROM, but in this example, for
instance, the chip enable (CE) line is toggled (i.e., HIGH to LOW) to allow the data stored to
be output via D0–D7 after having received the 3-bit address requesting the row of data bits
(see Figure 5-7).

Figure 5-6: 8 x 8 MOSFET and bipolar memory cells [5-1]
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Figure 5-7: 8 x 8 reading ROM circuit [5-1]
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The most common types of ROM used on embedded boards are:

Mask ROM (MROM). Data bits are permanently programmed into a microchip by
the manufacturer of the external MROM chip. MROM designs are usually based
upon MOS (NMOS, CMOS) or bipolar transistor-based circuitry. This was the
original type of ROM design. Because of expensive set-up costs for a manufacturer
of MROMs, it is usually only produced in high volumes, and there is a wait time of
several weeks to several months. However, using MROMs in design of products is a
cheaper solution.

One-Time Programmable ROM (OTP or OTPRom). This type of ROM can only be
programmed (permanently) one time as its name implies, but it can be programmed
outside the manufacturing factory, using a ROM burner. OTPs are based upon bipo-
lar transistors, in which the ROM burner burns out fuses of cells to program them to
“1” using high voltage/current pulses.

Erasable Programmable ROM (EPROM). An EPROM can be erased more than one
time using a device that outputs intense short-wavelength, ultraviolet light into the
EPROM package’s built-in transparent window. (OTPs are one-time programmable
EPROMs without the window to allow for erasure; the packaging without the window
used in OTPs is cheaper.)

 EPROMs are made up of MOS (i.e., CMOS, NMOS) transistors whose extra “float-
ing gate” (gate capacitance) is electrically charged, and the charge trapped, to store a
“0” by the Romizer through “avalanche induced migration”, a method in which a high
voltage is used to expose the floating gate. The floating gate is made up of a conduc-
tor floating within the insulator, which allows enough of a current flow to allow for
electrons to be trapped within the gate, with the insulator of that gate preventing
electron leakage.

 The floating gates are discharged via UV light, to store a “1” for instance. This is
because the high-energy photons emitted by UV light provide enough energy for
electrons to escape the insulating portion of the floating gate (remember from Chapter 3,
that even the best of insulators, given the right circumstances, will conduct). The total
number of erasures and rewrites is limited depending on the EPROM.

Electrically Erasable Programmable ROM (EEPROM). Like EPROM, EEPROMs
can be erased and reprogrammed more than once. The number of times erasure and
re-use occur depends on the EEPROMs. Unlike EPROMs, the content of EEPROM
can be written and erased “in bytes” without using any special devices. In other
words, the EEPROM can stay on its residing board, and the user can connect to
the board interface to access and modify an EEPROM. EEPROMs are based upon
NMOS transistor circuitry, except insulation of the floating gate in an EEPROM is
thinner than that of the EPROM, and the method used to charge the floating gates is
called the Fowler-Nordheim tunneling method (in which the electrons are trapped by
passing through the thinnest section of the insulating material). Erasing an EEPROM
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which has been programmed electrically is a matter of using a high-reverse polar-
ity voltage to release the trapped electrons within the floating gate. Electronically
discharging an EEPROM can be tricky, though, in that any physical defects in the
transistor gates can result in an EEPROM not being discharged completely before a
new reprogram. EEPROMs typically have more erase/write cycles than EPROMs, but
are also usually more expensive.

 A cheaper and faster variation of the EEPROM is Flash memory. Where EEPROMs
are written and erased at the byte level, Flash can be written and erased in blocks or
sectors (a group of bytes). Like EEPROM, Flash can be erased electrically, while still
residing in the embedded device. Unlike EEPROMs, which are NMOS-based, Flash
is typically CMOS-based.

Uses for the Different ROMs

Embedded boards can vary widely in the type of board ROMs they use, not only in the pro-
duction system but even throughout the development process. For example, at the start of 
development, more expensive EPROMs may be used to test the software and hardware, whereas 
OTPs may be used at the end of development stages to provide different revisions of the code 
for a particular platform to various other groups (for testing/QA, hardware, manufacturer of 
MaskROMs, etc.). The ROMs actually used in mass production and deployed in an embedded 
system could be the maskROMs (the cheapest solution of the above family of ROM ICs). On
more complex and expensive platforms, Flash memory may be the only ROM used through 
the entire device development and deployment process, or could be used in combination with 
another type of ROM, such as a boot maskROM.

5.2 Random-Access Memory (RAM)
With RAM (random access memory), commonly referred to as main memory, any location
within it can be accessed directly and randomly, rather than sequentially from some starting
point, and its content can be changed more than once—the number of times depending on
the hardware. Unlike ROM, contents of RAM are erased if the board loses power, meaning
RAM is volatile. The two main types of RAM
are static RAM (SRAM) and dynamic RAM
(DRAM).

As shown in Figure 5-8a, SRAM memory cells
are made up of transistor-based flip-flop circuit-
ry that typically holds its data, due to a moving
current being switched bidirectionally on a pair
of inverting gates in the circuit, until power is
cut off or the data is overwritten. To get a clearer
understanding of how SRAM works, let us
examine a sample logic circuit of 4K × 8 SRAM
shown in Figure 5-8b. Figure 5-8a: 6 Transistor SRAM cell [5-2]

bitbit

word
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In this example, the 4K × 8 SRAM is a 4K × 8 matrix, meaning it can store 4096 (4 × 1024)
different 8-bit bytes, or 32768 bits of information. As shown in Figure 5-8b, 12 address lines
(A0–A11) are needed to address all 4096 (000000000000b–111111111111b) possible address-
es—one address line for every address digit of the address. There are 8 input and output lines
(D0–D7), a byte for every byte stored at an address. There are also CS (chip select) and WE
(write enable) input signals to indicate whether the data pins are enabled (CS) and to indicate
whether the operation is a READ or WRITE operation (WE), respectively.

In this example, the 4K × 8 SRAM is set up as a 64 × 64 array of rows and columns with
addresses A0–A5 identifying the row, and A6–A11 identifying the column. As with ROM, every
intersection of a row and column in the SRAM matrix is a memory cell—and in the case of
SRAM memory cells, they can contain flip-flop circuitry mainly based on semiconductor
devices such as polysilicon load resistors and NMOS transistors, bipolar transistors, and/or
CMOS (NMOS and PMOS) transistors (see Figure 5-9 for example circuits). Data is stored
within these cells by the continuous current being switched, in both possible directions, on
the two inverting gates within the flip-flop.

Figure 5-8b: 4K x 8 SRAM logic circuit [5-1]
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When the chip select (CS) in Figure 5-8 is HIGH, then memory is in standby mode (no read
or writes are occurring). When CS is toggled to LOW (i.e., from HIGH to LOW) and Write-
Enable Input (WE) is LOW, then a byte of data is being written through these data input lines
(D0–D7) at the address indicated by the address lines. With CS LOW and WE HIGH, then a
byte of data is being read from the data output lines (D0–D7) at the address indicated by the
address lines (A0–A7). The timing diagram in Figure 5-10 demonstrates how the different
signals can function for a memory read and memory write in SRAM.

Figure 5-9: Flip-flop SRAM memory cell logic circuit example [5-2]
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As shown in Figure 5-11a, DRAM memory cells are circuits with capacitors that hold a
charge in place—the charges or lack thereof reflecting data. DRAM capacitors need to be
refreshed frequently with power in order to maintain their respective charges, and to recharge
capacitors after DRAM is read, since reading DRAM discharges the capacitor. The cycle of
discharging and recharging of memory cells is why this type of RAM is called dynamic.

Figure 5-11a: DRAM
(capacitor-based) memory cell [5-1]

Data Out

Data In

Let’s look at a sample logic DRAM circuit of 16K × 8. This RAM configuration is a two-
dimensional array of 128 rows and 128 columns, meaning it can store 16384 (16 × 1024)
different 8-bit bytes, or 131072 bits of information. With this address configuration, larger
DRAMs can either be designed with 14 address lines (A0–A13) needed to address all 16384
(000000000000b–11111111111111b) possible addresses—one address line for every address
digit of the address—or these address lines can be multiplexed (combined into fewer lines to
share) with some type of data selection circuit managing the shared lines. Figure 5-11b dem-
onstrates how address lines could be multiplexed in this example.

The 16K × 8 DRAM is set up with addresses A0–A6 identifying the row, and A7–A13 identify-
ing the column. As shown in Figure 5-12a, the Row Address Strobe (RAS) line is toggled
(i.e., from HIGH to LOW) for A0–A6 to be transmitted, and then the Column Address Strobe
(CAS) line is toggled (i.e., from HIGH to LOW) for A7–A13 to be transmitted. After this point
the memory cell is latched and ready to be written to or read from. There are eight output
lines (D0 – D7), a byte for every byte stored at an address. When the Write Enable (WE) input
line is HIGH, data can be read from output lines D0– D7, when WE is LOW, data can be writ-
ten to input lines D0–D7. The timing diagrams in Figure 5-12 demonstrates how the different
signals can function for a memory read and memory write in DRAM.
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Figure 5-11b: 16K x 8 DRAM logic circuit [5-1]
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Figure 5-12a: DRAM read timing diagram [5-1]

Figure 5-12b: DRAM write timing diagram [5-1]
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One of the major differences between SRAM and DRAM lies in the makeup of the DRAM
memory array. The capacitors in the memory array of DRAM are not able to hold a charge
(data). The charge gradually dissipates over time, thus requiring some additional mechanism
to refresh DRAM, in order to maintain the integrity of the data. This mechanism reads the
data in DRAM before it is lost using a sense amplification circuit that senses a charge stored
within the memory cell, and writes it back onto the DRAM circuitry. The process of reading
the cell also discharges the capacitor (even though reading the cell is part of the process of
correcting the problem of the capacitor gradually discharging in the first place). A memory
controller (see Section 5.4, Memory Management for more information) in the embedded
system typically manages a DRAM’s recharging and discharging cycle by initiating refreshes
and keeping track of the refresh sequence of events. It is this refresh cycling mechanism that
discharges and recharges memory cells that gives this type of RAM its name—“dynamic”
RAM (DRAM)—and the fact that the charge in SRAM stays put is the basis for its name,
“static” RAM (SRAM). It is this same additional recharge circuitry which makes DRAM
slower in comparison to SRAM. Note that one of the reasons SRAM is usually slower than
registers (a type of integrated memory discussed in Chapter 4), is that when the transistors
within the SRAM flip-flop are smaller, they do not carry as much current as those typically
used within registers.

SRAMs also usually consume less power than DRAMs, since there is no extra energy needed
for a refresh. On the flip side, DRAM is typically cheaper than SRAM, because of its capaci-
tance-based design. DRAM also can hold more data than SRAM, since DRAM circuitry is
much smaller then SRAM circuitry, and more DRAM circuitry can be integrated into an IC.

DRAM is usually the “main” memory in larger quantities, as well as being used for video
RAM and cache. DRAMs used for display memory are also commonly referred to as frame 
buffers. SRAM, because it is more expensive, is typically used in small quantities, but be-
cause it is also typically the fastest type of RAM, it is used in external cache (see Section 5.2)
and video memory (where processing certain types of graphics, and given a more generous
budget, a system can implement a better performing RAM).

Table 5-1 summarizes some examples of different types of RAM and ROM used for various
purposes on embedded boards.
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Table 5-1: Board memory [5-4]

Main Memory Video Memory Cache

SRAM … … BSRAM (Burst/SynchBurst
StaticRandom-Access
Memory); SRAM that is
synchronized with either
the system clock or a cache
bus clock.

DRAM SDRAM (Synchronous Dynamic Random-
Access Memory)

DRAM that is synchronized with the
microprocessor’s clock speed (in MHz). Several
types of SDRAMs are used in various systems,
such as the JDEC SDRAM (JEDEC Synchro-
nous Dynamic Random-Access Memory),
PC100 SDRAM (PC100 Synchronous Dynamic
Random-Access Memory), and DDR SDRAM
(Double Data Rate Synchronous Dynamic Ran-
dom-Access Memory). ESDRAM (Enhanced
Synchronous Dynamic Random-Access Memo-
ry) is SDRAM that integrates SRAM within the
SDRAM, allow for faster SDRAM (basically
the faster SRAM portion of the ESDRAM is
checked first for data, then if not found, the
remaining SDRAM portion is searched).

RDRAM (On-Chip Rambus Dy-
namic Random-Access Memory)
and MDRAM (On-Chip Multi-
bank Dynamic Random-Access
Memory) DRAMs commonly
used as display memory that
store arrays of bit values (pixels
of the image on the display).
The resolution of the image is
determined by the number of bits
that have been defined per each
pixel.

Enhanced Dynamic
Random-Access Memory
(EDRAM) actually inte-
grates SRAM within the
DRAM, and is usually used
as level-2 cache (see Section
2.1). The faster SRAM por-
tion of EDRAM is searched
first for the data, and if
not found there, then the
DRAM portion of EDRAM
is searched.

DRDRAM (Direct Rambus Dynamic Random-
Access Memory) and SLDRAM (SyncLink
Dynamic Random-Access Memory)

DRAMs whose bus signals (Chapter 7, Section
7, Memory Buses” for more information) can
be integrated and accessed on one line, thus
decreasing the access time (since synchronizing
operations on multiple lines are not necessary).

Video RAM (VRAM) DRAM in
which the refresh buffer is dupli-
cated and connected to the outside
world as a second, serial I/O port.
A line of data can be fetched from
the memory in parallel, just as is
done in a refresh, and then be read
out serially. If the RAM contains
pixel values, then this sequence
nicely corresponds to a scan line
on a monitor and facilitates dis-
play generation. At the same time,
the master processor can access
the RAM normally with almost
no interference.

…

FRAM (Ferroelectric Random-Access Memory)
Non-volatile DRAM, meaning data isn’t lost
from DRAM when power is shut off. FRAM
has a lower power requirement then other types
of SRAM, DRAM, and some ROMs (Flash),
and is targeted for smaller handheld devices
(PDAs, phones, etc.).

FPM DRAM (Fast Page Mode
Dynamic Random-Access Mem-
ory), EDORAM/EDO DRAM
(Data Output Random-Ac-
cess/Dynamic Random-Access
Memory), and BEDO DRAM
(Data Burst Extended Data Out-
put Dynamic Random-Access
Memory). . . .

…

FPM DRAM (Fast Page Mode Dynamic
Random-Access Memory), EDORAM/EDO
DRAM (Data Output Random-Access/Dynamic
Random-Access Memory), and BEDO DRAM
(Data Burst Extended Data Output Dynamic
Random-Access Memory). . . .

… …
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Level-2+ Caches
Level 2+ (level 2 and higher) cache is the level of memory that exists between the CPU and
main memory in the memory hierarchy.

In this section, cache that is external to the processor is introduced, which is caches higher
than level 1. As shown in Table 5-1, SRAM memory is usually used as external cache (like
level-1 cache), because the purpose of cache is to improve the performance of the memory
system, and SRAM is faster than DRAM. Since (SRAM) cache memory is typically more ex-
pensive because of its speed, processors will usually have a small amount of cache (on-chip,
off-chip, or both).

Using cache became popular in response to systems that displayed a good locality of refer-
ence, meaning that these systems, in a given time period, accessed most of their data from a
limited section of memory. Basically, cache is used to store subsets of main memory that are
used or accessed often, capitalizing on the locality of reference and making main memory
seem to execute faster. Because cache holds copies of what is in main memory, it gives the
illusion to the master processor that it is operating from main memory even if actually operat-
ing from cache.

There are different strategies when writing to and reading data from a set of memory ad-
dresses, called the working set, to and from cache. One-word or multiword blocks are used
to transfer data between memory and cache. These blocks are made up of data from main
memory, as well as the location of that data in main memory (called tags).

When writing to memory, the memory address from the CPU is translated to determine its
equivalent location in level-1 cache, given that cache is a snapshot of a subset of memory.
Writes must be done in both cache and main memory to ensure that cache and main memory
are consistent (have the same value). The two most common write strategies to guarantee this
are write-through, in which data is written to both cache and main memory every time, and
write-back, in which data is initially only written into cache, and only when it is to be bumped
and replaced from cache will it be written into main memory.

Figure 5-13: Level-2+ cache in the memory hierarchy
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When the CPU wants to read data from memory, level-1 cache is checked first. If the data is
in cache, it is called a cache hit, the data is returned to the CPU and the memory access pro-
cess is complete. If the data is not located in level-1 cache, it is called cache miss. External
off-chip caches are then checked, and if there is a miss there also, then on to main memory to
retrieve and return the data to the CPU.

Data is usually stored in cache in one of three schemes: direct mapped, set associative, or
full associative. In the direct mapped cache scheme, addresses in cache are divided into sec-
tions called blocks. Every block is made up of the data, a valid tag (flag indicating if block is
valid), and a tag indicating the memory address(es) represented by the block. In this scheme,
data is located by its associated block address in memory, using the “tag” portion of the
block. The tag is derived from the actual memory address, and is made up of three sections: a
tag, an index, and an offset. The index value indicates the block, the offset value is the offset
of the desired address within the block, and the tag is used to compare with the actual address
tag to insure the correct address was located.

The set associative cache scheme is one in which cache is divided into sections called sets,
and within each set, multiple blocks are located at the set-level. The set associative scheme is
implemented at the set-level. At the block level, the direct-mapped scheme is used. Essential-
ly, all sets are checked for the desired address via a universal broadcast request. The desired
block is then located according to a tag that maps into a cache’s particular set. The full
associative cache scheme, like the set associative cache scheme, is also composed of blocks.
In the full associative scheme, however, blocks are placed anywhere in cache, and must be
located by searching the entire cache every time.

As with any scheme, each of the cache schemes has its strengths and drawbacks. Whereas
the set associative and full associative schemes are slower than the direct mapped, the direct
mapped cache scheme runs into performance problems when the block sizes get too big.
On the flip side, the cache and full associative schemes are less predictable than the direct
mapped cache scheme, since their algorithms are more complex.

Finally, the actual cache swapping scheme is determined by the architecture. The most com-
mon cache selection and replacement schemes include:

Optimal, using future reference time, swapping out pages that won’t be used in the
near future.

Least recently used (LRU), which swaps out pages that were used the least recently.

FIFO (first in, first out) is another scheme which, as its name implies, swaps out the
pages that are the oldest, regardless of how often they are accessed in the system.
While a simpler algorithm then LRU, FIFO is much less efficient.

Not recently used (NRU), swaps out pages that were not used within a certain time
period.
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Second chance, FIFO scheme with a reference bit, if “0” will be swapped out (a refer-
ence bit is set to “1” when access occurs, and reset to “0” after the check).

Clock paging, pages replaced according to clock (how long they have been in mem-
ory), in clock order, if they haven’t been accessed (a reference bit is set to “1” when
access occurs, and reset to “0” after the check).

On a final note, these selection and replacement algorithms are not only limited to swapping
data in and out of cache, but can be implemented via software for other types of memory
swapping (for example, OS memory management covered in Chapter 9).

Managing Cache

In systems with memory management units (MMU) to perform the translation of addresses 
(see Section 5.4), cache can be integrated between the master processor and the MMU, or 
the MMU and main memory. There are advantages and disadvantages to both methods of 
cache integration with an MMU, mostly surrounding the handling of DMA devices that allow
data to access off-chip main memory directly without going through the main processor. (Di-
rect memory access is discussed in Chapter 6, Board I/O.) When cache is integrated between 
the master processor and MMU, only the master processor access to memory affects cache; 
therefore, DMA writes to memory can make cache inconsistent with main memory unless 
master processor access to memory is restricted while DMA data is being transferred or cache 
is being kept updated by other units within the system besides the master processor. When 
cache is integrated between the MMU and main memory, more address translations must be 
done, since cache is affected by both the master processor and DMA devices.

In some systems, a memory controller may be used to manage a system with external cache 
(data requests and writes, for instance). More details on memory controllers can be found in 
Section 5.4.

5.3 Auxiliary Memory
As mentioned at the start of this chapter, certain types of memory can be connected directly
to the master processor, such as RAM, ROM, and cache, while other types of memory, called
secondary memory, are connected to the master processor indirectly via another device. This
type of memory, as shown in Figure 5-14, is the external secondary memory and tertiary
memory and is commonly referred to as auxiliary or storage memory. Auxiliary memory is
typically nonvolatile memory used to store larger amounts of regular, archival, and/or backups
of data, for longer periods of time to indefinitely.
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Auxiliary memory can only be accessed by a device that is plugged into an embedded board,
such as the disks in a hard drive, the CD via a CD-ROM, a floppy disk via a floppy drive,
magnetic tape via a magnetic tape drive, and so on. The auxiliary devices used to access aux-
iliary memory are typically classified as I/O devices, and are discussed in Chapter 6 in more
detail. It is the auxiliary memories that plug into or are inserted within these I/O devices, that
the master CPU can access that is discussed in this section. Auxiliary memory is typically
classified by how its data is accessed (read and written) by its associated auxiliary device:
sequential access in which data can only be accessed in sequential order; random access in
which any data can be accessed directly; or direct access, which is both sequential and ran-
dom access schemes combined.

Magnetic tape is a sequential type of memory, meaning that data can only be accessed in
sequential order, and the information is stored on the tape in a sequence of rows, where sets
of rows form blocks. The only data that can be accessed at any moment in time is the data in
contact with the read/write/erase head(s) of the tape drive. When the read/write/erase head(s)
is positioned at the beginning of the tape, the access time for retrieving data is dependent
upon the location of that data on the tape, because all the data before the requested data must
be accessed before retrieving the desired data. Figures 5-15a and b show an example of how
magnetic tape works. Markers on the tape indicate the start and end of the tape. Within the
tape, markers also indicate the start and end of files. The data with each file is divided into
blocks, separated by gaps (of no data) to allow the hardware to accelerate—to begin operat-
ing, for example—and slow down when needed. Within each block, data is separated into
rows, where each row is a “bit” of the entire data width (i.e., of 9 bits for byte-sized data +
1 parity bit) and each row of bits is called a track. Each track has its own read/write/erase
head(s), meaning for the nine tracks there are nine write heads, nine read heads, and nine
erase heads. Refer to Figure 5-15a.

Figure 5-14: Auxiliary memory in the memory hierarchy
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In this storage medium, the tape is made up of a polyester transportation layer with an
overlying ferromagnetic (highly magnetic) powdered-oxide layer (see Figure 5-16). The
read/write/erase head is also made up of materials that are highly magnetic (such as iron,
cobalt, etc.). To write data onto the tape, an electrical current is passed through the magnetic
coils of the write head, creating a magnetic leakage field within the air gap of the head. This
field is what magnetizes the tape, and reversing the current flowing through the write head’s
air gap reverses the polarity of the magnetic field on the tape. The data is written in magne-
tized islands of rows when the tape passes the head, where a “0” is no change in magnetic
polarity of the oxide layer on the tape, and a “1” is a polarity change of that layer. To read the
data from a magnetic tape, a voltage is induced into the magnetic coil of the read head by the
tape passing over it, which then is translated to a “0” or “1” depending on the polarity of the
magnetic field on the tape. An Erase Head, for example, would then demagnetize the tape.

Figure 5-15a: Sequential access tape drive [5-3]

Figure 5-15b: Tape drive block [5-3]
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As shown in Figure 5-17a, a hard drive has multiple platters, which are metal disks covered
with a magnetic material (film) to record data. Every platter contains multiple tracks, shown
in Figure 5-17b. These are separate concentric rings representing separate sections for record-
ing data. Every track is broken down into sectors, basic subsections which can be read or
written to simultaneously.

Figure 5-16: Magnetic tape [5-3]
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Figure 5-17a: Internals of hard drive [5-3]

Figure 5-17b: Hard drive platter [5-3]
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Depending on the size of the hard drive, it can have multiple heads, electromagnets used
to record data to and read data from the platters via switchable magnetic fields. The head is
supported by the disk arm that moves around by an actuator, which positions the head at the
appropriate location to store, retrieve, and or delete data.

A hard disk is an example of a memory that uses the direct access memory scheme, where a
combination of random access and sequential access schemes are used to retrieve and store
data. On each track, data is then stored sequentially. The read/write head (s) can be moved
randomly to access the right track, and the sectors of each track are then accessed sequentially
to locate the appropriate data.

Like the disks in a hard drive, a compact disk is broken down into tracks and sectors (see
Figure 5-18).

Figure 5-18: CD [5-3]
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The key difference between the platters in a hard drive and a CD is that the film on the purely
optical CD isn’t magnetic, but an ultrathin optical metal material. Also, where in a hard drive
electromagnets are used to read and write data to a platter, lasers are used to read and write
data to a CD. Another key difference between the hard disk device and a CD is that data can
be read and written to the platters of the disk multiple times, whereas the CD can only be
written to one time (with a high intensity laser) and read from (via a low intensity laser) mul-
tiple times. There are optical disks that can be erased, whose film is made up of magnetic and
optical metal material. These disks are read, written, and erased via a combination of manipu-
lating lasers and magnetic fields.
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The main difference between primary and secondary memory lies in how they interact with
the master processor. The master processor is directly connected to primary memory, and
can only access the data directly that is in primary memory. Any other data that the master
processor wants to access (such as that in secondary memory) must be transmitted to primary
memory first before it is accessible to the master processor. Secondary memory is typically
controlled by some intermediary device, and is not directly accessible by the master processor.

The various access schemes, such as random access, sequential access, direct access, and
so on, can be used in either primary or secondary memory designs. However, since primary
memories typically need to be faster, they usually employ a random access scheme, which
is normally the faster of the access schemes. However, the circuitry required for this type of
access method makes primary memory larger, more expensive, and consume more power than
secondary memory.

5.4 Memory Management of External Memory
There are several different types of memory that can be integrated into a system, and there are
also differences in how software running on the CPU views logical/virtual memory addresses
and the actual physical memory addresses—the two-dimensional array or row and column.
Memory managers are ICs designed to manage these issues. In some cases, they are inte-
grated onto the master processor.

The two most common types of memory managers found on an embedded board are mem-
ory controllers (MEMC) and memory management units (MMUs). A memory controller
(MEMC), shown in Figure 5-19, is used to implement and provide glueless interfaces to the
different types of memory in the system, such as SRAM and DRAM, synchronizing access to
memory and verifying the integrity of the data being transferred. Memory controllers access
memory directly with the memory’s own physical two-dimensional addresses. The controller
manages the request from the master processor and accesses the appropriate banks, await-
ing feedback and returning that feedback to the master processor. In some cases, where the
memory controller is mainly managing one type of memory, it may be referred to by that
memory’s name, such as DRAM controller, cache controller, and so forth.
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Figure 5-19: Memory controller sample circuit [5-3]
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Memory management units (MMUs) mainly allow for the flexibility in a system of having a
larger virtual memory (abstract) space within an actual smaller physical memory. An MMU,
shown in Figure 5-20, can exist outside the master processor and is used to translate logical
(virtual) addresses into physical addresses (memory mapping), as well as handle memory
security (memory protection), controlling cache, handling bus arbitration between the CPU
and memory, and generating appropriate exceptions.

Figure 5-20: Motorola/Freescale M68020 external memory management
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In the case of translated addresses, the MMU can use level-1 cache or portions of cache
allocated as buffers for caching address translations, commonly referred to as the translation
lookaside buffer or TLB, on the processor to store the mappings of logical addresses to physi-
cal addresses. MMUs also must support the various schemes in translating addresses, mainly
segmentation, paging, or some combination of both schemes. In general, segmentation is the
division of logical memory into large variable size sections, whereas paging is the dividing up
of logical memory into smaller fixed size units (more on segmentation and paging in Chapter
9). When both schemes are implemented, logical memory is first divided into segments, and
segments are then divided into pages.
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The memory protection schemes then provide shared, read/write or read-only accessibility to
the various pages and/or segments. If a memory access is not defined or allowed, an interrupt
is typically triggered. An interrupt is also triggered if a page or segment isn’t accessible dur-
ing address translation—for example, in the case of a paging scheme, a page fault, etc. At that
point the interrupt would need to be handled (the page or segment would have to be retrieved
from secondary memory, for example).

The scheme supporting segmentation or paging of the MMU typically depends on the software
(the operating system). See Chapter 9: Operating System for more on virtual memory and how
MMUs can be used along with the system software to manage virtual memory.

5.5 Board Memory and Performance
As discussed in Chapter 4, one of the most common measures of a processor’s performance is
its throughput (bandwidth), or the CPU’s average execution rate. The performance through-
put can be negatively impacted by main memory especially, since the DRAM used for main
memory can have a much lower bandwidth than that of the processors. There are specific
timing parameters associated with memory (memory access times, refresh cycle times for
DRAM, and so on) that act as indicators of memory performance.

Solutions for improving the bandwidth of main memory include:

Integrating a Harvard-based architecture, with separate instruction and data memory
buffers and ports, for systems that expect to perform a high number of memory
accesses and computations on a large amount of data.

Using DRAMs, such as DRDRAM and SLDRAM, that integrate bus signals into one
line, to decrease the time it takes to arbitrate the memory bus to access memory.

Using more memory interface connections (pins), increasing transfer bandwidth.

Using a higher signaling rate on memory interface connections (pins).

Implementing a memory hierarchy with multiple levels of cache, which has faster
memory access times than those of other types of memory.

Memory hierarchies (shown in Figure 5-1) were designed in part to improve performance.
This is because memory access during execution of programs tends not to be random, and
exhibits good localities of reference. This means that systems, in a given time period, access
most of their data from a limited section of memory (locality in space) or access the same
data again within that given period of time (locality in time). Thus, faster memory (usually
SRAM), called cache, was integrated into a memory system for this type of data to be stored
and accessed by the CPU. This integration of different types of memories is referred to as the
memory hierarchy. It is important that the memory hierarchy be effective, since the master
processor spends most of its time accessing memory in order to process the applicable data.
The memory hierarchy can be evaluated by calculating how many cycles are spent (wasted)
due to memory latency or throughput problems, where
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Memory stall cycles = Instruction Count * Memory References/Instruction * Cache Miss Rate * Cache Miss Penalty

In short, memory performance can be improved by:

Introducing cache, which means fewer slower DRAM accesses with a decrease in the
average main memory access time; non-blocking cache will especially decrease any
cache miss penalties.

Note that with the introduction of cache, the average total memory access time = (cache hit time + 
(cache miss rate * cache miss penalty)) + (% cache misses * average main memory access time) 

where (cache hit time + (cache miss rate * cache miss penalty)) = average cache access time.

Reducing the cache miss rate, by increasing cache block sizes or implementing
prefetching (hardware or software), a technique by which data and/or instructions
theoretically needed in the future are transferred from main memory and stored in
cache.

Implementing pipelining, which is the process of breaking down the various functions
associated with accessing memory into steps, and overlapping some of these steps.
While pipelining doesn’t help latency (the time it takes to execute one instruction), it
does help to increase throughput, by decreasing the time it takes for cache writes, for
example, and thus reducing cache write “hit” times. The pipeline rate is limited only
by its slowest pipeline stage.

Increasing the number of smaller multi-level caches rather than having one big cache,
since smaller caches reduce the cache’s miss penalty and average access time (hit
time), whereas a larger cache has a longer cycle time and for pipe stages in an imple-
mented pipeline.

Integrating main memory onto the master processor, which is cheaper as well, since
on-chip bandwidth is usually cheaper than pin bandwidth.

5.6 Summary
This chapter introduced some of the basic hardware concepts involving memory that are typi-
cally found on an embedded board, specifically the different types of board memory and the
basic electrical elements that are used in building them. While there are few fundamental dif-
ferences between memory located on a board and memory integrated into a processor, there
are certain types of memory that can be, or are only, located outside the master processor on
the embedded board itself—certain types of ROM and RAM (summarized in Table 5-1), as
well as auxiliary memory. This chapter ends with an introduction of some of the key perfor-
mance issues that revolve around board memory.

The next chapter, Chapter 6: Board I/O, discusses a variety of hardware I/O that can be found
on an embedded board.
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Chapter 5 Problems

1.  Draw and describe the memory hierarchy of an embedded system.

2.  Which memory component(s) in a memory hierarchy is typically located on the board,
outside the master processor?

 A. Level-2 cache.
 B. Main memory.
 C. Secondary memory.
 D. All of the above.
 E. None of the above.

3.  [a]  What is ROM?
 [b]  Name and describe three types of ROM.

4.  [a]  What is RAM?
 [b]  Name and describe three types of RAM.

5.  [a]  Draw examples of ROM, SRAM, and DRAM memory cells.
 [b]  Describe the main differences between these memory cells.

6.  [T/F] SRAM is usually used in external cache, because SRAM is slower than DRAM.

7.  What type of memory is typically used as main memory?

8.  [a]  What is the difference between level-1, level-2, and level-3 cache?
 [b]  How do they all work together in a system?

9.  [a]  What are the three most common schemes used to store and retrieve data in cache?
 [b]  What is the difference between a cache hit and cache miss?

10.  Name and describe at least four cache swapping schemes.

11. [a]  What is auxiliary memory?
 [b]  List four examples of auxiliary memory.
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12. [T/F] Auxiliary memory is typically classified according to how data is accessed.

13. [a] Name and define three data accessibility schemes commonly implemented in
auxiliary memory.

 [b]  Provide a real-world example that falls under each scheme.

14.  Finish the sentence: MMUs and memory controllers not integrated into the master pro-
cessor are typically implemented in:

 A.  separate slave ICs.
 B.  software.
 C.  buses.
 D.  All of the above.
 E.  None of the above.

15.  [a]  What is the difference between a MMU and a memory controller?
 [b]  Can one embedded system incorporate both? Why or why not?

16.  What is the difference between physical memory and logical memory?

17. [a]  What is a memory map?
 [b]  What is the memory makeup of a system with the memory map shown in Figure

5-21?
 [c]  Which memory components shown in the memory map of Figure 5-21 are typically
  located on the board outside the master processor?

Address Range Accessed Device Port Width

0×00000000 - 0×003FFFFF Flash PROM Bank 1 32
0×00400000 - 0×007FFFFF Flash PROM Bank 2 32
0×04000000 - 0×043FFFFF DRAM 4Mbyte (1Meg ×32-bit)it) 32
0×09000000 - 0×09003FFF MPC Internal Memory Map 32
0×09100000 - 0×09100003 BCSR - Board Control & Status Register 32
0×10000000 - 0×17FFFFFF PCMCIA Channel 16

Figure 5-21: Memory map [5-5]

17.  How can memory impact the performance of a system?

18.  Define five ways in which the bandwidth of main memory and/or the overall performance
of a memory subsystem can be improved.
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C H A P T E R 6
Board I/O

(Input/Output)

In This Chapter

Introducing board I/O
Discussing differences between serial and parallel I/O
Introducing interfacing to I/O
Discussing I/O performance

Input/output (I/O) components on a board are responsible for moving information into and
out of the board to I/O devices connected to an embedded system. Board I/O can consist of
input components, which only bring information from an input device to the master proces-
sor; output components, which take information out of the master processor to an output
device; or components that do both (see Figure 6-1).

Figure 6-1: Von Neumann-based I/O block diagram [6-1]

-
Master Processor

Memory

OutputInputBrings data into the Embedded System Gets data out of the Embedded System

Data from CPU or input devices stored in
memory until a CPU or output device request

5 System components commonly connected via buses

EMBEDDED SYSTEM BOARD

Controls usage and manipulation of data 



Chapter 6

254

Any electromechanical system, both embedded and non-embedded, whether conventional
or unconventional, can be connected to an embedded board and act as an I/O device. I/O is a
high-level group that can be subdivided into smaller groups of output devices, input devices,
and devices that are both input and output devices. Output devices receive data from board I/
O components and display that data in some manner, such as printing it to paper, to a disk, or
to a screen or a blinking LED light for a person to see. An input device such as a mouse, key-
board, or remote control transmits data to board I/O components. Some I/O devices can do
both, such as a networking device that can transmit data to and from the internet, for instance.
An I/O device can be connected to an embedded board via a wired or wireless data transmis-
sion medium such as a keyboard or remote control, or can be located on the embedded board
itself, such as an LED.

Author note: The material in this section is similar to the material in Chapter 4, Section 
4.2.3, Processor Input/Output (I/O), since aside from certain types of I/O or components 
of an I/O subsystem that are integrated on an IC versus discretely located on a board 
the basics are essentially the same.

Because I/O devices are so varied, ranging from simple circuits to other complete embedded
systems, board I/O components can fall under one or more of several different categories, the
most common including:

Networking and communications I/O (the physical layer of the OSI model—
see Chapter 2)

Input (keyboard, mouse, remote control, vocal, etc.)

Graphics and output I/O (touch screen, CRT, printers, LEDs, etc.)

Storage I/O (optical disk controllers, magnetic disk controllers, magnetic tape con-
trollers, etc.)

Debugging I/O (BDM, JTAG, serial port, parallel port, etc.)

Real time and miscellaneous I/O (timers/counters, analog-to-digital converters and
digital-to-analog converters, key switches, and so on)

In short, board I/O can be as simple as a basic electronic circuit that connects the master
processor directly to an I/O device, such as a master processor’s I/O port to a clock or LED
located on the board, to more complex I/O subsystem circuitry that includes several units,
as shown in Figure 6-2. I/O hardware is typically made up of all or some combination of six
main logical units:

The transmission medium, a wireless or wired medium connecting the I/O device to
the embedded board for data communication and exchanges

Communication port, what the transmission medium connects to on the board or, if a
wireless system, what receives the wireless signal
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A communication interface, which manages data communication between master CPU
and I/O device or I/O controller, and is responsible for encoding data and decoding
data to and from the logical level of an IC and the logical level of the I/O port. This
interface can be integrated into the master processor, or can be a separate IC.

An I/O controller, a slave processor that manages the I/O device

I/O buses, the connection between the board I/O and master processor

The master processor integrated I/O

The I/O on a board can thus range from a complex combination of components, as shown in
Figure 6-3a, to a few integrated I/O board components, as shown in Figure 6-3b.

Figure 6-2: Ports and device controllers on an embedded board
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The actual make-up of an I/O system implemented on an embedded board, whether using
connectors and ports or using an I/O device controller, is dependent on the type of I/O device 
connected to, or located on, the embedded board. This means that, while other factors such as
reliability and expandability are important in designing an I/O subsystem, what mainly dic-
tates the details behind an I/O design are the features of the I/O device—its purpose within
the system—and the performance of the I/O subsystem, discussed in Section 6.3. Transmis-
sion mediums, buses, and master processor I/O are beyond the scope of this section, and are
covered in Chapters 2 (transmission mediums), 7 (board buses) and 4 (processors). An I/O
controller is essentially a type of processor, so again see Chapter 4 for more details.

Within the various I/O categories—networking, debugging, storage, and so forth—board I/O
is typically subgrouped according to how data is managed (transmitted). Note that the actual
subgroups may be entirely different depending on the architecture viewpoint, as related to
the embedded systems model. “Viewpoint” means that hardware and software can view,
and hence subgroup, board I/O differently. Within software, the subgroups can even differ
depending on the level of software—system software versus application software, operating
system versus device drivers, and so on. For example, in many operating systems board I/O is
considered either as block or character I/O. In short, block I/O manages in fixed block sizes
and is addressable only in blocks. Character I/O, on the other hand, manages data in streams
of characters, the size of the character depending on the architecture—such as one byte, for
example.

From the hardware viewpoint, I/O manages (transmits and/or stores) data in serial, in parallel,
or both.

Figure 6-3b: 
Simple I/O subsystem [6-2]I/O Port (Pin)
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6.1 Managing Data: Serial vs. Parallel I/O 
Board I/O that can transmit and receive data in serial is made up of components in which
data (characters) are stored, transferred and received one bit at a time. Serial I/O hardware is
typically made up of some combination of the six main logical units outlined at the start of
the chapter. Serial communication includes within its I/O subsystem a serial port and a serial
interface.

Serial interfaces manage the serial data transmission and reception between the master CPU
and either the I/O device or its controller. They include reception and transmission buffers to
store and encode or decode the data they are responsible for transmitting either to the mas-
ter CPU or an I/O device. Serial data transmission and reception schemes generally differ in
terms of the direction data can be transmitted and received, as well as the actual transmission/
reception process—in other words, how the data bits are transmitted and received within the
data stream.

Data can be transmitted between two devices in one of three directions: in a one-way
direction, in both directions but at separate times because they share the same transmission
line, and in both directions simultaneously. Serial I/O data communication that uses a simplex
scheme is one in which a data stream can only be transmitted—and thus received—in one
direction (see Figure 6-4a). A half duplex scheme is one in which a data stream can be trans-
mitted and received in either direction, but in only one direction at any one time (see Figure
6-4b). A full duplex scheme is one in which a data stream can be transmitted and received in
either direction simultaneously (see Figure 6-4c).

Figure 6-4a: Simplex transmission scheme example [6-3]

Figure 6-4b: Half duplex transmission scheme example [6-3]
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Within the actual data stream, serial I/O transfers can occur either as a steady (continuous)
stream at regular intervals regulated by the CPU’s clock, referred to as a synchronous trans-
fer, or intermittently at irregular (random) intervals, referred to as an asynchronous transfer.

Figure 6-4c: Full duplex transmission scheme example [6-3]
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Figure 6-5: Asynchronous transfer sample diagram
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In an asynchronous transfer (shown in Figure 6-5), the data being transmitted is typically
stored and modified within a serial interface’s transmission buffer. The serial interface at the
transmitter divides the data stream into groups, called packets, that typically range from either
4 to 8 bits per character or 5 to 9 bits per character. Each of these packets is then encapsulated
in frames to be transmitted separately. The frames are packets modified (before transmission)
by the serial interface to include a START bit at the start of the stream, and a STOP bit or bits
(this can be 1, 1.5, or 2 bits in length to ensure a transition from “1” to “0” for the START bit
of the next frame) at the end of the data stream being transmitted. Within the frame, after the
data bits and before the STOP bit, a parity bit may also be appended. A START bit indi-
cates the start of a frame, the STOP bit(s) indicates the end of a frame, and the parity is an
optional bit used for very basic error checking. Basically, parity for a serial transmission can
be NONE, for no parity bit and thus no error checking; EVEN, where the total number of bits
set to “1” in the transmitted stream, excluding the START and STOP bits, must be an even
number in order for the transmission to be a success; and ODD, where the total number of
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bits set to “1” in the transmitted stream, excluding the START and STOP bits, must be an odd
number in order for the transmission to be a success. Between the transmission of frames, the
communication channel is kept in an idle state, meaning a logical level “1” or non-return to
zero (NRZ) state is maintained.

The serial interface of the receiver then receives frames by synchronizing to the START bit of
a frame, delays for a brief period, and then shifts in bits, one at a time, into its receive buffer
until reaching the STOP bit (s). In order for asynchronous transmission to work, the bit rate
(bandwidth) has to be synchronized in all serial interfaces involved in the communication.
The bit rate is defined as = (number of actual data bits per frame/total number of bits 
per frame) * the baud rate. The baud rate is the total number of bits (regardless of type) per
some unit of time (kbits/ sec, Mbits/sec, etc.) that can be transmitted.

Both the transmitter’s serial interface and the receiver’s serial interface synchronize with
separate bit-rate clocks to sample data bits appropriately. At the transmitter, the clock starts
when transmission of a new frame starts, and continues until the end of the frame so that the
data stream is sent at intervals the receiver can process. At the receiving end, the clock starts
with the reception of a new frame, delaying when appropriate (in accordance with the bit
rate), and then sampling the middle of each data bit period of time, and then stopping when
receiving the frame’s STOP bit(s).

Figure 6-6: Synchronous transfer sample diagram
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In a synchronous transmission (as shown in Figure 6-6), there are no START or STOP bits
appended to the data stream, and there is no idle period. As with asynchronous transmissions,
the data rates for receiving and transmitting must be in sync. However, unlike the separate
clocks used in an asynchronous transfer, the devices involved in a synchronous transmission
are synchronizing off of one common clock, which does not start and stop with each new
frame. On some boards, there may be an entirely separate clock line for the serial interface
to coordinate the transfer of bits. In some synchronous serial interfaces, if there is no sepa-
rate clock line, the clock signal may even be transmitted along with the data bits. The UART
(universal asynchronous receiver-transmitter) is an example of a serial interface that does
asynchronous serial transmission, whereas SPI (serial peripheral interface) is an example of
a synchronous serial interface. Important Note: different architectures that integrate a UART 
or other types of serial interfaces may have different names and types for the same type of 
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interface, such as the MPC860 which has SMC (serial management controller) UARTs, for 
example. Review the relevant documentation to understand the specifics.

Serial interfaces can either be separate slave ICs on the board, or integrated onto the mas-
ter processor. The serial interface transmits data to and from an I/O device via a serial port 
(shown in Figures 6-4a, b, and c). Serial ports are serial communication (COM) interfaces
that are typically used to interconnect off-board serial I/O devices to on-board serial board
I/O. The serial interface is then responsible for converting data that is coming to and from the
serial port at the logic level of the serial port into data that the logic circuitry of the master
CPU can process.

One of the most common serial communication protocols defining how the serial port is
designed and what signals are associated with the different bus lines is RS-232.

Serial I/O Example 1: Networking and Communications: RS-232
One of the most widely implemented serial I/O protocols for either synchronous or asynchro-
nous transmission is the RS-232 or EIA-232 (Electronic Industries Association-232), which
is primarily based upon the Electronic Industries Association family of standards. These
standards define the major components of any RS-232 based system, which is implemented
almost entirely in hardware.    

Figure 6-7: OSI model
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The hardware components can all be mapped to the physical layer of the OSI model (see Fig-
ure 6-7). The firmware (software) required to enable RS-232 functionality maps to the lower
portion of the data-link, but will not be discussed in this section (see Chapter 8).

According to the EIA-232 standards, RS-232 compatible devices (shown in Figure 6-8) are
called either DTE (Data Terminal Equipment) or DCE (Data Circuit-terminating Equipment).
DTE devices are the initiators of a serial communication, such as a PC or embedded board.
DCE is the device that the DTE wants to communicate with, such as an I/O device connected
to the embedded board.

Figure 6-8: Serial network diagram
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The core of the RS-232 specification is called the RS-232 interface (see Figure 6-9). The
RS-232 interface defines the details of the serial port and the signals along with some
additional circuitry that maps signals from a synchronous serial interface (such as SPI) or an
asynchronous serial interface (such as UART) to the serial port, and by extension to the I/O
device itself. By defining the details of the serial port, RS-232 also defines the transmission
medium, which is the serial cable. The same RS-232 interface must exist on both sides of a
serial communication transmission (DTE and DCE or embedded board and I/O device), con-
nected by an RS-232 serial cable in order for this scheme to work.

Figure 6-9: Serial components block diagram
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The actual physics behind the serial port—the number of signals and their definitions—dif-
fers among the different EIA232 standards. The parent RS-232 standard defines a total of 25
signals, along with a connector, called a DB25 connector, on either end of a wired transmis-
sion medium, shown in Figure 6-10a. The EIA RS-232 Standard EIA574 defines only nine
signals (a subset of the original 25) that are compatible with a DB9 connector (shown in Fig-
ure 6-10b), whereas the EIA561 standard defines eight signals (again a subset of the original
RS-232 25 signals) compatible with an RJ45 connector (see Figure 6-10c).

Figure 6-10a: RS-232 signals and DB25 connector  [6-4]
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Two DTE devices can interconnect to each other using an internal wiring variation on serial
cables called null modem serial cables. Since DTE devices transmit and receive data on the
same pins, these null modem pins are swapped so that the transmit and receive connections
on each DTE device are coordinated.

Figure 6-10b: RS-232 signals and DB9 connector  [6-4]
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Figure 6-10c: RS-232 signals and RJ45 connector  [6-4]

DB9
Pin Name Signal Description Voltage DTE DCE

1 125 RI Ring Indicator +12 In Out
2 109 DCD Data Carrier Detect +12 In Out
3 108 DTR Data Terminal Ready +12 Out In
4 102 SG Signa l Ground
5 104 RxD Receive Data -12 Out In
6 103 TxD Tr ansm it Data -12 In Out
7 106 CTS Clear To Sen d +12 In Out
8 105/133 RTS Request To Sen d +12 In Out

Same Leading Into DTE Device and DCE Device

8
7
6
5
4
3
2
1

Request to Send
Clear to Send

Transmit Data
Receive Data

Signal Ground
Data Terminal Ready

Data Carrier Detect
Ring Indicator



Board I/O (Input/Output)

263

Example: Motorola/Freescale MPC823 FADS Board RS-232 System Model

The serial interface on the Motorola/Freescale FADS board* is integrated in the master pro-
cessor, in this case the MPC823. To understand the other major serial component located on
the board, the serial port, one only has to read the board’s hardware manual.

Section 4.9.3 of The Motorola/Freescale 8xxFADS User’s Manual (Rev. 1) details the RS-232
system on the Motorola/Freescale FADS board:

“4.9.3 RS232 Ports

To assist user’s applications and to provide convenient communication channels with
both a terminal and a host computer, two identical RS232 ports are provided on the
FADS. …..

Use is done with 9 pins, female D-type stack connector, configured to be directly (via
a flat cable) connected to a standard IBM-PC-like RS232 connector.

4.9.3.1 RS-232 Signal Description

In the following list:

DCD (O) – Data Carrier Detect

TX (O) – Transmit Data

…”

From this manual, we can see that the FADS RS-232 port definition is based upon the EIA-
574 DB9 DCE female device connector definition.

Figure 6-11: RS-232 serial port connector
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*Note: The FADS board is a platform for hardware and software development around the MPC8xx family of 
processors.
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Serial I/O Example 2: Networking and Communications: IEEE 802.11 
Wireless LAN
The IEEE 802.11 family of networking standards are serial wireless LAN standards, and are
summarized in Table 6-1 below. These standards define the major components of a wireless
LAN system.

Table 6-1: 802.11 standards

IEEE 802.11 Standard Description
802.11-1999 Root Standard for Information
Technology—Telecommunications and Informa-
tion Exchange between Systems—Local and
Metropolitan Area Network—Specific Require-
ments—Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
Specifications

The 802.11 standard was the first attempt to define how wireless data from a
network should be sent. The standard defines operations and interfaces at the
MAC (Media Access Control) and PHY (Physical interface) levels in a TCP/IP
network. There are three PHY layer interfaces defined (1 IR, and 2 radio:
Frequency-Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spec-
trum (DSSS)), and the three do not interoperate. Use CSMA/CA (carrier sense
multiple access with collision avoidance) as the basic medium access scheme for
link sharing, phase-shift keying (PSK) for modulation

802.11a-1999 “WiFi5” Amendment 1: High-
speed Physical Layer in the
5 GHz band

Operates at radio frequencies between 5 GHz and 6 GHz to prevent interference
with many consumer devices. Uses CSMA/CA (carrier sense multiple access
with collision avoidance) as the basic medium access scheme for link sharing.

As opposed to PSK, it uses a modulation scheme known as orthogonal fre-
quency-division multiplexing (OFDM) that provides data rates as high as 54
Mbps maximum.

802.11b-1999 “WiFi” Supplement to
802.11-1999,Wireless LAN MAC and PHY
specifications: Higher speed Physical Layer
(PHY) extension in the 2.4 GHz band

Backward compatible with 802.11. 11Mbps speed, one single PHY layer
(DSSS), uses CSMA/CA (carrier sense multiple access with collision avoid-
ance) as the basic medium access scheme for link sharing and complementary
code keying (CCK), which allows higher data rates and is less susceptible to
multipath-propagation interference.

802.11b-1999/Cor1-2001 Amendment 2:
Higher-speed Physical Layer (PHY) extension in
the 2.4 GHz band—Corrigendum 1

To correct deficiencies in the MIB definition of 802.11b.

802.11c IEEE Standard for Information
Technology—Telecommunications and informa-
tion exchange between systems—Local area
networks—Media access control (MAC) bridg-
es—Supplement for support by IEEE 802.11

Designated in 1998 to add a subclass under 2.5 Support of the Internal Sublayer
Service by specific MAC Procedures to cover bridge operation with IEEE 802.11
MACs. Allows the use of 802.11 access points to bridge across networks within
relatively short distances from each other( i.e., where there was a solid wall
dividing a wired network).

802.11d-2001Amendment to IEEE 802.11-1999,
(ISO/IEC 8802-11) Specification for Operation
in Additional Regulatory Domains

Internationalization—defines the physical layer requirements (channelization,
hopping patterns, new values for current MIB attributes, and other requirements)
to extend the operation of 802.11 WLANs to new regulatory domains (countries).

802.11e Amendment to STANDARD [for] In-
formation Technology-Telecommunications and
information exchange between systems-Local
and metropolitan area networks-Specific require-
ments-Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
specifications: Medium Access Method (MAC)
Quality of Service Enhancements

Enhance the 802.11 Medium Access Control (MAC) to improve and manage
Quality of Service, provide classes of service, and efficiency enhancements in
the areas of the Distributed Coordination Function (DCF) and Point Coordination
Function (PCF). Defining a series of extensions to 802.11 networking to allow
for QoS operation. (i.e., to allow for adaptation for streaming audio or video via
a preallocated dependable portion of the bandwidth.)

802.11f-2003 IEEE Recommended Practice for
Multi-Vendor Access Point Interoperability via
an Inter-Access Point Protocol Across Distribu-
tion Systems Supporting IEEE 802.11 Operation

Standard to enable handoffs (constant operation while the mobile terminal is
actually moving) to be done in such a way as to work across access points from
a number of vendors. Includes recommended practices for an Inter-Access Point
Protocol (IAPP) which provides the necessary capabilities to achieve multi-ven-
dor Access Point interoperability across a Distribution System supporting IEEE
P802.11 Wireless LAN Links. This IAPP will be developed for the following
environment(s): (1) A Distribution System consisting of IEEE 802 LAN compo-
nents supporting an IETF IP environment. (2) Others as deemed appropriate.
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IEEE 802.11 Standard Description
802.11g-2003 Amendment 4: Further Higher-
Speed Physical Layer Extension in the 2.4 GHz
Band

A higher speed(s) PHY extension to 802.11b—offering wireless transmission
over relatively short distances at up to 54 Mbps compared to the maximum 11
Mbps of the 802.11b standard and operates in the 2.4 GHz range Uses CSMA/
CA (carrier sense multiple access with collision avoidance) as the basic medium
access scheme for link sharing.

802.11h-2001 Spectrum and Transmit Power
Management Extensions in the 5GHz band in
Europe

Enhancing the 802.11 Medium Access Control (MAC) standard and 802.11a
High Speed Physical Layer (PHY) in the 5 GHz Band supplement to the
standard; to add indoor and outdoor channel selection for 5 GHz license exempt
bands in Europe; and to enhance channel energy measurement and reporting
mechanisms to improve spectrum and transmit power management (per CEPT
and subsequent EU committee or body ruling incorporating CEPT Recommenda-
tion ERC 99/23).

Looking into the tradeoffs involved in creating reduced-power transmission
modes for networking in the 5 GHz space—essentially allowing 802.11a to be
used by handheld computers and other devices with limited battery power avail-
able to them. Also, examining the possibility of allowing access points to reduce
power to shape the geometry of a wireless network and reduce interference
outside of the desired influence of such a network.

802.11i Amendment to STANDARD [for] In-
formation Technology-Telecommunications and
information exchange between systems-Local
and metropolitan area networks-Specific require-
ments-Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
specifications: Medium Access Method (MAC)
Security Enhancements

Enhances the 802.11 Medium Access Control (MAC) to enhance security and
authentication mechanisms, and improving the PHY-level security that is used on
these networks.

802.11j Amendment to STANDARD [FOR] In-
formation Technology-Telecommunications and
information exchange between systems-Local
and Metropolitan networks- Specific require-
ments—Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) speci-
fications: 4.9 GHz – 5 GHz Operation in Japan

The scope of the project is to enhance the 802.11 standard and amendments, to
add channel selection for 4.9 GHz and 5 GHz in Japan to additionally conform to
the Japanese rules for radio operation. to obtain Japanese regulatory approval by
enhancing the current 802.11 MAC and 802.11a PHY to additionally operate in
newly available Japanese 4.9 GHz and 5 GHz bands.

802.11k Amendment to STANDARD [FOR] In-
formation Technology-Telecommunications and
information exchange between systems-Local
and Metropolitan networks- Specific require-
ments-Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
specifications: Radio Resource Measurement of
Wireless LANs

This project will define Radio Resource Measurement enhancements to provide
interfaces to higher layers for radio and network measurements.

802.11ma Standard for Information Technol-
ogy – Telecommunications and information
exchange between systems – Local and Metro-
politan networks – Specific requirements – Part
11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifica-
tions – Amendment x: Technical corrections and
clarifications

Incorporates accumulated maintenance changes (editorial and technical
corrections) into 802.11-1999, 2003 edition (incorporating 802.11a-1999,
802.11b-1999, 802.11b-1999 corrigendum 1-2001, and 802.11d-2001).

802.11n Amendment to STANDARD [FOR]
Information Technology-Telecommunications and
information exchange between systems-Local and
Metropolitan networks- Specific requirements-
Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications:
Enhancements for Higher Throughput

The scope of this project is to define an amendment that shall define standardized
modifications to both the 802.11 physical layers (PHY) and the 802.11 Medium
Access Control Layer (MAC) so that modes of operation can be enabled that
are capable of much higher throughputs, with a maximum throughput of at least
100Mbps, as measured at the MAC data service access point (SAP).

Table 6-1: 802.11 standards (continued)
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The first step is to understand the main components of an 802.11 system, regardless of
whether these components are implemented in hardware or software. This is important since
different embedded architectures and boards implement 802.11 components differently. On
most platforms today, 802.11 standards are made up of root components that are implemented
almost entirely in hardware. The hardware components can all be mapped to the physical
layer of the OSI model, as shown in Figure 6-12. Any software required to enable 802.11
functionality maps to the lower section of the OSI data-link layer, but will not be discussed in
this section.

Figure 6-12: OSI model [6-5]
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Data-Link

Off-the-shelf wireless hardware modules supporting one or some combination or the 802.11
standards (i.e., 802.11a, 802.11b, 802.11g, etc.), have in many ways complicated the efforts to
commit to one wireless LAN standard. These modules also come in a wide variety of forms,
including embedded processor sets, PCMCIA, Compact Flash, and PCI formats. In general, as
shown in Figures 6-13a and b, embedded boards need to either integrate 802.11 functionality
as a slave controller or into the master chip, or the board needs to support one of the standard
connectors for the other forms (PCI, PCMCIA, Compact Flash, etc.). This means that 802.11
chipset vendors can either (1) produce or port their PC Card firmware for an 802.11 embed-
ded solution, which can be used for lower volume/more expensive devices or during product
development, or (2) the same vendor’s chipset on a standard PC card could be placed on the
embedded board, which can be used for devices that will be manufactured in larger volumes.

On top of the 802.11 chipset integration, an embedded board design needs to take into consid-
eration wireless LAN antenna placement and signal transmission requirements. The designer
must ensure that there are no obstructions to prevent receiving and transmitting data. When
802.11 is not integrated into the master CPU, such as with the System-on-Chip (SoC) shown
in Figure 6-13b, the interface between the master CPU and the 802.11 board hardware also
needs to be designed.
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Parallel I/O
Components that transmit data in parallel are devices which can transfer data in multiple bits
simultaneously. Just as with serial I/O, parallel I/O hardware is also typically made up of
some combination of six main logical units, as introduced at the start of this chapter, except
that the port is a parallel port and the communication interface is a parallel interface. 

Parallel interfaces manage the parallel data transmission and reception between the master
CPU and either the I/O device or its controller. They are responsible for decoding data bits
received over the pins of the parallel port (transmitted from the I/O device)—and receiving
data being transmitted from the master CPU, and then encoding these data bits onto the paral-
lel port pins.
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Figure 6-13a: 802.11 sample hardware configurations with PCI card [6-6]

Figure 6-13b: 802.11 sample hardware configurations with SoC [6-7]
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They include reception and transmission buffers to store and manipulate the data being
transferred. In terms of parallel data transmission and reception schemes, like serial I/O trans-
mission, they generally differ in terms of what direction data can be transmitted and received,
as well as the actual process of transmitting/receiving data bits within the data stream. In the
case of direction of transmission, as with serial I/O, parallel I/O uses simplex, half-duplex, or
full-duplex modes. Also, as with serial I/O, parallel I/O devices can transmit data asynchro-
nously or synchronously. However, parallel I/O does have a greater capacity to transmit data
than serial I/O, because multiple bits can be transmitted or received simultaneously. Examples
of board I/O that transfer and receive data in parallel include: IEEE 1284 controllers (for
printer/display I/O devices—see Example 3), CRT ports, and SCSI (for storage I/O devices).
A protocol that can potentially support both parallel and serial I/O is Ethernet, presented in
Example 4.

Parallel I/O Example 3: “Parallel” Output and Graphics I/O
Technically, the models and images that are created, stored, and manipulated in an embedded
system are the graphics. There are typically three logical components (engines) of I/O graph-
ics on an embedded board, as shown in Figure 6-14:

The geometric engine, which is responsible for defining what an object is. This
includes implementing color models, an object’s physical geometry, material and
lighting properties, and so on.

The rendering engine, which is responsible for capturing the description of objects.
This includes providing functionality in support of geometric transformations, projec-
tions, drawing, mapping, shading, illumination, and so on.

The raster and display engine, which is responsible for physically displaying the
object. It is in this engine that the output I/O hardware comes into play.

Figure 6-14: Graphical design engines
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An embedded system can output graphics via softcopy (video) or hardcopy (on paper) means.
The contents of the display pipeline differ according to whether the output I/O device outputs
hard or soft graphics, so the display engine differs accordingly, as shown in Figures 6-15a and b.

The actual parallel port configuration differs from standard to standard in terms of the number
of signals and the required cable. For example, on the Net Silicon’s NET+ARM50 embedded
board (see Figure 6-16), the master processor (an ARM7-based architecture) has an integrated
IEEE 1284 interface, a configurable MIC controller integrated in the master processor, to
transmit parallel I/O over four on-board parallel ports.

Figure 6-15a: Display engine of softcopy (video) graphics example
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Figure 6-15b: Display engine of hardcopy graphics example
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The IEEE 1284 specification defines a 40-signal port, but on the Net+ARM50 board, data
and control signals are multiplexed to minimize the master processor’s pin count. Aside from
eight data signals DATA[8:1] (D0 – D7), IEEE 1284 control signals include:

“ PDIR, which is used for bidirectional modes and defines the direction of the external
data transceiver. Its state is directly controlled by the BIDIR bit in the IEEE 1284
Control register (0 state, data is driven from the external transceiver towards 1285,
the cable, and in the 1 state, data is received from the cable).

PIO, which is controlled by firmware. Its state is directly controlled by the PIO bit in
the IEEE 1284 Control register.

LOOPBACK, which configures the port in external loopback mode and can be used to
control the mux line in the external FCT646 devices (set to 1, the FCT646 transceiv-
ers drive inbound data from the input latch and not the real-time cable interface). Its
state is directly controlled by the LOOP bit in the IEEE 1284 Control register. The
LOOP strobe signal is responsible for writing outbound data into the inbound latch
(completing the loop back path). The LOOP strobe signal is an inverted copy of the
STROBE* signal.

STROBE* (nSTROBE), AUTOFD* (nAUTOFEED), INIT* (nINIT), HSELECT*
(nSELECTIN), *ACK (nACK), BUSY, PE, PSELECT (SELECT), *FAULT (nER-
ROR), …”[6-2]

Figure 6-16: NET+ARM50 embedded board parallel I/O [6-8]
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Parallel and Serial I/O Example 4: Networking and Communications—
Ethernet
One of the most widely implemented LAN protocols is Ethernet, which is primarily based
upon the IEEE 802.3 family of standards. These standards define the major components of
any Ethernet system. Thus, in order to fully understand an Ethernet system design, you first
need to understand the IEEE specifications. (Remember, this is not a book about Ethernet,
and there is a lot more involved than what is covered here. This example is about understand-
ing a networking protocol, and then being able to understand the design of a system based
upon a networking protocol, such as Ethernet.)

The first step is understanding the main components of an Ethernet system, regardless of
whether these components are implemented in hardware or software. This is important since
different embedded architectures and boards implement Ethernet components differently. On
most platforms, however, Ethernet is implemented almost entirely in hardware.

The hardware components can all be mapped to the physical layer of the OSI model. The
firmware (software) required to enable Ethernet functionality maps to the lower section of the
OSI data-link layer, but will not be discussed in this section (see Chapter 8).

There are several Ethernet system models described in the IEEE 802.3 specification, so let us
look at a few to get a clear understanding of what some of the most common Ethernet hard-
ware components are.

Figure 6-17:
OSI model
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Ethernet devices are connected to a network via Ethernet cables: thick coax (coaxial), thin
coax, twisted-pair, or fiber optic cables. These cables are commonly referred to by their IEEE
names. These names are made up of three components: the data transmission rate, the type of
signaling used, and either the cable type or cable length.

For example, a 10Base-T cable is an Ethernet cable that handles a data transmission rate of 10
Mbps (million bits per second), will only carry Ethernet signals (baseband signaling), and is
a twisted-pair cable. A 100Base-F cable is an Ethernet cable that handles a data transmission
rate of 100 Mbps, supports baseband signaling, and is a fiber-optic cable. Thick or thin coax
cables transmit at speeds of 10 Mbps, support baseband signaling, but differ in the length of
maximum segments cut for these cables (500 meters for thick coax, 200 meters for thin coax).
Thus, these thick coax cables are called 10Base-5 (short for 500), and thin coax cables are
called 10Base-2 (short for 200).

The Ethernet cable must then be connected to the embedded device. The type of cable, along
with the board I/O (communication interface, communication port, etc.), determines whether
the Ethernet I/O transmission is serial or parallel. The Medium Dependent Interface (MDI)
is the network port on the board into which the Ethernet cable plugs. Different MDIs exist for
the different types of Ethernet cables. For example, a 10Base-T cable has a RJ-45 jack as the
MDI. In the system model of Figure 6-18, the MDI is an integrated part of the transceiver.
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1 Mbps and 10 Mbps Ethernet System Model
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Figure 6-18: Ethernet components diagram
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A transceiver is the physical device that receives and transmits the data bits; in this case it
is the Medium Attachment Unit (MAU). The MAU contains not only the MDI, but the
Physical Medium Attachment (PMA) component as well. It is the PMA which “contains the
functions for transmission, reception, and” depending on the transceiver, “collision detection,
clock recovery and skew alignment” (p. 25 IEEE 802.3 Spec). Basically the PMA serializes
(breaks down into a bit stream) code groups received for transmission over the transmission
medium, or deserializes bits received from the transmission medium, and converts these bits
into code groups.

The transceiver is then connected to an Attachment Unit Interface (AUI), which carries the
encoded signals between an MAU and the Ethernet interface in a processor. Specifically, the
AUI is defined for up to 10 Mbps Ethernet devices, and specifies the connection between the
MAU and the Physical Layer Signaling (PLS) sub layer (signal characteristics, connectors,
cable length, etc.).

The Ethernet interface can exist on a master or slave processor, and contains the remaining
Ethernet hardware and software components. The Physical Layer Signaling (PLS) com-
ponent monitors the transmission medium, and provides a carrier sense signal to the Media
Access Control (MAC) component. It is the MAC that initiates the transmission of data, so it
checks the carrier signal before initiating a transmission, to avoid contention with other data
over the transmission medium.

Let’s start by looking at an embedded board for an example of this type of Ethernet system.

Example 1: Motorola/Freescale MPC823 FADS Board Ethernet System Model

Section 4.9.1 of The Motorola/Freescale 8xxFADS User’s Manual (Rev 1) details the Ethernet
system on the Motorola/Freescale FADS board:

“4.9.1 Ethernet Port

The MPC8xxFADS has an Ethernet port with a 10-Base-T interface. The communi-
cation port on which this resides is determined according to the MPC8xx type whose
routing is on the daughter board. The Ethernet port uses an MC68160 EEST 10
Base-T transceiver.

You can also use the Ethernet SCC pins, which are on the expansion connectors of
the daughter board and on the communication port expansion connector (P8) of the
motherboard. The Ethernet transceiver can be disabled or enabled at any time by
writing a 1 or a 0 to the EthEn bit in the BCSR1.”

From this paragraph, we know that the board has an RJ-45 jack as the MDI, and the
MC68160 enhanced Ethernet serial transceiver (EEST) is the MAU. The second paragraph, as
well as Chapter 28 of the PowerPC MPC823 User’s Manual tells us more about the AUI and
the Ethernet interface on the MPC823 processor.
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On the MPC823, a 7-wire interface acts as the AUI. The SCC2 is the Ethernet interface, and
“performs the full set of IEEE 802.3/Ethernet CSMA/CD media access control and channel
interface functions.” (See MPC823 PowerPC User’s Manual, p. 16–312.)

LAN devices that are able to transmit and receive data at a much higher rate than 10 Mbps
implement a different combination of Ethernet components. The IEEE 802.3u Fast Ethernet
(100 Mbps data rate) and the IEEE 802.3z Gigabit Ethernet (1000 Mbps data rate) systems
evolved from the original Ethernet system model (described in the previous section), and are
based on the system model in Figure 6-20.

Figure 6-19: MPC823 Ethernet diagram
Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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The MDI in this system is connected to the transceiver, not a part of the transceiver (as in the
previous system model). The Physical Layer Device (PHY) transceiver in this system contains
three components: the PMA (same as on the MAU transceiver in the 1/10 Mbps system model),
the Physical Coding Sub layer (PCS), and the Physical Medium Dependent (PMD).

The PMD is the interface between the PMA and the transmission medium (through the MDI).
The PMD is responsible for receiving serialized bits from the PMD and converting it to the
appropriate signals for the transmission medium (optical signals for a fiber optic, etc.). When
transmitting to the PMA, the PCS is responsible for encoding the data to be transmitted into the
appropriate code group. When receiving the code groups from the PMA, the PCS decodes the
code groups into the data format that can be understood and processed by upper Ethernet layers.

The Media Independent Interface (MII) and the Gigabit Media Independent Interface 
(GMII) are similar in principle to the AUI, except they carry signals (transparently) between
the transceiver and the Reconciliation Sub layer (RS). Furthermore, the MII supports a LAN
data rate of up to 100 Mbps, while GMII (an extension of MII) supports data rates of up to
1000 Mps. Finally, the RS maps PLS transmission media signals to two status signals (carrier
presence and collision detection), and provides them to the Ethernet interface.

Example 2: Net Silicon ARM7 (6127001) Development Board Ethernet System Model

The Net+Works 6127001 Development Board Jumper and Component Guide from NetSilicon
has an Ethernet interface section on their ARM based reference board, and from this we can
start to understand the Ethernet system on this platform.

“Ethernet Interface

The 10/100 version of the 3V NET+Works Hardware Development Board provides
a full-duplex 10/100Mbit Ethernet Interface using the Enable 3V PHY chip. The
Enable 3V PHY interfaces to the NET+ARM chip using the standard MII interface.

The Enable 3V PHY LEDL (link indicator) signal is connected to the NET+ARM
PORTC6 GPIO signal. The PORT6 input can be used to determine the current Ether-
net link status (The MII interface can also be used to determine the current Ethernet
link status).…”

From this paragraph we can determine that the board has an RJ-45 jack as the MDI, and the
Enable 3V PHY is the MAU. The NET+Works for NET+ARM Hardware Reference Guide, 
Section 5 Ethernet Controller Interface tells us that the ARM7 based ASIC integrates an
Ethernet controller, and that the Ethernet Interface is actually composed of two parts: the Eth-
ernet Front End (EFE) and the Media Access Control (MAC) modules. Finally, Section 1.3 of
this manual tells us the Reconciliation Layer (RS) is integrated into the Media Independent
Interface (MII).
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Example 3: Adastra Neptune x86 Board Ethernet System Model

While both the ARM and PowerPC platforms integrate the Ethernet interface into the main
processor, this x86 platform has a separate slave processor for this functionality. According to
the Neptune User’s Manual Rev A.2, the Ethernet controller the (“MAC Am79C791 10/100
Controller”) connects to two different transceivers, with each connected to either an AUI or
MII for supporting various transmission media.

Figure 6-21: Net+ARM Ethernet block diagram
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6.2 Interfacing the I/O Components
As discussed at the start of this chapter, I/O hardware is made up of all or some combination
of integrated master processor I/O, I/O controllers, a communications interface, a communi-
cation port, I/O buses, and a transmission medium (see Figure 6-26).

All of these components are interfaced (connected), and communication mechanisms imple-
mented via hardware, software, or both to allow for successful integration and function.

Interfacing the I/O Device with the Embedded Board
For off-board I/O devices, such as keyboards, mice, LCDs, printers, and so on, a transmission
medium is used to interconnect the I/O device to an embedded board via a communication
port. Aside from the I/O schemes implemented on the board (serial versus parallel), whether
the medium is wireless (Figure 6-24b) or wired (Figure 6-24a), also impacts the overall
scheme used to interface the I/O device to the embedded board.

Figure 6-23: Sample I/O subsystem
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Figure 6-24a: Wired transmission medium
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As shown in Figure 6-24a, with a wired transmission medium between the I/O device and
embedded board, it is just a matter of plugging in a cable, with the right connector head,
to the embedded board. This cable then transmits data over its internal wires. Given an I/O
device, such as the remote control in Figure 6-24b, transmitting data over a wireless medium,
understanding how this interfaces to the embedded board means understanding the nature
of infrared wireless communication, since there are no separate ports for transmitting data
versus control signals (see Chapter 2). Essentially, the remote control emits electromagnetic
waves to be intercepted by the IR receiver on the embedded board.

The communication port would then be interfaced to an I/O controller, a communication
interface controller, or the master processor (with an integrated communication interface) via
an I/O bus on the embedded board (see Figure 6-25). An I/O bus is essentially a collection of
wires transmitting the data.

In short, an I/O device can be connected directly to the master processor via I/O ports (pro-
cessor pins) if the I/O devices are located on the board, or can be connected indirectly using
a communication interface integrated into the master processor or a separate IC on the board
and the communication port. The communication interface itself is what is either connected
directly to the I/O device, or the device’s I/O controller. For off-board I/O devices, the relative
board I/O components are interconnected via I/O buses.

Figure 6-24b: Wireless transmission medium
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Interfacing an I/O Controller and the Master CPU
In a subsystem that contains an I/O controller to manage the I/O device, the design of the
interface between the I/O controller and master CPU—via a communications interface—is
based on four requirements:

An ability of the master CPU to initialize and monitor the I/O Controller. I/O
controllers can typically be configured via control registers and monitored via status
registers. These registers are all located on the I/O controller. Control registers are
data registers that the master processor can modify to configure the I/O controller.
Status registers are read-only registers in which the master processor can get informa-
tion as to the state of the I/O controller. The master CPU uses these status and control
registers to communicate and/or control attached I/O devices via the I/O controller.

A way for the master processor to request I/O. The most common mechanisms used
by the master processor to request I/O via the I/O controller are special I/O instruc-
tions (I/O mapped) in the ISA and memory-mapped I/O, in which the I/O controller
registers have reserved spaces in main memory.

A way for the I/O device to contact the master CPU. I/O controllers that have the
ability to contact the master processor via an interrupt are referred to as interrupt
driven I/O. Generally, an I/O device initiates an asynchronous interrupt requesting
signaling to indicate (for example) control and status registers can be read from or
written to. The master CPU then uses its interrupt scheme to determine when an
interrupt will be discovered.

Figure 6-25: Interfacing communication port to other board I/O
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Some mechanism for both to exchange data. This refers to how data is actually
exchanged between the I/O controller and the master processor. In a programmed 
transfer, the master processor receives data from the I/O controller into its registers,
and the CPU then transmits this data to memory. For memory-mapped I/O schemes,
DMA (direct memory access) circuitry can be used to bypass the master CPU en-
tirely. DMA has the ability to manage data transmissions or receptions directly to and
from main memory and an I/O device. On some systems, DMA is integrated into the
master processor, and on others there is a separate DMA controller. Essentially, DMA
requests control of the bus from the master processor.

6.3 I/O and Performance
I/O performance is one of the most important issues of an embedded design. I/O can nega-
tively impact performance by bottlenecking the entire system. In order to understand the
type of performance hurdles I/O must overcome, it is important to understand that, with the
wide variety of I/O devices, each device will have its own unique qualities. Thus, in a proper
design, the engineer will have taken these unique qualities on a case by case basis into consid-
eration. Some of the most important shared features of I/O that can negatively impact board
performance include:

The data rates of the I/O devices. I/O devices on one board can vary in data rates
from a handful of characters per second with a keyboard or a mouse to devices that
can transmit in Mbytes per second (networking, tape, disk).

The speed of the master processor. Master processors can have clocks rates any-
where from tens of MHz to hundreds of MHz. Given an I/O device with an extremely
slow data rate, a master CPU could have executed thousands of times more data in
the time period that the I/O needs to process a handful of bits of data. With extremely
fast I/O, a master processor would not even be able to process anything before the I/O
device is ready to move forward.

How to synchronize the speed of the master processor to the speeds of I/O. Given
the extreme ranges of performance, a realistic scheme must be implemented that
allows for either the I/O or master processor to process data successfully regardless
of how different their speeds. Otherwise, with an I/O device processing data much
slower than the master processor transmits, for instance, data would be lost by the I/O
device. If the device is not ready, it could hang the entire system if there is no mecha-
nism to handle this situation.
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How I/O and the master processor communicate. This includes whether there is an
intermediate dedicated I/O controller between the master CPU and I/O device that
manages I/O for the master processor, thus freeing up the CPU to process data more
efficiently. Relative to an I/O controller, it becomes a question whether the communi-
cation scheme is interrupt driven, polled, or memory mapped (with dedicated DMA
to, again, free up the master CPU). If interrupt-driven, for example, can I/O devices
interrupt other I/O, or would devices on the queue have to wait until previous devices
finished their turn, no matter how slow.

To improve I/O performance and prevent bottlenecks, board designers need to examine the
various I/O and master processor communication schemes to ensure that every device can be
managed successfully via one of the available schemes. For example, to synchronize slower
I/O devices and the master CPU, status flags or interrupts can be made available for all ICs so
that they can communicate their status to each other when processing data. Another example
occurs when I/O devices are faster than the master CPU. In this case, some type of interface
(i.e., DMA) that allows these devices to bypass the master processor altogether could be an
alternative.

The most common units measuring performance relative to I/O include:

Throughput of the various I/O components (the maximum amount of data per unit
time that can be processed, in bytes per second). This value can vary for different
components. The components with the lowest throughput are what drives the perfor-
mance of the whole system.

The execution time of an I/O component. The amount of time it takes to process all
of the data it is provided with.

The response time or delay time of an I/O component. It is the amount of time be-
tween a request to process data and the time the actual component begins processing.

In order to accurately determine the type of performance to measure, the benchmark has to
match how the I/O functions within the system. If the board will be accessing and process-
ing several larger stored data files, benchmarks will be needed to measure the throughput
between memory and secondary/tertiary storage medium. If the access is to files that are very
small, then response time is the critical performance measure, since execution times would be
very fast for small files, and the I/O rate would depend on the number of storage accesses per
second, including delays. In the end, the performance measured would need to reflect how the
system would actually be used, in order for any benchmark to be of use.
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6.4 Summary
In this chapter, an I/O subsystem was introduced as being some combination of a transmis-
sion medium, communication port, a communication interface, an I/O controller, I/O buses,
and the master processor’s integrated I/O. Of this subsystem, a communication port, commu-
nication interface if not integrated into the master processor, I/O controller, and I/O buses are
the board I/O of the system. This chapter also discussed the integration of various I/O compo-
nents within the subsystem to each other. Networking schemes (RS-232, Ethernet, and IEEE
802.11) were provided as serial and parallel transmission I/O examples, as well as a graphics
example for parallel transmission. Finally, this chapter discussed the impact of board I/O on
an embedded system’s performance.

Next, Chapter 7: Board Buses discusses the types of buses that can be found on an embedded
board, and provides real-world examples of board bus hardware implementations.
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Chapter 6 Problems

1. [a]  What is the purpose of I/O on a board?
 [b]  List five categories of board I/O, with two real-world examples under each category.

2.  Name and describe the six logical units into which I/O hardware can be classified.

3.  In Figures 6-26a and b, indicate what I/O components fall under what I/O logical unit.
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Figure 6-26b: Simple I/O subsystem [6-9]
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Figure 6-26a: Complex I/O subsystem
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4.  [a] What is the difference between serial and parallel I/O?
 [b]  Give a real-world I/O example of each.

5.  [a]  What is the difference between simplex, half-duplex, and full duplex transmission?   
 [b]  Indicate which transmission scheme is shown in Figures 6-27a, b, and c.

Figure 6-27a: Transmission scheme example [6-3]
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Figure 6-27b: Transmission scheme example [6-3]
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Figure 6-27c: Transmission scheme example [6-3]

6.  [a]  What is asynchronous transfer of serial data?
 [b]  Draw a diagram that describes how asynchronous transfer of serial data works.
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7.  The baud rate is
 A.  the bandwidth of the serial interface.
 B.  the total number of bits that can be transmitted.
 C.  the total number of bits per unit time that can be transmitted.
 D.  None of the above.

8.  [a]  What is the bit rate of a serial interface?
 [b]  Write the equation.

9.  [a]  What is synchronous transfer of serial data?
 [b]  Draw and describe how synchronous transfer of serial data works.

10.  [T/F] A UART is an example of a synchronous serial interface.

11.  What is the difference between a UART and an SPI?

12.  [a]  What is a serial port?
 [b]  Give a real-world example of a serial I/O protocol.
 [c]  Draw a block diagram of the major components defined by this protocol, and define

these components.

13. Where in the OSI model would the hardware components of an I/O interface map?

14. [a]  What is an example of board I/O that can transmit and receive data in parallel?
 [b] What is an example of an I/O protocol that can either transmit and receive data in

serial or in parallel?

15.  [a]  What is the I/O subsystem within the embedded system shown in Figure 6-28?
 [b]  Define and describe each engine.

Figure 6-28: Graphical design engines
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16. Draw an example of a display engine producing softcopy graphics, and an example of a
display engine producing hardcopy graphics.
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17.  [T/F] The IEEE 802.3 family of standards are LAN protocols.

18. [a]  What layers does the Ethernet protocol map to within the OSI model?
 [b]  Draw and define the major components of a 10Mbps Ethernet subsystem.

19.  For a system that contains an I/O controller to manage an I/O device, name at least two
requirements that the interface between the master processor and I/O controller is typi-
cally based upon.

20. How can board I/O negatively impact a system’s performance?

21. If there is no mechanism to synchronize the speed differences between I/O devices and
the master CPU, then:

 A. data can be lost.
 B. nothing can go wrong.
 C. the entire system could crash.
 D. A and C only.
 E. None of the above.
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C H A P T E R 7
Board Buses

In This Chapter

Defining the different types of buses
Discussing bus arbitration and handshaking schemes
Introducing I2C and PCI bus examples

All of the other major components that make up an embedded board—the master processor,
I/O components, and memory—are interconnected via buses on the embedded board. As
defined earlier, a bus is simply a collection of wires carrying various data signals, addresses,
and control signals (clock signals, requests, acknowledgements, data type, etc.) between all
of the other major components on the embedded board, which include the I/O subsystems,
memory subsystem, and the master processor. On embedded boards, at least one bus intercon-
nects the other major components in the system (see Figure 7-1).

Figure 7-1:
General bus structure

I2C Bus

Video Processor

Audio Processor

NVM

M37273

…….

On more complex boards, multiple buses can be integrated on one board (see Figure 7-2). For
embedded boards with several buses connecting components that need to inter-communicate,
bridges on the board connect the various buses and carry information from one bus to another.
In Figure 7-2, the PowerManna PCI bridge is one such example. A bridge can automatically
provide a transparent mapping of address information when data is transferred from one bus
to another, implement different control signal requirements for various buses—acknowl-
edgment cycles, for example—as well as modify the data being transmitted if any transfer



Chapter 7

288

protocols differ bus to bus. For instance, if the byte ordering differs, the bridge can handle the
byte swapping.

Figure 7-2:
MPC620 board with bridge [7-1]

Copyright of Freescale Semiconductor, Inc. 2004. 
Used by permission.

Board buses typically fall under one of three main categories: system buses, backplane buses
or I/O buses. System buses (also referred to as “main,” “local,” or “processor-memory” buses)
interconnect external main memory and cache to the master CPU and/or any bridges to the
other buses. System buses are typically shorter, higher speed, custom buses. Backplane buses
are also typically faster buses that interconnect memory, the master processor, and I/O, all on
one bus. I/O buses, also referred to as “expansion,” “external,” or “host” buses, in effect act as
extensions of the system bus to connect the remaining components to the master CPU, to each
other, to the system bus via a bridge, and/or to the embedded system itself, via an I/O com-
munication port. I/O buses are typically standardized buses that can be either shorter, higher
speed buses such as PCI and USB, or longer, slower buses such as SCSI.

The major difference between system buses and I/O buses is the possible presence of IRQ
(interrupt request) control signals on an I/O bus. There are a variety of ways I/O and the mas-
ter processor can communicate, and interrupts are one of the most common methods. An IRQ
line allows for I/O devices on a bus to indicate to the master processor that an event has taken
place or an operation has been completed by a signal on that IRQ bus line. Different I/O buses
can have different impacts on interrupt schemes. An ISA bus, for example, requires that each
card that generates interrupts must be assigned its own unique IRQ value (via setting switches
or jumpers on the card). The PCI bus, on the other hand, allows two or more I/O cards to
share the same IRQ value.

Within each bus category, buses can be further divided into whether the bus is expandable or
non-expandable. An expandable bus (PCMCIA, PCI, IDE, SCSI, USB, and so on) is one in
which additional components can be plugged into the board on-the-fly, whereas a non-expand-
able bus (DIB, VME, I2C are examples) is one in which additional components cannot be
simply plugged into the board and then communicate over that bus to the other components.
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While systems implementing expandable buses are more flexible because components can
be added ad-hoc to the bus and work “out of the box,” expandable buses tend to be more
expensive to implement. If the board is not initially designed with all of the possible types
of components that could be added in the future in mind, performance can be negatively
impacted by the addition of too many “draining” or poorly designed components onto the
expandable bus.

7.1 Bus Arbitration and Timing
Associated with every bus is some type of protocol that defines how devices gain access to
the bus (arbitration), the rules attached devices must follow to communicate over the bus
(handshaking), and the signals associated with the various bus lines.

Board devices obtain access to a bus using a bus arbitration scheme. Bus arbitration is based
upon devices being classified as either master devices (devices that can initiate a bus transac-
tion) or slave devices (devices which can only gain access to a bus in response to a master
device’s request). The simplest arbitration scheme is for only one device on the board—the
master processor—to be allowed to be master, while all other components are slave devices.
In this case, no arbitration is necessary when there can only be one master.

For buses that allow for multiple masters, some have an arbitrator (separate hardware cir-
cuitry) that determines under what circumstances a master gets control of the bus. There are
several bus arbitration schemes used for embedded buses, the most common being dynamic
central parallel, centralized serial (daisy-chain), and distributed self-selection.

Dynamic central parallel arbitration (shown in Figure 7-3a) is a scheme in which the arbi-
trator is centrally located. All bus masters connect to the central arbitrator. In this scheme,
masters are then granted access to the bus via a FIFO (first in, first out—see Figure 7-3b) or
priority-based system (see Figure 7-3c). The FIFO algorithm implements some type of FIFO
queue that stores a list of master devices ready to use the bus in the order of bus requests.
Master devices are added at the end of the queue, and are allowed access to the bus from the
start of the queue. One main drawback is the possibility of the arbitrator not intervening if a
single master at the front of the queue maintains control of the bus, never completing and not
allowing other masters to access the bus.

Figure 7-3a:
Dynamic central parallel arbitration [7-2]

Figure 7-3b:
FIFO-based arbitration
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The priority arbitration scheme differentiates between masters based upon their relative
importance to each other and the system. Basically, every master device is assigned a priority,
which acts as an indicator of order of precedence within the system. If the arbitrator imple-
ments a preemption priority-based scheme, the master with the highest priority always can
preempt lower priority master devices when they want access to the bus, meaning a master
currently accessing the bus can be forced to relinquish it by the arbitrator if a higher priority
master wants the bus. Figure 7-3c shows three master devices (1, 2, 3 where master 1 is the
lowest priority device and master 3 is the highest); master 3 preempts master 2, and master 2
preempts master 1 for the bus.

Central-serialized arbitration, also referred to as daisy-chain arbitration, is a scheme in which
the arbitrator is connected to all masters, and the masters are connected in serial. Regardless
of which master makes the request for the bus, the first master in the chain is granted the bus,
and passes the “bus grant” on to the next master in the chain if/when the bus is no longer
needed (see Figure 7-4).

Figure 7-3c: Priority-based arbitration
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Figure 7-4: Centralized serial/daisy-chain arbitration [7-2]

There are also distributed arbitration schemes, which means there is no central arbitrator and
no additional circuitry, as shown in Figure 7-5. In these schemes, masters arbitrate themselves
by trading priority information to determine if a higher priority master is making a request for
the bus, or even by removing all arbitration lines and waiting to see if there is a collision on
the bus, which means that the bus is busy with more than one master trying to use it.
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Again, depending on the bus, bus arbitrators can grant a bus to a master atomically (until that
master is finished with its transmission) or allow for split transmissions, where the arbitrator
can preempt devices in the middle of transactions, switching between masters to allow other
masters to have bus access.

Once a master device is granted the bus, only two devices—a master and another device
in slave mode—communicate over that bus at any given time. There are only two types of
transactions that a bus device can do—READ (receive) and/or WRITE (transmit). These
transactions can take place either between two processors (a master and I/O controller,
for example) or processor and memory (a master and memory, for example). Within each
type of transaction, whether READ or WRITE, there can also be several specific rules that
each device needs to follow in order to complete a transaction. These rules can vary widely
between the types of devices communicating, as well as from bus to bus. These sets of rules,
commonly referred to as the bus handshake, form the basis of any bus protocol.

The basis of any bus handshake is ultimately determined by a bus’s timing scheme. Buses are
based upon one or some combination of synchronous or asynchronous bus timing schemes,
which allow for components attached to the bus to synchronize their transmissions. A synchro-
nous bus (such as that shown in Figure 7-6) includes a clock signal among the other signals
it transmits, such as data, address and other control information. Components using a syn-
chronous bus all are run at the same clock rate as the bus and (depending on the bus) data is
transmitted either on the rising edge or falling edge of a clock cycle. In order for this scheme
to work, components either must be in rather close proximity for a faster clock rate, or the
clock rate must be slowed for a longer bus. A bus that is too long with a clock rate that is too
fast (or even too many components attached to the bus) will cause a skew in the synchroniza-
tion of transmissions, because transmissions in such systems won’t be in sync with the clock.
In short, this means that faster buses typically use a synchronous bus timing scheme.

Figure 7-5: Distributed arbitration via self-selection [7-2]
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An asynchronous bus, such as the one shown in Figure 7-7, transmits no clock signal,
but transmits other (non-clock based) “handshaking” signals instead, such as request and
acknowledgment signals. While the asynchronous scheme is more complex for devices hav-
ing to coordinate request commands, reply commands, and so on, an asynchronous bus has no
problem with the length of the bus or a larger number of components communicating over the
bus, because a clock is not the basis for synchronizing communication. An asynchronous bus,
however, does need some other “synchronizer” to manage the exchange of information, and
to interlock the communication.

The two most basic protocols that start any bus handshaking are the master indicating or
requesting a transaction (a READ or WRITE) and the slave responding to the transaction
indication or request (for example, an acknowledgment/ACK or enquiry/ENQ). The basis of
these two protocols are control signals transmitted either via a dedicated control bus line or
over a data line. Whether it’s a request for data at a memory location, or the value of an I/O
controller’s control or status registers, if the slave responds in the affirmative to the master
device’s transaction request, then either an address of the data involved in the transaction
is exchanged via a dedicated address bus line or data line, or this address is transmitted as
part of the same transmission as the initial transaction request. If the address is valid, then

Figure 7-6:
I2C bus with SCL clock [7-3]
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a data exchange takes place over a data line (plus or minus a variety of acknowledgments
over other lines or multiplexed into the same stream). Again, note that handshaking protocols
vary with different buses. For example, where one bus requires the transmission of enquiries
and/or acknowledgments with every transmission, other buses may simply allow the broad-
cast of master transmissions to all bus (slave) devices, and only the slave device related to the
transaction transmits data back to the sender. Another example of differences between hand-
shaking protocols might be that, instead of a complex exchange of control signal information
being required, a clock could be the basis of all handshaking.

Buses can also incorporate a variety of transferring mode schemes, which dictate how the
bus transfers the data. The most common schemes are single, where an address transmission
precedes every word transmission of data, and blocked, where the address is transmitted only
once for multiple words of data. A blocked transferring scheme can increase the bandwidth of
a bus (without the added space and time for retransmitting the same address), and is some-
times referred to as burst transfer scheme. It is commonly used in certain types of memory
transactions, such as cache transactions. A blocked scheme, however, can negatively impact
bus performance in that other devices may have to wait longer to access the bus. Some of the
strengths of the single transmission scheme include not requiring slave devices to have buf-
fers to store addresses and the multiple words of data associated with the address, as well as
not having to handle any problems that could arise with multiple words of data either arriving
out of order or not directly associated with an address.

Figure 7-7: SCSI bus [7-4]

Signal Name Description

/BSY Busy Indicates that the bus is in use.

/SEL Select The initiator uses this signal to select a target.

/C/D Control/Data The target uses this signal to indicate whether the information being transferred is
control information (signal asserted) or data (signal negated).

/I/O Input/Output The target uses this signal to specify the direction of the data movement with re-
spect to the initiator. When the signal is asserted, data flows to the initiator; when
negated, data flows to the target.

/MSG Message This signal is used by the target during the message phase.

/REQ Request The target uses this signal to start a request/acknowledge handshake.

/ACK Acknowledge This signal is used by the initiator to end a request/acknowledge handshake.

/ATN Attention The initiator uses this signal to inform the target that the initiator has a message
ready. The target retrieves the message, at its convenience, by transitioning to a
message-out bus phase.

/RST Reset This signal is used to clear all devices and operations from the bus, and force the
bus into the bus free phase. The Macintosh computer asserts this signal at startup.
SCSI peripheral devices should never assert this signal.

/DB0-
/DB7,
/DBP

Data Eight data signals, numbered 0 to 7, and the parity signal. Macintosh computers
generate proper SCSI parity, but the original SCSI Manager does not detect parity
errors in SCSI transactions.

The SCSI specification defines 50 bus signals, half of which are tied to 
ground. The 18 SCSI bus signals that are relevant to understanding SCSI 
transactions are shown below. Nine of these signals are used to initiate 
and control transactions, and nine are used for data transfer (8 data bits 
plus a parity bit). 
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Non-Expandable Bus: I2C Bus Example

The I2C (Inter IC) bus interconnects processors that have incorporated an I2C on-chip inter-
face, allowing direct communication between these processors over the bus. A master/slave
relationship between these processors exists at all times, with the master acting as a master
transmitter or master receiver. As shown in Figure 7-8, the I2C bus is a two-wire bus with
one serial data line (SDA) and one serial clock line (SCL). The processors connected via I2C
are each addressable by a unique address that is part of the data stream transmitted between
devices.

The I2C master initiates data transfer and generates the clock signals to permit the transfer.
Basically, the SCL just cycles between HIGH and LOW (see Figure 7-9).

The master then uses the SDA line (as SCL is cycling) to transmit data to a slave. A session
is started and terminated as shown in Figure 7-10, where a “START” is initiated when the
master pulls the SDA port (pin) LOW while the SCL signal is HIGH, whereas a “STOP” con-
dition is initiated when the master pulls the SDA port HIGH when SCL is HIGH.

With regard to the transmission of data, the I2C bus is a serial, 8-bit bus. This means that,
while there is no limit on the number of bytes that can be transmitted in a session, only
one byte (8 bits) of data will be moved at any one time, 1 bit at a time (serially). How this

Figure 7-8:
Sample analog TV board [7-3]
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Figure 7-9: SCL cycles [7-3]

Figure 7-10: I2C START and STOP conditions [7-3]

translates into using the SDA and SCL signals is that a data bit is “read” whenever the SCL
signal moves from HIGH to LOW, edge to edge. If the SDA signal is HIGH at the point of an
edge, then the data bit is read as a “1”. If the SDA signal is LOW, the data bit read is a “0”.
An example of byte “00000001” transfer is shown in Figure 7-11a, while Figure 7-11b shows
an example of a complete transfer session.

Figure 7-11a: I2C data transfer example [7-3]
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PCI (Peripheral Component Interconnect) Bus Example: Expandable
The latest PCI specification at the time of writing, PCI Local Bus Specification Revision 2.1,
defines requirements (mechanical, electrical, timing, protocols, etc.) of a PCI bus implemen-
tation. PCI is a synchronous bus, meaning that it synchronizes communication using a clock.
The latest standard defines a PCI bus design with at least a 33 MHz clock (up to 66 MHz)
and a bus width of at least 32 bits (up to 64 bits), giving a possible minimum throughput of
approximately 132 Mbytes/sec ((33 MHz * 32 bits) / 8)—and up to 528 Mbytes/sec maxi-
mum with 64-bit transfers given a 66-MHz clock. PCI runs at either of these clock speeds,
regardless of the clock speeds at which the components attached to it are running.

As shown in Figure 7-12, the PCI bus has two connection interfaces: an internal PCI inter-
face that connects it to the main board (to bridges, processors, etc.) via EIDE channels, and
the expansion PCI interface, which consists of the slots into which PCI adaptor cards (audio,
video, etc.) plug. The expansion interface is what makes PCI an expandable bus; it allows
for hardware to be plugged into the bus, and for the entire system to automatically adjust and
operate correctly.

Figure 7-11b: I2C complete transfer diagram
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Under the 32-bit implementation, the PCI bus is made up of 49 lines carrying multiplexed
data and address signals (32 pins), as well as other control signals implemented via the
remaining 17 pins (see table in Figure 7-12).

Because the PCI bus allows for multiple bus masters (initiators of a bus transaction), it imple-
ments a dynamic centralized, parallel arbitration scheme (see Figure 7-13). PCI’s arbitration
scheme basically uses the REQ# and GNT# signals to facilitate communication between
initiators and bus arbitrators. Every master has its own REQ# and GNT# pin, allowing the
arbitrator to implement a fair arbitration scheme, as well as determining the next target to be
granted the bus while the current initiator is transmitting data.

Figure 7-12: PCI bus [7-5]

Signal Name Driven by Description
CLK Master Bus Clock (normally 33MHz; DC okay)

FRAME# Master Indicates start of a bus cycle

AD[31:0] Master/Target Address/Data bus (multiplexed)

C/BE#[3:0] Master Bus command (address phase)
Byte enables (data phases)

IRDY# Master Ready signal from master

TRDY# Target Ready signal from target

DEVSEL# Target Address recognized

RST# Master System Reset

PAR Master/Target Parity on AD, C/BE#

STOP# Target Request to stop transaction

IDSEL Chip select during initialization transactions

PERR# Receiver Parity Error

SERR# Any Catastrophic system error

REQ# Request Bus

GNT# Bus Grant

Figure 7-13: PCI arbitration scheme [7-2]
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In general, a PCI transaction is made up of five steps:

1.  An initiator makes a bus request by asserting a REQ# signal to the central arbitrator.

2.  The central arbitrator does a bus grant to the initiator by asserting GNT# signal.

3.  The address phase which begins when the initiator activates the FRAME# signal, and
then sets the C/BE[3:0]# signals to define the type of data transfer (memory or I/O
read or write). The initiator then transmits the address via the AD[31:0] signals at the
next clock edge.

4.  After the transmission of the address, the next clock edge starts the one or more data
phases (the transmission of data). Data is also transferred via the AD[31:0] signals.
The C/BE[3:0], along with IRDY# and #TRDY signals, indicate if transmitted data is
valid.

5.  Either the initiator or target can terminate a bus transfer through the deassertion of the
#FRAME signal at the last data phase transmission. The STOP# signal also acts to
terminate all bus transactions

Figures 7-14a and b demonstrate how PCI signals are used for transmission of information.

CLK Cycle 1 – The bus is idle.

CLK Cycle 2 – The initiator asserts a valid address and places a read com-
mand on the C/BE# signals.

** Start of address phase. **

CLK Cycle 3 – The initiator tri-states the address in preparation for the
target driving read data. The initiator now drives valid byte enable
information on the C/BE# signals. The initiator asserts IRDY# low in-
dicating it is ready to capture read data. The target asserts DEVSEL#
low (in this cycle or the next) as an acknowledgment it has positively
decoded the address. The target drives TRDY# high indicating it is
not yet providing valid read data.

CLK Cycle 4 – The target provides valid data and asserts TRDY# low indi-
cating to the initiator that data is valid. IRDY# and TRDY# are both
low during this cycle causing a data transfer to take place.

** Start of first data phase occurs, and the initiator captures the data. **

CLK Cycle 5 – The target deasserts TRDY# high indicating it needs more
time to prepare the next data transfer.

CLK Cycle 6 – Both IRDY# and TRDY# are low.

** Start of next data phase occurs, and the initiator captures the data pro-
vided by the target. **

CLK Cycle 7 – The target provides valid data for the third data phase, but the
initiator indicates it is not ready by deasserting IRDY# high.

CLK Cycle 8 – The initiator re-asserts IRDY# low to complete the third data
phase. The initiator drives FRAME# high indicating this is the final
data phase (master termination).

** Final data phase occurs, the initiator captures the data provided by the
target, and terminates. **

CLK Cycle 9 – FRAME#, AD, and C/BE# are tri-stated, as IRDY#, TRDY#,
and DEVSEL# are driven inactive high for one cycle prior to being
tri-stated.

Figure 7-14a: PCI read example [7-5]
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7.2 Integrating the Bus with Other Board Components
Buses vary in their physical characteristics, and these characteristics are reflected in the com-
ponents with which the bus interconnects, mainly the pinouts of processors and memory chips
which reflect the signals a bus can transmit (shown in Figure 7-15).

Figure 7-14b: PCI write example [7-5]

CLK Cycle 1 – The bus is idle.

CLK Cycle 2 – The initiator asserts a valid address and places a write command
on the C/BE# signals.

** Start of address phase. **

CLK Cycle 3 – The initiator drives valid write data and byte enable signals. The
initiator asserts IRDY# low indicating valid write data is available. The
target asserts DEVSEL# low as an acknowledgment it has positively de-
coded the address (the target may not assert TRDY# before DEVSEL#).
The target drives TRDY# low indicating it is ready to capture data. Both
IRDY# and TRDY# are low.

** First data phase occurs with target capturing write data. **

CLK Cycle 4 – The initiator provides new data and byte enables. Both IRDY#
and TRDY# are low.

** Next data phase occurs with target capturing write data. **

CLK Cycle 5 – The initiator deasserts IRDY# indicating it is not ready to pro-
vide the next data. The target deasserts TRDY# indicating it is not ready
to capture the next data.

CLK Cycle 6 – The initiator provides the next valid data and asserts IRDY# low.
The initiator drives FRAME# high indicating this is the final data phase
(master termination). The target is still not ready and keeps TRDY# high.

CLK Cycle 7 – The target is still not ready and keeps TRDY# high.

CLK Cycle 8 – The target becomes ready and asserts TRDY# low. Both IRDY#
and TRDY# are low.

** Final data phase occurs with target capturing write data. **

CLK Cycle 9 – FRAME#, AD, and C/BE# are tri-stated, as IRDY#, TRDY#, and
DEVSEL# are driven inactive high for one cycle prior to being tri-stated.

Figure 7-15:
PCI compliant IC [7-5]
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Within an architecture, there may also be logic that supports bus protocol functionality. As an
example, the MPC860 shown in Figure 7-16a includes an integrated I2C bus controller.

As discussed earlier this section, the I2C bus is a bus with two signals: SDA (serial data) and
SCL (serial clock), both of which are shown in the internal block diagram of the PowerPC
I2C controller in Figure 7-16b. Because I2C is a synchronous bus, a baud rate generator within
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the controller supplies a clock signal if the PowerPC is acting as a master, along with two
units (receiver and transmitter) covering the processing and management of bus transactions.
In this I2C integrated controller, address and data information is transmitted over the bus via
the transmit data register and out the shift register. When the MPC860 receives data, data is
transmitted into the receive data register via a shift register.

7.3 Bus Performance
A bus’s performance is typically measured by its bandwidth, the amount of data a bus can
transfer for a given length of time. A bus’s design—both physical design and its associated
protocols—will impact its performance. In terms of protocols, for example, the simpler the
handshaking scheme the higher the bandwidth (fewer “send enquiry”, “wait for acknowledg-
ment”, etc., steps). The actual physical design of the bus (its length, the number of lines, the
number of supported devices, and so on) limits or enhances its performance. The shorter the
bus, the fewer connected devices, and the more data lines, typically the faster the bus and the
higher its bandwidth.

The number of bus lines and how the bus lines are used—for example, whether there are
separate lines for each signal or whether multiple signals multiplex over fewer shared lines—
are additional factors that impact bus bandwidth. The more bus lines (wires), the more data
that can be physically transmitted at any one time, in parallel. Fewer lines mean more data
has to share access to these lines for transmission, resulting in less data being transmitted at
any one time. Relative to cost, note that an increase in conducting material on the board, in this
case the wires of the bus, increases the cost of the board. Note, however, that multiplexing
lines will introduce delays on either end of the transmission, because of the logic required on
either end of the bus to multiplex and demultiplex signals that are made up of different kinds
of information.

Figure 7-16a: I2C on MPC860 [7-6]

Copyright of Freescale Semiconductor, Inc. 2004. 
Used by permission.

Figure 7-16b: I2C on MPC860 [7-6]

Copyright of Freescale Semiconductor, Inc. 2004. 
Used by permission.
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Another contributing factor to a bus’s bandwidth is the number of data bits a bus can transmit
in a given bus cycle (transaction); this is the bus width. Buses typically have a bandwidth of
some binary power of 2—such as 1 (20) for buses with a serial bus width, 8 (23) bit, 16 (24)
bit, 32 (25) bit, and so on. As an example, given 32 bits of data that needs to be transmit-
ted, if a particular bus has a width of 8 bits, then the data is divided and sent in four separate
transmissions; if the bus width is 16 bits, then there are two separate packets to transmit; a
32-bit data bus transmits one packet, and serial means that only 1 bit at any one time can be
transmitted. The bus width limits the bandwidth of a bus because it limits the number of data
bits that can be transmitted in any one transaction. Delays can occur in each transmission
session, because of handshaking (acknowledgment sequences), bus traffic, and different clock
frequencies of the communicating components, that put components in the system in delay-
ing situations, such as a wait state (a time-out period). These delays increase as the number of
data packets that need to be transmitted increases. Thus, the bigger the bus width, the fewer
the delays, and the greater the bandwidth (throughput).

For buses with more complex handshaking protocols, the transferring scheme implemented
can greatly impact performance. A block transfer scheme allows for greater bandwidth over
the single transfer scheme, because of the fewer handshaking exchanges per blocks versus
single words, bytes (or whatever) of data. On the flip side, block transfers can add to the
latency due to devices waiting longer for bus access, since a block transfer-based transac-
tion lasts longer than a single transfer-based transaction. A common solution for this type
of latency is a bus that allows for split transactions, where the bus is released during the
handshaking, such as while waiting for a reply to acknowledgement. This allows for other
transactions to take place, and allows the bus not to have to remain idle waiting for devices of
one transaction. However, it does add to the latency of the original transaction by requiring
that the bus be acquired more than once for a single transaction.

7.4 Summary
This chapter introduced some of the fundamental concepts behind how board buses function,
specifically the different types of buses and the protocols associated with transmitting over
a bus. Two real-world examples were provided—the I2C bus (a non-expandable bus) and the
PCI bus (an expandable bus)—to demonstrate some of the bus fundamentals, such as bus
handshaking, arbitration and timing. This chapter concluded with a discussion on the impact
of buses on an embedded system’s performance.

Next, Chapter 8: Device Drivers, introduces the lowest level software found on an embedded
board. This chapter is the first of Section III, which discusses the major software components
of an embedded design.
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Chapter 7 Problems

1. [a]  What is a bus?
 [b]  What is the purpose of a bus?

2.  What component on a board interconnects different buses, carrying information from one
bus to another?

 A.  CDROM drive.
 B. MMU.
 C.  Bridge.
 D.  All of the above.
 E.  None of the above.

3.  [a]  Define and describe the three categories under which board buses typically fall.
 [b]  Provide real-world examples of each type of bus.

4.  [a]  What is the difference between an expandable bus and a non-expandable bus?
 [b]  What are some strengths and drawbacks of each?
 [c]  Provide real-world examples of expandable and non-expandable buses.

5.  A bus protocol defines
 A. the bus arbitration scheme.
 B. the bus handshaking scheme.
 C. the signals associated with the bus lines.
 D. A and B only.
 E. All of the above.

6.  What is the difference between a bus master and a bus slave?

7.  [a]  Name and describe three common bus arbitration schemes.
 [b]  What is a bus arbitrator?

8.  What is the difference between a FIFO-based bus granting and a priority-based bus
granting scheme?

9.  [a]  What is bus handshaking?
 [b]  What is the basis of any bus handshake?
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10. [Select] Buses are based on timing schemes that are
 A.  Synchronous.
 B.  Asynchronous.
 C.  A and B.
 D.  All of the above.

11.  [T/F] An asynchronous bus transmits a clock signal along with the other types of signals
being transmitted.

12. [a]  What is a transferring mode scheme?
 [b]  Name and describe two of the most common transferring mode schemes.

13.  What is the I2C bus?

14.  Draw a timing diagram of an I2C bus START and STOP condition.

15.  Given the timing diagram in Figure 7-17, explain how the start byte “00000001” is being
transmitted relative to the SDA and SCL signals?

SDA

SCL

ACK

dummy
acknowledge

(HIGH)

MBC633

S

1 2

start byte 00000001

7 8 9

Sr

Figure 7-17: I2C data transfer example [7-3]

16. What are the five general steps of a PCI bus transaction?

17. [a]  What is the difference between bus bandwidth and bus width?
 [b]  What is bus bandwidth a measurement of?

18.  Name three physical and/or associated protocol features of a bus that can impact the
performance of a bus.
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Embedded Software Introduction

Section III takes a look at embedded software using the Embedded Systems Model as a 
reference. It discusses the possible permutations of software sublayers that can exist within 
an embedded system. Basically, embedded software can be divided into two general classes: 
systems software and application software. Systems software is any software that supports the 
applications, such as device drivers, operating systems and middleware. Application software 
is the upper-level software that defines the function and purpose of the embedded device 
and which handles most of the interaction with users and administrators. In the next three 
chapters, real-world examples of components within the software sublayers will be presented 
from an architectural level down to the pseudocode level. Although this is not a programming 
book, including pseudocode along with the architectural discussion is important, because it 
allows the reader to understand how requirements and standards evolve from theory into a 
software flow. The pseudocode is provided to give the reader a visual aid for understanding 
the software behind different software layer components.

The structure of this section is based upon the software sublayers that can be implemented 
in an embedded system. Chapter 8 discusses device drivers, Chapter 9 discusses operating 
systems and board support packages (BSPs), and Chapter 10 introduces middleware and 
application software. 
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C H A P T E R 8
Device Drivers

In This Chapter

Defining device drivers
Discussing the difference between architecture-specific and board-specific drivers
Providing several examples of different types of device drivers

Most embedded hardware requires some type of software initialization and management. The 
software that directly interfaces with and controls this hardware is called a device driver. All 
embedded systems that require software have, at the very least, device driver software in their 
system software layer. Device drivers are the software libraries that initialize the hardware, 
and manage access to the hardware by higher layers of software. Device drivers are the liai-
son between the hardware and the operating system, middleware, and application layers. 

Figure 8-1: Embedded Systems Model and device drivers
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The types of hardware components needing the support of device drivers vary from board to 
board, but they can be categorized according to the von Neumann model approach introduced 
in Chapter 3 (see Figure 8-2). The von Neumann model can be used as a software model as 
well as a hardware model in determining what device drivers are required within a particular 
platform. Specifically, this can include drivers for the master processor architecture-specific
functionality, memory and memory management drivers, bus initialization and transaction 
drivers, and I/O initialization and control drivers (such as for networking, graphics, input 
devices, storage devices, debugging I/O, etc.) both at the board and master CPU level. 

Figure 8-2: Embedded system board organization [8-1]

Based upon the von Neumann architecture model (also referred to as the Princeton architecture) 
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Device drivers are typically considered either architecture-specific or generic. A device 
driver that is architecture-specific manages the hardware that is integrated into the master pro-
cessor (the architecture). Examples of architecture-specific drivers that initialize and enable 
components within a master processor include on-chip memory, integrated memory managers 
(MMUs), and floating point hardware. A device driver that is generic manages hardware that 
is located on the board and not integrated onto the master processor. In a generic driver, there 
are typically architecture-specific portions of source code, because the master processor is the 
central control unit and to gain access to anything on the board usually means going through 
the master processor. However, the generic driver also manages board hardware that is not 
specific to that particular processor, which means that a generic driver can be configured to 
run on a variety of architectures that contain the related board hardware for which the driver 
is written. Generic drivers include code that initializes and manages access to the remaining 
major components of the board, including board buses (I2C, PCI, PCMCIA, etc.), off-chip 
memory (controllers, level-2+ cache, Flash, etc.), and off-chip I/O (Ethernet, RS-232, display, 
mouse, etc.). 
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Figure 8-3a shows a hardware block diagram of a MPC860-based board, and Figure 8-3b 
shows a systems diagram that includes examples of both MPC860 processor-specific device 
drivers, as well as generic device drivers. 

Figure 8-3a: MPC860 hardware block diagram [8-2]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Figure 8-3b: MPC860 architecture specific device driver system stack
Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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Regardless of the type of device driver or the hardware it manages, all device drivers are 
generally made up of all or some combination of the following functions:

Hardware Startup, initialization of the hardware upon power-on or reset. 

Hardware Shutdown, configuring hardware into its power-off state. 

Hardware Disable, allowing other software to disable hardware on-the-fly.

Hardware Enable, allowing other software to enable hardware on-the-fly.

Hardware Acquire, allowing other software to gain singular (locking) access to 
hardware.

Hardware Release, allowing other software to free (unlock) hardware.

Hardware Read, allowing other software to read data from hardware.

Hardware Write, allowing other software to write data to hardware.

Hardware Install, allowing other software to install new hardware on-the-fly.

Hardware Uninstall, allowing other software to remove installed hardware on-the-fly.

Of course, device drivers may have additional functions, but some or all of the functions 
shown above are what device drivers inherently have in common. These functions are based 
upon the software’s implicit perception of hardware, which is that hardware is in one of 
three states at any given time—inactive, busy, or finished. Hardware in the inactive state 
is interpreted as being either disconnected (thus the need for an install function), without 
power (hence the need for an initialization routine) or disabled (thus the need for an enable 
routine). The busy and finished states are active hardware states, as opposed to inactive; thus 
the need for uninstall, shutdown and/or disable functionality. Hardware that is in a busy state 
is actively processing some type of data and is not idle, and thus may require some type of 
release mechanism. Hardware that is 
in the finished state is in an idle state, 
which then allows for acquisition, 
read, or write requests, for example. 

Again, device drivers may have all 
or some of these functions, and can 
integrate some of these functions into 
single larger functions. Each of these 
driver functions typically has code that 
interfaces directly to the hardware and 
code that interfaces to higher layers 
of software. In some cases, the dis-
tinction between these layers is clear, 
while in other drivers, the code is 
tightly integrated (see Figure 8-4). Figure 8-4: Driver code layers
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On a final note, depending on the master processor, different types of software can execute 
in different modes, the most common being supervisory and user modes. These modes es-
sentially differ in terms of what system components the software is allowed access to, with 
software running in supervisory mode having more access (privileges) than software running 
in user mode. Device driver code typically runs in supervisory mode.

The next several sections provide real-world examples of device drivers that demonstrate how 
device driver functions can be written and how they can work. By studying these examples, 
the reader should be able to look at any board and figure out relatively quickly what pos-
sible device drivers need to be included in that system, by examining the hardware and going 
through a checklist, using the von Neumann model as a tool for keeping track of the types of 
hardware that might require device drivers. While not discussed in this chapter, later chapters 
will describe how device drivers are integrated into more complex software systems.

8.1 Example 1: Device Drivers for Interrupt-Handling
As discussed previously, interrupts are signals triggered by some event during the execution 
of an instruction stream by the master processor. What this means is that interrupts can be 
initiated asynchronously, for external hardware devices, resets, power failures, and so forth, 
or synchronously, for instruction-related activities such as system calls or illegal instructions. 
These signals cause the master processor to stop executing the current instruction stream and 
start the process of handling (processing) the interrupt. 

The software that handles interrupts on the master processor and manages interrupt hardware 
mechanisms (i.e., the interrupt controller) consists of the device drivers for interrupt-handling.
At least four of the ten functions from the list of device driver functionality introduced at the 
start of this chapter are supported by interrupt-handling device drivers, including:

Interrupt-Handling Startup, initialization of the interrupt hardware (i.e., interrupt 
controller, activating interrupts, etc.) upon power-on or reset. 

Interrupt-Handling Shutdown, configuring interrupt hardware (i.e., interrupt con-
troller, deactivating interrupts, etc.) into its power-off state. 

Interrupt-Handling Disable, allowing other software to disable active interrupts on-
the-fly (not allowed for Non-Maskable Interrupts (NMIs), which are interrupts that 
cannot be disabled).

Interrupt-Handling Enable, allowing other software to enable inactive interrupts 
on-the-fly.

and one additional function unique to interrupt-handling:

Interrupt-Handler Servicing, the interrupt-handling code itself, which is executed 
after the interruption of the main execution stream (this can range in complexity from 
a simple non-nested routine to nested and/or reentrant routines).
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How startup, shutdown, disable, enable, and service functions are implemented in software 
usually depends on the following criteria:

The types, number, and priority levels of interrupts available (determined by the inter-
rupt hardware mechanisms on-chip and on-board).

How interrupts are triggered.

The interrupt policies of components within the system that trigger interrupts, and the 
services provided by the master CPU processing the interrupts.

Note: The material in the next several pages is similar to material found in Chapter 4, Section 4.2.3, on interrupts.

The three main types of interrupts are software, internal hardware, and external hardware.
Software interrupts are explicitly triggered internally by some instruction within the cur-
rent instruction stream being executed by the master processor. Internal hardware interrupts, 
on the other hand, are initiated by an event that is a result of a problem with the current 
instruction stream that is being executed by the master processor because of the features 
(or limitations) of the hardware, such as illegal math operations (overflow, divide-by-zero), 
debugging (single-stepping, breakpoints), invalid instructions (opcodes), and so on. Interrupts 
that are raised (requested) by some internal event to the master processor—basically soft-
ware and internal hardware interrupts—are also commonly referred to as exceptions or traps.
Exceptions are internally generated hardware interrupts triggered by errors that are detected
by the master processor during software execution, such as invalid data or a divide by zero. 
How exceptions are prioritized and processed is determined by the architecture. Traps are 
software interrupts specifically generated by the software, via an exception instruction. 
Finally, external hardware interrupts are interrupts initiated by hardware other than the master 
CPU—board buses and I/O for instance. 

For interrupts that are raised by external events, the master processor is either wired, through 
an input pin(s) called an IRQ (Interrupt Request Level) pin or port, to outside intermedi-
ary hardware (i.e., interrupt controllers), or directly to other components on the board with 
dedicated interrupt ports, that signal the master CPU when they want to raise the interrupt. 
These types of interrupts are triggered in one of two ways: level-triggered or edge-triggered.
A level-triggered interrupt is initiated when its interrupt request (IRQ) signal is at a certain 
level (i.e., HIGH or LOW—see Figure 8-5a). These interrupts are processed when the CPU 
finds a request for a level-triggered interrupt when sampling its IRQ line, such as at the end of 
processing each instruction. 

Fetch Decode Execute Fetch Decode Execute Fetch Decode ExecuteCPU

IRQ

Level Triggered IRQ Samplin g

Figure 8-5a: Level-triggered interrupts [8-3]
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Edge-triggered interrupts are triggered when a change occurs on the IRQ line (from LOW to 
HIGH/rising edge of signal or from HIGH to LOW/falling edge of signal; see Figure 8-5b). 
Once triggered, these interrupts latch into the CPU until processed. 

Fetch Decode Execute Fetch Decode Execute Fetch Decode ExecuteCPU

IRQ

Falling Edge Trigger for Edge
Triggered Interrupt Rising Edge Trigger for Edge

Triggered Interrupt

Figure 8-5b: Edge-triggered interrupts [8-3]

Both types of interrupts have their strengths and drawbacks. With a level-triggered inter-
rupt, as shown in the example in Figure 8-6a, if the request is being processed and has not 
been disabled before the next sampling period, the CPU will try to service the same interrupt 
again. On the flip side, if the level-triggered interrupt were triggered and then disabled before 
the CPU’s sample period, the CPU would never note its existence and would therefore never 
process it. Edge-triggered interrupts could have problems if they share the same IRQ line, if 
they were triggered in the same manner at about the same time (say before the CPU could 
process the first interrupt), resulting in the CPU being able to detect only one of the interrupts 
(see Figure 8-6b).

Figure 8-6b: Edge-triggered interrupts drawbacks [8-3]

Figure 8-6a: Level-triggered interrupts drawbacks [8-3]
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Because of these drawbacks, level-triggered interrupts are generally recommended for inter-
rupts that share IRQ lines, whereas edge-triggered interrupts are typically recommended for 
interrupt signals that are very short or very long.

At the point an IRQ of a master processor receives a signal that an interrupt has been raised, 
the interrupt is processed by the interrupt-handling mechanisms within the system. These 
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mechanisms are made up of a combination of both hardware and software components. In 
terms of hardware, an interrupt controller can be integrated onto a board, or within a proces-
sor, to mediate interrupt transactions in conjunction with software. Architectures that include 
an interrupt controller within their interrupt-handling schemes include the 268/386 (x86) 
architectures, which use two PICs (Intel’s Programmable Interrupt Controller); MIPS32, 
which relies on an external interrupt controller; and the MPC860 (shown in Figure 8-7a), 
which integrates two interrupt controllers, one in the CPM and one in its SIU. For systems 
with no interrupt controller, such as the Mitsubishi M37267M8 TV microcontroller shown 
in Figure 8-7b, the interrupt request lines are connected directly to the master processor, and 
interrupt transactions are controlled via software and some internal circuitry, such as registers 
and/or counters.

Figure 8-7b: Mitsubishi M37267M8 circuitry [8-5]

Figure 8-7a: Motorola/Freescale MPC860 interrupt controllers [8-4]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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Interrupt acknowledgment, or IACK, is typically handled by the master processor when an 
external device triggers an interrupt. Because IACK cycles are a function of the local bus, 
the IACK function of the master CPU depends on interrupt policies of system buses, as well 
as the interrupt policies of components within the system that trigger the interrupts. With 
respect to an external device triggering an interrupt, the interrupt scheme depends on whether 
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that device can provide an interrupt vector (a place in memory that holds the address of an 
interrupt’s ISR, Interrupt Service Routine, the software that the master CPU executes after the 
triggering of an interrupt). For devices that cannot provide an interrupt vector, referred to as 
non-vectored interrupts, master processors implement an auto-vectored interrupt scheme in 
which one ISR is shared by the non-vectored interrupts; determining which specific interrupt 
to handle, interrupt acknowledgment, etc., are all handled by the ISR software. 

An interrupt vectored scheme is implemented to support peripherals that can provide an inter-
rupt vector over a bus, and where acknowledgment is automatic. An IACK-related register 
on the master CPU informs the device requesting the interrupt to stop requesting interrupt 
service, and provides what the master processor needs to process the correct interrupt (such 
as the interrupt number, vector number, etc.). Based upon the activation of an external inter-
rupt pin, an interrupt controller’s interrupt select register, a device’s interrupt select register, 
or some combination of the above, the master processor can determine which ISR to execute. 
After the ISR completes, the master processor resets the interrupt status by adjusting the bits 
in the processor’s status register or an interrupt mask in the external interrupt controller. The 
interrupt request and acknowledgment mechanisms are determined by the device requesting 
the interrupt (since it determines which interrupt service to trigger), the master processor, and 
the system bus protocols. 

Keep in mind that this is a general introduction to interrupt-handling, covering some of the 
key features found in a variety of schemes. The overall interrupt-handling scheme can vary 
widely from architecture to architecture. For example, PowerPC architectures implement an 
auto-vectored scheme, with no interrupt vector base register. The 68000 architecture supports 
both auto-vectored and interrupt vectored schemes, whereas MIPS32 architectures have no 
IACK cycle, so the interrupt handler handles the triggered interrupts. 

8.1.1 Interrupt Priorities
Because there are potentially multiple components on an embedded board that may need to 
request interrupts, the scheme that manages all of the different types of interrupts is priority-
based. This means that all available interrupts within a processor have an associated interrupt 
level, which is the priority of that interrupt within the system. Typically, interrupts starting at 
level “1” are the highest priority within the system, and incrementally from there (2,3,4,…) 
the priorities of the associated interrupts decrease. Interrupts with higher levels have prece-
dence over any instruction stream being executed by the master processor, meaning that not 
only do interrupts have precedence over the main program, but higher priority interrupts have 
priority over interrupts with lower priorities as well. When an interrupt is triggered, lower 
priority interrupts are typically masked, meaning they are not allowed to trigger when the 
system is handling a higher-priority interrupt. The interrupt with the highest priority is usually 
called a non-maskable interrupt (NMI).

How the components are prioritized depends on the IRQ line they are connected to, in the 
case of external devices, or what has been assigned by the processor design. It is the mas-
ter processor’s internal design that determines the number of external interrupts available 
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and the interrupt levels supported 
within an embedded system. In 
Figure 8-8a, the MPC860 CPM, 
SIU, and PowerPC Core all work 
together to implement interrupts on 
the MPC823 processor. The CPM 
allows for internal interrupts (two 
SCCs, two SMCs, SPI, I2C, PIP, 
general-purpose timers, two IDMAs, 
SDMA, RISC Timer) and 12 exter-
nal pins of port C, and it drives the 
interrupt levels on the SIU. The SIU receives interrupts from 8 external pins (IRQ0-7), and 
8 internal sources, for a total of 16 sources of interrupts, one of which can be the CPM, and 
drives the IREQ input to the Core. When the IREQ pin is asserted, external interrupt process-
ing begins. The priority levels are shown in Figure 8-8b.

Figure 8-8b: Motorola/Freescale MPC860 interrupt levels [8-4]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Figure 8-8a: Motorola/Freescale MPC860 interrupt pins 
and table [8-4] Copyright of Freescale Semiconductor, Inc. 2004. Used by 
permission.
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In another processor, shown in Figures 8-9a and b, the 68000, there are eight levels of inter-
rupts (0–7), where interrupts at level 7 have the highest priority. The 68000 interrupt table 
(Figure 8-9b) contains 256 32-bit vectors.

Figure 8-9b: Motorola/Freescale 68K IRQs interrupt table [8-6]

Figure 8-9a: Motorola/Freescale 
68000 IRQs [8-6]
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7 01C FTRAPcc, TRAPcc, TRAPV instruction s

8 020 Privilege Violation
9 024 Trace
10 028 Line 1010 Emulator (Unimplemented A-Line Opcode)
11 02C Line 1111 Emulator (Unimplemented F-line Opcode )

12 030 (Unassigned, Reserv ed)
13 034 Coprocessor Protocol Violation
14 038 Format Error
15 03C Uninitialized Interrupt
16−23 040−050 (Unassigned, Reserv ed)
24 060 Spurious Interrupt
25 064 Level 1 Interrupt Autovector
26 068 Level 2 Interrupt Autovector
27 06C Level 3 Interrupt Auto vector

28 070 Level 4 Interrupt Autovector
29 074 Level 5 Interrupt Auto vector
30 078 Level 6 Interrupt Autovector
31 07C Level 7 Interrupt Auto vector
32−47 080−08C TRAP #0 D 15 Instructor Vectors
48 0C0 FP Branch or Set on Unordered Conditio n
49 0C4 FP Inexact Result
50 0C8 FP Divide by Zero
51 0CC FP Underflo w

52 0D0 FP Operand Error
53 0D4 FP Ov erflo w
54 0D8 FP Signaling NAN
55 0DC FP Unimplemented Data Type (Def ined for MC68040)

56 0E0 MMU Conf iguration Error
57 0E4 MMU Illegal Operation Erro r
58 0E8 MMU Access Level Violation Error
59−63 0ECD0FC (Unassigned, Reserv ed)
64-255 100D3FC User Defi ned Vectors (192)
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The M37267M8 architecture, shown in Figure 8-10a, allows for interrupts to be caused by 
16 events (13 internal, two external, and one software) whose priorities and usages are sum-
marized in Figure 8-10b.

Figure 8-10a: Mitsubishi M37267M8 8-bit TV microcontroller interrupts [8-5]

Figure 8-10b: Mitsubishi M37267M8 8-bit TV microcontroller interrupt table [8-5]

M37267M8
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P4 4 can be used as external
interrupt pin INT1 .

Interrupt Source Priority Interrupt Causes

RESET 1 (nonmaskable)
CRT 2 Occurs after character block display to CRT is completed
INT1 3 External Interrupt ** the processor detects that the level of 

a pin changes from 0 (LOW) to 1 (HIGH), or 1(HIGH) to 0 
(LOW) and generates and interrupt request.

Data Slicer 4 Interrupt occurs at end of line specified in caption position 
register

Serial I/O 5 Interrupt request from synchronous serial I/O function
Timer 4 6 Interrupt generated by overflow of timer 4
Xin & 4096 7 Interrupt occurs regularly with a f(Xin)/4096 period.
Vsync 8 An interrupt request synchronized with the vertical sync signal
Timer 3 9 Interrupt generated by overflow of timer 3
Timer 2 10 Interrupt generated by overflow of timer 2
Timer 1 11 Interrupt generated by overflow of timer 1
INT2 12 External Interrupt ** the processor detects that the level of 

a pin changes from 0 (LOW) to 1 (HIGH), or 1 (HIGH) to 0 
(LOW) and generates and interrupt request.

Multimaster I2C Bus 
interface

13 Related to I2C bus interface

Timer 5 & 6 14 Interrupt generated by overflow of timer 5 or 6
BRK instruction 15 (nonmaskable software)

Several different priority schemes are implemented in the various architectures. These 
schemes commonly fall under one of three models: the equal single level, where the latest 
interrupt to be triggered gets the CPU; the static multilevel, where priorities are assigned by 
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a priority encoder, and the interrupt with the highest priority gets the CPU; and the dynamic
multilevel, where a priority encoder assigns priorities, and the priorities are reassigned when a 
new interrupt is triggered. 

8.1.2  Context Switching
After the hardware mechanisms have determined which interrupt to handle and have acknowl-
edged the interrupt, the current instruction stream is halted and a context switch is performed, 
a process in which the master processor switches from executing the current instruction 
stream to another set of instructions. This alternate set of instructions being executed as the 
result of an interrupt is the interrupt service routine (ISR) or interrupt handler. An ISR is 
simply a fast, short program that is executed when an interrupt is triggered. The specific ISR 
executed for a particular interrupt depends on whether a non-vectored or vectored scheme is 
in place. In the case of a non-vectored interrupt, a memory location contains the start of an 
ISR that the PC (program counter) or some similar mechanism branches to for all non-vec-
tored interrupts. The ISR code then determines the source of the interrupt and provides the 
appropriate processing. In a vectored scheme, typically an interrupt vector table contains the 
address of the ISR. 

The steps involved in an interrupt context switch include stopping the current program’s 
execution of instructions, saving the context information (registers, the PC or similar mecha-
nism which indicates where the processor should jump back to after executing the ISR) onto 
a stack, either dedicated or shared with other system software, and perhaps the disabling of 
other interrupts. After the master processor finishes executing the ISR, it context switches 
back to the original instruction stream that had been interrupted, using the context informa-
tion as a guide. 

The interrupt services provided by device driver code, based upon the mechanisms discussed 
above, include enabling/disabling interrupts through an interrupt control register on the 
master CPU or the disabling of the interrupt controller, connecting the ISRs to the interrupt 
table, providing interrupt levels and vector numbers to peripherals, providing address and 
control data to corresponding registers, and so on. Additional services implemented in inter-
rupt access drivers include the locking/unlocking of interrupts, and the implementation of the 
actual ISRs. The pseudocode in the following example shows interrupt-handling initializa-
tion and access drivers that act as the basis of interrupt services (in the CPM and SIU) on the 
MPC860.

8.1.3 Interrupt Device Driver Pseudocode Examples
The following pseudocode examples demonstrate the implementation of various inter-
rupt-handling routines on the MPC860, specifically startup, shutdown, disable, enable, and 
interrupt servicing functions in reference to this architecture. These examples show how inter-
rupt-handling can be implemented on a more complex architecture like the MPC860, and this 
in turn can be used as a guide to understand how to write interrupt-handling drivers on other 
processors that are as complex or less complex than this one.
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Interrupt-Handling Startup (Initialization) MPC860

Overview of initializing interrupts on MPC860 (in both CPM and SIU)

1. Initializing CPM Interrupts in MPC860 Example

1.1 Setting Interrupt Priorities via CICR

1.2 Setting individual enable bit for interrupts via CIMR

1.3 Initializing SIU Interrupts via SIU Mask Register including setting the SIU bit 
associated with the level that the CPM uses to assert an interrupt.

1.4 Set Master Enable bit for all CPM interrupts

2. Initializing SIU Interrupts on MPC860 Example 

2.1 Initializing the SIEL Register to select the edge-triggered or level-triggered 
interrupt-handling for external interrupts and whether processor can exit/wakeup 
from low power mode.

2.2 If not done, initializing SIU Interrupts via SIU Mask Register including setting 
the SIU bit associated with the level that the CPM uses to assert an interrupt.

** Enabling all interrupts via MPC860 “mtspr” instruction next step see Interrupt-Han-
dling Enable **

// Initializing CPM for interrupts – 4 step process

// **** Step 1 *****

 // initializing the 24-bit CICR (see Figure 8-11), setting priorities and the interrupt 

// levels. Interrupt Request Level, or IRL[0:2] allows a user to program the priority 

// request level of the CPM interrupt with any number from level 0 (highest priority) 

// through level 7 (lowest priority). 

Figure 8-11a: CICR register [8-2]

CICR – CPM Interrupt Conf iguration Register

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

-IENHP0_HP4IRL0_IRL2 SPS

SCdP SCcP SCbP SCaP
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….
int RESERVED94 = 0xFF000000; //bits 0-7 reserved, all set to 1

// the PowerPC SCC’s are prioritized relative to each other. Each SCxP field is representative 
// of a priority for each SCC where SCdP is the lowest and ScaP is the highest priority. 
// Each SCxP field is made up of 2-bits (0-3), one for each SCC, where 0d (00b) = SCC1, 
// 1d (01b) = SCC2, 2d (10b) = SCC3, and 3d (11b) = SCC4. See Figure 8-11b.

int CICR.SCdP = 0x00C00000; // bits 8-9 both = 1, SCC4 = lowest priority 
int CICR.SCcP = 0x00000000; // bits 10-11, both = 0, SCC1 = 2nd to lowest priority 
int CICR.SCbP = 0x00040000; // bits 12-13, = 01b, SCC2 2nd highest priority
int CICR.SCaP = 0x00020000; // bits 14-15, = 10b, SCC3 highest priority

// IRL0_IRL2 is a 3 bit configuration parameter called the Interrupt Request Level -- it 
// allows a user to program the priority request level of the CPM interrupt with bits 
// 16-18 with a value of 0 – 7 in terms of its priority mapping within the SIU.Iin this 
// example, it is a priority 7 since all 3 bits set to 1.
int CICR.IRL0 = 0x00008000; // Interrupt request level 0 (bit 16) = 1
int CICR.IRL1 = 0x00004000; // Interrupt request level 1 (bit 17) = 1
int CICR.IRL2 = 0x00002000; // Interrupt request level 2 (bit 18) = 1

// HP0 – HP 4 are 5 bits (19-23) used to represent one of the CPM Interrupt Controller 
// interrupt sources (shown in Figure 8-8b) as being the highest priority source relative to 
// their bit location in the CIPR register—see Figure 8-11c . In this example, HP0 - HP4 
// = 11111b (31d) so highest external priority source to the PowerPC core is PC15 
int CICR.HP0 = 0x00001000; /* Highest priority */
int CICR.HP1 = 0x00000800; /* Highest priority */
int CICR.HP2 = 0x00000400; /* Highest priority */

Figure 8-11b: SCC priorities [8-2]

Figure 8-11c: CIPR register [8-2]

CIPR - CPM Interrupt Pending Re gister
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SCC3 10 10

SCC4 11 11
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int CICR.HP3 = 0x00000200; /* Highest priority */
int CICR.HP4 = 0x00000100; /* Highest priority */

// IEN bit 24 – Master enable for CPM interrupts – not enabled here – see step 4

int RESERVED95 = 0x0000007E; // bits 25-30 reserved, all set to 1

int CICR.SPS = 0x00000001; // Spread priority scheme in which SCCs are spread 
  // out by priority in interrupt table, rather than grouped 
  // by priority at the top of the table 

// ***** step 2 ***** 

// initializing the 32-bit CIMR (see Figure 8-12), CIMR bits correspond to CMP 

// Interrupt Sources indicated in CIPR (see Figure 8-11c), by setting the bits 

// associated with the desired interrupt sources in the CIMR register (each bit 

// corresponds to a CPM interrupt source). 

Figure 8-12: CIMR register [8-2]

CIPR - CPM Interrupt Mask Re gister

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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1

IDMA
1

IDMA
2

Timer
2

Timer
4

Timer
3

SMC 2
/PIPPC11 PC10 PC9 PC8 PC7 PC6 SPI SMC1 PC5 PC4 ---

int CIMR.PC15 = 0x80000000; // PC15 (Bit 0) set to 1, interrupt source enabled
int CIMR.SCC1 = 0x40000000; // SCC1 (Bit 1) set to 1, interrupt source enabled
int CIMR.SCC2 = 0x20000000; // SCC2 (Bit 2) set to 1, interrupt source enabled
int CIMR.SCC4 = 0x08000000; // SCC4 (Bit 4) set to 1, interrupt source enabled
int CIMR.PC14 = 0x04000000; // PC14 (Bit 5) set to 1, interrupt source enabled
int CIMR.TIMER1 = 0x02000000; // Timer1 (Bit 6) set to 1, interrupt source enabled
int CIMR.PC13 = 0x01000000; // PC13 (Bit 7) set to 1, interrupt source enabled
int CIMR.PC12 = 0x00800000; // PC12 (Bit 8) set to 1, interrupt source enabled
int CIMR.SDMA = 0x00400000; // SDMA (Bit 9) set to 1, interrupt source enabled
nt CIMR.IDMA1 = 0x00200000; // IDMA1 (Bit 10) set to 1, interrupt source enabled
int CIMR.IDMA2 = 0x00100000; // IDMA2 (Bit 11) set to 1, interrupt source enabled
int RESERVED100 = 0x00080000; // Unused Bit 12 
int CIMR.TIMER2 = 0x00040000; // Timer2 (Bit 13) set to 1, interrupt source enabled
int CIMR.R.TT = 0x00020000; // R-TT (Bit 14) set to 1, interrupt source enabled
int CIMR.I2C = 0x00010000; // I2C (Bit 15) set to 1, interrupt source enabled
int CIMR.PC11 = 0x00008000; // PC11 (Bit 16) set to 1, interrupt source enabled
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int CIMR.PC10 = 0x00004000; // PC10 (Bit 17) set to 1, interrupt source enabled
int RESERVED101 = 0x00002000; // Unused bit 18
int CIMR.TIMER3 = 0x00001000; // Timer3 (Bit 19) set to 1, interrupt source enabled
int CIMR.PC9 = 0x00000800; // PC9 (Bit 20) set to 1, interrupt source enabled
int CIMR.PC8 = 0x00000400; //PC8 (Bit 21) set to 1, interrupt source enabled
int CIMR.PC7 = 0x00000200; // PC7 (Bit 22) set to 1, interrupt source enabled
int RESERVED102 = 0x00000100; // unused bit 23
int CIMR.TIMER4 = 0x00000080; // Timer4 (Bit 24) set to 1, interrupt source enabled
int CIMR.PC6 = 0x00000040; // PC6 (Bit 25) set to 1, interrupt source enabled
int CIMR.SPI = 0x00000020; // SPI (Bit 26) set to 1, interrupt source enabled
int CIMR.SMC1 = 0x00000010; // SMC1 (Bit 27) set to 1, interrupt source enabled
int CIMR.SMC2-PIP = 0x00000008; // SMC2/PIP (Bit 28) set to 1, interrupt source 

// enabled
int CIMR.PC5 = 0x00000004; // PC5 (Bit 29) set to 1, interrupt source enabled
int CIMR.PC4 = 0x00000002; // PC4 (Bit 30) set to 1, interrupt source enabled
int RESERVED103 = 0x00000001; // unused bit 31

// ***** step 3 *****

// Initializing the SIU Interrupt Mask Register (see Figure 8-13) including setting the SIU // 
bit associated with the level that the CPM uses to assert an interrupt.

Figure 8-13: SIMASK register [8-2]

SIMASK - SIU Mask Re gister

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IRM0 LVM0 IRM1 LVM1 IRM2 LVM2 IRM3 LVM3 IRM4 LVM4 IRM5 LVM5 IRM6 LVM6 IRM7 LVM7

Reserved

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

int SIMASK.IRM0 = 0x80000000; //enable external interrupt input level 0
int SIMASK.LVM0 = 0x40000000; //enable internal interrupt input level 0
int SIMASK.IRM1 = 0x20000000; //enable external interrupt input level 1
int SIMASK.LVM1 = 0x10000000; //enable internal interrupt input level 1
int SIMASK.IRM2 = 0x08000000; //enable external interrupt input level 2
int SIMASK.LVM2 = 0x04000000; //enable internal interrupt input level 2
int SIMASK.IRM3 = 0x02000000; //enable external interrupt input level 3
int SIMASK.LVM3 = 0x01000000; //enable internal interrupt input level 3
int SIMASK.IRM4 = 0x00800000; //enable external interrupt input level 4
int SIMASK.LVM4 = 0x00400000; //enable internal interrupt input level 4
int SIMASK.IRM5 = 0x00200000; //enable external interrupt input level 5
int SIMASK.LVM5 = 0x00100000; //enable internal interrupt input level 5
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int SIMASK.IRM6 = 0x00080000; //enable external interrupt input level 6
int SIMASK.LVM6 = 0x00040000; //enable internal interrupt input level 6
int SIMASK.IRM7 = 0x00020000; //enable external interrupt input level 7
int SIMASK.LVM7 = 0x00010000; //enable internal interrupt input level 7
int RESERVED6 = 0x0000FFFF; // unused bits 16-31

// ***** step 4 ***** 
// IEN bit 24 of CICR register– Master enable for CPM interrupts 
int CICR.IEN = 0x00000080; //interrupts enabled IEN = 1

// Initializing SIU for interrupts – 2 step process

Figure 8-14: SIEL register [8-2]

SIEL - SIU Interrupt Edge Le vel Mask Re gister

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ED0 WM0 ED1 WM1 ED2 WM2 ED3 WM3 ED4 WM4 ED5 WM5 ED6 WM6 ED7 WM7

Reserved

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

// ***** step 1 ***** 

// Initializing the SIEL Register (see Figure 8-14) to select the edge-triggered (set to 1 

// for falling edge indicating interrupt request) or level-triggered (set to 0 for a 0 logic 

// level indicating interrupt request) interrupt-handling for external interrupts (bits 

// 0,2,4,6,8,10,12, 14) and whether processor can exit/wakeup from low power mode 

// (bits 1,3,5,7,9,11,13,15). Set to 0 is NO, set to 1 is Yes

int SIEL.ED0 = 0x80000000; // interrupt level 0 (falling) edge-triggered 
int SIEL.WM0 = 0x40000000; // IRQ at interrupt level 0 allows CPU to exit from low 
  // power mode
int SIEL.ED1 = 0x20000000; // interrupt level 1 (falling) edge-triggered
int SIEL.WM1 = 0x10000000; // IRQ at interrupt level 1 allows CPU to exit from low 
  // power mode
int SIEL.ED2 = 0x08000000; // interrupt level 2 (falling) edge-triggered
int SIEL.WM2 = 0x04000000; // IRQ at interrupt level 2 allows CPU to exit from low 
  // power mode
int SIEL.ED3 = 0x02000000; // interrupt level 3 (falling) edge-triggered
int SIEL.WM3 = 0x01000000; // IRQ at interrupt level 3 allows CPU to exit from low 
   // power mode
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int SIEL.ED4 = 0x00800000; // interrupt level 4 (falling) edge-triggered
int SIEL.WM4 = 0x00400000; // IRQ at interrupt level 4 allows CPU to exit from low 
   // power mode
int SIEL.ED5 = 0x00200000; // interrupt level 5 (falling) edge-triggered
int SIEL.WM5 = 0x00100000; // IRQ at interrupt level 5 allows CPU to exit from low 
   // power mode
int SIEL.ED6 = 0x00080000; // interrupt level 6 (falling) edge-triggered
int SIEL.WM6 = 0x00040000; // IRQ at interrupt level 6 allows CPU to exit from low 
   // power mode
int SIEL.ED7 = 0x00020000; // interrupt level 7 (falling) edge-triggered
int SIEL.WM7 = 0x00010000; // IRQ at interrupt level 7 allows CPU to exit from low 
  // power mode
int RESERVED7 = 0x0000FFFF; // bits 16-31 unused

// ***** step 2 ***** 

//Initializing SIMASK register – done in step 3 of initializing CPM.

Interrupt-Handling Shutdown on MPC860

There essentially is no shutdown process for interrupt-handling on the MPC860, other than 
perhaps disabling interrupts during the process.

//Essentially disabling all interrupts via IEN bit 24 of CICR – Master disable for CPM 
// interrupts 
CICR.IEN = “CICR.IEN” AND “0”; //interrupts disabled IEN = 0

Interrupt-Handling Disable on MPC860

//To disable specific interrupt means modifying the SIMASK, so disabling the external 
// interrupt at level 7 (IRQ7) for example is done by clearing bit 14
SIMASK.IRM7 = “SIMASK.IRM7” AND “0”; //disable external interrupt input level 7

// disabling of all interrupts takes effect with the mtspr instruction.
mtspr 82,0; // disable interrupts via mtspr (move to special purpose register) 
   // instruction

Interrupt-Handling Enable on MPC860

// specific enabling of particular interrupts done in initialization section of this example –
// so the interrupt enable of all interrupts takes effect with the mtspr instruction.

mtspr 80,0; // enable interrupts via mtspr (move to special purpose
   // register) instruction

//in review, to enable specific interrupt means modifying the SIMASK, so enabling the 
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// external interrupt at level 7 (IRQ7) for example is done my setting bit 14

SIMASK.IRM7 = “SIMASK.IRM7” OR “1”; //enable external interrupt input level 7

Interrupt-Handling Servicing on MPC860

In general, this ISR (and most ISRs) essentially disables interrupts first, saves the context 
information, processes the interrupt, restores the context information, and then enables 
interrupts.

InterruptServiceRoutineExample ()
{

…..
 // disable interrupts
disableInterrupts(); // mtspr 82,0;
// save registers
 saveState();
 // read which interrupt from SI Vector Register (SIVEC)
 interruptCode = SIVEC.IC;

 // if IRQ 7 then execute
 if (interruptCode = IRQ7) {
 …..
 // If an IRQx is edge-triggered, then clear the service bit in the SI Pending Register 
 // by putting a “1”. 
SIPEND.IRQ7 = SIPEND.IRQ7 OR “1”;
//main process 
 ….
 } //endif IRQ7

 // restore registers
 restoreState();
 // re-enable interrupts
enableInterrupts(); // mtspr 80,0;

 } 

8.1.4 Interrupt-Handling and Performance
The performance of an embedded design is affected by the latencies (delays) involved with 
the interrupt-handling scheme. The interrupt latency is essentially the time from when an 
interrupt is triggered until its ISR starts executing. The master CPU, under normal circum-
stances, accounts for a lot of overhead for the time it takes to process the interrupt request 
and acknowledge the interrupt, obtaining an interrupt vector (in a vectored scheme), and 
context switching to the ISR. In the case when a lower-priority interrupt is triggered during 
the processing of a higher priority interrupt, or a higher priority interrupt is triggered during 
the processing of a lower priority interrupt, the interrupt latency for the original lower priority 
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interrupt increases to include the time in which the higher priority interrupt is handled (essen-
tially how long the lower priority interrupt is disabled). Figure 8-15 summarizes the variables 
that impact interrupt latency.

Figure 8-15: Interrupt latency
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Within the ISR itself, additional overhead is caused by the context information being stored 
at the start of the ISR and retrieved at the end of the ISR. The time to context switch back to 
the original instruction stream that the CPU was executing before the interrupt was triggered 
also adds to the overall interrupt execution time. While the hardware aspects of interrupt-
handling—the context switching, processing interrupt requests, and so on—are beyond the 
software’s control, the overhead related to when the context information is saved, as well 
as how the ISR is written both in terms of the programming language used and the size, are 
under the software’s control. Smaller ISRs, or ISRs written in a lower-level language like 
assembly, as opposed to larger ISRs or ISRs written in higher-level languages like Java, or 
saving/retrieving less context information at the start and end of an ISR, can all decrease the 
interrupt-handling execution time and increase performance.
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8.2 Example 2: Memory Device Drivers
While in reality all types of physical memory are two-dimensional arrays (matrices) made 
up of cells addressed by a unique row and column, the master processor and programmers 
view memory as a large one-dimensional array, commonly referred to as the Memory Map
(see Figure 8-16). In the memory map, each cell of the array is a row of bytes (8 bits) and the 
number of bytes per row depends on the width of the data bus (8-bit, 16-bit, 32-bit, 64-bit, 
etc.). This, in turn, depends on the width of the registers of the master architecture. When 
physical memory is referenced from the software’s point-of-view, it is commonly referred to 
as logical memory, and its most basic unit is the byte. Logical memory is made up of all the 
physical memory (registers, ROM, and RAM) in the entire embedded system.

Figure 8-16: Sample memory map [8-4]

The software must provide the processors in the system with the ability to access various 
portions of the memory map. The software involved in managing the memory on the master 
processor and on the board, as well as managing memory hardware mechanisms, consists 
of the device drivers for the management of the overall memory subsystem. The memory 
subsystem includes all types of memory management components, such as memory control-
lers and MMU, as well as the types of memory in the memory map, such as registers, cache, 
ROM, DRAM, and so on. All or some combination of six of the ten device driver functions
from the list of device driver functionality introduced at the start of this chapter are common-
ly implemented, including:

Memory Subsystem Startup, initialization of the hardware upon power-on or reset 
(initialize TLBs for MMU, initialize/configure MMU).

Memory Subsystem Shutdown, configuring hardware into its power-off state. 

Note: under the MPC860, there is no necessary shutdown sequence for the memory subsystem, so 
pseudocode examples are not shown.

Memory Subsystem Disable, allowing other software to disable hardware on-the-fly 
(disabling cache).

Memory Subsystem Enable, allowing other software to enable hardware on-the-fly 
(enable cache).

Memory Subsystem Write, storing in memory a byte or set of bytes (i.e., in cache,
ROM, and main memory).

Memory Subsystem Read, retrieving from memory a “copy” of the data in the form 
of a byte or set of bytes (i.e., in cache, ROM, and main memory).

Address Range Accessed Device Port Width

0x00000000 - 0x003FFFFF Flash PROM Bank 1 32
0x00400000 - 0x007FFFFF Flash PROM Bank 2 32
0x04000000 - 0x043FFFFF DRAM 4 Mbyte (1Meg × 32-bit) 32
0x09000000 - 0x09003FFF MPC Internal Memory Map 32
0x09100000 - 0x09100003 BCSR - Board Control & Status Register 32
0x10000000 - 0x17FFFFFF PCMCIA Channel 16
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Regardless of what type of data is being read or written, all data within memory is man-
aged as a sequence of bytes. While one memory access is limited to the size of the data bus, 
certain architectures manage access to larger blocks (a contiguous set of bytes) of data, called 
segments, and thus implement a more complex address translation scheme in which the 
logical address provided via software is made up of a segment number (address of start of 
segment) and offset (within a segment) which is used to determine the physical address of the 
memory location.

The order in which bytes are retrieved or stored in memory depends on the byte ordering
scheme of an architecture. The two possible byte ordering schemes are little endian and big
endian. In little endian mode, bytes (or “bits” with 1 byte (8-bit) schemes) are retrieved and 
stored in the order of the lowest byte first, meaning the lowest byte is furthest to the left. In 
big endian mode bytes are accessed in the order of the highest byte first, meaning that the 
lowest byte is furthest to the right (see Figure 8-17).

Figure 8-17: Endianess [8-4]

Odd Bank Even Bank
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8 F1 24 A
9 01 46 8
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1 AB FF 0

Data Bus (7:0)Data Bus (15:8)

In little-endian mode if a byte is read from address “0”, an “FF” is returned, 
if 2 bytes are read from address 0, then (reading from the lowest by te which is
furthest to the LEFT in little-endian mode) an “ABFF” is returned. If 4 bytes 
(32-bits) are read from address 0, then a “5512ABFF” is returned.

In big-endian mode if a byte is read from address “0”, an “FF” is returned, 
if 2 bytes are read from address 0, then (reading from the lowest byte which is
furthest to the RIGHT in big-endian mode) an “FFAB” is returned. If 4 bytes 
(32-bits) are read from address 0, then a “1255FFAB” is returned.

What is important regarding memory and byte ordering is that performance can be greatly 
impacted if data requested isn’t aligned in memory according to the byte ordering scheme 
defined by the architecture. As shown in Figure 8-17, memory is either soldered into or 
plugged into an area on the embedded board, called memory banks. While the configuration 
and number of banks can vary from platform to platform, memory addresses are aligned in an 
odd or even bank format. If data is aligned in little endian mode, data taken from address “0” 
in an even bank is “ABFF”, and as such is an aligned memory access. So, given a 16-bit data 
bus, only one memory access is needed. But if data were to be taken from address “1” (an odd 
bank) in a memory aligned as shown in Figure 8-17, the little endian ordering scheme should 
retrieve “12AB” data. This would require two memory accesses, one to read the AB, the odd 
byte, and one to read “12,” the even byte, as well as some mechanism within the processor or 
in driver code to perform additional work to align them as “12AB”. Accessing data in mem-
ory that is aligned according to the byte ordering scheme can result in access times at least 
twice as fast. 

Finally, how memory is actually accessed by the software will, in the end, depend on the 
programming language used to write the software. For example, assembly language has vari-
ous architecture-specific addressing modes that are unique to an architecture, and Java allows 
modifications of memory through objects. 
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8.2.1 Memory Management Device Driver Pseudocode Examples
The following pseudocode demonstrates implementation of various memory management 
routines on the MPC860, specifically startup, disable, enable, and writing/erasing functions in 
reference to the architecture. These examples demonstrate how memory management can be 
implemented on a more complex architecture, and this in turn can serve as a guide to under-
standing how to write memory management drivers on other processors that are as complex 
or less complex than the MPC860 architecture.

Memory Subsystem Startup (Initialization) on MPC860

In the sample memory map in Figure 8-18, the first two banks are 8 MB of Flash, then 4 MB 
of DRAM, followed by 1 MB for the internal memory map and control/status registers. The 
remainder of the map represents 4 MB of an additional PCMCIA card. The main memory 
subsystem components that are initialized in this example are the physical memory chips 
themselves (i.e., Flash, DRAM) which in the case of the MPC860 is initialized via a memory 
controller, configuring the internal memory map (registers and dual-port RAM), as well as 
configuring the MMU.

Figure 8-18: Sample memory map [8-4]

1. Initializing the Memory 
Controller and connected 
ROM/RAM

The MPC860 memory controller 
(shown in Figure 8-19) is respon-
sible for the control of up to eight 
memory banks, interfacing to 
SRAM, EPROM, flash EPROM, 
various DRAM devices, and 
other peripherals (i.e., PCMCIA). 
Thus, in this example of the 
MPC860, on-board memory 
(Flash, SRAM, DRAM, etc.) 
is initialized by initializing the 
memory controller. Figure 8-19: MPC860 Integrated memory controller [8-4]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Address Range Accessed Device Port Width

0x00000000 - 0x003FFFFF Flash PROM Bank 1 32
0x00400000 - 0x007FFFFF Flash PROM Bank 2 32
0x04000000 - 0x043FFFFF DRAM 4 Mbyte (1Meg × 32-bit)it) 32
0x09000000 - 0x09003FFF MPC Internal Memory Map 32
0x09100000 - 0x09100003 BCSR - Board Control & Status Register 32
0x10000000 - 0x17FFFFFF PCMCIA Channel 16
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* CS(0:7)* - chip select pins
* BS_A(0:3)* - UPMA byte select pins
* BS_B(0:3)* - UPMB byte select pins
* GPL(0:5)* - general purpose pins
* TA* - transfer acknowledge pin
* UPWAITA - UPMA wait pin
* UPWAITB - UPMB wait pin
* AS* - address strobe pin
* BADDR(28:30) - b urst address pins
* WE(0:3)* - write enable pin s
* OE* - output enable pin
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Figure 8-20c: PowerPC 
connected to DRAM [8-4]

Copyright of Freescale Semiconductor, Inc. 
2004. Used by permission.

Figure 8-20b: PowerPC 
connected to SRAM [8-4]

Copyright of Freescale Semiconductor, Inc. 
2004. Used by permission.

Figure 8-20a: Memory controller pins [8-4]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

The memory controller has two differ-
ent types of subunits, the general-purpose 
chip-select machine (GPCM) and the user-
programmable machines (UPMs), that exist 
to connect to certain types of memory. The 
GPCM is designed to interface to SRAM, 
EPROM, Flash EPROM, and other peripher-
als (such as PCMCIA), whereas the UPMs 
are designed to interface to a wide variety of 
memory, including DRAMs. The pinouts of 
the MPC860’s memory controller reflect the 
different signals that connect these subunits 
to the various types of memory (see Figures 
8-20a, b, and c). For every chip select (CS), 
there is an associated memory bank.
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Because each memory bank has a pair of base and option registers (BR0/OR0–BR7/OR7), 
they need to be configured in the memory controller initialization drivers. The base register 
(BR) fields are made up of a 16-bit start address BA (bits 0-16); AT (bits 17-19) specifies the 
address type (allows sections of memory space to be limited to only one particular type of 
data), a port size (8, 16, 32-bit); a parity checking bit; a bit to write protect the bank (allowing 
for read-only or read/write access to data); a memory controller machine selection set of bits 
(for GPCM or one of the UPMs); and a bit indicating if the bank is valid. The option register 
(OR) fields are made up of bits of control information for configuring the GPCM and UPMs 
accessing and addressing scheme (i.e., burst accesses, masking, multiplexing, etc.).

The type of memory located in the various banks, and connected to the appropriate CS, can 
then be initialized for access via these registers. So, given the memory map example in Figure 
8-18, the pseudocode for configuring the first two banks (of 4 MB of Flash each), and the 
third bank (4 MB of DRAM) would be as follows:

Note: Length initialized by looking up the length in the table below, and entering 1’s from bit 0 to bit position 
indicating that length, and entering 0’s into the remaining bits.

With every new access request to external memory, the memory controller determines wheth-
er the associated address falls into one of the eight address ranges (one for each bank) defined 
by the eight base registers (which specify the start address of each bank) and option registers 
(which specify the bank length) pairs (see Figure 8-21). If it does, the memory access is pro-
cessed by either the GPCM or one of the UPMs, depending on the type of memory located in 
the memory bank that contains the desired address.

Figure 8-21: Base and option registers [8-2]
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…
// OR for Bank 0 – 4 MB of flash , 0x1FF8 for bits AM (bits 0-16) OR0 = 0x1FF80954; 
// Bank 0 – Flash starting at address 0x00000000 for bis BA(bits 0-16), configured for 
// GPCM, 32-bit
BR0 = 0x00000001;

// OR for Bank 1 – 4 MB of flash , 0x1FF8 for bits AM (bits 0-16) OR1 = 0x1FF80954; 
// Bank 1 - 4 MB of Flash on CS1 starting at address 0x00400000, configured for GPCM, 
// 32-bit
BR1 = 0x00400001;

// OR for Bank 2 – 4 MB of DRAM , 0x1FF8 for bits AM (bits 0-16) OR2 = 
// 0x1FF80800; Bank 2 - 4 MB of DRAM on CS2 starting at address 0x04000000, 
// configured for UPMA, 32-bit
BR2 = 0x04000081;

// OR for Bank 3 for BCSR OR3 = 0xFFFF8110; Bank 3 – Board Control and Status 
// Registers from address 0x09100000
BR3 = 0x09100001;
….

So, to initialize the memory controller, the base and option registers are initialized to reflect 
the types of memory in its banks. While no additional GPCM registers need initialization, 
for memory managed by the UPMA or UPMB, at the very least, the memory periodic timer 
prescaler register (MPTPR) is initialized for the required refresh timeout (i.e., for DRAM), 
and the related memory mode register (MAMR or MBMR) for configuring the UPMs needs 
initialization. The core of every UPM is a (64 × 32 bit) RAM array that specifies the specific 
type of accesses (logical values) to be transmitted to the UPM managed memory chips for a 
given clock cycle. The RAM array is initialized via the memory command register (MCR), 
which is specifically used during initialization to read from and write to the RAM array, and 
the memory data register (MDR), which stores the data the MCR uses to write to or read from 
the RAM array (see sample pseudocode below) [8-3].

…
// set periodic timer prescaler to divide by 8
MPTPR = 0x0800; // 16 bit register

//periodic timer prescaler value for DRAM refresh period (see the PowerPC manual for calculation), 
timer enable,..
MAMR = 0xC0A21114;

// 64-Word UPM RAM Array content example --the values in this table were generated using the
// UPM860 software available on the Motorola/Freescale Netcomm Web site.

UpmRamARRY:
 // 6 WORDS - DRAM 70ns - single read. (offset 0 in upm RAM) 
 .long 0x0fffcc24, 0x0fffcc04, 0x0cffcc04, 0x00ffcc04, 0x00ffcc00, 0x37ffcc47
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 // 2 WORDs - offsets 6-7 not used 
 .long 0xffffffff, 0xffffffff
 // 14 WORDs - DRAM 70ns - burst read. (offset 8 in upm RAM)
 .long 0x0fffcc24, 0x0fffcc04, 0x08ffcc04, 0x00ffcc04,0x00ffcc08, 0x0cffcc44, 
 .long 0x00ffec0c, 0x03ffec00, 0x00ffec44, 0x00ffcc08, 0x0cffcc44, 
 .long 0x00ffec04,0x00ffec00, 0x3fffec47
 // 2 WORDs - offsets 16-17 not used 
 .long 0xffffffff, 0xffffffff
 // 5 WORDs - DRAM 70ns - single write. (offset 18 in upm RAM) 
 .long 0x0fafcc24, 0x0fafcc04, 0x08afcc04, 0x00afcc00,0x37ffcc47
 // 3 WORDs - offsets 1d-1f not used 
 .long 0xffffffff, 0xffffffff, 0xffffffff
 // 10 WORDs - DRAM 70ns - burst write. (offset 20 in upm RAM) 
 .long 0x0fafcc24, 0x0fafcc04, 0x08afcc00, 0x07afcc4c, 0x08afcc00, 0x07afcc4c, 
 .long 0x08afcc00, 0x07afcc4c, 0x08afcc00, 0x37afcc47
 // 6 WORDs - offsets 2a-2f not used 
 .long 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff
 // 7 WORDs - refresh 70ns. (offset 30 in upm RAM) 
 .long 0xe0ffcc84, 0x00ffcc04, 0x00ffcc04, 0x0fffcc04, 0x7fffcc04, 0xffffcc86, 
 .long 0xffffcc05
 // 5 WORDs - offsets 37-3b not used 
 .long 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,0xffffffff
 // 1 WORD - exception. (offset 3c in upm RAM) 
 .long 0x33ffcc07
 // 3 WORDs - offset 3d-3f not used 
 .long 0xffffffff, 0xffffffff, 0x40004650
UpmRAMArrayEnd:

// Write To UPM Ram Array
Index = 0
Loop While Index < 64 
{
MDR = UPMRamArray[Index]; // Store data to MDR
MCR = 0x0000; // Issue “Write” command to MCR register to store what is in MDR in RAM Array
Index = Index + 1;
} //end loop
…..

2. Initializing the Internal Memory Map on the MPC860

The MPC860’s internal memory map contains the architecture’s special purpose registers 
(SPRs), as well as dual-port RAM, also referred to as parameter RAM, that contain the 
buffers of the various integrated components, such as Ethernet or I2C, for example. On the 
MPC860, it is simply a matter of configuring one of these SPRs, the Internal Memory Map 
Register (IMMR) shown in Figure 8-22, to contain the base address of the internal memory 
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map, as well as some factory-related information on the specific MPC860 processor (part 
number and mask number).

Figure 8-22: IMMR [8-4]
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In the case of the sample memory map used in this section, the internal memory map starts at 
0x09000000, so in pseudocode form, the IMMR would be set to this value via the “mfspr” or 
“mtspr” commands:

mtspr 0x090000FF // the top 16 bits are the address, bits 16–23 are the part number 
// (0x00 in this example), and bits 24–31 is the mask number 
// (0xFF in this example).

3. Initializing the MMU on the MPC860

The MPC860 uses the MMUs to manage the board’s virtual memory management scheme, 
providing logical/effective to physical/real address translations, cache control (instruction 
MMU and instruction cache, data MMU and data cache), and memory access protections. The 
MPC860 MMU (shown in Figure 8-23a) allows support for a 4 GB uniform (user) address 
space that can be divided into pages of a variety of sizes, specifically 4 kB, 16 kB, 512 kB, or 
8 MB, that can be individually protected and mapped to physical memory.

Figure 8-23a: TLB within VM scheme [8-4]
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Using the smallest page size a virtual address space 
can be divided into on the MPC860 (4 kB), a transla-
tion table—also commonly referred to as the memory
map or page table—would contain a million address 
translation entries, one for each 4 kB page in the 
4 GB address space. The MPC860 MMU does not 
manage the entire translation table at one time (in 
fact, most MMUs do not). This is because embed-
ded boards do not typically have 4 GB of physical 
memory that needs to be managed at one time. It 
would be very time consuming for an MMU to 
update a million entries with every update to virtual 
memory by the software, and an MMU would need to use a lot of faster (and more expensive) 
on-chip memory in order to store a memory map of such a size. So, as a result, the MPC860 
MMU contains small caches within it to store a subset of this memory map. These caches are 
referred to as translation lookaside buffers (TLBs, shown in Figure 8-23b—one instruction 
and one data), and are part of the MMU’s initialization sequence. In the case of the MPC860, 
the TLBs are 32-entry and fully associative caches. The entire memory map is stored in 
cheaper off-chip main memory as a two-level tree of data structures that define the physical 
memory layout of the board and their corresponding effective memory address. 

The TLB is how the MMU translates (maps) logical/virtual addresses to physical addresses. 
When the software attempts to access a part of the memory map not within the TLB, a TLB
miss occurs, which is essentially a trap requiring the system software (through an exception 
handler) to load the required translation entry into the TLB. The system software that loads 
the new entry into the TLB does so through a process called a tablewalk. This is basically 
the process of traversing the MPC860’s two-level memory map tree in main memory to 
locate the desired entry to be loaded in the TLB. The first level of the PowerPC’s multilevel 
translation table scheme (its translation table structure uses one level-1 table and one or more 
level-2 tables) refers to a page table entry in the page table of the second level. There are 1024 
entries, where each entry is 4 bytes (24 bits), and represents a segment of virtual memory 
that is 4 MB in size. The format of an entry in the level 1 table is made up of a valid bit field 
(indicating that the 4 MB respective segment is valid), a level-2 base address field (if valid 
bit is set, pointer to base address of the level-2 table which represents the associated 4 MB 
segment of virtual memory), and several attribute fields describing the various attributes of 
the associated memory segment. 

Within each level-2 table, every entry represents the pages of the respective virtual memory 
segment. The number of entries of a level-2 table depends on the defined virtual memory page 
size (4 kB, 16 kB, 512 kB, or 8 MB) see Table 8-1. The larger the virtual memory page size, 
the less memory used for level-2 translation tables, since there are fewer entries in the transla-
tion tables—for example, a 16 MB physical memory space can be mapped using 2 × 8 MB 
pages (2048 bytes in the level 1 table and a 2 × 4 in the level-2 table for a total of 2056 bytes), 

Figure 8-23b: TLB [8-4]
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or 4096 × 4 kB pages (2048 bytes in the level-1 table and a 4 × 4096 in the level-2 table for a 
total of 18432 bytes). 

Table 8-1: Level 1 and 2 entries [8-4]

Page size No. of pages 
per segment

Number of 
entries in L2T

L2T size 
(Bytes)

8 MB .5 1 4
512 kB 8 8 32
16 kB 256 1024* 4096
4 kB 1024 1024 4096

In the MPC860’s TLB scheme, the desired entry location is derived from the incoming effec-
tive memory address. The location of the entry within the TLB sets is specifically determined 
by the index field(s) derived from the incoming logical memory address. The format of the 
32-bit logical (effective) address generated by the PowerPC Core differs depending on the 
page size. For a 4 kB page, the effective address is made up of a 10-bit level-1 index, a 
10-bit level-2 index, and a 12-bit page offset (see Figure 8-24a). For a 16 kB page, the page 
offset becomes 14 bits, and the level-2 index is 8-bits (see Figure 8-24b). For a 512 kB page, 
the page offset is 19 bits, and the level-2 index is then 3 bits long (Figure 8-24c)—and for an 
8 MB page, the page offset is 23 bits long, there is no level-2 index, and the level-1 index is 
9-bits long (Figure 8-24d). 

Figure 8-24d: 8 MB effective 
address format [8-4]

Figure 8-24c: 512 kB effective 
address format [8-4]

Figure 8-24b: 16 kB effective 
address format [8-4]

Figure 8-24a: 4 kB effective 
address format [8-4]

0 9     10 3119     20

12-bit page of fset10 bit le vel-1 index 10 bit le vel-2 inde x

0 9     10 3117     18

14-bit page offset10 bit le vel-1 index 8 bit level-2 inde x

0 9     10 3112     13

19-bit page of fset10 bit le vel-1 index 8 bit level-2 inde x

0 8     9 31

9 bit le vel-1 index 23-bit page of fset
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The page offset of the 4 kB effective address format is 12 bits wide to accommodate the offset 
within the 4 kB (0x0000 to 0x0FFF) pages. The page offset of the 16 kB effective address 
format is 14 bits wide to accommodate the offset within the 16 kB (0x0000 to 0x3FFF) pages. 
The page offset of the 512 kB effective address format is 19 bits wide to accommodate the 
offset within the 512 kB (0x0000 to 0x7FFFF) pages, and the page offset of the 8 MB effec-
tive address format is 23 bits wide to accommodate the offset within the 8 MB (0x0000 to 
0x7FFFF8) pages.

In short, the MMU uses these effective address fields (level-1 index, level-2 index, and offset) 
in conjunction with other registers, TLB, translation tables, and the tablewalk process to 
determine the associated physical address (see Figure 8-25).

Figure 8-25: 2-level translation table for 4 kB page scheme [8-4]

The MMU initialization sequence involves initializing the MMU registers and translation table 
entries. The initial steps include initializing the MMU Instruction Control Register (MI_CTR) 
and the Data Control Registers (MD_CTR) shown in Figures 8-26a and b. The fields in both 
registers are generally the same, most of which are related to memory protection.

Initializing translation table entries is a matter of configuring two memory locations (level 1 
and level 2 descriptors), and three register pairs, one for data and one for instructions, in each 
pair, for a total of six registers. This equals one each of an Effective Page Number (EPN) 
register, Tablewalk Control (TWC) register, and Real Page Number (RPN) register. 
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The level 1 descriptor (see Figure 8-27a) defines the fields of the level-1 translation table 
entries, such as the Level-2 Base Address (L2BA), the access protection group, page size, 
and so on. The level-2 page descriptor (see Figure 8-27b) defines the fields of the level-2 
translation table entries, such as: the physical page number, page valid bit, page protection, 

Figure 8-26a:MI_CTR [8-2]

Figure 8-26b: MD_CR [8-2]

MI_CTR - MMU Instruction Control Register
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MD_CTR - MMU Data Control Register
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Figure 8-27b: L2 descriptor [8-2]

Figure 8-27a: L1 descriptor [8-2]
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and so on. The registers shown in Figures 8-27c–e are essentially TLB source registers used 
to load entries into the TLBs. The Effective Page Number (EPN) registers contain the effec-
tive address to be loaded into a TLB entry. The Tablewalk Control (TWC) registers contain 
the attributes of the effective address entry to be loaded into the TLB (i.e., page size, access 
protection, etc.), and the Real Page Number (RPN) registers contain the physical address and 
attributes of the page to be loaded into the TLB. 

An example of a MMU initialization sequence on the MPC860 is pseudocoded below.

// Invalidating TLB entries 
tlbia ;   // the MPC860’s instruction to invalidate entries within the TLBs, also the 
   // “tlbie” can be used

// Initializing the MMU Instruction Control Register
…
MI_CTR.fld.all = 0; // clear all fields of register so group protection mode = 
 // PowerPC mode, page protection mode is page resolution, etc.
MI_CTR.fld.CIDEF = 1; // instructin cache inhibit default when MMU disabled
…

Figure 8-27e: Mx-RPN [8-2]

Figure 8-27d: Mx-TWC [8-2]

Figure 8-27c: Mx-EPN [8-2]
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// Initializing the MMU Data Control Register
…
MD_CTR.fld.all = 0; // clear all fields of register so group protection mode = 
 // PowerPC mode, page protection mode is page resolution, etc.
MD_CTR.fld.TWAM = 1; // tablewalk assist mode = 4kbyte page hardware assist
MD_CTR.fld.CIDEF = 1; // data cache inhibit default when MMU disabled
…

Move to Exception Vector Table the Data and Instruction TLB Miss and Error ISRs (MMU
interrupt vector locations shown in table below).[8-4]

With a TLB miss, an ISR loads the descriptors into the MMU. Data TLB Reload ISR example:
…
// put next code into address, incrementing vector by 4 after each line i.e., “mtspr 
// M_TW,r0” = “07CH, 011H, 013H, 0A6H”, so put integer 0x7C1113A6H at vector 
// 0x1200 and increment vector by 4;
install start of ISR at vector address offset = 0x1200; 

// save general purpose register into MMU tablewalk special register
mtspr M_TW, GPR; 

mfspr GPR, M_TWB; // load GPR with address of level one descriptor
lwz GPR, (GPR); // Load level one page entry

// save level two base pointer and level one # attributes into DMMU tablewalk control
// register
mtspr MD_TWC,GPR;

// load GPR with level two pointer while taking into account the page size
mfspr GPR, MD_TWC;

lwz GPR, (GPR); // Load level two page entry
mtspr MD_RPN, GPR; // Write TLB entry into real page number register

// restore GPR from tablewalk special register return to main execution stream;
mfspr GPR, M_TW;
....

Offset (hex) Interrupt Type

01100 Implementation Dependent Instruction TLB Miss
01200 Implementation Dependent Data TLB Miss
01300 Implementation Dependent Instruction TLB Error
01400 Implementation Dependent Data TLB Error
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Instruction TLB Reload ISR Example:

// put next code into address, incrementing vector by 4 after each line i.e., “mtspr 
// M_TW,r0” = “07CH, 011H, 013H, 0A6H”, so put integer 0x7C1113A6H at vector 
// 0x1100 and increment vector by 4;
install start of ISR at vector address offset = 0x1100; 
…

// save general purpose register into MMU tablewalk special register
mtspr M_TW , GPR; 

mfspr GPR, SRR0 // load GPR with instruction miss effective address 
mtspr MD_EPN, GPR // save instruction miss effective address in MD_EPN
mfspr GPR, M_TWO // load GPR with address of level one descriptor
lwz GPR, (GPR) // Load level one page entry
mtspr MI_TWC,GPR // save level one attributes
mtspr MD_TWC,GPR // save level two base pointer

// load R1 with level two pointer while taking into account the page size
mfspr GPR, MD_TWC 

lwz GPR, (GPR)   // Load level two page entry
mtspr MI_RPN, GPR // Write TLB entry
mfspr GPR, M_TW // restore R1

return to main execution stream;

//Initialize L1 table pointer and clear L1 Table i.e.,MMU tables/TLBs 043F0000 – 
// 043FFFFF
Level1_Table_Base_Pointer = 0x043F0000;

index:= 0; 
WHILE ((index MOD 1024) is NOT = 0) DO 
 Level1 Table Entry at Level1_Table_Base_Pointer + index = 0; 
 index = index + 1;
end WHILE;
....

Initialize translation table entries and map in desired segments in level1 table and pages in 
level2 tables. For example, given the physical memory map below, the l1 and l2 descriptors 
would need to be configured for Flash, DRAM, and so on.
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//i.e., Initialize entry for and Map in 8 MB of Flash at 0x00000000, adding entry into L1 table, and 
//adding a level2 table for every L1 segment—as shown in Table 8-28b, page size is 8 MB, cache is 
//not inhibited, marked as write-through, used in supervisor mode, read only, and shared.

// 8 MB Flash
…
Level2_Table_Base_Pointer = Level1_Table_Base_Pointer + 
size of L1 Table (i.e.,1024);
L1desc(Level1_Table_Base_Pointer + L1Index).fld.BA = Level2_Table_Base_Pointer ;
L1desc(Level1_Table_Base_Pointer + L1Index).fld.PS = 11b; // page size = 8MB 

// Writethrough attribute = 1 writethrough cache policy region
L1desc.fld(Level1_Table_Base_Pointer + L1Index).WT = 1; 

L1desc(Level1_Table_Base_Pointer + L1Index).fld.PS = 1; // page size = 512K 

// level-one segment valid bit = 1 segment valid
L1desc(Level1_Table_Base_Pointer + L1Index).fld.V = 1; 

//for every segment in L1 table, there is an entire level2 table 
L2index:=0;
WHILE (L2index < # Pages in L1Table Segment) DO 
 L2desc[Level2_Table_Base_Pointer + L2index * 4].fld.RPN = physical page number;
 L2desc[Level2_Table_Base_Pointer + L2index * 4].fld.CI = 0; // Cache Inhibit Bit = 0 
 ….

Figure 8-28a: Physical memory map [8-4]

Figure 8-28b: L1/L2 configuration [8-4]

Address Range Accessed Device Port Width

0x00000000 - 0x003FFFFF Flash PROM Bank 1 32
0x00400000 - 0x007FFFFF Flash PROM Bank 2 32
0x04000000 - 0x043FFFFF DRAM 4 Mbyte (1Meg × 32-bit)it) 32
0x09000000 - 0x09003FFF MPC Internal Memory Map 32
0x09100000 - 0x09100003 BCSR - Board Control & Status Register 32
0x10000000 - 0x17FFFFFF PCMCIA Channel 16

PS # Used for... Address Range CI WT S/U R/W SH

8M 1 Monitor & trans. tbls 0x0 - 0x7FFFFF N Y S R/O Y

512K 2 Stack & scratchpad 0x40000000 - 0x40FFFFF N N S R/W Y

512K 1 CPM data buffers 0x4100000 - 0x417FFFF Y - S R/W Y

512K 5 Prob. prog. & data 0x4180000 - 0x43FFFFF N N S/U R/W Y

16K 1 MPC int mem. map 0x9000000 - Y - S R/W Y

16K 1 Board config. regs 0x9100000 - 0x9103FFF Y - S R/W Y

8M 16 PCMCIA 0x10000000 - 0x17FFFFFF Y - S R/W Y
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 L2index = L2index + 1;
end WHILE;

//i.e., Map in 4 MB of DRAM at 0x04000000, as shown in table 8-29b, divided into eight, 
// 512 Kb pages. Cache is enabled, and is in copy-back mode, supervisormode, supports 
// reading and writing, and it is shared.
…
Level2_Table_Base_Pointer = Level2_Table_Base_Pointer + 
Size of L2Table for 8MB Flash;
L1desc(Level1_Table_Base_Pointer + L1Index).fld.BA = Level2_Table_Base_Pointer ;
L1desc(Level1_Table_Base_Pointer + L1Index).fld.PS = 01b; // page size = 512KB 

// Writethrough Attribute = 0 copyback cache policy region 
L1desc.fld(Level1_Table_Base_Pointer + L1Index).WT = 0; 
L1desc(Level1_Table_Base_Pointer + L1Index).fld.PS = 1; // page size = 512K 

// level-one segment valid bit = 1 segment valid 
L1desc(Level1_Table_Base_Pointer + L1Index).fld.V = 1; 
…

// Initializing Effective Page Number Register 
loadMx_EPN(mx_epn.all);

// Initializing the Tablewalk Control Register Descriptor 
load Mx_TWC(L1desc.all);

// Initializing the Mx_RPN Descriptor 
load Mx_RPN (L2desc.all);

….

At this point the MMU and caches can be enabled (see memory subsystem enable section).

Memory Subsystem Disable on MPC860

// Disable MMU -- The MPC860 powers up with the MMUs in disabled mode, but to 
// disable translation IR and DR bits need to be cleared.
…
rms msr ir 0; rms msr dr 0 ; // disable translation
…

//Disable Caches
…

// disable caches (0100b in bits 4-7, IC_CST[CMD] and DC_CST[CMD] registers)
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addis r31,r0,0x0400 
mtspr DC_CST,r31
mtspr IC_CST,r31
….

Memory Subsystem Enable on MPC860

// Enable MMU via setting IR and DR bits and “mtmsr” command on MPC860
…
ori r3,r3,0x0030; // set the IR and DR bits
mtmsr r3;  //enable translation
isync;
…

//enable caches
…
addis r31,r0,0x0a00 // unlock all in both caches
mtspr DC_CST,r31
mtspr IC_CST,r31
addis r31,r0,0x0c00 // invalidate all in both caches
mtspr DC_CST,r31
mtspr IC_CST,r31

// enable caches (0010b in bits 4-7,IC_CST[CMD] and DC_CST[CMD] registers)
addis r31,r0,0x0200 
mtspr DC_CST,r31
mtspr IC_CST,r31
….

Memory Subsystem Writing/Erasing Flash

While reading from Flash is the same as reading from RAM, accessing Flash for writing or 
erasing is typically much more complicated. Flash memory is divided into blocks, called sec-
tors, where each sector is the smallest unit that can be erased. While flash chips differ in the 
process required to perform a write or erase, the general handshaking is similar to the pseudo-
code examples below for the Am29F160D Flash chip. The Flash erase function notifies the 
Flash chip of the impending operation, sends the command to erase the sector, and then loops, 
polling the Flash chip to determine when it completes. At the end of the erase function, the 
Flash is then set to standard read mode. The write routine is similar to that of the erase func-
tion, except the command is transmitted to perform a write to a sector, rather than an erase. 
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….

// The address at which the Flash devices are mapped 
int FlashStartAddress = 0x00000000; 

int FlashSize = 0x00800000; // The size of the flash devices in bytes – i.e., 8MB.

// flash memory block offset table from the flash base of the various sectors, as well as, 
// the corresponding sizes.
BlockOffsetTable = {{ 0x00000000, 0x00008000 },{ 0x00008000, 0x00004000 },
 { 0x0000C000, 0x00004000 }, { 0x00010000, 0x00010000 },
 { 0x00020000, 0x00020000 }, { 0x00040000, 0x00020000 },
 { 0x00060000, 0x00020000 }, { 0x00080000, 0x00020000 }, ….};

//Flash write pseudocode example
FlashErase (int startAddress, int offset) {
 ….
 // Erase sector commands
 Flash [startAddress + (0x0555 << 2)] = 0x00AA00AA; // unlock 1 flash command
 Flash [startAddress + (0x02AA << 2)] = 0x00550055; // unlock 2 flash command
 Flash [startAddress + (0x0555 << 2)] = 0x00800080); // erase setup flash command
 Flash [startAddress + (0x0555 << 2)] = 0x00AA00AA; // unlock 1 flash command
 Flash [startAddress + (0x02AA << 2)] = 0x00550055; // unlock 2 flash command
 Flash [startAddress + offset] = 0x00300030; //set flash sector erase command

 // Poll for completion: avg. block erase time is 700msec, worst-case block erase time 
 // is 15sec 
 int poll;
 int loopIndex = 0;
 while (loopIndex < 500) {
 for (int i = 0; i < 500 * 3000; i++);
 poll = Flash(startAddr + offset);
 if ((poll AND 0x00800080) = 0x00800080 OR 
(poll AND 0x00200020) = 0x00200020) {
 exit loop;
 }
 loopIndex++;
 }

 // exit
 Flash (startAddr) = 0x00F000F0; //read reset command
 Flash(startAddr + offset) == 0xFFFFFFFF;
}
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8.3 Example 3: On-board Bus Device Drivers
As discussed in Chapter 7, associated with every bus is (1) some type of protocol that defines 
how devices gain access to the bus (arbitration), (2) the rules attached devices must follow to 
communicate over the bus (handshaking), and (3) the signals associated with the various bus 
lines. Bus protocol is supported by the bus device drivers, which commonly include all or 
some combination of all of the 10 functions from the list of device driver functionality intro-
duced at the start of this chapter, including:

Bus Startup, initialization of the bus upon power-on or reset. 

Bus Shutdown, configuring bus into its power-off state. 

Bus Disable, allowing other software to disable bus on-the-fly.

Bus Enable, allowing other software to enable bus on-the-fly.

Bus Acquire, allowing other software to gain singular (locking) access to bus.

Bus Release, allowing other software to free (unlock) bus.

Bus Read, allowing other software to read data from bus.

Bus Write, allowing other software to write data to bus.

Bus Install, allowing other software to install new bus device on-the-fly for expand-
able buses.

Bus Uninstall, allowing other software to remove installed bus device on-the-fly for 
expandable buses.

Which of the routines are implemented and how they are implemented depends on the actual 
bus. The pseudocode below is an example of an I2C bus initialization routine provided as an 
example of a bus startup (initialization) device driver on the MPC860. 

8.3.1 On-Board Bus Device Driver Pseudocode Examples
The following pseudocode gives an example of implementing a bus initialization routine on 
the MPC860, specifically the startup function in reference to the architecture. These examples 
demonstrate how bus management can be implemented on a more complex architecture, 
and this can be used as a guide to understand how to write bus management drivers on other 
processors of equal or lesser complexity than the MPC860 architecture. Other driver routines 
have not been pseudocoded, because the same concepts apply here as in Sections 8.1 and 
8.2—essentially, looking in the architecture and bus documentation for the mechanisms that 
enable a bus, disable a bus, acquire a bus, and so on.

I2C Bus Startup (Initialization) on the MPC860

The I2C (inter-integrated circuit) protocol is a serial bus with one serial data line (SDA) and 
one serial clock line (SCL). With the I2C protocol, all devices attached to the bus have a 
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unique address (identifier), and this identifier is part of the data stream transmitted over the 
SDL line. 

The components on the master processor that support the I2C protocol are what need ini-
tialization. In the case of the MPC860, there is an integrated I2C controller on the master 
processor (see Figure 8-29). The I2C controller is made up transmitter registers, receiver reg-
isters, a baud rate generator, and a control unit. The baud rate generator generates the clock 
signals when the I2C controller acts as the I2C bus master—if in slave mode, the controller 
uses the clock signal received from the master. In reception mode, data is tranmsitted from 
the SDA line into the control unit, through the shift register, which in turn transmits the data 
to the receive data register. The data that will be transmitted over the I2C bus from the PPC is 
initially stored in the transmit data register and transferred out through the shift register to the 
control unit and over the SDA line. Initializing the I2C bus on the MPC860 means initializing 
the I2C SDA and SCL pins, many of the I2C registers, some of the parameter RAM, and the 
associated buffer descriptors.

Figure 8-29: I2C controller on MPC860 [8-4]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

peripheral bus u-bus

mode registertx data registerrx data register

shift register

control

BRG SCL

SDAshift register

The MPC860 I2C SDA and SCL pins are configured via the Port B general purpose I/O port 
(see Figure 8-30a and b). Because the I/O pins can support multiple functions, the specific 
function a pin will support needs to be configured via port B’s registers (shown in Figure
8-30c). Port B has four read/write (16-bit) control registers: the Port B Data Register 
(PBDAT), the Port B Open Drain Register (PBODR), the Port B Direction Register (PBDIR), 
and the Port B Pin Assignment Register (PBPAR). In general, the PBDAT register contains 
the data on the pin, the PBODR configures the pin for open drain or active output, the PBDIR 
configures the pin as either an input or output pin, and the PBPAR assigns the pin its function 
(I2C, general purpose I/O, etc.).
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An example of initializing the SDA and SCL pins on the MPC860 is given in the pseudocode 
below.

…
immr = immr & 0xFFFF0000; // MPC8xx internal register map 
// Configure Port B pins to enable SDA and SCL 
immr->pbpar = (pbpar) OR (0x00000030); //set to dedicated I2C  
immr->pbdir = (pbdir) OR (0x00000030); // Enable I2CSDA and I2CSCL as outputs 
….

Figure 8-30b: MPC860 port B pins [8-4]

Copyright of Freescale Semiconductor, Inc. 2004. 
Used by permission.

Figure 8-30a: SDA and SCL pins on MPC860 [8-4]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Figure 8-30c: MPC860 port B register [8-4]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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I2C Mask Register (I2CMR)

0 1 2 3 4 5 6 7
TXE BSYT XB RXB

The I2C registers that need initialization include the I2C Mode Register (I2MOD), I2C Ad-
dress Register (I2ADD), the Baud Rate Generator Register (I2BRG), the I2C Event Register 
(I2CER), and the I2C Mask Register (I2CMR) shown in Figures 8-31a–e).

Figure 8-31e: I2CMR [8-2]

Figure 8-31c: I2BRG [8-2]

Figure 8-31b: I2ADD [8-2]

Figure 8-31d: I2CER [8-2]

Figure 8-31a: I2MOD [8-2]

I2C Mode Register (I2MOD)
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I2C Address Register (I2ADD )
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SAD0 – SAD6 = Sla ve Address

I2C BRG Register (I2BRG)

0 1 2 3 4 5 6 7
DIV[0:7]

I2C Event Register (I2CER)

0 1 2 3 4 5 6 7
TXE BSYT XB RXB

An example of I2C register initialization pseudocode is as follows:

/* I2C Registers Initialization Sequence */
….

// Disable I2C before initializing it, LSB character order for transmission and reception, 
// I2C clock not filtered, clock division factor of 32, etc. 
immr->i2mod = 0x00; 

immr->i2add = 0x80; // I2C MPC860 address = 0x80 
immr->i2brg = 0x20; // divide ratio of BRG divider
immr->i2cer = 0x17; // Clear out I2C events by setting relevant bits to “1”
immr->i2cmr = 0x17; // Enable interrupts from I2C in corresponding I2CER
immr->i2mod = 0x01; // Enable I2C bus
….

Five of the 15 field I2C parameter RAM need to be configured in the initialization of I2C on 
the MPC860. They include the receive function code register (RFCR), the transmit function 
code register (TFCR), and the maximum receive buffer length register (MRBLR), the base 
value of the receive buffer descriptor array (Rbase), and the base value of the transmit buffer 
descriptor array (Tbase) shown in Figure 8-32.
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Offset1 Name Width Description

0x00

0x02

RBASE

TBASE

Hword

Hword

Rx/TxBD table base address. Indicate where the BD tables begin in the dual-
port RAM. Setting Rx/TxBD[W] in the last BD in each BD table determines 
how many BDs are allocated for the Tx and Rx sections of the I2C. Initialize 
RBASE/TBASE before enabling the I2C. Furthermore, do not configure BD 
tables of the I2C to overlap any other active controller’s parameter RAM. 
RBASE and TBASE should be divisible by eight.

0x04

0x05

RFCR

TFCR

Byte

Byte

Rx/Tx function code. Contains the value to appear on AT[1–3] when the 
associated SDMA channel accesses memory. Also controls the byte-ordering 
convention for transfers.

0x06 MRBLR Hword Maximum receive buffer length. Defines the maximum number of bytes the 
I2C receiver writes to a receive buffer before moving to the next buffer. The 
receiver writes fewer bytes to the buffer than the MRBLR value if an error or 
end-of-frame occurs. Receive buffers should not be smaller than MRBLR.

Transmit buffers are unaffected by MRBLR and can vary in length; the num-
ber of bytes to be sent is specified in TxBD[Data Length].

MRBLR is not intended to be changed while the I2C is operating. However it 
can be changed in a single bus cycle with one 16-bit move (not two 8-bit bus 
cycles back-to-back). The change takes effect when the CP moves control to 
the next RxBD. To guarantee the exact RxBD on which the change occurs, 
change MRBLR only while the I2C receiver is disabled. MRBLR should be 
greater than zero.

0x08 RSTATE Word Rx internal state. Reserved for CPM use.

0x0C RPTR Word Rx internal data pointer2 is updated by the SDMA channels to show the next 
address in the buffer to be accessed.

0x10 RBPTR Hword RxBD pointer. Points to the next descriptor the receiver transfers data to 
when it is in an idle state or to the current descriptor during frame processing 
for each I2C channel. After a reset or when the end of the descriptor table is 
reached, the CP initializes RBPTR to the value in RBASE. Most applications 
should not write RBPTR, but it can be modified when the receiver is disabled 
or when no receive buffer is used.

0x12 RCOUNT Hword Rx internal byte count2 is a down-count value that is initialized with the 
MRBLR value and decremented with every byte the SDMA channels write.

0x14 RTEMP Word Rx temp. Reserved for CPM use.

0x18 TSTATE Word Tx internal state. Reserved for CPM use.

0x1C TPTR Word Tx internal data pointer2 is updated by the SDMA channels to show the next 
address in the buffer to be accessed.

0x20 TBPTR Hword TxBD pointer. Points to the next descriptor that the transmitter transfers 
data from when it is in an idle state or to the current descriptor during 
frame transmission. After a reset or when the end of the descriptor table is 
reached, the CPM initialized TBPTR to the value in TBASE. Most applica-
tions should not write TBPTR, but it can be modified when the transmitter is 
disabled or when no transmit buffer is used.

0x22 TCOUNT Hword Tx internal byte count2 is a down-count value initialized with TxBD[Data 
Length] and decremented with every byte read by the SDMA channels.

0x24 TTEMP Word Tx temp. Reserved for CP use.

0x28-0x
2F

– – Used for I2C/SPI relocation.

Figure 8-32: I2C parameter RAM [8-4]

1 As programmed in I2C_BASE, the default value is IMMR + 0x3C80.
2 Normally, these parameters need not be accessed.
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See the following pseudocode for an example of I2C parameter RAM initialization:
// I2C Parameter RAM Initialization
….

// specifies for reception big endian or true little endian byte ordering and channel # 0
immr->I2Cpram.rfcr = 0x10; 

// specifies for reception big endian or true little endian byte ordering and channel # 0
 immr->I2Cpram.tfcr = 0x10; 
 immr->I2Cpram.mrblr = 0x0100; // the maximum length of I2C receive buffer
 immr->I2Cpram.rbase = 0x0400; // point RBASE to first RX BD 
immr->I2Cpram.tbase = 0x04F8; // point TBASE to TX BD 
….

Data to be transmitted or received via the I2C controller (within the CPM of the PowerPC) is 
input into buffers which the transmit and receive buffer descriptors refer to. The first half-
word  (16 bits) of the transmit and receive buffer contain status and control bits (as shown in 
Figures 8-33a and b). The next 16 bits contain the length of the buffer. 

In both buffers the Wrap (W) bit indicates whether this buffer descriptor is the final descrip-
tor in the buffer descriptor table (when set to 1, the I2C controller returns to the first buffer in 
the buffer descriptor ring). The Interrupt (I) bit indicates whether the I2C controller issues an 
interrupt when this buffer is closed. The Last bit (L) indicates whether this buffer contains 
the last character of the message. The CM bit indicates whether the I2C controller clears the 
Empty (E) bit of the reception buffer or Ready (R) bit of the transmission buffer when it is 
finished with this buffer. The Continuous Mode (CM) bit refers to continuous mode in which, 
if a single buffer descriptor is used, continuous reception from a slave I2C device is allowed.

In the case of the transmission buffer, the Ready (R) bit indicates whether the buffer 
associated with this descriptor is ready for transmission. The Transmit Start Condition (S) 
bit indicates whether a start condition is transmitted before transmitting the first byte of this 
buffer. The NAK bit indicates that the I2C aborted the transmission because the last transmit-
ted byte did not receive an acknowledgement. The Underrun Condition (UN) bit indicates that 
the controller encountered an underrun condition while transmitting the associated data buf-
fer. The Collision (CL) bit indicates that the I2C controller aborted transmission because the 
transmitter lost while arbitrating for the bus. In the case of the reception buffer, the Empty (E) 

Figure 8-33b: Transmit buffer descriptor [8-2]Figure 8-33a: Receive buffer descriptor [8-2]

blanks are reserved
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bit indicates if the data buffer associated with this buffer descriptor is empty and the Overrun 
(OV) bit indicates whether an overrun occurred during data reception.

An example of I2C buffer descriptor initialization pseudocode would look as follows:
// I2C Buffer Descriptor Initialization 
….
//10 reception buffers initialized
index = 0;
 While (index<9) do
 {
//E = 1, W = 0, I = 1, L = 0, OV = 0
 immr->udata_bd ->rxbd[index].cstatus = 0x9000; 
 immr->bd ->rxbd[index].length = 0; //buffer empty      
immr->bd ->rxbd[index].addr = …
index = index + 1;
 }

//last receive buffer initialized
immr->bd->rxbd[9].cstatus = 0xb000; //E = 1, W=1, I = 1, L=0, OV=0   
 immr->bd ->rxbd[9].length = 0; // buffer empty 
immr->udata_bd ->rxbd[9].addr = …;   

//transmission buffer
immr->bd ->txbd.length = 0x0010; //transmission buffer 2 bytes long   

// R=1, W=1, I=0, L=1, S=1, NAK = 0, UN=0, CL=0
immr->bd->txbd.cstatus = 0xAC00;

immr->udata_bd ->txbd.bd_addr = ….;   

 /* Put address and message in TX buffer */
….

// Issue Init RX & TX Parameters Command for I2C via CPM command register CPCR.
while( immr->cpcr & (0x0001)); // Loop until ready to issue command 
immr->cpcr = (0x0011);   // Issue Command
while( immr->cpcr & (0x0001)); //Loop until command proecessed
….
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8.4 Board I/O Driver Examples
The board I/O subsystem components that require some form of software management in-
clude the components integrated on the master processor, as well as an I/O slave controller, 
if one exists. The I/O controllers have a set of status and control registers used to control the 
processor and check on its status. Depending on the I/O subsystem, commonly all or some 
combination of all of the 10 functions from the list of device driver functionality introduced at 
the start of this chapter are typically implemented in I/O drivers, including:

I/O Startup, initialization of the I/O upon power-on or reset. 

I/O Shutdown, configuring I/O into its power-off state. 

I/O Disable, allowing other software to disable I/O on-the-fly.

I/O Enable, allowing other software to enable I/O on-the-fly.

I/O Acquire, allowing other software gain singular (locking) access to I/O.

I/O Release, allowing other software to free (unlock) I/O.

I/O Read, allowing other software to read data from I/O.

I/O Write, allowing other software to write data to I/O.

I/O Install, allowing other software to install new I/O on-the-fly.

I/O Uninstall, allowing other software to remove installed I/O on-the-fly.

The Ethernet and RS232 I/O initialization routines for the PowerPC and ARM architectures 
are provided as examples of I/O startup (initialization) device drivers. These examples are to 
demonstrate how I/O can be implemented on more complex architectures, such as PowerPC 
and ARM, and this in turn can be used as a guide to understand how to write I/O drivers on 
other processors that are as complex or less complex than the PowerPC and ARM archi-
tectures. Other I/O driver routines were not pseudocoded in this chapter, because the same 
concepts apply here as in Sections 8.1 and 8.2. In short, it is up to the responsible developer 
to study the architecture and I/O device documentation for the mechanisms used to read from 
an I/O device, write to an I/O device, enable an I/O device, and so on.

8.4.1 Example 4: Initializing an Ethernet Driver
Continuing the networking example from Chapter 6, 
the example used here will be the widely implemented 
LAN protocol Ethernet, which is primarily based upon 
the IEEE 802.3 family of standards. 

As shown in Figure 8-34, the software required to en-
able Ethernet functionality maps to the lower section of 
the OSI data-link layer. The hardware components can 
all be mapped to the physical layer of the OSI model, 
but will not be discussed in this section (see Section II). Figure 8-34: OSI model
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As mentioned in Section II, the Ethernet component that can be integrated onto the master 
processor is called the Ethernet Interface. The only firmware (software) that is implemented 
is in the Ethernet interface. The software is dependent on how the hardware supports two 
main components of the IEEE802.3 Ethernet protocol: the media access management and 
data encapsulation.

Data Encapsulation [Ethernet Frame]

In an Ethernet LAN, all devices connected via Ethernet cables can be set up as a bus or star 
topology (see Figure 8-35).

Figure 8-35: Ethernet topologies
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In these topologies, all devices share the same signaling system. After a device checks for 
LAN activity and determines after a certain period there is none, the device then transmits 
its Ethernet signals serially. The signals are then received by all other devices attached to the 
LAN—thus the need for an “Ethernet frame,” which contains the data as well as the informa-
tion needed to communicate to each device which device the data is actually intended for.
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Ethernet devices encapsulate data they want to transmit or receive into what are called “Eth-
ernet frames.” The Ethernet frame (as defined by IEEE 802.3) is made of up a series of bits, 
each grouped into fields. Multiple Ethernet frame formats are available, depending on the 
features of the LAN. Two such frames (see the IEEE 802.3 specification for a description of 
all defined frames) are shown in Figure 8-36.

Figure 8-36: Ethernet frames [8-7]

Start
Frame

Pad

Pad

Basic Ethernet Frame

Basic Ethernet Frame with VLAN Tagging

Source
MAC Address

Destination
MAC Address

Start
Frame

Preamble 802.1Q
Tag Type

7
bytes

1
byte

6
bytes

6
bytes

2
bytes

2
bytes

2
bytes

Tag Cntrl
Info

Length/Type Data Field

Variable
bytes

Error
Checking

4
bytes

0 to (Min Frame Size –
Actual Frame size )

bytes

4
bytes

0 to (Min Frame Size –
Actual Frame size )

bytes

Variable
bytes2

bytes
6

bytes
6

bytes
1

byte
7

bytes

Preamble Destination
MAC Address

Source
MAC Address

Length/Type Data Field Error
Checking

The preamble bytes tell devices on the LAN that a signal is being sent. They are followed 
by “10101011” to indicate the start of a frame. The media access control (MAC) addresses
in the Ethernet frame are physical addresses unique to each Ethernet interface in a device, 
so every device has one. When the frame is received by a device, its data-link layer looks at 
the destination address of the frame. If the address doesn’t match its own MAC address, the 
device disregards the rest of the frame. 

The data field can vary in size. If the data field is less than or equal to 1500 then the Length/
Type field indicates the number of bytes in the data field. If the data field is greater than 1500, 
then the type of MAC protocol used in the device that sent the frame is defined in Length/
Type. While the data field size can vary, the MAC Addresses, the Length/Type, the Data, Pad, 
and Error checking fields must add up to be at least 64 bytes long. If not, the pad field is used 
to bring up the frame to its minimum required length.

The error checking field is created using the MAC Addresses, Length/Type, Data Field, and 
Pad fields. A 4-byte CRC (cyclical redundancy check) value is calculated from these fields 
and stored at the end of the frame before transmission. At the receiving device, the value is 
recalculated, and if it doesn’t match the frame is discarded. 

Finally, remaining frame formats in the Ethernet specification are extensions of the basic 
frame. The VLAN (virtual local-area network) tagging frame shown above is an example of 
one of these extended frames, and contains two additional fields: 802.1Q tag type and Tag 
Control Information. The 802.1Q tag type is always set to 0x8100 and serves as an indica-
tor that there is a VLAN tag following this field, and not the Length/Type field which in this 
format is shifted 4-bytes over within the frame. The Tag Control Information is actually 
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made up of three fields: the user priority field (UPF), the canonical format indicator (CFI), 
and the VLAN identifier (VID). The UPF is a 3-bit field that assigns a priority level to the 
frame. The CFI is a 1-bit field to indicate whether there is a Routing Information Field (RIF) 
in the frame, while the remaining 12 bits is the VID, which identifies which VLAN this frame 
belongs to. Note that while the VLAN protocol is actually defined in the IEEE 802.1Q speci-
fication, it’s the IEEE 802.3ac specification that defines the Ethernet-specific implementation 
details of the VLAN protocol.

Media Access Management

Every device on the LAN has an equal right to transmit signals over the medium, so there 
have to be rules that ensure every device gets a fair chance to transmit data. Should more 
than one device transmit data at the same time, these rules must also allow the device a way 
to recover from the data colliding. This is where the two MAC protocols come in: the 
IEEE 802.3 Half-Duplex Carrier Sense Multiple Access/Collision Detect (CDMA/CD) and 
the IEEE 802. 3x Full-Duplex Ethernet protocols. These protocols, implemented in the 
Ethernet interface, dictate how these devices behave when sharing a common transmission 
medium.

Half-Duplex CDMA/CD capability in an Ethernet device means that a device can either 
receive or transmit signals over the same communication line, but not do both (transmit and 
receive) at the same time. Basically, a Half-Duplex CDMA/CD (also, known as the MAC 
sublayer) in the device can both transmit and receive data, from a higher layer or from the 
physical layer in the device. In other words, the MAC sub-layer functions in two modes: 
transmission (data received from higher layer, processed, then passed to physical layer) or 
reception (data received from physical layer, processed, then passed to higher layer). The 
transmit data encapsulation (TDE) component and the transmit media access managment 
(TMAM) components provide the transmission mode functionality, while the receive media 
access management (RMAM) and the receive data decapsulation (RDD) components provide 
the reception mode functionality. 

CDMA/CD (MAC Sublayer) Transmission Mode

When the MAC sublayer receives data from a higher layer to transmit to the physical layer, 
the TDE component first creates the Ethernet frame, which is then passed to the TMAM 
component. Then, the TMAM component waits for a certain period of time to ensure the 
transmission line is quiet, and that no other devices are currently transmitting. When the 
TMAM component has determined that the transmission line is quiet, it then transmits (via 
the physical layer) the data frame over the transmission medium, in the form of bits, one bit at 
a time (serially). If the TMAM component of this device learns that its data has collided with 
other data on the transmission line, it transmits a series of bits for a predefined period to let all 
devices on the system know that a collision has occurred. The TMAM component then stops 
all transmission for another period of time, before attempting to retransmit the frame again. 



Chapter 8

362

The following is a high-level flow chart of the MAC layer processing a MAC client’s (an up-
per layer) request to transmit a frame:

Figure 8-37: High-level flow chart of MAC layer processing a 
MAC client’s request to transmit a frame [8-7]
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CDMA/CD (MAC Sublayer) Reception Mode

When the MAC sublayer receives the stream of bits from the physical layer, to be later trans-
mitted to a MAC client, the MAC sublayer RMAM component receives these bits from the 
physical layer as a “frame.” Note that, as the bits are being received by the RMAM com-
ponent, the first two fields (preamble and start frame delimiter) are disregarded. When the 
physical layer ceases transmission, the frame is then passed to the RDD component for pro-
cessing. It is this component that compares the MAC Destination Address field in this frame 
to the MAC Address of the device. The RDD component also checks to ensure the fields of 
the frame are properly aligned, and executes the CRC Error Checking to ensure the frame 
wasn’t damaged in route to the device (the Error Checking field is stripped from the frame). 
If everything checks out, the RDD component then transmits the remainder of the frame, with 
an additional status field appended, to the MAC Client.

The following is a high-level flow chart of the MAC layer processing incoming bits from the 
physical layer: 

Figure 8-38: High-level flow chart of MAC layer processing 
incoming bits from the physical layer [8-7]
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It is not uncommon to find that half-duplex capable devices are also full-duplex capable. This 
is because only a subset of the MAC sublayer protocols implemented in half-duplex are need-
ed for full-duplex operation. Basically, a full-duplex capable device can receive and transmit 
signals over the same communication media line at the same time. Thus, the throughput in a 
full-duplex LAN is double that of a half-duplex system. 
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The transmission medium in a full-duplex system must also be capable of supporting simul-
taneous reception and transmission without interference. For example: 10Base-5, 10Base-2, 
10Base-FX, etc. are cables that do not support full-duplex, while 10/100/1000Base-T, 
100Base-FX, etc. meet full-duplex media specification requirements. 

Full-duplex operation in a LAN is restricted to connecting only two devices, and both devices 
must be capable and configured for full duplex operation. While it is restricting to only allow 
point to point links, the efficiency of the link in a full-duplex system is actually improved. 
Having only two devices eliminates the potential for collisions, and eliminates any need for 
the CDMA/CD algorithms implemented in a half-duplex capable device. Thus, while the 
reception algorithm is the same for both full and half duplex, Figure 8-39 flowcharts the high-
level functions of full-duplex in transmission mode.

Figure 8-39: Flow chart of high-level functions of full-duplex in transmission mode [8-7]
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Now that you have a definition of all components (hardware and software) that make up an 
Ethernet system, let’s take a look at how architecture-specific Ethernet components are imple-
mented via software on various reference platforms. 
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Motorola/Freescale MPC823 Ethernet Example

Figure 8-40 is a diagram of a MPC823 connected to Ethernet hardware components on the 
board (see Section II for more information on Ethernet hardware components).

Figure 8-40: MPC823 Ethernet block diagram [8-2]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

RJ-45

SCC2

Tx

TENA

TCLK

Rx

RENA

RCLK

CLSN

LOOP

TXD

RXD

Ethernet Cable

EEST MC68160

PPC 823

TENA (RTS)

TCLK(CLKx )

RENA (CD)

RCLK (CLKx)

CLSN (CTS)

Parallel I/O

PLS/Carrier Sense Signal is
logical OR of RENA and CLSN

A good starting point for understanding how Ethernet runs on a MPC823 is section 16 in 
the 2000 MPC823 User’s Manual on the MPC823 component that handles networking and 
communications, called the CPM (Communication Processor Module). It is here that we learn 
that configuring the MPC823 to implement Ethernet is done through serial communication 
controllers (SCCs). 

From the 2000 MPC823 User’s Manual

16.9 THE SERIAL COMMUNICATION CONTROLLERS

The MPC823 has two serial communication controllers (SCC2 and SCC3) that can be configured 
independently to implement different protocols. They can be used to implement bridging functions, 
routers, gateways, and interface with a wide variety of standard WANs, LANs, and proprietary net-
works….

The serial communication controllers does not include the physical interface, but it is the logic that 
formats and manipulates the data obtained from the physical interface.  Many functions of the serial 
communication controllers are common to (among other protocols) the Ethernet controller.  The se-
rial communication controller’s main features include support for full 10Mbps Ethernet/IEEE 802.3.

Section 16.9.22 in the MPC823 User’s Manual discusses in detail the features of the Serial 
Communication Controller in Ethernet mode, including full-duplex operation support. In fact, 
what actually needs to be implemented in software to initialize and configure Ethernet on the 
PPC823 can be based on the Ethernet programming example in Section 16.9.23.7.
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From the 2000 MPC823 User’s Manual

16.9.23.7 SCC2 ETHERNET PROGRAMMING EXAMPLE
The following is an example initialization sequence for the SCC2 in Ethernet mode.  The CLK1 pin 
is used for the Ethernet receiver and the CLK2 pin is used for the transmitter.

1. Configure the port A pins to enable the TXD1 and RXD1 pins. Write PAPAR bits 12 and 13 with 
ones, PADIR bits 12 and 13 with zeros, and PAODR bit 13 with zero.

2. Configure the Port C pins to enable CTS2(CLSN) and CD2 (RENA). Write PCPAR and PCDIR 
bits 9 and 8 with zeros and PCSO bits 9 and 8 with ones.

3.  Do not enable the RTS2(TENA) pin yet because the pin is still functioning as RTS and transmis-
sion on the LAN could accidentally begin.

4. Configure port A to enable the CLK1 and CLK2 pins. Write PAPAR bits 7 and 6 with ones and 
PADIR bits 7 and 6 with zeros.

5.  Connect the CLK1 and CLK2 pins to SCC2 using the serial interface. Write the R2CS field in 
the SICR to 101 and the T2CS field to 100.

6.  Connect SCC2 to the NMSI and clear the SC2 bit in the SICR.

7.  Initialize the SDMA configuration register (SDCR) to 0x0001.

8. Write RBASE and TBASE in the SCC2 parameter RAM to point to the RX buffer descriptor and 
TX buffer descriptor in the dual-port RAM. Assuming one RX buffer descriptor at the beginning 
of dual-port RAM and one TX buffer descriptor following that RX buffer descriptor, write RBASE 
with 0x2000 and TBASE with 0x2008.

9. Program the CPCR to execute the INIT RX BD PARAMETER command for this channel.

10. Write RFCR and TFCR with 0x18 for normal operation.

11. Write MRBLR with the maximum number of bytes per receive buffer. For this case assume 
1,520 bytes, so MRBLR = 0x05F0. In this example, the user wants to receive an entire frame into 
one buffer, so the MRBLR value is chosen to be the first value larger than 1,518 that is evenly divis-
ible by four.

12. Write C_PRES with 0xFFFFFFFF to comply with 32-bit CCITT-CRC.

13. Write C_MASK with 0xDEBB20E3 to comply with 32-bit CDITT-CRC.

14. Clear CRCEC, ALEC, and DISFC for clarity.

15. Write PAD with 0x8888 for the pad value.

16. Write RET_LIM with 0x000F.

17. Write MFLR with 0x05EE to make the maximum frame size 1,518 bytes.

18. Write MINFLR with 0x0040 to make the minimum frame size 64 bytes.

19. Write MAXD1 and MAXD2 with 0x005EE to make the maximum DMA count 1,518 bytes.
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20. Clear GADDR1-GADDR4. The group hash table is not used.

21. Write PADDR1_H with 0x0380, PADDR1_M with 0x12E0, and PADDR1_L with 0x5634 to 
configure the physical address 8003E0123456.

22. Write P_Per with 0x000. It is not used.

23. Clear IADDR1-IADDR4. The individual hash table is not used.

24. Clear TADDR_H, TADDR_M, and TADDR_L for clarity.

25. Initialize the RX buffer descriptor and assume the RX data buffer is at 0x00001000 main 
memory. Write 0xB000 to Rx_BD_Status, 0x0000 to Rx_BD_Length (optional) and 0x00001000 
to Rx_BD_Pointer.

26. Initialize the TX buffer descriptor and assume the TX data frame is at 0x00002000 main mem-
ory and contains fourteen 8-bit characters (destination and source addresses plus the type field). 
Write 0xFC00 to Tx_BD_Status, add PAD to the frame and generate a CRC. Then write 0x000D to 
Tx_BD_Length and 0x00002000to Tx_BD_Pointer.

27. Write 0xFFFF to the SCCE-Ethernet to clear any previous events.

28. Write 0x001A to the SCCM-Ethernet to enable the TXE, RXF, and TXB interrupts.

29. Write 0x20000000 to the CIMR so that SCC2 can generate a system interrupt. The CICR must 
also be initialized.

30. Write 0x00000000 to the GSMR_H to enable normal operation of all modes.

31. Write 0x1088000C to the GSMR_L to configure the CTS2 (CLSN) and CD2 (RENA) pins to 
automatically control transmission and reception (DIAG field) and the Ethernet mode. TCI is set to 
allow more setup time for the EEST to receive the MPC82 transmit data. TPL and TPP are set for 
Ethernet requirements. The DPLL is not used with  Ethernet. Notice that the transmitter (ENT) and 
receiver (ENR) have not been enabled yet.

32. Write 0xD555 to the DSR.

33. Set the PSMR-SCC Ethernet to 0x0A0A to configure 32-bit CRC, promiscuous mode and begin 
searching for the start frame delimiter 22 bits after RENA.

34. Enable the TENA pin (RTS2). Since the MODE field of the GMSR_L is written to Ethernet, the 
TENA signal is low. Write PCPAR bit 14 with a one and PCDIR bit 14 with a zero.

35. Write 0x1088003C to the GSMR_L register to enable the SCC2 transmitter and receiver. This 
additional write ensures that the ENT and ENR bits are enabled last.

NOTE: After 14 bytes and the 46 bytes of automatic pad (plus the 4 bytes of CRC) are transmitted, 
the TX buffer descriptor is closed. Additionally, the receive buffer is closed after a frame is re-
ceived. Any data received after 1,520 bytes or a single frame causes a busy (out-of-buffer) condition 
since only one RX buffer descriptor is prepared.

It is from section 16.9.23.7 that the Ethernet initialization device driver source code can be 
written. It is also from this section that it can be determined how Ethernet on the MPC823 is 
configured to be interrupt driven. The actual initialization sequence can be divided into seven 
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major functions: disabling SCC2, configuring ports for Ethernet transmission and reception, 
initializing buffers, initializing parameter RAM, initializing interrupts, initializing registers, 
and starting Ethernet (see pseudocode below).

MPC823 Ethernet Driver Pseudocode

// disabling SCC2
    // Clear GSMR_L[ENR] to disable the receiver
    GSMR_L = GSMR_L & 0x00000020 
    // Issue Init Stop TX Command for the SCC
    Execute Command (GRACEFUL_STOP_TX)
    // clear GSLM_L[ENT] to indicate that transmission has stopped
    GSMR_L = GSMR_L & 0x00000010 

-=-=-=-=

 //  Configure port A to enable TXD1 and RXD1 – step 1 from user’s manual
PADIR =  PADIR &  0xFFF3 // Set PAPAR[12,13] 
PAPAR = PAPAR  | 0x000C  // clear PADIR[12,13]
PAODR = PAODR & 0xFFF7 // clear PAODR[12] 

//  Configure port C to enable CLSN and RENA – step 2 from user’s manual
PCDIR = PCDIR  & 0xFF3F  // clear PCDIR[8,9]
PCPAR = PCPAR & 0xFF3F  // Clear PCPAR[8,9]
PCSO =   PCSO  | 0x00C0  // set PCSO[8,9]

//step 3 – do nothing now

// configure port A to enable the CLK2 and CLK4 pins.- step 4 from user’s manual
PAPAR = PAPAR  | 0x0A00  //  set PAPAR[6] (CLK2) and PAPAR[4] (CLK4). 
PADIR = PADIR & 0xF5FF  // Clear PADIR[4] and PADIR[6]. (All 16-bit)

//  Initializing the SI Clock Route Register (SICR) for SCC2.  
//  Set SICR[R2CS] to 111 and Set SICR[T2CS] to 101,  Connect SCC2 to NMSI  and  Clear 
SICR[SC2] – steps 5 & 6 from user’s manual
SICR = SICR & 0xFFFFBFFF
SICR = SICR |  0x00003800
SICR = (SICR & 0xFFFFF8FF) | 0x00000500

//  Initializing the SDMA configuration register – step 7
 SDCR = 0x01   // Set SDCR to 0x1 (SDCR is 32-bit) – step 7 from user’s manual

// Write RBASE in the SCC1 parameter RAM to point to the RxBD table and the TxBD table in the 
// dual-port RAM and specify the
// size of the respective buffer descriptor pools.   - step 8 user’s manual
RBase = 0x00 (for example)
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RxSize =  1500 bytes (for example)
TBase = 0x02 (for example)
TxSize = 1500 bytes (for example)
Index = 0
While (index < RxSize) do
{
//Set up one receive buffer descriptor that tells the communication processor that the next packet is 
//ready to be received – similar to  step 25
//Set up one transmit buffer descriptor that tells the communication processor that the next packet is 
//ready to be transmitted – similar step 26
index = index+1}

//Program the CPCR to execute the INIT_RX_AND_TX_PARAMS – deviation from step 9 in user’s 
//guide
execute Command(INIT_RX_AND_TX_PARAMS)

//write RFCR and TFCR with 0x10 for normal operation (All 8-bits) or 0x18 for normal operation 
//and Motorola/Freescale byte ordering – step 10 from user’s manual
RFCR = 0x10
TFCR = 0x10

//Write MRBLR with the maximum number of bytes per receive buffer and assume 16 bytes – step 
//11 user’s manual
MRBLR = 1520

// write C_PRES with 0xFFFFFFFF to comply with the 32 bit CRC-CCITT – step 12 user’s manual 
C_PRES = 0xFFFFFFFF

// write C_MASK with 0xDEBB20E3 to comply with the 16 bit CRC-CCITT – step 13 user’s 
// manual 
C_MASK = 0xDEBB20E3

// Clear CRCEC, ALEC, and DISFC for clarity – step 14 user’s manual 
CRCEC = 0x0
ALEC = 0x0
DISFC = 0x0

// Write PAD with 0x8888 for the PAD value – step 15 user’s manual 
PAD = 0x8888

//Write RET_LIM to specify how many retries (with 0x000F for example) – step 16
RET_LIM = 0x000F

//Write MFLR with 0x05EE to make the maximum frame size 1518 bytes – step 17
MFLR = 0x05EE
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// Write MINFLR with 0x0040 to make the minimum frame size 64 bytes – step 18
MINFLR = 0x0040

//Write MAXD1 and MAXD2 with 0x05F0 to make the maximum DMA count 1520 bytes – step 19
MAXD1 = 0x05F0
MAXD2 = 0x05F0

// Clear GADDR1-GADDR4. The group hash table is not used – step 20
GADDR1 = 0x0
GADDR2 = 0x0
GADDR3 = 0x0
GADDR4 = 0x0

// Write PADDR1_H, PADDR1_M and PADDR1_L with the 48-bit station address – step 21 
stationAddr = “embedded device’s Ethernet address” = (for example) 8003E0123456
PADDR1_H = 0x0380 [“80 03” of the station address]
PADDR1_M = 0x12E0 [“E0 12” of the station address]
PADDR1_L = 0x5634 [“34 56” of the station address]

// Clear P_PER. It is not used – step 22
P_PER = 0x0

//Clear IADDR1-IADDR4. The individual hash table is not used – step 23
IADDR1 = 0x0
IADDR2 = 0x0
IADDR3 = 0x0
IADDR4 = 0x0

// Clear TADDR_H, TADDR_M and TADDR_L for clarity – step 24 
groupAddress = “embedded device’s group address” = no group address for example
TADDR_H = 0 [similar as step 21 high byte reversed]
TADDR_M = 0 [middle byte reversed]
TADDR_L = 0 [low byte reversed]

// Initialize the RxBD and assume that Rx data buffer is at 0x00001000. Write 0xB000 to 
// RxBD[Status and Control] Write 0x0000 to RxBD[Data Length]
// Write 0x00001000 to RxDB[BufferPointer] – step 25 
RxBD[Status and Control] is the status of the buffer = 0xB000
Rx data buffer is the byte array the communication processor can use to store the incoming packet in. 
= 0x00001000
Save Buffer and Buffer Length in Memory, Then Save Status

// Initialize the TxBD and assume that Tx data buffer is at 0x00002000 Write 0xFC00 to 
// TxBD[Status and Control] Write 0x0000 to TxBD[Data Length]



Device Drivers

371

//  Write 0x00002000 to TxDB[BufferPointer] – step 26 

TxBD[Status and Control] is the status of the buffer = 0xFC00
Tx data buffer is the byte array the communication processor can use to store the outgoing packet in. 
= 0x00002000
Save Buffer and Buffer Length in Memory, Then Save Status

//Write 0xFFFF to the SCCE-Transparent to clear any previous events – step 27 user’s manual 
SCCE = 0xFFFF

// Initialize the SCCM-Transparent (SCC mask register) depending on the interrupts required of the 
// SCCE[TXB, TXE, RXB, RXF] interrupts possible. – step 28 user’s manual 
  // Write 0x001B to the SCCM for generating TXB, TXE, RXB, RXF interrupts (all events).
  // Write 0x0018 to the SCCM for generating TXE and RXF Interrupts (errors).
  // Write 0x0000 to the SCCM in order to mask all interrupts.
  SCCM = 0x0000

//Initialize CICR ,and Write to the CIMR so that SCC2 can generate a system interrupt.- step 29 
CIMR = 0x200000000
CICR = 0x001B9F80

//write 0x00000000 to the GSMR_H to enable normal operation of all modes – step 30 user’s manual 
GSMR_H = 0x0

// GSMR_L: 0x1088000C: TCI = 1, TPL = 0b100, TPP = 0b01, MODE = 1100 to configure the 
// CTS2 and CD2 pins to automatically control transmission and reception (DIAG field). Normal 
// operation of the transmit clock is used. Notice that the transmitter (ENT) and receiver (ENR) are 
// not enabled yet. – step 31 user’s manual 
GSMR_L = 0x1088000C

// Write 0xD555 to the DSR – step 32
DSR = 0xD555

// Set PSMR-SCC Ethernet to configure 32-bit CRC – step 33
     //  0x080A: IAM = 0, CRC = 10 (32-bit), PRO = 0, NIB = 101
     //  0x0A0A: IAM = 0, CRC = 10 (32-bit), PRO = 1, NIB = 101
     //  0x088A: IAM = 0, CRC = 10 (32-bit), PRO = 0, SBT = 1, NIB = 101
     //  0x180A: HBC = 1, IAM = 0, CRC = 10 (32-bit), PRO = 0, NIB = 101
PSMR = 0x080A

// Enable the TENA pin (RTS2) Since the MODE field of the GSMR_L is written to Ethernet, the 
// TENA signal is low. Write PCPAR bit 14 with a one and PCDIR bit 14 with a 
// zero - step 34 
PCPAR = PCPAR | 0x0001
PCDIR = PCDIR & 0xFFFE
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// Write 0x1088003C to the GSMR_L register to enable the SCC2 transmitter and receiver. - step 35 
GSMR_L = 0x1088003C

-=-=-=-
// start the transmitter and the receiver
// After initializing the buffer descriptors, program the CPCR to execute an INIT RX AND TX 
// PARAMS command for this channel.

Execute Command(Cp.INIT_RX_AND_TX_PARAMS)

//  Set GSMR_L[ENR] and GSMR_L[ENT] to enable the  receiver and the transmitter
GSMR_L = GSMR_L | 0x00000020 | 0x00000010

// END OF MPC823 ETHERNET INITIALIZATION SEQUENCE – now when appropriate inter-
// rupt triggered, data is moved to or from transmit/receive buffers

NetSilicon NET+ARM40 Ethernet Example

Figure 8-41 is a diagram of a NET+ARM connected to Ethernet hardware components on the 
board (see Section II for more information on Ethernet hardware components).

Figure 8-41: NET+ARM Ethernet block diagram [8-8]
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Like the MPC823, the NET+ARM40 Ethernet protocol is configured to have full-duplex 
support, as well as be interrupt driven. However, unlike the MPC823, the NET+ARM’s 
initialization sequence is simpler and can be divided into three major functions: performing 
reset of Ethernet processor, initializing buffers, and enabling DMA channels (see NET+ARM 
Hardware User’s Guide for NET+ARM 15/40 and pseudocode below).

NET+ARM40 Pseudocode
…..
// Perform a low level reset of the NCC ethernet chip 
//determine MII type
MIIAR = MIIAR & 0xFFFF0000 | 0x0402
MIICR = MIICR | 0x1  
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NET+ARM40 Pseudocode (continued)
// wait until current PHY operation completes

if  using MII
{
//set PCSCR according to poll count - 0x00000007 (>= 6), 0x00000003 (< 6)
// enable autonegotiation
}
else { //ENDEC MODE
EGCR = 0x0000C004
//set PCSCR according to poll count - 0x00000207 (>= 6), 0x00000203 (< 6)
//set EGCR to correct mode if automan jumper removed from board
}

//clear transfer and receive registers by reading values
get LCC
get EDC
get MCC
get SHRTFC
get LNGFC
get AEC
get CRCEC
get CEC

// Inter-packet Gap Delay = 0.96usec for MII and 9.6usec for 10BaseT
if using MII then {
B2BIPGGTR = 0x15
NB2BIPGGTR =  0x0C12
} else {
B2BIPGGTR = 0x5D
NB2BIPGGTR = 0x365A);
}

MACCR = 0x0000000D

// Perform a low level reset of the NCC ethernet chip continued

// Set SAFR = 3 : PRO Enable Promiscuous Mode(receive ALL packets), 2: PRM Accept ALL
// multicast packets,  1: PRA Accept multicast packets using Hash 
// Table, 0 : BROAD Accept ALL broadcast packets
SAFR =  0x00000001

//load Ethernet address into addresses 0xFF8005C0 - 0xFF8005C8 
// liad MCA hash table into addresses 0xFF8005D0 - 0xFF8005DC

STLCR = 0x00000006
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NET+ARM40 Pseudocode (continued)

If using MII {
  // Set EGCR according to what rev - 0xC0F10000 (rev < 4), 0xC0F10000 (PNA support disabled )
else {
 //ENDEC mode
  EGCR = 0xC0C08014}

//Initialize buffer descriptors
//setup Rx and Tx buffer descriptors
DMABDP1A =  “receive buffer descriptors”

DMABDP2 = “transmit buffer descriptors”

//enable Ethernet DMA channels
 // setup the interrupts for receive channels 
 DMASR1A = DMASR1A & 0xFF0FFFFF | (NCIE | ECIE | NRIE | CAIE)

 // setup the interrupts for transmit channels
 DMASR2 = DMASR2 & 0xFF0FFFFF | (ECIE | CAIE)

 // Turn each channel on 

If MII is 100Mbps then {

  DMACR1A = DMACR1A & 0xFCFFFFFF | 0x02000000
   }

DMACR1A = DMACR1A & 0xC3FFFFFF | 0x80000000

If MII is 100Mbps then {
      DMACR2 = DMACR2 & 0xFCFFFFFF | 0x02000000
    }

    else if MII is 10Mbps{
      DMACR2 = DMACR2 & 0xFCFFFFFF
    }

 DMACR2 = DMACR2 & 0xC3FFFFFF | 0x84000000

 // Enable the interrupts for each channel 
 DMASR1A = DMASR1A  | NCIP | ECIP | NRIP | CAIP
 DMASR2 = DMASR2  | NCIP | ECIP | NRIP | CAIP

// END OF NET+ARM ETHERNET INITIALIZATION SEQUENCE – now when appropriate
// interrupt triggered, data is moved to or from transmit/receive buffers



Device Drivers

375

Figure 8-44: RS-232 frame diagram [8-7]
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8.4.2 Example 5: Initializing an RS-232 Driver
One of the most widely implemented asynchronous 
serial I/O protocols is the RS-232 or EIA-232 (Electronic 
Industries Association-232), which is primarily based 
upon the Electronic Industries Association family of 
standards. These standards define the major components 
of any RS-232 based system, which is implemented 
almost entirely in hardware. 

The firmware (software) required to enable RS-232 func-
tionality maps to the lower section of the OSI data-link 
layer. The hardware components can all be mapped to 
the physical layer of the OSI model, but will not be discussed in this section (see Section II). 

As mentioned in Chapter 6, the RS-232 component that can be integrated on the master 
processor is called the RS-232 Interface, which can be configured for synchronous or asyn-
chronous transmission. For example, in the case of asynchronous transmission, the only 
firmware (software) that is implemented for RS-232 is in a component called the UART (uni-
versal asynchronous transmitter receiver), which implements the serial data transmission. 

Figure 8-42: OSI model
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Figure 8-43: RS-232 hardware diagram [8-7]
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Data is transmitted asynchronously over RS-232 in a stream of bits that are traveling at a con-
stant rate. The frame processed by the UART is in the format shown in Figure 8-44.

The RS232 protocol defines frames as having : 1 start bit, 7-8 data bits, 1 parity bit, and 1-2 stop bits.
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Motorola/Freescale MPC823 RS-232 Example

Figure 8-45 is a MPC823 connected to RS-232 hardware components on the board (see Sec-
tion II for more information on the other hardware components).

Figure 8-45: MPC823 RS-232 block diagram [8-9]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.
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There are different integrated components on a MPC823 that can be configured into UART 
mode, such as SCC2 and the SMCs (serial management controllers). SCC2 was discussed in 
the previous section as being enabled for Ethernet, so this example will look at configuring 
an SMC for the serial port. Enabling RS-232 on a MPC823 through the serial management 
controllers (SMCs) is discussed in Section 16.11, The Serial Management Controllers in the 
2000 MPC823 User’s Manual.

From the 2000 MPC823 User’s Manual

16.11 THE SERIAL MANAGEMENT CONTROLLERS

The serial management controllers (SMCs) consist of two full-duplex ports that can be indepen-
dently configured to support ant one of three protocols – UART, Transparent, or general-circuit 
interface (GCI). Simple UART operation is used to provide a debug/monitor port in an application, 
which allows a serial communication controller (SCCx) to be free for other purposes. The serial 
management controller clock can be derived from one of four internal baud rate generators or from 
a 16x external clock pin.
.
.
.

The software for configuring and initializing RS-232 on the MPC823 can be based upon the 
SMC1 UART controller programming example in section 16.11.6.15.

From the 2000 MPC823 User’s Manual

16.11.6.15 16.11.6.15 SMC1 UART CONTROLLER PROGRAMMING EXAMPLE. The follow-
ing is an initialization sequence for 9,600 baud, 8 data bits, no parity, and 1 stop bit operation of an 
SMC1 UART controller assuming a 25MHz system frequency. BRG1 and SMC1 are used.
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1. Configure the port B pins to enable SMTXD1 and SMRXD1. Write PBPAR bits 25 and 24 with 
ones and then PBDIR and PBODR bits 25 and 24 with zeros.
2. Configure the BRG1. Write 0x010144 to BRGC1. The DIV16 bit is not used and divider is 162 
(decimal). The resulting BRG1 clock is 16x the preferred bit rate of SMC1 UART controller.
3. Connect the BRG1 clock to SMC1 using the serial interface. Write the SMC1 bit SIMODE with 
a D and the SMC1CS field in SIMODE register with 0x000.
4. Write RBASE and TBASE in the SMC1 parameter RAM to point to the RX buffer descriptor and 
TX buffer descriptor in the dual-port RAM. Assuming one RX buffer descriptor at the beginning 
of dual-port RAM and one TX buffer descriptor following that RX buffer descriptor, write RBASE 
with 0x2000 and TBASE with 0x2008.
5. Program the CPCR to execute the INIT RX AND TX PARAMS command. Write 0x0091 to the 
CPCR.
6. Write 0x0001 to the SDCR to initialize the SDMA configuration register.
7. Write 0x18 to the RFCR and TFCR for normal operation.
8. Write MRBLR with the maximum number of bytes per receive buffer. Assume 16 bytes, so 
MRBLR = 0x0010.
9. Write MAX_IDL with 0x0000 in the SMC1 UART parameter RAM for the clarity.
10. Clear BRKLN and BRKEC in the SMC1 UART parameter RAM for the clarity.
11. Set BRKCR to 0x0001, so that if a STOP TRANSMIT command is issued, one bit character is 
sent.
12. Initialize the RX buffer descriptor. Assume the RX data buffer is at 0x00001000 in main memo-
ry. Write 0xB000 to RX_BD_Status. 0x0000 to RX_BD_Length (not required), and 0x00001000 to 
RX_BD_Pointer.
13. Initialize the TX buffer descriptor. Assume the TX data buffer is at 0x00002000 in main 
memory and contains five 8-bit characters. Then write 0xB000 to TX_BD_Status, 0x0005 to 
TX_BD_Length, and 0x00002000 to TX_BD_Pointer.
14. Write 0xFF to the SMCE-UART register to clear any previous events.
15. Write 0x17 to the SMCM-UART register to enable all possible serial management controller 
interrupts.
16. Write 0x00000010 to the CIMR to SMC1 can generate a system interrupt. The CICR must also 
be initialized.
17. Write 0x4820 to SMCMR to configure normal operation (not loopback), 8-bit characters, no 
parity, 1 stop bit. Notice that the transmitter and receiver are not enabled yet.
18. Write 0x4823 to SMCMR to enable the SMC1 transmitter and receiver. This additional write 
ensures that the TEN and REN bits are enabled last.

NOTE: After 5 bytes are transmitted, the TX buffer descriptor is closed. The receive buf-
fer is closed after 16 bytes are received. Any data received after 16 bytes causes a busy 
(out-of-buffers) condition since only one RX buffer descriptor is prepared.

Similar to the Ethernet implementation, MPC823 serial driver is configured to be inter-
rupt driven, and its initialization sequence can also be divided into seven major functions: 
disabling SMC1, setting up ports and the baud rate generator, initializing buffers, setting up 
parameter RAM, initializing interrupts, setting registers, and enabling SMC1 to transmit/
receive (see the following pseudocode).
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MPC823 Serial Driver Pseudocode
…..

// disabling SMC1

// Clear SMCMR[REN] to disable the receiver
SMCMR = SMCMR & 0x0002

    // Issue Init Stop TX Command for the SCC
   execute command(STOP_TX)

   // clear SMCMR[TEN] to indicate that transmission has stopped
  SMCMR = SMCMR & 0x0002

-=-=-

//Configure port B pins to enable SMTXD1 and SMRXD1. Write PBPAR bits 25 and 24 with ones 
//and then PBDIR bits 25 and 24 with zeros – step 1 user’s manual
PBPAR = PBPAR | 0x000000C0
PBDIR= PBDIR & 0xFFFFFF3F
PBODR = PBODR & 0xFFFFFF3F

// Configure BRG1 - BRGC: 0x10000 - EN = 1 -  25 MHZ :  BRGC: 0x010144 - EN = 1, CD = 162 
// (b10100010), DIV16 = 0  (9600)
// BRGC: 0x010288 - EN = 1, CD = 324 (b101000100), DIV16 = 0  (4800)
// 40 Mhz :   BRGC: 0x010207 - EN = 1, CD = 259 (b1 0000 0011), DIV16 = 0
// (9600) – step 2 user’s manual

BRGC= BRGC | 0x010000

//  Connect the BRG1 (Baud rate generator) to the SMC.  Set the  SIMODE[SMCx] and the 
// SIMODE[SMC1CS] depending on baude rate generator  where SIMODE[SMC1] = 
// SIMODE[16], and SIMODE[SMC1CS] = SIMODE[17-19] – step 3 user’s manual

SIMODE = SIMODE & 0xFFFF0FFF | 0x1000

// Write RBASE and TBASE in the SCM parameter RAM to point to the RxBD table and the TxBD 
// table in the dual-port RAM - step 4

RBase = 0x00 (for example)
RxSize =  128 bytes (for example)
TBase = 0x02 (for example)
TxSize = 128 bytes (for example)
Index = 0
While (index < RxSize) do
{
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//Set up one receive buffer descriptor that tells the communication processor that the next packet is 
//ready to be received – similar to  step 12
//Set up one transmit buffer descriptor that tells the communication processor that the next packet is 
//ready to be transmitted – similar step 13
index = index+1}

//Program the CPCR to execute the INIT RX AND TX PARAMS command. - step 5
execute Command(INIT_RX_AND_TX_PARAMS)

//  Initialice the SDMA configuration register,  Set SDCR to 0x1 (SDCR is 32-bit) – step 6 user’s 
//  manual
SDCR =0x01

// Set RFCR,TFCR -- Rx,Tx Function Code,  Initialize to 0x10 for normal operation (All 8-bits),
// Initialize to 0x18 for normal operation and Motorola/Freescale byte ordering – step 7
RFCR = 0x10
TFCR = 0x10

 // Set MRBLR -- Max. Receive Buffer Length, assuming 16 bytes (multiple of 4) – step 8 
 MRBLR = 0x0010

// Write MAX_IDL (Maximum idle character) with 0x0000 in the SMC1 UART parameter RAM to 
// disable the MAX_IDL functionality  - step 9
MAX_IDL = 0

// Clear BRKLN and BRKEC in the SMC1 UART parameter RAM for clarity – step 10
BRKLN = 0
BRKEC = 0

// Set BRKCR to 0x01 – so that if a STOP TRANSMIT command is issued, one break character is 
// sent – step 11
BRKCR = 0x01

8.5 Summary
This chapter discussed device drivers, the type of software needed to manage the hardware 
in an embedded system. This chapter also introduced a general set of device driver routines, 
which make up most device drivers. Interrupt-handling (on the PowerPC platform), memory 
management (on the PowerPC platform), I2C bus (on a PowerPC-based platform), and I/O 
(Ethernet and RS-232 on PowerPC and ARM-based platforms) were real-world examples 
provided, along with pseudocode to demonstrate how device driver functionality can be 
implemented.

The next chapter, Chapter 9: Operating Systems, is an introduction to the technical fundamen-
tals of embedded operating systems and their function within a design.
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Chapter 8 Problems

1. What is a device driver?

2. Which of Figures 8-46a, b, c, and d is incorrect in terms of mapping device driver soft-
ware into the Embedded Systems Model? 

Figure 8-46a: Example 1 Figure 8-46b: Example 2

Figure 8-46c: Example 3 Figure 8-46d: Example 4
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3. [a] What is the difference between an architecture-specific device driver and a generic 
device driver? 

[b] Give two examples of each.

 4. Define at least ten types of device drivers that would be needed based on the block 
diagram shown in Figure 8-47. Data sheet information is on the CD under Chapter 3 file 
“sbcARM7”.
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5. List and describe five types of device driver functions.

6. Finish the sentence:  The software’s implicit perception of hardware is that it exists in 
one of three states at any given time: 
A. inactive, finished, or busy.
B. inactive, finished, or broken.
C. fixed, finished, or busy.
D. fixed, inactive, or broken.
E. None of the above.

7. [T/F] On master processors that offer different modes in which different types of soft-
ware can execute, device drivers usually do not run in supervisory mode.

8. [a] What is an interrupt? 
[b] How can interrupts be initiated?

Figure 8-47:ARM board block diagram [8-10]
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9. Name and describe four examples of device driver functions that can be implemented for 
interrupt handling.

10. [a] What are the three main types of interrupts? 
[b] List examples in which each type is triggered.

11. [a] What is the difference between a level-triggered interrupt and an edge-triggered 
interrupt?

[b] What are some strengths and drawbacks of each?

12. An IACK is:
A. an interrupt controller.
B. an IRQ port.
C. an interrupt acknowledgement.
D. None of the above.

13. [T/F] An ISR is executed before an interrupt is triggered.

14. What is the difference between an auto-vectored and an interrupt-vectored scheme?

15. Name and describe four examples of device driver functions that can be implemented for 
managing memory.

16. [a] What is byte ordering? 
[b] Name and describe the possible byte ordering schemes.

17. Name and describe four examples of device driver functions that can be implemented for 
bus protocols.

18. Name and describe four examples of device driver functions that can be implemented for 
I/O.

19. Where in the OSI model are the Ethernet and serial device drivers mapped to? 



383

C H A P T E R 9
Embedded Operating Systems

In This Chapter

Define operating system
Discuss process management, scheduling, and inter-task communication
Introduce memory management at the OS level
Discuss I/O management in operating systems

An operating system (OS) is an optional part of an embedded device’s system software stack, 
meaning that not all embedded systems have one. OSes can be used on any processor (ISA) 
to which the OS has been ported. As shown in Figure 9-1, an OS either sits over the hardware, 
over the device driver layer or over a BSP (Board Support Package, which will be discussed 
in Section 9.4 of this chapter). 

Figure 9-1: OSes and the Embedded Systems Model
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The OS is a set of software libraries that serves two main purposes in an embedded system:
providing an abstraction layer for software on top of the OS to be less dependent on hard-
ware, making the development of middleware and applications that sit on top of the OS 
easier, and managing the various system hardware and software resources to ensure the entire 
system operates efficiently and reliably. While embedded OSes vary in what components they 
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possess, all OSes have a kernel at the very least. The kernel is a component that contains the 
main functionality of the OS, specifically all or some combination of features and their inter-
dependencies, shown in Figures 9-2a-e, including:

Process Management. How the OS manages and views other software in the 
embedded system (via processes—more in Section 9.1, Process Management). A sub-
function typically found within process management is interrupt and error detection 
management. The multiple interrupts and/or traps generated by the various processes 
need to be managed efficiently so that they are handled correctly and the processes 
that triggered them are properly tracked. 

Memory Management. The embedded system’s memory space is shared by all 
the different processes, so access and allocation of portions of the memory space 
need to be managed (more in Section 9.2, Memory Management). Within memory 
management, other subfunctions such as security system management allow for por-
tions of the embedded system sensitive to disruptions that can result in the disabling of 
the system, to remain secure from unfriendly, or badly written, higher-layer software. 

I/O System Management. I/O devices also need to be shared among the various 
processes and so, just as with memory, access and allocation of an I/O device need 
to be managed (more in Section 9.3, I/O System Management). Through I/O system 
management, file system management can also be provided as a method of storing 
and managing data in the forms of files.

Figure 9-2b: Kernel subsystem dependencies

Figure 9-2a: General OS model
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Because of the way in which an operating system manages the software in a system, using 
processes, the process management component is the most central subsystem in an OS. All 
other OS subsystems depend on the process management unit.

Figure 9-2c: Kernel subsystem dependencies
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Since all code must be loaded into main memory (RAM or cache) for the master CPU to 
execute, with boot code and data located in non-volatile memory (ROM, Flash, etc.), the pro-
cess management subsystem is equally dependent on the memory management subsystem.

Figure 9-2d: Kernel subsystem dependencies
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I/O management, for example, could include networking I/O to interface with the memory 
manager in the case of a network file system (NFS).

Figure 9-2e: Kernel subsystem dependencies

IPC

Memory Management

Memory
Drivers

Security
System
Management

Process
Management

I/O
Drivers

I/O /File System
Management

Outside the kernel, the Memory Management and I/O Management subsystems then rely on 
the device drivers, and vice-versa, to access the hardware.

Whether inside or outside an OS kernel, OSes also vary in what other system software 
components, such as device drivers and middleware, they incorporate (if any). In fact, most 
embedded OSes are typically based upon one of three models, the monolithic, layered, or 
microkernel (client-server) design. In general, these models differ according to the internal 
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design of the OS’s kernel, as well as what other 
system software has been incorporated into the 
OS. In a monolithic OS, middleware and device 
driver functionality is typically integrated into the 
OS along with the kernel. This type of OS is a 
single executable file containing all of these com-
ponents (see Figure 9-3). 

Monolithic OSes are usually more difficult to 
scale down, modify, or debug than their other 
OS architecture counterparts, because of their 
inherently large, integrated, cross-dependent 
nature. Thus, a more popular algorithm, based 
upon the monolithic design, called the 
monolithic-modularized algorithm, has been 
implemented in OSes to allow for easier 
debugging, scalability and better performance 
over the standard monolithic approach. In a 
monolithic-modularized OS, the functional-
ity is integrated into a single executable file 
that is made up of modules, separate pieces 
of code reflecting various OS functionality. 
The embedded Linux operating system is an 
example of a monolithic-based OS, whose 
main modules are shown in Figure 9-4. The 
Jbed RTOS, MicroC/OS-II, and PDOS are all 
examples of embedded monolithic OSes.

In the layered design, the OS 
is divided into hierarchical 
layers (0...N), where upper 
layers are dependent on the 
functionality provided by 
the lower layers. Like the 
monolithic design, layered 
OSes are a single large file 
that includes device drivers 
and middleware (see Figure 
9-5). While the layered OS 
can be simpler to develop and 
maintain than a monolithic 
design, the APIs provided at each layer create additional overhead that can impact size and 
performance. DOS-C(FreeDOS), DOS/eRTOS, and VRTX are all examples of a layered OS.

Figure 9-3: Monolithic OS block diagram
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Figure 9-4: Linux OS block diagram

Linux Device Drivers

Linux OS

Linux Kernel

Process Scheduler Memory Manager

Virtual File System Network Interface

Inter-Process Communication

Linux Services

Figure 9-5: Layered OS block diagram
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An OS that is stripped down to minimal 
functionality, commonly only process and 
memory management subunits as shown in 
Figure 9-6, is called a client-server OS, or 
a microkernel. (Note: a subclass of micro-
kernels are stripped down even further to 
only process management functionality, and 
are commonly referred to as nanokernels.)
The remaining functionality typical of other 
kernel algorithms is abstracted out of the 
kernel, while device drivers, for instance, 
are usually abstracted out of a microkernel 
entirely, as shown in Figure 9-6. A micro-
kernel also typically differs in its process 
management implementation over other 
types of OSes. This is discussed in more detail in Section 9.1, Process Management: Intertask 
Communication and Synchronization.

The microkernel OS is typically a more scalable (modular) and debuggable design, since 
additional components can be dynamically added in. It is also more secure since much of the 
functionality is now independent of the OS, and there is a separate memory space for client 
and server functionality. It is also easier to port to new architectures. However, this model 
may be slower than other OS architectures, such as the monolithic, because of the communi-
cation paradigm between the microkernel components and other “kernel-like” components. 
Overhead is also added when switching between the kernel and the other OS components and 
non-OS components (relative to layered and monolithic OS designs). Most of the off-the-
shelf embedded OSes—and there are at least a hundred of them—have kernels that fall under 
the microkernel category, including: OS-9, C Executive, vxWorks, CMX-RTX, Nucleus Plus, 
and QNX.

Figure 9-6: Microkernel-based OS block diagram
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9.1 What Is a Process?
To understand how OSes manage an embedded device’s hardware and software resources, 
the reader must first understand how an OS views the system. An OS differentiates between 
a program and the executing of a program. A program is simply a passive, static sequence 
of instructions that could represent a system’s hardware and software resources. The actual 
execution of a program is an active, dynamic event in which various properties change rela-
tive to time and the instruction being executed. A process (commonly referred to as a task in 
many embedded OSes) is created by an OS 
to encapsulate all the information that is 
involved in the executing of a program (i.e., 
stack, PC, the source code and data, etc.). 
This means that a program is only part of a 
task, as shown in Figure 9-7. 

Embedded OSes manage all embedded software using tasks, and can either be unitasking
or multitasking. In unitasking OS environments, only one task can exist at any given time, 
whereas in a multitasking OS, multiple tasks are allowed to exist simultaneously. Unitasking 
OSes typically don’t require as complex a task management facility as a multitasking OS. In 
a multitasking environment, the added complexity of allowing multiple existing tasks requires 
that each process remain independent of the others and not affect any other without the specif-
ic programming to do so. This multitasking model provides each process with more security, 
which is not needed in a unitasking environment. Multitasking can actually provide a more 
organized way for a complex embedded system to function. In a multitasking environment, 
system activities are divided up into simpler, separate components, or the same activities can 
be running in multiple processes simultaneously, as shown in Figure 9-8. 

Figure 9-7: OS task
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Figure 9-8: Multitasking OS
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Some multitasking OSes also provide threads (lightweight processes) as an additional, 
alternative means for encapsulating an instance of a program. Threads are created within the 
context of a task (meaning a thread is bound to a task), and, depending on the OS, the task 
can own one or more threads. A thread is a sequential execution stream within its task. Unlike 
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tasks, which have their own independent memory spaces that are inaccessible to other tasks, 
threads of a task share the same resources (working directories, files, I/O devices, global data, 
address space, program code, etc.), but have their own PCs, stack, and scheduling information 
(PC, SP, stack, registers, etc.) to allow for the instructions they are executing to be scheduled 
independently. Since threads are created within the context of the same task and can share 
the same memory space, they can allow for simpler communication and coordination relative 
to tasks. This is because a task can contain at least one thread executing one program in one 
address space, or can contain many threads executing different portions of one program in 
one address space (see Figure 9-9), needing no intertask communication mechanisms. This is 
discussed in more detail at the end of section 9.1. Also, in the case of shared resources, mul-
tiple threads are typically less expensive than creating multiple tasks to do the same work.

Figure 9-9: Tasks and threads
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Usually, programmers define a separate task (or thread) for each of the system’s distinct 
activities to simplify all the actions of that activity into a single stream of events, rather than 
a complex set of overlapping events. However, it is generally left up to the programmer as to 
how many tasks are used to represent a system’s activity and, if threads are available, if and 
how they are used within the context of tasks. 

DOS-C is an example of a unitasking embedded OS, whereas vxWorks (Wind River), embed-
ded Linux (Timesys), and Jbed (Esmertec) are examples of multitasking OSes. Even within 
multitasking OSes, the designs can vary widely. vxWorks has one type of task, each of which 
implements one “thread of execution”. Timesys Linux has two types of tasks, the linux fork 
and the periodic task, whereas Jbed provides six different types of tasks that run alongside 
threads: OneshotTimer Task (which is a task that is run only once), PeriodicTimer Task (a task 
that is run after a particular set time interval), HarmonicEvent Task (a task that runs along-
side a periodic timer task), JoinEvent Task (a task that is set to run when an associated task 
completes), InterruptEvent Task (a task that is run when a hardware interrupt occurs), and the 
UserEvent Task (a task that is explicitly triggered by another task). More details on the differ-
ent types of tasks are given in the next section.
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9.2 Multitasking and Process Management
Multitasking OSes require an additional mechanism over unitasking OSes to manage and 
synchronize tasks that can exist simultaneously. This is because, even when an OS allows 
multiple tasks to coexist, one master processor on an embedded board can only execute one 
task or thread at any given time. As a result, multitasking embedded OSes must find some 
way of allocating each task a certain amount of time to use the master CPU, and switching the 
master processor between the various tasks. It is by accomplishing this through task imple-
mentation, scheduling, synchronization, and inter-task communication mechanisms that an 
OS successfully gives the illusion of a single processor simultaneously running multiple tasks 
(see Figure 9-10). 

Figure 9-10: Interleaving tasks
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9.2.1 Process Implementation
In multitasking embedded OSes, tasks are structured as a hierarchy of parent and child tasks, 
and when an embedded kernel starts up only one task exists (as shown in Figure 9-11). It is 
from this first task that all others are created (note: the first task is also created by the program-
mer in the system’s initialization code, which will be discussed in more detail in Chapter 12). 

Figure 9-11: Task hierarchy
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Task creation in embedded OSes is primarily based upon two models, fork/exec (which 
derived from the IEEE /ISO POSIX 1003.1 standard) and spawn (which is derived from 
fork/exec). Since the spawn model is based upon the fork/exec model, the methods of creat-
ing tasks under both models are similar. All tasks create their child tasks through fork/exec or 
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spawn system calls. After the system call, the OS gains control and creates the Task Control 
Block (TCB), also referred to as a Process Control Block (PCB) in some OSes, that con-
tains OS control information, such as task ID, task state, task priority, and error status, and 
CPU context information, such as registers, for that particular task. At this point, memory is 
allocated for the new child task, including for its TCB, any parameters passed with the system 
call, and the code to be executed by the child task. After the task is set up to run, the system 
call returns and the OS releases control back to the main program. 

The main difference between the fork/exec and spawn models is how memory is allocated 
for the new child task. Under the fork/exec model, as shown in Figure 9-12, the “fork” call 
creates a copy of the parent task’s memory space in what is allocated for the child task, thus 
allowing the child task to inherit various properties, such as program code and variables, 
from the parent task. Because the parent task’s entire memory space is duplicated for the 
child task, two copies of the parent task’s program code are in memory, one for the parent, 
and one belonging to the child. The “exec” call is used to explicitly remove from the child 
task’s memory space any references to the parent’s program and sets the new program code 
belonging to the child task to run. 

Figure 9-12: FORK/EXEC process creation
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The spawn model, on the other hand, creates an entirely new address space for the child task. 
The spawn system call allows for the new program and arguments to be defined for the child 
task. This allows for the child task’s program to be loaded and executed immediately at the 
time of its creation. 

Figure 9-13: Spawn process creation
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Both process creation models have their strengths and drawbacks. Under the spawn approach, 
there are no duplicate memory spaces to be created and destroyed, and then new space 
allocated, as is the case with the fork/exec model. The advantages of the fork/exec model, 
however, include the efficiency gained by the child task inheriting properties from the par-
ent task, and then having the flexibility to change the child task’s environment afterwards. 
In Figures 9-1, 9-2, and 9-3, real-world embedded OSes are shown along with their process 
creation techniques.

EXAMPLE 9-1: Creating a task in vxWorks [9-1]

The two major steps of spawn task creation form the basis of creating tasks in vxWorks. The 
vxWorks system call “taskSpawn” is based upon the POSIX spawn model, and it is what 
creates, initializes, and activates a new (child) task.
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int taskSpawn(
{Task Name}, 
{Task Priority 0-255, related to scheduling and will be discussed in the next section}, 
{Task Options – VX_FP_TASK, execute with floating point coprocessor

  VX_PRIVATE_ENV, execute task with private environment
  VX_UNBREAKABLE, disable breakpoints for task
   VX_NO_STACK_FILL, do not fill task stack with 0xEE}

{Stack Size}
{Task address of entry point of program in memory– initial PC value}
{Up to 10 arguments for task program entry routine}) 

After the spawn system call, an image of the child task (including TCB, stack, and program) 
is allocated into memory. Below is a pseudocode example of task creation in the vxWorks 
RTOS where a parent task “spawns” a child task software timer.

Task Creation vxWorks Pseudocode

// parent task that enables software timer
void parentTask(void)
{
…
if sampleSoftware Clock NOT running {

  /”newSWClkId” is a unique integer value assigned by kernel when task is created
  newSWClkId = taskSpawn (“sampleSoftwareClock”, 255, VX_NO_STACK_FILL, 3000,
   (FUNCPTR) minuteClock, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
  ….
 }

//child task program Software Clock
void minuteClock (void) {
  integer seconds;

  while (softwareClock is RUNNING) {
   seconds = 0;
   while (seconds < 60) {
    seconds = seconds+1;
  }
……
}
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EXAMPLE 9-2: Jbed RTOS and task creation [9-2]

In Jbed, there is more than one way to create a task, because in Java there is more than one 
way to create a Java thread—and in Jbed, tasks are extensions of Java threads. One of the most 
common methods of creating a task in Jbed is through the “task” routines, one of which is:

public Task(long duration,
long allowance,

  long deadline,
  RealtimeEvent event)

Throws AdmissionFailure

Task creation in Jbed is based upon a variation of the spawn model, called spawn threading.
Spawn threading is spawning, but typically with less overhead and with tasks sharing the 
same memory space. Below is a pseudocode example of task creation of a OneShot task, one 
of Jbed’s six different types of tasks, in the Jbed RTOS where a parent task “spawns” a child 
task software timer that runs only one time.

Task Creation Jbed Pseudocode

// Define a class that implements the Runnable interface for the software clock
public class ChildTask implements Runnable{

  //child task program Software Clock
  public void run () {
   integer seconds;

   while (softwareClock is RUNNING) {
    seconds = 0;
    while (seconds < 60) {
     seconds = seconds+1;
   }
   ……
  }

}

// parent task that enables software timer
void parentTask(void)
{
…
if sampleSoftware Clock NOT running {

  try{
   DURATION, 
   ALLOWANCE, 
   DEADLINE,
   OneshotTimer );
  }catch( AdmissionFailure error ){
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   Print Error Message ( “Task creation failed” );
  }
}
….
 }

The creation and initialization of the Task object is the Jbed (Java) equivalent of a TCB. The 
task object, along with all objects in Jbed, are located in Jbed’s heap (in Java, there is only 
one heap for all objects). Each task in Jbed is also allocated its own stack to store primitive 
data types and object references. 

EXAMPLE 9-3: Embedded Linux and fork/exec [9-3]

In embedded Linux, all process creation is based upon the fork/exec model:
int fork (void)   void exec (…)

In Linux, a new “child” process can be created with the fork system call (shown above), 
which creates an almost identical copy of the parent process. What differentiates the parent 
task from the child is the process ID—the process ID of the child process is returned to the 
parent, whereas a value of “0” is what the child process believes its process ID to be.

#include <sys/types.h>
#include <unistd.h>

void program(void)
{

   processId child_processId;

       /* create a duplicate: child process */ 
       child_processId = fork();

        if (child_processId == -1) {
            ERROR;
        }
        else if (child_processId == 0) {
            run_childProcess();
        }
        else {
            run_parentParent();
        }

The exec function call can then be used to switch to the child’s program code.

int program (char* program, char** arg_list) 
{
   processed  child_processId;



Chapter 9

396

 /* Duplicate this process */ 
 child_processId = fork (); 

if (child_pId != 0) 

  /* This is the parent process */ 
  return child_processId; 
  else 
  { 
  /* Execute PROGRAM, searching for it in the path */ 
  execvp (program, arg_list); 

  /* execvp returns only if an error occurs */ 
  fprintf (stderr, “Error in execvp\n”); 
  abort (); 
  } 
}

Tasks can terminate for a number of different reasons, such as normal completion, hardware 
problems such as lack of memory, and software problems such as invalid instructions. After
a task has been terminated, it must be removed from the system so that it doesn’t waste 
resources, or even keep the system in limbo. In deleting tasks, an OS deallocates any memory 
allocated for the task (TCBs, variables, executed code, etc.). In the case of a parent task being 
deleted, all related child tasks are also deleted or moved under another parent, and any shared 
system resources are released.

Figure 9-14a: vxWorks and Spawn task deleted [9-4]

void vxWorksTaskDelete  (int taskId)
{

        int localTaskId = taskIdFigure (taskId) ;

      /* no such task ID */
      if (localTaskId == ERR OR)
            printf ("Error: ask not found.\n");
      else if (localTaskId == 0)
              printf ("Error: The shell can't delete itself.\n");
      else if (taskDelete (localTaskId) != OK)
              printf (“Error”);

}

Call Description

exit() Terminates the calling task and frees memory
(task stacks and task control blocks only).

taskDelete() Terminates a specified task and frees memory
(task stacks and task control blocks only).*

taskSafe() Protects the calling task from deletion.

taskUnsafe() Undoes a taskSafe() (makes the calling task available for deletion).

* Memory that is allocated by the task during its execution is not freed when the
task is terminated.
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#include <stdio.h>
#include <stdlib.h>

main ()
{…
if (fork == 0)
  exit (10);
….
}

Figure 9-14b: Embedded Linux 
and fork/exec task deleted [9-3]

Because Jbed is based upon the Java model, a garbage collector is responsible for deleting a 
task and removing any unused code from memory once the task has stopped running. Jbed 
uses a non-blocking mark-and-sweep garbage collection algorithm which marks all objects 
still being used by the system and deletes (sweeps) all unmarked objects in memory.

In addition to creating and deleting tasks, an OS typically provides the ability to suspend
a task (meaning temporarily blocking a task from executing) and resume a task (meaning 
any blocking of the task’s ability to execute is removed). These two additional functions are 
provided by the OS to support task states. A task’s state is the activity (if any) that is going on 
with that task once it has been created, but has not been deleted. OSes usually define a task as 
being in one of three states:

Ready: The process is ready to be executed at any time, but is waiting for permission 
to use the CPU. 

Running: The process has been given permission to use the CPU, and can execute. 

Blocked or Waiting: The process is waiting for some external event to occur before it 
can be “ready” to “run”. 

When a task is deleted in vxWorks, other tasks are not notified, and any resources, such as 
memory allocated to the task are not freed—it is the responsibility of the programmer to man-
age the deletion of tasks using the subroutines below.

In Linux, processes are deleted with the void exit(int status) system call, which deletes the 
process and removes any kernel references to process (updates flags, removes processes from 
queues, releases data structures, updates parent-child relationships, etc.). Under Linux, child 
processes of a deleted process become children of the main init parent process.
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OSes usually implement separate READY and BLOCK/WAITING “queues” containing tasks 
(their TCBs) that are in the relative state (see Figure 9-15). Only one task at any one time can 
be in the RUNNING state, so no queue is needed for tasks in the RUNNING state.

Figure 9-15: Task states and queues [9-4]
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Based upon these three states (Ready, Blocked, and Running), most OSes have some process 
state transition model similar to the state diagram in Figure 9-16. In this diagram, the “New” 
state indicates a task that has been created, the “Exit” state is a task that has terminated 
(suspended or stopped running). The other three states are defined above (Ready, Running, 
and Blocked). The state transitions (according to Figure 9-16) are New  Ready (where 
a task has entered the ready queue and can be scheduled for running), Ready  Running 
(based on the kernel’s scheduling algorithm, the task has been selected to run), Running 
Ready (the task has finished its turn with the CPU, and is returned to the ready queue for 
the next time around), Running  Blocked (some event has occurred to move the task into 
the blocked queue, not to run until the event has occurred or been resolved), and Blocked 
Ready (whatever blocked task was waiting for has occurred, and task is moved back to ready 
queue).

Figure 9-16: Task state diagram [9-2]
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When a task is moved from one of the queues (READY or BLOCKED/WAITING) into the 
RUNNING state, it is called a context switch. Examples 9-4, 9-5 and 9-6 give real-world 
examples of OSes and their state management schemes.
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EXAMPLE 9-4: vxWorks Wind kernel and states [9-5]

Other than the RUNNING state, VxWorks implements nine variations of the READY and 
BLOCKED/WAITING states, as shown in the following table and state diagram.

State Description

STATE + 1 The state of the task with an inherited priority
READY Task in READY state
DELAY Task in BLOCKED state for a specific time period
SUSPEND Task is BLOCKED usually used for debugging
DELAY + S Task is in 2 states: DELAY & SUSPEND
PEND Task in BLOCKED state due to a busy resource
PEND + S Task is in 2 states: PEND & SUSPEND
PEND + T Task is in PEND state with a timeout value
PEND + S + T Task is in 2 states: PEND state with a timeout value and 

SUSPEND

Figure 9-17a1: State diagram for vxWorks tasks [9-5]

ReadyPended Delayed This state diagram shows how a vxWorks task can switch between
all of the various states.

Suspended

Under vxWorks, separate ready, pending, and delay state queues exist to store the TCB infor-
mation of a task that is within that respective state (see Figure 9-17a2). 

Figure 9-17a2: vxWorks tasks and queues [9-4]
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A task’s TCB is modified and is moved from queue to queue when a context switch occurs. 
When the Wind kernel context switches between two tasks, the information of the task cur-
rently running is saved in its TCB, while the TCB information of the new task to be executed 
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is loaded for the CPU to begin executing. The Wind kernel contains two types of context 
switches: synchronous, which occurs when the running task blocks itself (through pending, 
delaying, or suspending), and asynchronous, which occurs when the running task is blocked 
due to an external interrupt.

EXAMPLE 9-5: Jbed kernel and states [9-6]

In Jbed, some states of tasks are related to the type of task, as shown in the table and state 
diagrams below. Jbed also uses separate queues to hold the task objects that are in the vari-
ous states.

State Description

RUNNING For all types of tasks, task is currently executing
READY For all types of tasks, task in READY state
STOP In Oneshot Tasks, task has completed execution
AWAIT TIME For all types of tasks, task in BLOCKED state for a specific time 

period
AWAIT EVENT In Interrupt and Joined tasks, BLOCKED while waiting for some 

event to occur

Figure 9-17b1: State diagram for Jbed interrupt tasks [9-6]

Figure 9-17b2: State diagram for Jbed joined tasks [9-6]

This state diagram shows some possible states for Interrupt 
tasks. Basically, an interrupt task is in an Await Event state until a 
hardware interrupt occurs – at which point the Jbed scheduler
moves an Interrupt task into the Ready state to await its turn to run. 
At any time, the Joined Task can enter a timed waiting period.
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This state diagram shows some possible states for Joined tasks. Like 
the Interrupt task, the Joined task is in an Await Event state until an 
associated task has finished running – at which point the Jbed 
scheduler moves a Joined task into the Ready state to await its turn to 
run. At any time, the Joined Task can enter a timed waiting period.
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EXAMPLE 9-6: Embedded Linux and states

In Linux, RUNNING combines the traditional READY and RUNNING states, while there are 
three variations of the BLOCKED state.

Figure 9-17b3: State diagram for periodic tasks [9-6]

Figure 9-17b4: State diagram for oneshot tasks [9-6]

This state diagram shows some possible states for Periodic tasks. A 
Periodic task runs continuously at certain intervals and gets moved 
into the Await Time state after every run to await that interval before
being put into the ready state.
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This state diagram shows some possible states for Oneshot tasks. A 
Oneshot task can either run once and then end (stop), or be blocked
for a period of time before actually running.
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State Description

RUNNING Task is either in the RUNNING or READY state
WAITING Task in BLOCKED state waiting for a specific resource 

or event
STOPPED Task is BLOCKED, usually used for debugging
ZOMBIE Task is BLOCKED and no longer needed

Figure 9-17c1: State diagram for Linux tasks [9-3]

Running Stopped This state diagram shows how a Linux task can switch between all 
of the various states.

Waiting
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Under Linux, a process’s context information is saved in a PCB called the task_struct 
shown in Figure 9-17c2 below. Shown boldface in the figure is an entry in the task_struct con-
taining a Linux process’s state. In Linux there are separate queues that contain the task_struct 
(PCB) information for the process with that respective state. 

Figure 9-17c2: Task structure [9-15]

struct task_struct
{

….
// -1 unrunnable, 0 runnable, >0 stopped 
volatile long       state;

// number of clock ticks left to run in this scheduling slice, decremented by a timer.
  long                counter;
  // the process' static priority, only changed through well-known system calls like nice, POSIX.1b
 // sched_setparam, or 4.4BSD/SVR4 setpriority.
  long                 priority;
  unsigned            long signal;
  //  bitmap of masked signals
  unsigned            long blocked;
 // per process flags, defined below
  unsigned            long flags;
  int errno;
  // hardware debugging registers
  long                 debugreg[8];
  struct exec_domain   *exec_domain;
  struct linux_binfmt *binfmt;
  struct task_struct   *next_task, *prev_task;
  struct task_struct   *next_run,  *prev_run;
  unsigned long        saved_kernel_stack;
  unsigned long        kernel_stack_page;
  int                  exit_code, exit_signal;
    unsigned long        personality;
  int                  dumpable:1;
  int                  did_exec:1;
  int                  pid;
  int                  pgrp;
  int                 tty_old_pgrp;
  int                 session;
  // boolean value for session group leader
  int                 leader;
  int                 groups[NGROUPS];
  // pointers to (original) parent process, youngest child, younger sibling, older sibling, respectively.  (p->father
  // can be replaced with  p->p_pptr->pid)
  struct task_struct   *p_opptr, *p_pptr, *p_cptr,
                       *p_ysptr, *p_osptr;
struct wait_queue    *wait_chldexit;
  unsigned short       uid,euid,suid,fsuid;
  unsigned short       gid,egid,sgid,fsgid;
  unsigned long        timeout;
// the scheduling policy, specifies which scheduling class the task belongs to, such as : SCHED_OTHER
//(traditional UNIX process), SCHED_FIFO (POSIX.1b FIFO realtime process - A FIFO realtime process will
//run until either a) it blocks on I/O, b) it explicitly yields the CPU or c) it is preempted by another realtime
//process with a higher p->rt_priority value.) and SCHED_RR (POSIX round-robin realtime process –
//SCHED_RRis the same as SCHED_FIFO, except that when its timeslice expires it goes back to the end of the
//run queue).
  unsigned long        policy;

//realtime priority
  unsigned long        rt_priority;
  unsigned long        it_real_value, it_prof_value, it_virt_value;
  unsigned long        it_real_incr, it_prof_incr, it_virt_incr;
  struct timer_list    real_timer;
  long                utime, stime, cutime, cstime, start_time;
// mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
  unsigned long        min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
  int swappable:1;
  unsigned long        swap_address;
  // old value of maj_flt
  unsigned long        old_maj_flt;
  // page fault count of the last time
  unsigned long        dec_flt;
// number of pages to swap on next pass
  unsigned long        swap_cnt;
//limits
  struct rlimit        rlim[RLIM_NLIMITS];
  unsigned short       used_math;
  char                 comm[16];
// file system info
  int                 link_count;
// NULL if no tty
  struct tty_struct    *tty;
// ipc stuff
  struct sem_undo     *semundo;
  struct sem_queue    *semsleeping;
// ldt for this task - used by Wine.  If NULL, default_ldt is used
  struct desc_struct *ldt;
// tss for this task
  struct thread_struct tss;
// filesystem information
  struct fs_struct     *fs;
// open file information
  struct files_struct  *files;
// memory management info
  struct mm_struct     *mm;
// signal handlers
  struct signal_struct *sig;
#ifdef __SMP__
  int                 processor;
  int                 last_processor;
  int                 lock_depth;     /* Lock depth.
                                         We can context switch in and out
                                         of holding a syscall kernel lock... */
#endif
}

9.2.2 Process Scheduling
In a multitasking system, a mechanism within an OS, called a scheduler (shown in Figure 
9-18), is responsible for determining the order and the duration of tasks to run on the CPU. 
The scheduler selects which tasks will be in what states (ready, running, or blocked), as well 
as loading and saving the TCB information for each task. On some OSes the same scheduler 
allocates the CPU to a process that is loaded into memory and ready to run, while in other 
OSes a dispatcher (a separate scheduler) is responsible for the actual allocation of the CPU to 
the process.

There are many scheduling algorithms implemented in embedded OSes, and every design has 
its strengths and tradeoffs. The key factors that impact the effectiveness and performance of a 
scheduling algorithm include its response time (time for scheduler to make the context switch 
to a ready task and includes waiting time of task in ready queue), turnaround time (the time 
it takes for a process to complete running), overhead (the time and data needed to determine 



Embedded Operating Systems

403

which tasks will run next), and fairness (what are the determining factors as to which pro-
cesses get to run). A scheduler needs to balance utilizing the system’s resources—keeping the 
CPU, I/O, as busy as possible—with task throughput, processing as many tasks as possible 
in a given amount of time. Especially in the case of fairness, the scheduler has to ensure that 
task starvation, where a task never gets to run, doesn’t occur when trying to achieve a maxi-
mum task throughput.

In the embedded OS market, scheduling algorithms implemented in embedded OSes typically 
fall under two approaches: non-preemptive and preemptive scheduling. Under non-preemp-
tive scheduling, tasks are given control of the master CPU until they have finished execution, 
regardless of the length of time or the importance of the other tasks that are waiting. Schedul-
ing algorithms based upon the non-preemptive approach include:

First-Come-First-Serve (FCFS)/ Run-To-Completion, where tasks in the READY 
queue are executed in the order they entered the queue, and where these tasks are 
run until completion when they are READY to be run (see Figure 9-19). Here, non-
preemptive means there is no BLOCKED queue in an FCFS scheduling design.

Figure 9-18: OS Block diagram and the scheduler [9-3]

Figure 9-19: First-come-first-serve scheduling
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The response time of a FCFS algorithm is typically slower than other algorithms (i.e., espe-
cially if longer processes are in front of the queue requiring that other processes wait their 
turn), which then becomes a fairness issue since short processes at the end of the queue get 
penalized for the longer ones in front. With this design, however, starvation is not possible.
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Shortest Process Next (SPN)/Run-To-Completion, where tasks in the READY 
queue are executed in the order in which the tasks with the shortest execution time 
are executed first. (see Figure 9-20).

Figure 9-20: Shortest process next scheduling

Master
CPU…..... T2   T1   T3

Current
Task

TN T3 T1 T2

Time T1 = 10ms
Time T3 = 2ms
Time T2 = 20 ms

Scheduler

The SPN algorithm has faster response times for shorter processes. However, then the longer 
processes are penalized by having to wait until all the shorter processes in the queue have 
run. In this scenario, starvation can occur to longer processes if the ready queue is continually 
filled with shorter processes. The overhead is higher than that of FCFS, since the calculation 
and storing of run times for the processes in the ready queue must occur. 

Co-operative, where the tasks themselves run until they tell the OS when they can 
be context switched (i.e., for I/O, etc.). This algorithm can be implemented with the 
FCFS or SPN algorithms, rather than the run-to-completion scenario, but starvation 
could still occur with SPN if shorter processes were designed not to “cooperate,” for 
example.

Figure 9-21: Co-operative scheduling
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Non-preemptive algorithms can be riskier to support since an assumption must be made that 
no one task will execute in an infinite loop, shutting out all other tasks from the master CPU. 
However, OSes that support non-preemptive algorithms don’t force a context-switch before 
a task is ready, and the overhead of saving and restoration of accurate task information when 
switching between tasks that have not finished execution is only an issue if the non-preemp-
tive scheduler implements a co-operative scheduling mechanism. In preemptive scheduling,
on the other hand, the OS forces a context-switch on a task, whether or not a running task has 
completed executing or is cooperating with the context switch. Common scheduling algo-
rithms based upon the preemptive approach include:
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Round Robin/FIFO (First In, First Out) Scheduling

The Round Robin/FIFO algorithm implements a FIFO queue that stores ready
processes (processes ready to be executed). Processes are added to the queue at the 
end of the queue, and are retrieved to be run from the start of the queue. In the FIFO 
system, all processes are treated equally regardless of their workload or interactivity. 
This is mainly due to the possibility of a single process maintaining control of the 
processor, never blocking to allow other processes to execute.

Under round-robin scheduling, each process in the FIFO queue is allocated an equal 
time slice (the duration each process has to run), where an interrupt is generated at 
the end of each of these intervals to start the pre-emption process. (Note: scheduling 
algorithms that allocate time slices, are also referred to as time-sharing systems.)
The scheduler then takes turns rotating among the processes in the FIFO queue and 
executing the processes consecutively, starting at the beginning of the queue. New 
processes are added to the end of the FIFO queue, and if a process that is currently 
running isn’t finished executing by the end of its allocated time slice, it is preempted 
and returned to the back of the queue to complete executing the next time its turn 
comes around. If a process finishes running before the end of its allocated time slice, 
the process voluntarily releases the processor, and the scheduler then assigns the next 
process of the FIFO queue to the processor (see Figure 9-22).

Figure 9-22: Round-robin/FIFO scheduling [9-7]
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While Round Robin/FIFO scheduling ensures the equal treatment of processes, 
drawbacks surface when various processes have heavier workloads and are constantly 
preempted, thus creating more context switching overhead. Another issue occurs 
when processes in the queue are interacting with other processes (such as when wait-
ing for the completion of another process for data), and are continuously preempted 
from completing any work until the other process of the queue has finished its run. 
The throughput depends on the time slice. If the time slice is too small, then there 
are many context switches, while too large a time slice isn’t much different from a 
non-preemptive approach, like FCFS. Starvation is not possible with the round-robin 
implementation.



Chapter 9

406

Priority (Preemptive) Scheduling

The priority preemptive scheduling algorithm differentiates between processes based 
upon their relative importance to each other and the system. Every process is assigned 
a priority, which acts as an indicator of orders of precedence within the system. The 
processes with the highest priority always preempt lower priority processes when 
they want to run, meaning a running task can be forced to block by the scheduler 
if a higher priority task becomes ready to run. Figure 9-23 shows three tasks (1, 2, 
3—where task 1 is the lowest priority task and task 3 is the highest), and task 3 pre-
empts task 2, and task 2 preempts task 1.

Figure 9-23: Preemptive priority scheduling [9-8]
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While this scheduling method resolves some of the problems associated with round-
robin/FIFO scheduling in dealing with processes that interact or have varying 
workloads, new problems can arise in priority scheduling including: 

– Process starvation, where a continuous stream of high priority processes keep 
lower priority processes from ever running. Typically resolved by aging lower 
priority processes (as these processes spend more time on queue, increase their 
priority levels).

– Priority inversion, where higher priority processes may be blocked waiting for 
lower priority processes to execute, and processes with priorities in between have 
a higher priority in running, thus both the lower priority as well as higher priority 
processes don’t run (see Figure 9-24).

Figure 9-24: Priority inversion [9-8]
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– how to determine the priorities of various processes. Typically, the more im-
portant the task, the higher the priority it should be assigned. For tasks that are 
equally important, one technique that can be used to assign task priorities is the 
Rate Monotonic Scheduling (RMS) scheme, in which tasks are assigned a prior-
ity based upon how often they execute within the system. The premise behind this 
model is that, given a preemptive scheduler and a set of tasks that are completely 
independent (no shared data or resources) and are run periodically (meaning run 
at regular time intervals), the more often a task is executed within this set, the 
higher its priority should be. The RMS Theorem says that if the above assump-
tions are met for a scheduler and a set of “n” tasks, all timing deadlines will be 
met if the inequality  Ei/Ti <= n(21/n – 1) is verified, where

   i = periodic task
   n = number of periodic tasks
   Ti = the execution period of task i
   Ei = the worst-case execution time of task i
   Ei/Ti = the fraction of CPU time required to execute task i

So, given two tasks that have been prioritized according to their periods, where the shortest 
period task has been assigned the highest priority, the “n(21/n – 1)” portion of the inequal-
ity would equal approximately .828, meaning the CPU utilization of these tasks should not 
exceed about 82.8% in order to meet all hard deadlines. For 100 tasks that have been priori-
tized according to their periods, where the shorter period tasks have been assigned the higher 
priorities, CPU utilization of these tasks should not exceed approximately 69.6% (100 * 
(21/100 – 1)) in order to meet all deadlines.

Real-World Advice

To Benefit Most from a Fixed-Priority Preemptive OS

Algorithms for assigning priorities to OS tasks are typically classified as fixed-priority where 
tasks are assigned priorities at design time and do not change through the lifecycle of the task, 
dynamic-priority where priorities are assigned to tasks at run-time, or some combination of both 
algorithms. Many commercial OSes typically support only the fixed-priority algorithms, since it 
is the least complex scheme to implement. The key to utilizing the fixed-priority scheme is:

• to assign the priorities of tasks according to their periods, so that the shorter the periods, 
the higher the priorities.

• to assign priorities using a fixed-priority algorithm (like the Rate Monotonic Algorithm, the 
basis of RMS) to assign fixed priorities to tasks, and as a tool to quickly to determine if a set 
of tasks is schedulable.

• to understand that in the case when the inequality of a fixed-priority algorithm, like RMS, 
is not met, an analysis of the specific task set is required. RMS is a tool that allows for assum-
ing that deadlines would be met in most cases if the total CPU utilization is below the limit 
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(“most” cases meaning there are tasks that are not schedulable via any fixed-priority scheme). 
It is possible for a set of tasks to still be schedulable in spite of having a total CPU utilization 
above the limit given by the inequality. Thus, an analysis of each task’s period and execution 
time needs to be done in order to determine if the set can meet required deadlines.

• to realize that a major constraint of fixed-priority scheduling is that it is not always possible 
to completely utilize the master CPU 100%. If the goal is 100% utilization of the CPU when 
using fixed priorities, then tasks should be assigned harmonic periods, meaning a task’s period 
should be an exact multiple of all other tasks with shorter periods. 

—Based on the article “Introduction to Rate Monotonic Scheduling” by Michael Barr
Embedded Systems Programming, February 2002 

EDF (Earliest Deadline First)/Clock Driven Scheduling

As shown in Figure 9-25, the EDF/Clock Driven algorithm schedules priorities to 
processes according to three parameters: frequency (number of times process is run), 
deadline (when processes execution needs to be completed), and duration (time it 
takes to execute the process). While the EDF algorithm allows for timing constraints 
to be verified and enforced (basically guaranteed deadlines for all tasks), the diffi-
culty is defining an exact duration for various processes. Usually, an average estimate 
is the best that can be done for each process.

Figure 9-25: EDF scheduling [9-2]
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Preemptive Scheduling and the Real-Time Operating System (RTOS)

One of the biggest differentiators between the scheduling algorithms implemented within 
embedded operating systems is whether the algorithm guarantees its tasks will meet execution 
time deadlines. If tasks always meet their deadlines (as shown in the first two graphs in Figure 
9-26), and related execution times are predictable (deterministic), the OS is referred to as a 
Real-Time Operating System (RTOS). 
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Preemptive scheduling must be one of the algorithms implemented within RTOS schedul-
ers, since tasks with real-time requirements have to be allowed to preempt other tasks. RTOS 
schedulers also make use of their own array of timers, ultimately based upon the system 
clock, to manage and meet their hard deadlines.

Whether an RTOS or a nonreal-time OS in terms of scheduling, all will vary in their imple-
mented scheduling schemes. For example, vxWorks (Wind River) is a priority-based and 
round-robin scheme, Jbed (Esmertec) is an EDF scheme, and Linux (Timesys) is a prior-
ity-based scheme. Examples 9-7, 9-8, and 9-9 examine further the scheduling algorithms 
incorporated into these embedded off-the-shelf operating systems. 

EXAMPLE 9-7: vxWorks scheduling

The Wind scheduler is based upon both preemptive priority and round-robin real-time sched-
uling algorithms. As shown in Figure 9-27a1, round-robin scheduling can be teamed with 
preemptive priority scheduling to allow for tasks of the same priority to share the master 
processor, as well as allow higher priority tasks to preempt for the CPU. 

Figure 9-26: OSes and deadlines [9-4]
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Figure 9-27a1: Preemptive priority scheduling augmented with round-robin scheduling [9-7]
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Without round-robin scheduling, tasks of equal priority in vxWorks would never preempt 
each other, which can be a problem if a programmer designs one of these tasks to run in 
an infinite loop. However, the preemptive priority scheduling allows vxWorks its real-time 
capabilities, since tasks can be programmed never to miss a deadline by giving them the 
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higher priorities to preempt all other tasks. Tasks are assigned priorities via the “taskSpawn” 
command at the time of task creation:

int taskSpawn(
{Task Name}, 
{Task Priority 0-255, related to scheduling and will be discussed in the next section},  
{Task Options – VX_FP_TASK, execute with floating point coprocessor
         VX_PRIVATE_ENV, execute task with private environment
         VX_UNBREAKABLE,   disable breakpoints for task
         VX_NO_STACK_FILL, do not fill task stack with 0xEE}
{Task address of entry point of program in memory– initial PC value}
{Up to 10 arguments for task program entry routine}) 

EXAMPLE 9-8: Jbed and EDF scheduling

Under the Jbed RTOS, all six types of tasks have the three variables “duration”, ”allowance”, 
and “deadline” when the task is created for the EDF scheduler to schedule all tasks, as shown 
in the method (java subroutine) calls below.

public Task(
  long duration,

long allowance,
long deadline,
RealtimeEvent event)

    Throws AdmissionFailure

Public Task (java.lang.String name,
long duration,
long allowance,
long deadline,
RealtimeEvent event)

Throws AdmissionFailure

Public Task (java.lang.Runnable target,
java.lang.String name,
long duration,
long allowance,
long deadline,
RealtimeEvent event)

    Throws AdmissionFailure
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EXAMPLE 9-9: TimeSys embedded Linux priority based scheduling

As shown in Figure 9-27b1, the embedded Linux kernel has a scheduler that is made up of 
four modules[9-9]:

System call interface module, which acts as the interface between user processes and 
any functionality explicitly exported by the kernel

Scheduling policy module, which determines which processes have access to the 
CPU.

Architecture specific scheduler module, which is an abstraction layer that interfaces 
with the hardware (i.e., communicating with CPU and the memory manager to sus-
pend or resume processes)

Architecture independent scheduler module, which is an abstraction layer that inter-
faces between the scheduling policy module and the architecture specific module.

The scheduling policy module implements a “priority-based” scheduling algorithm. While 
most Linux kernels and their derivatives (2.2/2.4) are non-preemptable, have no reschedul-
ing, and are not real-time, Timesys’ Linux scheduler is priority-based, but has been modified 
to allow for real-time capabilities. Timesys has modified the traditional Linux’s standard 
software timers, which are too coarsely grained to be suitable for use in most real-time 
applications because they rely on the kernel’s jiffy timer, and implements high-resolution 
clocks and timers based on a hardware timer. The scheduler maintains a table listing all of 
the tasks within the entire system and any state information associated with the tasks. Under 
Linux, the total number of tasks allowed is only limited to the size of physical memory avail-
able. A dynamically allocated linked list of a task structure, whose fields that are relevant to 
scheduling are highlighted in Figure 9-27b2, represents all tasks in this table.

Figure 9-27b1: Embedded Linux block diagram [9-9]
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 struct task_struct
{ ….
                              // -1 unrunnable, 0 runnable, >0 stopped
  volatile long        state;

// number of clock ticks left to run in this scheduling slice, decremented 
by a timer.
  long                counter;

  // the process' static priority, only changed through well-known system
calls like nice, POSIX.1b
 // sched_setparam, or 4.4BSD/SVR4 setpriority.
  long                 priority;

  unsigned             long signal;

  //  bitmap of masked signals
  unsigned             long blocked;

 // per process flags, defined below
  unsigned             long flags;
  int errno;

  // hardware debugging registers
  long                 debugreg[8];
  struct exec_domain   *exec_domain;
  struct linux_binfmt  *binfmt;
  struct task_struct   *next_task, *prev_task;
  struct task_struct   *next_run,  *prev_run;
  unsigned long        saved_kernel_stack;
  unsigned long        kernel_stack_page;
  int                  exit_code, exit_signal;
    unsigned long        personality;
  int                  dumpable:1;
  int                  did_exec:1;
  int                  pid;
  int                  pgrp;
  int                  tty_old_pgrp;
  int                  session;
  // boolean value for session group leader
  int                  leader;
  int                  groups[NGROUPS];

  // pointers to (original) parent process, youngest child, younger sibling,
// older sibling, respectively.  (p->father   can be replaced with  p->p_pptr->pid)
  struct task_struct   *p_opptr, *p_pptr, *p_cptr,
                       *p_ysptr, *p_osptr;
  struct wait_queue    *wait_chldexit;
  unsigned short       uid,euid,suid,fsuid;
  unsigned short       gid,egid,sgid,fsgid;
  unsigned long        timeout;

// the scheduling policy, specifies which scheduling class the task belongs to,
// such as : SCHED_OTHER (traditional UNIX process), SCHED_FIFO
// (POSIX.1b FIFO realtime process - A FIFO realtime process will
//run until either a) it blocks on I/O, b) it explicitly yields the CPU or c) it is
// preempted by another realtime process with a higher p->rt_priority value.)
// and SCHED_RR (POSIX round-robin realtime process –
//SCHED_RR is the same as SCHED_FIFO, except that when its timeslice
// expires it goes back to the end of the run queue).
 unsigned long        policy;

//realtime priority
  unsigned long       rt_priority;

  unsigned long        it_real_value, it_prof_value, it_virt_value;
  unsigned long        it_real_incr, it_prof_incr, it_virt_incr;
  struct timer_list    real_timer;
  long                utime, stime, cutime, cstime, start_time;

// mm fault and swap info: this can arguably be seen as either  mm-
specific or thread-specific */
  unsigned long        min_flt, maj_flt, nswap, cmin_flt, cmaj_flt,
cnswap;
  int swappable:1;
  unsigned long        swap_address;

  // old value of maj_flt
  unsigned long        old_maj_flt;

  // page fault count of the last time
  unsigned long        dec_flt;

// number of pages to swap on next pass
  unsigned long        swap_cnt;

//limits
  struct rlimit        rlim[RLIM_NLIMITS];
  unsigned short       used_math;
  char                 comm[16];

// file system info
  int                  link_count;

// NULL if no tty
  struct tty_struct    *tty;

// ipc stuff
  struct sem_undo      *semundo;
  struct sem_queue     *semsleeping;

// ldt for this task - used by Wine.  If NULL, default_ldt is used
  struct desc_struct *ldt;

// tss for this task
  struct thread_struct tss;

// filesystem information
  struct fs_struct     *fs;

// open file information
  struct files_struct  *files;

// memory management info
  struct mm_struct     *mm;

// signal handlers
  struct signal_struct *sig;
#ifdef __SMP__
  int                  processor;
  int                  last_processor;
  int                  lock_depth;     /* Lock depth.
                                              We can context switch in and out
                                                of holding a syscall kernel lock... */
#endif

…..

}

Figure 9-27b2: Task structure [9-15]
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After a process has been created in Linux, through the fork or fork/exec commands, for 
instance, its priority is set via the setpriority command.

int setpriority(int which, int who, int prio);
which = PRIO_PROCESS, PRIO_PGRP, or PRIO_USER
who = interpreted relative to which
prio = priority value in the range −20 to 20 

9.2.3 Intertask Communication and Synchronization
Different tasks in an embedded system typically must share the same hardware and software 
resources, or may rely on each other in order to function correctly. For these reasons, em-
bedded OSes provide different mechanisms that allow for tasks in a multitasking system to 
intercommunicate and synchronize their behavior so as to coordinate their functions, avoid 
problems, and allow tasks to run simultaneously in harmony.

Embedded OSes with multiple intercommunicating processes commonly implement in-
terprocess communication (IPC) and synchronization algorithms based upon one or some 
combination of memory sharing, message passing, and signaling mechanisms. 

With the shared data model shown in Figure 9-28, processes communicate via access to shared 
areas of memory in which variables modified by one process are accessible to all processes. 

Figure 9-28: Memory sharing

Memory

Shared Data

Process 1

Process 2

Process N

While accessing shared data as a means to communicate is a simple approach, the major issue 
of race conditions can arise. A race condition occurs when a process that is accessing shared 
variables is preempted before completing a modification access, thus affecting the integrity 
of shared variables. To counter this issue, portions of processes that access shared data, called 
critical sections, can be earmarked for mutual exclusion (or Mutex for short). Mutex mecha-
nisms allow shared memory to be locked up by the process accessing it, giving that process 
exclusive access to shared data. Various mutual exclusion mechanisms can be implemented 
not only for coordinating access to shared memory, but for coordinating access to other 
shared system resources as well. Mutual exclusion techniques for synchronizing tasks that 
wish to concurrently access shared data can include:

Processor assisted locks for tasks accessing shared data that are scheduled such 
that no other tasks can preempt them; the only other mechanisms that could force a 
context switch are interrupts. Disabling interrupts while executing code in the critical
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section would avoid a race condition scenario if the interrupt handlers access the 
same data. Figure 9-29 demonstrates this processor-assisted lock of disabling inter-
rupts as implemented in vxWorks.

  VxWorks provides an interrupt locking and unlocking function for users to imple-
ment in tasks.

Figure 9-29: vxWorks processor assisted locks [9-10]

FuncA ()
  {
   int lock = intLock ();
   .
   . critical region that cannot be interrupted
   .
   intUnlock (lock);
  }

Another possible processor-assisted lock is the “test-and-set-instruction” mechanism 
(also referred to as the condition variable scheme). Under this mechanism, the setting 
and testing of a register flag (condition) is an atomic function, a process that cannot 
be interrupted, and this flag is tested by any process that wants to access a critical 
section.

In short, both the interrupt disabling and the condition variable type of locking 
schemes guarantee a process exclusive access to memory, where nothing can preempt 
the access to shared data and the system cannot respond to any other event for the 
duration of the access. 

Semaphores, which can be used to lock access to shared memory (mutual exclusion), 
and also can be used to coordinate running processes with outside events (synchro-
nization). The semaphore functions are atomic functions, and are usually invoked 
through system calls by the process. Example 9-10 demonstrates semaphores pro-
vided by vxWorks.

EXAMPLE 9-10: vxWorks semaphores

VxWorks defines three types of semaphores:

1. Binary semaphores are binary (0 or 1) flags that can be set to be available or unavail-
able. Only the associated resource is affected by the mutual exclusion when a binary 
semaphore is used as a mutual exclusion mechanism (whereas processor assisted locks, 
for instance, can affect other unrelated resources within the system). A binary sema-
phore is initially set = 1 (full) to show the resource is available. Tasks check the binary 
semaphore of a resource when wanting access, and if available, then take the associated 
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semaphore when accessing a resource (setting the binary semaphore = 0), and then give 
it back when finishing with a resource (setting the binary semaphore = 1).

When a binary semaphore is used for task synchronization, it is initially set equal to 0 
(empty), because it acts as an event other tasks are waiting for. Other tasks that need 
to run in a particular sequence then wait (block) for the binary semaphore to be equal 
to 1 (until the event occurs) to take the semaphore from the original task and set it 
back to 0. The vxWorks pseudocode example below demonstrates how binary sema-
phores can be used in vxWorks for task synchronization.

#include “vxWorks.h”
#include “semLib.h”
#include “arch/arch/ivarch.h” /* replace arch with architecture type */

SEM_ID syncSem; /* ID of sync semaphore */

init (int someIntNum)
{
  /* connect interrupt service routine */
  intConnect (INUM_TO_IVEC (someIntNum), eventInterruptSvcRout, 0);

  /* create semaphore */
  syncSem = semBCreate (SEM_Q_FIFO, SEM_EMPTY);

  /* spawn task used for synchronization. */
  taskSpawn (“sample”, 100, 0, 20000, task1, 0,0,0,0,0,0,0,0,0,0);
}

task1 (void)
{
  ...
  semTake (syncSem, WAIT_FOREVER); /* wait for event to occur */
  printf (“task 1 got the semaphore\n”);
  ... /* process event */
}

eventInterruptSvcRout (void)
{
  ...
  semGive (syncSem); /* let task 1 process event */
  ...
}
[9-4]

2. Mutual Exclusion semaphores are binary semaphores that can only be used for 
mutual exclusion issues that can arise within the vxWorks scheduling model, such 
as: priority inversion, deletion safety (insuring that tasks that are accessing a critical 
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section and blocking other tasks aren’t unexpectedly deleted), and recursive access 
to resources. Below is a pseudocode example of a mutual exclusion semaphore used 
recursively by a task’s subroutines.

/* Function A requires access to a resource which it acquires by taking
* mySem;
* Function A may also need to call function B, which also requires mySem:
*/
/* includes */
#include “vxWorks.h”
#include “semLib.h”
SEM_ID mySem;

/* Create a mutual-exclusion semaphore. */
init ()
{
  mySem = semMCreate (SEM_Q_PRIORITY);
}

funcA ()
{
  semTake (mySem, WAIT_FOREVER);
  printf (“funcA: Got mutual-exclusion semaphore\n”);
  ...

  funcB ();
  ...
  semGive (mySem);
  printf (“funcA: Released mutual-exclusion semaphore\n”);
}

funcB ()
{
  semTake (mySem, WAIT_FOREVER);
  printf (“funcB: Got mutual-exclusion semaphore\n”);
  ...
  semGive (mySem);
  printf (“funcB: Releases mutual-exclusion semaphore\n”);
}
[9-4]

3. Counting semaphores are positive integer counters with two related functions: 
incrementing and decrementing. Counting semaphores are typically used to manage 
multiple copies of resources. Tasks that need access to resources decrement the value 
of the semaphore, when tasks relinquish a resource, the value of the semaphore is 
incremented. When the semaphore reaches a value of “0”, any task waiting for the 
related access is blocked until another task gives back the semaphore.
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/* includes */
#include “vxWorks.h”
#include “semLib.h”
SEM_ID mySem;

/* Create a counting semaphore. */
init ()
{
  mySem = semCCreate (SEM_Q_FIFO,0);
}

……
[9-4]

On a final note, with mutual exclusion algorithms, only one process can have access to shared 
memory at any one time, basically having a lock on the memory accesses. If more than one 
process blocks waiting for their turn to access shared memory, and relying on data from each 
other, a deadlock can occur (such as priority inversion in priority based scheduling). Thus, 
embedded OSes have to be able to provide deadlock-avoidance mechanisms as well as dead-
lock-recovery mechanisms. As shown in the examples above, in vxWorks, semaphores are 
used to avoid and prevent deadlocks.

Intertask communication via message passing is an algorithm in which messages (made up 
of data bits) are sent via message queues between processes. The OS defines the protocols 
for process addressing and authentication to ensure that messages are delivered to processes 
reliably, as well as the number of messages that can go into a queue and the message sizes. 
As shown in Figure 9-30, under this scheme, OS tasks send messages to a message queue, or 
receive messages from a queue to communicate.

Microkernel-based OSes typically use the message passing scheme as their main syn-
chronization mechanism. Example 9-11 demonstrates message passing in more detail, as 
implemented in vxWorks.

Figure 9-30: Message queues [9-4]
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EXAMPLE 9-11: Message passing in vxWorks [9-4]

VxWorks allows for intertask communication via message passing queues to store data 
transmitted between different tasks or an ISR. VxWorks provides the programmer four system 
calls to allow for the development of this scheme:

Call Description

msgQCreate( ) Allocates and initializes a message queue.

msgQDelete( ) Terminates and frees a message queue.

msgQSend( ) Sends a message to a message queue.

msgQReceive( ) Receives a message from a message queue.

These routines can then be used in an embedded application, as shown in the source code 
example below, to allow for tasks to intercommunicate:

/* In this example, task t1 creates the message queue and sends a message
* to task t2. Task t2 receives the message from the queue and simply
* displays the message.
*/

/* includes */
#include “vxWorks.h”
#include “msgQLib.h”

/* defines */
#define MAX_MSGS (10)
#define MAX_MSG_LEN (100)
MSG_Q_ID myMsgQId;

task2 (void)
{
  char msgBuf[MAX_MSG_LEN];
  /* get message from queue; if necessary wait until msg is available */
  if (msgQReceive(myMsgQId, msgBuf, MAX_MSG_LEN, WAIT_FOREVER) == ERROR)
  return (ERROR);
  /* display message */
  printf (“Message from task 1:\n%s\n”, msgBuf);
}

#define MESSAGE “Greetings from Task 1”
task1 (void)
{
  /* create message queue */
  if ((myMsgQId = msgQCreate (MAX_MSGS, MAX_MSG_LEN, MSG_Q_PRIORITY)) == 
NULL)
  return (ERROR);
  /* send a normal priority message, blocking if queue is full */
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  if (msgQSend (myMsgQId, MESSAGE, sizeof (MESSAGE), WAIT_FOREVER,MSG_PRI_NOR-
MAL) ==
      ERROR)
  return (ERROR);
}

[9-4]

Signals and Interrupt Handling (Management) at the Kernel Level

Signals are indicators to a task that an asynchronous event has been generated by some 
external event (other processes, hardware on the board, timers, etc.) or some internal event 
(problems with the instructions being executed, etc.). When a task receives a signal, it sus-
pends executing the current instruction stream and context switches to a signal handler 
(another set of instructions). The signal handler is typically executed within the task’s con-
text (stack) and runs in the place of the signaled task when it is the signaled task’s turn to be 
scheduled to execute. 

The wind kernel supports two types of signal interface: UNIX BSD-style and POSIX-compatible signals.

Figure 9-31: vxWorks signaling mechanism [9-4]

BSD 4.3 POSIX 1003.1
sigmask( ) sigemptyset( ), sigfillset( ), sigaddset( ),

sigdelset( ), sigismember( )
sigblock( ) sigprocmask( )
sigsetmask( ) sigprocmask( )
pause( ) sigsuspend( )
sigvec( ) sigaction( )
(none) sigpending( )
signal( ) signal( )
kill( ) kill( )

Signals are typically used for interrupt handling in an OS, because of their asynchronous na-
ture. When a signal is raised, a resource’s availability is unpredictable. However, signals can 
be used for general intertask communication, but are implemented so that the possibility of a 
signal handler blocking or a deadlock occurring is avoided. The other inter-task communica-
tion mechanisms (shared memory, message queues, etc.), along with signals, can be used for 
ISR-to-Task level communication, as well.

When signals are used as the OS abstraction for interrupts and the signal handling rou-
tine becomes analogous to an ISR, the OS manages the interrupt table, which contains the 
interrupt and information about its corresponding ISR, as well as provides a system call (sub-
routine) with parameters that that can be used by the programmer. At the same time, the OS 
protects the integrity of the interrupt table and ISRs, because this code is executed in kernel/
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supervisor mode. The general process that occurs when a process receives a signal generated 
by an interrupt and an interrupt handler is called is shown in Figure 9-32.

Figure 9-32: OS interrupt subroutine [9-4]

save registers

set up stack

invoke routine

restore registers and stack

exit

myISR
(
int val;
)
(
/* process interrupt*/

  ...
)

As mentioned in previous chapters, the architecture determines the interrupt model of an 
embedded system (that is, the number of interrupts and interrupt types). The interrupt device 
drivers initialize and provide access to interrupts for higher layer of software. The OS then 
provides the signal inter-process communication mechanism to allow for its processes to 
work with interrupts, as well as can provide various interrupt subroutines that abstracts out 
the device driver. 

While all OSes have some sort of interrupt scheme, this will vary depending on the archi-
tecture they are running on, since architectures differ in their own interrupt schemes. Other 
variables include interrupt latency/response, the time between the actual initiation of an 
interrupt and the execution of the ISR code, and interrupt recovery, the time it takes to 
switch back to the interrupted task. Example 9-12 shows an interrupt scheme of a real-world 
embedded RTOS.

EXAMPLE 9-12: Interrupt handling in vxWorks

Except for architectures that do not allow for a separate interrupt stack (and thus the stack of 
the interrupted task is used), ISRs use the same interrupt stack, which is initialized and con-
figured at system start-up, outside the context of the interrupting task. Table 9-1 summarizes 
the interrupt routines provided in vxWorks, along with a pseudocode example of using one of 
these routines.

Table 9-1: Interrupt routines in vxWorks [9-4]

/* This routine initializes the serial driver, sets up interrupt vectors,
* and performs hardware initialization of the serial ports.
*/

void InitSerialPort (void)
{

initSerialPort();
(void) intConnect (INUM_TO_IVEC (INT_NUM_SCC), serialInt, 0);
…..
}

Call Description
intConnect( ) Connects a C routine to an interrupt vector.
intContext( ) Returns TRUE if called from interrupt level.
intCount( ) Gets the current interrupt nesting depth.
intLevelSet( ) Sets the processor interrupt mask level.
intLock( ) Disables interrupts.
intUnlock( ) Re-enables interrupts.
intVecBaseSet( ) Sets the vector base address.
intVecBaseGet( ) Gets the vector base address .
intVecSet( ) Sets an exception vector.
intVecGet( ) Gets an exception vector.
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9.3 Memory Management
As mentioned earlier in this chapter, a kernel manages program code within an embedded 
system via tasks. The kernel must also have some system of loading and executing tasks with-
in the system, since the CPU only executes task code that is in cache or RAM. With multiple 
tasks sharing the same memory space, an OS needs a security system mechanism to protect 
task code from other independent tasks. Also, since an OS must reside in the same memory 
space as the tasks it is managing, the protection mechanism needs to include managing its 
own code in memory and protecting it from the task code it is managing. It is these functions, 
and more, that are the responsibility of the memory management components of an OS. In 
general, a kernel’s memory management responsibilities include:

Managing the mapping between logical (physical) memory and task memory 
references.

Determining which processes to load into the available memory space.

Allocating and deallocating of memory for processes that make up the system. 

Supporting memory allocation and deallocation of code requests (within a process) 
such as the C language “alloc” and “dealloc” functions, or specific buffer allocation 
and deallocation routines. 

Tracking the memory usage of system components.

Ensuring cache coherency (for systems with cache).

Ensuring process memory protection.

As introduced in Chapters 5 and 8, physical memory is composed of two-dimensional 
arrays made up of cells addressed by a unique row and column, in which each cell can store 
1 bit. Again, the OS treats memory as one large one-dimensional array, called a memory
map. Either a hardware component integrated in the master CPU or on the board does the 
conversion between logical and physical addresses (such as an MMU), or it must be handled 
via the OS.

How OSes manage the logical memory space differs from OS to OS, but kernels generally 
run kernel code in a separate memory space from processes running higher level code (i.e., 
middleware and application layer code). Each of these memory spaces (kernel containing ker-
nel code and user containing the higher-level processes) are managed differently. In fact, most 
OS processes typically run in one of two modes: kernel mode and user mode, depending on 
the routines being executed. Kernel routines run in kernel mode (also referred to as supervisor
mode), in a different memory space and level than higher layers of software such as middle-
ware or applications. Typically, these higher layers of software run in user mode, and can only 
access anything running in kernel mode via system calls, the higher-level interfaces to the 
kernel’s subroutines. The kernel manages memory for both itself and user processes.
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9.3.1 User Memory Space
Because multiple processes are sharing the same physical memory when being loaded into 
RAM for processing, there also must be some protection mechanism so processes cannot 
inadvertently affect each other when being swapped in and out of a single physical memory 
space. These issues are typically resolved by the operating system through memory “swap-
ping,” where partitions of memory are swapped in and out of memory at run-time. The most 
common partitions of memory used in swapping are segments (fragmentation of processes 
from within) and pages (fragmentation of logical memory as a whole). Segmentation and 
paging not only simplify the swapping—memory allocation and deallocation—of tasks in 
memory, but allow for code reuse and memory protection, as well as providing the foundation 
for virtual memory. Virtual memory is a mechanism managed by the OS to allow a device’s 
limited memory space to be shared by multiple competing “user” tasks, in essence enlarging 
the device’s actual physical memory space into a larger “virtual” memory space. 

Segmentation
As mentioned in an earlier section of this chapter, a process encapsulates all the information 
that is involved in executing a program, including source code, stack, data, and so on. All of 
the different types of information within a process are divided into “logical” memory units of 
variable sizes, called segments. A segment is a set of logical addresses containing the same 
type of information. Segment addresses are logical addresses that start at 0, and are made up 
of a segment number, which indicates the base address of the segment, and a segment offset,
which defines the actual physical memory address. Segments are independently protected, 
meaning they have assigned accessibility characteristics, such as shared (where other pro-
cesses can access that segment), Read-Only, or Read/Write. 

Most OSes typically allow processes to have all or some combination of five types of infor-
mation within segments: text (or code) segment, data segment, bss (block started by symbol) 
segment, stack segment, and the heap segment. A text segment is a memory space containing 
the source code. A data segment is a memory space containing the source code’s initialized 
variables (data). A bss segment is a statically allocated memory space containing the source 
code’s un-initialized variable (data). The data, text, and bss segments are all fixed in size at 
compile time, and are as such static segments; it is these three segments that typically are part 
of the executable file. Executable files can differ in what segments they are composed of, but 
in general they contain a header, and different sections that represent the types of segments, 
including name, permissions, and so on, where a segment can be made up of one or more 
sections. The OS creates a task’s image by memory mapping the contents of the executable 
file, meaning loading and interpreting the segments (sections) reflected in the executable into 
memory. There are several executable file formats supported by embedded OSes, the most 
common including: 

ELF (Executable and Linking Format): UNIX-based, includes some combination of 
an ELF header, the program header table, the section header table, the ELF sections, 
and the ELF segments. Linux (Timesys) and vxWorks (WRS) are examples of OSes 
that support ELF.
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Class (Java Byte Code): A class file describes one java class in detail in the form of a 
stream of 8-bit bytes (hence the name “byte code”). Instead of segments, elements of 
the class file are called items. The Java class file format contains the class description, 
as well as, how that class is connected to other classes. The main components of a 
class file are a symbol table (with constants), declaration of fields, method implemen-
tations (code) and symbolic references (where other classes references are located). 
The Jbed RTOS is an example that supports the Java Byte Code format.

Figure 9-33: ELF executable file format [9-11]
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Figure 9-34: Class executable file format [9-12]
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ClassFile {
u4 magic;
u2 minor_v ersion;
u2 major_v ersion;
u2 constant_pool_count ;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags ;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[f ields_count] ;
u2 methods_count;
method_info methods[methods_count];
u2 attrib utes_count;
attribute_info attri bu tes[attrib utes_count];

}
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COFF (Common Object File Format); A class file format which (among other 
things) defines an image file that contains file headers that include a file signature, 
COFF Header, an Optional Header, and also object files that contain only the COFF 
Header. Figure 9-35 shows an example of the information stored in a COFF header. 
WinCE[MS] is an example of an embedded OS that supports the COFF executable 
file format.

Figure 9-35: Class executable file format [9-13]

Offset Size Field Description

0 2 Machine Number identifying type of ta rget machine.
2 2 Number of Sections Number of sections; indicates size of the Section T able, which immediately follo ws

the headers.
4 4 Time/Date Stamp Time and date the file was created.
8 4 Pointer to Symbol Offset, within the COFF file, of the symbol table.
12 4 Number of Symbols Number of entries in the symbol table. This data can be used in locating the

    string table, which immediately follo ws the symbol table .
16 2 Optional Header Size of the optional header, which is Size included for executable files bu t not

    object files. An object f ile should have a value of 0 here.
18 2 Characteristics Flags indicating attributes of the file.

The stack and heap segments, on the other hand, are not fixed at compile time, and can 
change in size at runtime and so are dynamic allocation components. A stack segment is 
a section of memory that is structured as a LIFO (last in, first out) queue, where data is 
“Pushed” onto the stack, or “Popped” off of the stack (push and pop are the only two opera-
tions associated with a stack). Stacks are typically used as a simple and efficient method 
within a program for allocating and freeing memory for data that is predictable (i.e., local 
variables, parameter passing, etc.). In a stack, all used and freed memory space is located 
consecutively within the memory space. However, since “push” and “pop” are the only two 
operations associated with a stack, a stack can be limited in its uses. 

A heap segment is a section of memory that can be allocated in blocks at runtime, and is 
typically set up as a free linked-list of memory fragments. It is here that a kernel’s memory 
management facilities for allocating memory come into play to support the “malloc” C func-
tion (for example) or OS-specific buffer allocation functions. Typical memory allocation 
schemes include: 

FF (first fit) algorithm, where the list is scanned from the beginning for the first 
“hole” that is large enough.

NF (next fit) where the list is scanned from where the last search ended for the next 
“hole” that is large enough.

BF (best fit) where the entire list is searched for the hole that best fits the new data.

WF (worst fit) which is placing data in the largest available “hole”.

QF (quick fit) where a list is kept of memory sizes and allocation is done from this 
information.
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The buddy system, where blocks are allocated in sizes of powers of 2. When a block 
is deallocated, it is then merged with contiguous blocks.

The method by which memory that is no longer needed within a heap is freed depends on the 
OS. Some OSes provide a garbage collector that automatically reclaims unused memory (gar-
bage collection algorithms include generational, copying, and mark and sweep; see Figures 
9-36a, b, and c). Other OSes require that the programmer explicitly free memory through a 
system call (i.e., in support of the “free” C function). With the latter technique, the program-
mer has to be aware of the potential problem of memory leaks, where memory is lost because 
it has been allocated but is no longer in use and has been forgotten, which is less likely to 
happen with a garbage collector. 

Another problem occurs when allocated and freed memory cause memory fragmentation, 
where available memory in the heap is spread out in a number of holes, making it more dif-
ficult to allocate memory of the required size. In this case, a memory compaction algorithm 
must be implemented if the allocation/de-allocation algorithms causes a lot of fragmentation. 
This problem can be demonstrated by examining garbage collection algorithms. 

The copying garbage collection algorithm works by copying referenced objects to a different 
part of memory, and then freeing up the original memory space. This algorithm uses a larger 
memory area to work, and usually cannot be interrupted during the copy (it blocks the sys-
tems). However, it does ensure that what memory is used, is used efficiently by compacting 
objects in the new memory space.

Figure 9-36a: Copying garbage collector diagram [9-2]
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The mark and sweep garbage collection algorithm works by “marking” all objects that are 
used, and then “sweeping” (de-allocating) objects that are unmarked. This algorithm is usu-
ally nonblocking, so the system can interrupt the garbage collector to execute other functions 
when necessary. However, it doesn’t compact memory the way a Copying garbage collector 
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would, leading to memory fragmentation with small, unusable holes possibly existing where 
deallocated objects used to exist. With a mark and sweep garbage collector, an additional 
memory compacting algorithm could be implemented making it a mark (sweep) and compact 
algorithm.

Figure 9-36b: Mark and sweep 
and mark and compact garbage 

collector diagram [9-2]
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Finally, the generational garbage collection algorithm separates objects into groups, called 
generations, according to when they were allocated in memory. This algorithm assumes that 
most objects that are allocated are short-lived, thus copying or compacting the remaining 
objects with longer lifetimes is a waste of time. So, it is objects in the younger generation 
group that are cleaned up more frequently than objects in the older generation groups. Objects 
can also be moved from a younger generation to an older generation group. Each generational 
garbage collector also may employ different algorithms to de-allocate objects within each gen-
erational group, such as the copying algorithm or mark and sweep algorithms described above. 
Compaction algorithms would be needed in both generations to avoid fragmentation problems.
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Finally, heaps are typically used by a program when allocation and deletion of variables are 
unpredictable (linked lists, complex structures, etc.). However, heaps aren’t as simple or 
as efficient as stacks. As mentioned, how memory in a heap is allocated and deallocated is 
typically affected by the programming language the OS is based upon, such as a C-based OS 
using “malloc” to allocate memory in a heap and “free” to deallocate memory or a Java-based 
OS having a garbage collector. Pseudocode examples 9-13, 9-14, and 9-15 demonstrate how 
heap space can be allocated and deallocated under various embedded OSes. 

EXAMPLE 9-13: vxWorks memory management and segmentation

VxWorks tasks are made up of text, data, and bss static segments, as well as each task having 
its own stack. 

The vxWorks system call “taskSpawn” is based upon the POSIX spawn model, and is what 
creates, initializes, and activates a new (child) task. After the spawn system call, an image of 
the child task (including TCB, stack, and program) is allocated into memory. In the pseudo-
code below, the code itself is the text segment, data segments are any initialized variables, and 
the bss segments are the uninitialized variables (i.e., seconds,…). In the taskSpawn system 
call, the task stack size is 3000 bytes, and is not filled with 0xEE because of the VX_NO_
STACK_FILL parameter in the system call.

Figure 9-36c: Generational garbage collector diagram
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Task Creation vxWorks Pseudocode

// parent task that enables software timer
void parentTask(void)
{
…
if sampleSoftware Clock NOT running {

  /”newSWClkId” is a unique integer value assigned by kernel when task is created
  newSWClkId = taskSpawn (“sampleSoftwareClock”, 255, VX_NO_STACK_FILL, 3000,

   (FUNCPTR) minuteClock, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
  ….
 }

//child task program Software Clock
void minuteClock (void) {
  integer seconds;

  while (softwareClock is RUNNING) {
   seconds = 0;
   while (seconds < 60) {
    seconds = seconds+1;
  }
  ……
}
[9-4]

Heap space for vxWorks tasks is allocated by using the C-language malloc/new system calls 
to dynamically allocate memory. There is no garbage collector in vxWorks, so the program-
mer must deallocate memory manually via the free() system call.

/* The following code is an example of a driver that performs address
* translations. It attempts to allocate a cache-safe buffer, fill it, and
* then write it out to the device. It uses CACHE_DMA_FLUSH to make sure
* the data is current. The driver then reads in new data and uses
* CACHE_DMA_INVALIDATE to guarantee cache coherency. */
#include “vxWorks.h”
#include “cacheLib.h”
#include “myExample.h”
STATUS myDmaExample (void)
{
void * pMyBuf;
void * pPhysAddr;
/* allocate cache safe buffers if possible */
if ((pMyBuf = cacheDmaMalloc (MY_BUF_SIZE)) == NULL)
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return (ERROR);
… fill buffer with useful information …
/* flush cache entry before data is written to device */
CACHE_DMA_FLUSH (pMyBuf, MY_BUF_SIZE);
/* convert virtual address to physical */
pPhysAddr = CACHE_DMA_VIRT_TO_PHYS (pMyBuf);
/* program device to read data from RAM */
myBufToDev (pPhysAddr);
… wait for DMA to complete …
… ready to read new data …
/* program device to write data to RAM */
myDevToBuf (pPhysAddr);
… wait for transfer to complete …
/* convert physical to virtual address */
pMyBuf = CACHE_DMA_PHYS_TO_VIRT (pPhysAddr);
/* invalidate buffer */
CACHE_DMA_INVALIDATE (pMyBuf, MY_BUF_SIZE);
… use data …
/* when done free memory */
if (cacheDmaFree (pMyBuf) == ERROR)
return (ERROR);
return (OK);
}
[9-4]
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EXAMPLE 9-14: Jbed memory management and segmentation

In Java, memory is allocated in the Java heap via the “new” keyword (unlike the “malloc” in 
C, for example). However, there are a set of interfaces defined in some Java standards, called 
JNI or Java Native Interface, that allows for C and/or assembly code to be integrated within 
Java code, so in essence, the “malloc” is available if JNI is supported. For memory dealloca-
tion, as specified by the Java standard, is done via a garbage collector.

Jbed is a Java-based OS, and as such supports “new” for heap allocation.
public void CreateOneshotTask(){
  // Task execution time values
  final long DURATION = 100L; // run method takes < 100us
  final long ALLOWANCE = 0L; // no DurationOverflow handling
  final long DEADLINE = 1000L;// complete within 1000us
  Runnable target; // Task’s executable code
  OneshotTimer taskType;
  Task task;

  // Create a Runnable object
  target = new MyTask();

  // Create oneshot tasktype with no delay
  taskType = new OneshotTimer( 0L );

  // Create the task
  try{
  task = new Task( target,
  DURATION, ALLOWANCE, DEADLINE,
  taskType );
}catch( AdmissionFailure e ){
  System.out.println( “Task creation failed” );
return;
}
[9-2]

Memory deallocation is handled automatically in the heap via a Jbed garbage collector based 
upon the mark and sweep algorithm (which is non-blocking and is what allows Jbed to be an 
RTOS). The GC can be run as a reoccurring task, or can be run by calling a “runGarbageCol-
lector” method.

EXAMPLE 9-15: Linux memory management and segmentation

Linux processes are made up of text, data, and bss static segments, as well as each process 
has its own stack (which is created with the fork system call). Heap space for Linux tasks are 
allocated via the C-language malloc/new system calls to dynamically allocate memory. There 
is no garbage collector in Linux, so the programmer must deallocate memory manually via 
the free() system call.

Memory allocation in Java
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void *mem_allocator (void *arg)
{

int i;
int thread_id = *(int *)arg;
int start = POOL_SIZE * thread_id;
int end = POOL_SIZE * (thread_id + 1);

if(verbose_flag) {
  printf(“Releaser %i works on memory pool %i to %i\n”,

  thread_id, start, end);
  printf(“Releaser %i started...\n”, thread_id);
}

while(!done_flag) {

  /* find first NULL slot */
  for (i = start; i < end; ++i) {
    if (NULL == mem_pool[i]) {
   mem_pool[i] = malloc(1024);
   if (debug_flag) 
     printf(“Allocate %i: slot %i\n”, 
    thread_id, i);
   break;
    }
  }

}
pthread_exit(0);

}

void *mem_releaser(void *arg)
{

int i;
int loops = 0;
int check_interval = 100;
int thread_id = *(int *)arg;
int start = POOL_SIZE * thread_id;
int end = POOL_SIZE * (thread_id + 1);

if(verbose_flag) {
  printf(“Allocator %i works on memory pool %i to %i\n”,

  thread_id, start, end);
  printf(“Allocator %i started...\n”, thread_id);
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}

while(!done_flag) {

  /* find non-NULL slot */
  for (i = start; i < end; ++i) {
     if (NULL != mem_pool[i]) {
     void *ptr = mem_pool[i];
     mem_pool[i] = NULL;
     free(ptr);
     ++counters[thread_id];
     if (debug_flag) 
       printf(“Releaser %i: slot %i\n”, 
    thread_id, i);
     break;
     }
  }
  ++loops;
  if ( (0 == loops % check_interval) && 
       (elapsed_time(&begin) > run_time) ) {
   done_flag = 1;
   break;
  }

}
pthread_exit(0);

}
[9-3]

Paging and Virtual Memory

Either with or without segmentation, some OSes divide logical memory into some number 
of fixed-size partitions, called blocks, frames, pages or some combination of a few or all of 
these. For example, with OSes that divide memory into frames, the logical address is compro-
mised of a frame number and offset. The user memory space can then, also, be divided into 
pages, where page sizes are typically equal to frame sizes. 

When a process is loaded in its entirety into memory (in the form of pages), its pages may not 
be located within a contiguous set of frames. Every process has an associated process table 
that tracks its pages, and each page’s corresponding frames in memory. The logical address 
spaces generated are unique for each process, even though multiple processes share the same 
physical memory space. Logical address spaces are typically made up of a page-frame num-
ber, which indicates the start of that page, and an offset of an actual memory location within 
that page. In essence, the logical address is the sum of the page number and the offset. 

An OS may start by prepaging, or loading the pages needed to get started, and then imple-
menting the scheme of demand paging where processes have no pages in memory, and pages 
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are only loaded into RAM when a page fault (an error 
occurring when attempting to access a page not in RAM) 
occurs. When a page fault occurs, the OS takes over and 
loads the needed page into memory, updates page tables, 
and then the instruction that triggered the page fault in 
the first place is re-executed. This scheme is based upon 
Knuth’s Locality of Reference theory, which estimates 
that 90% of a system’s time is spent on processing just 
10% of code.

Dividing up logical memory into pages aids the OS in 
more easily managing tasks being relocated in and out 
of various types of memory in the memory hierarchy, 
a process called swapping. Common page selection 
and replacement schemes to determine which pages are 
swapped include: 

Optimal, using future reference time, swapping out pages that won’t be used in the 
near future.

Least Recently Used (LRU), which swaps out pages that have been used the least 
recently. 

FIFO (First-In-First-Out), which as its name implies, swaps out the pages that are the 
oldest (regardless of how often it is accessed) in the system. While a simpler algo-
rithm then LRU, FIFO is much less efficient.

Not Recently Used (NRU), swaps out pages that were not used within a certain time 
period.

Second Chance, FIFO scheme with a reference bit, if “0” will be swapped out (a 
reference bit is set to “1” when access occurs, and reset to “0” after the check).

Clock Paging, pages replaced according to clock (how long they have been in mem-
ory), in clock order, if they haven’t been accessed (a reference bit is set to “1” when 
access occurs, and reset to “0” after the check).

While every OS has its own swap algorithm, all are trying to reduce the possibility of thrash-
ing, a situation in which a system’s resources are drained by the OS constantly swapping in 
and out data from memory. To avoid thrashing, a kernel may implement a working set model, 
which keeps a fixed number of pages of a process in memory at all times. Which pages (and 
the number of pages) that comprise this working set depends on the OS, but typically it is the 
pages accessed most recently. A kernel that wants to prepage a process also needs to have a 
working set defined for that process before the process’s pages are swapped into memory.

Figure 9-37: Paging [9-3]
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Virtual Memory

Virtual memory is typically implemented via demand segmentation (fragmentation of pro-
cesses from within, as discussed in a previous section) and/or demand paging (fragmentation 
of logical user memory as a whole) memory fragmentation techniques. When virtual memory 
is implemented via these “demand” techniques, it means that only the pages and/or segments 
that are currently in use are loaded into RAM.

Figure 9-38: Virtual memory [9-3]
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As shown in Figure 9-38, in a virtual memory system, the OS generates virtual addresses 
based on the logical addresses, and maintains tables for the sets of logical addresses into 
virtual addresses conversions (on some processors table entries are cached into TLBs, see 
Chapters 4 and 5 for more on MMUs and TLBs). The OS (along with the hardware) then 
can end up managing more than one different address space for each process (the physical, 
logical, and virtual). In short, the software being managed by the OS views memory as one 
continuous memory space, whereas the kernel actually manages memory as several frag-
mented pieces which can be segmented and paged, segmented and unpaged, unsegmented and 
paged, or unsegmented and unpaged.

9.3.2 Kernel Memory Space
The kernel’s memory space is the portion of memory in which the kernel code is located, 
some of which is accessed via system calls by higher-level software processes, and is where 
the CPU executes this code from. Code located in the kernel memory space includes required 
IPC mechanisms, such as those for message passing queues. Another example is when tasks 
are creating some type of fork/exec or spawn system calls. After the task creation system call, 
the OS gains control and creates the Task Control Block (TCB), also referred to as a Pro-
cess Control Block (PCB) in some OSes, within the kernel’s memory space that contains OS 
control information and CPU context information for that particular task. Ultimately, what is 
managed in the kernel memory space, as opposed to in the user space, is determined by the 
hardware, as well as the actual algorithms implemented within the OS kernel.

As previously mentioned, software running in user mode can only access anything running in 
kernel mode via system calls. System calls are the higher-level (user mode) interfaces to the 
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kernel’s subroutines (running in kernel mode). Parameters associated with system calls that 
need to be passed between the OS and the system callee running in user mode are then passed 
via registers, a stack, or in the main memory heap. The types of system calls typically fall 
under the types of functions being supported by the OS, so they include file systems manage-
ment (i.e., opening/modifying files), process management (i.e., starting/stopping processes), 
I/O communications, and so on. In short, where an OS running in kernel mode views what is 
running in user mode as processes, software running in user mode views and defines an OS 
by its system calls. 

9.4 I/O and File System Management
Some embedded OSes provide memory management support for a temporary or permanent 
file system storage scheme on various memory devices, such as Flash, RAM, or hard disk. 
File systems are essentially a collection of files along with their management protocols (see 
Table 9-2). File system algorithms are middleware and/or application software that is mount-
ed (installed) at some mount point (location) in the storage device. 

File System Summary

FAT32 
(File Allocation Table)

Where memory is divided into the smallest unit possible (called sec-
tors). A group of sectors is called a cluster. An OS assigns a unique 
number to each cluster, and tracks which files use which clusters. 
FAT32 supports 32-bit addressing of clusters, as well as smaller clus-
ter sizes than that of the FAT predecessors (FAT, FAT16, etc.)

NFS
(Network File System)

Based on RPC (Remote Procedure Call) and XDR (Extended Data 
Representation), NFS was developed to allow external devices to 
mount a partition on a system as if it were in local memory. This al-
lows for fast, seamless sharing of files across a network. 

FFS
(Flash File System)

Designed for Flash memory.

DosFS Designed for real-time use of block devices (disks) and compatible 
with the MS-DOS file system.

RawFS Provides a simple raw file system that essentially treats an entire disk 
as a single large file.

TapeFS Designed for tape devices that do not use a standard file or directory 
structure on tape. Essentially treats the tape volume as a raw device 
in which the entire volume is a large file.

CdromFS Allows applications to read data from CD-ROMs formatted accord-
ing to the ISO 9660 standard file system.

Table 9-2: Middleware file system standards
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In relation to file systems, a kernel typically provides file system management mechanisms 
for, at the very least:

Mapping files onto secondary storage, Flash, or RAM (for instance).

Supporting the primitives for manipulating files and directories.

– File Definitions and Attributes: Naming Protocol, Types (i.e., executable, object, 
source, multimedia, etc.), Sizes, Access Protection (Read, Write, Execute, Ap-
pend, Delete, etc.), Ownership, and so on.

– File Operations: Create, Delete, Read, Write, Open, Close, and so on.

– File Access Methods: Sequential, Direct, and so on.

– Directory Access, Creation and Deletion.

OSes vary in terms of the primitives used for manipulating files (i.e., naming, data structures, 
file types, attributes, operations, etc.), what memory devices files can be mapped to, and what 
file systems are supported. Most OSes use their standard I/O interface between the file system 
and the memory device drivers. This allows for one or more file systems to operate in con-
junction with the operating system. 

I/O Management in embedded OSes provides an additional abstraction layer (to higher level 
software) away from the system’s hardware and device drivers. An OS provides a uniform 
interface for I/O devices that perform a wide variety of functions via the available kernel 
system calls, providing protection to I/O devices since user processes can only access I/O via 
these system calls, and managing a fair and efficient I/O sharing scheme among the multiple 
processes. An OS also needs to manage synchronous and asynchronous communication com-
ing from I/O to its processes, in essence be event-driven by responding to requests from both 
sides (the higher level processes and low-level hardware), and manage the data transfers. In 
order to accomplish these goals, an OS’s I/O management scheme is typically made up of a 
generic device-driver interface both to user processes and device drivers, as well as some type 
of buffer-caching mechanism. 

Device driver code controls a board’s I/O hardware. In order to manage I/O, an OS may 
require all device driver code to contain a specific set of functions, such as startup, shutdown, 
enable, disable, and so on. A kernel then manages I/O devices, and in some OSes file sys-
tems as well, as “black boxes” that are accessed by some set of generic APIs by higher-layer 
processes. OSes can vary widely in terms of what types of I/O APIs they provide to upper 
layers. For example, under Jbed, or any Java-based scheme, all resources (including I/O) are 
viewed and structured as objects. VxWorks, on the other hand, provides a communications 
mechanism, called pipes, for use with the vxWorks I/O subsystem. Under vxWorks, pipes are 
virtual I/O devices that include underlying message queue associated with that pipe. Via the 
pipe, I/O access is handled as either a stream of bytes (block access) or one byte at any given 
time (character access).
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In some cases, I/O hardware may require the existence of OS buffers to manage data trans-
missions. Buffers can be necessary for I/O device management for a number of reasons. 
Mainly they are needed for the OS to be able to capture data transmitted via block access. 
The OS stores within buffers the stream of bytes being transmitted to and from an I/O device 
independent of whether one of its processes has initiated communication to the device. When 
performance is an issue, buffers are commonly stored in cache (when available), rather than 
in slower main memory.

9.5  OS Standards Example:
POSIX (Portable Operating System Interface)

As introduced in Chapter 2, standards may greatly impact the design of a system compo-
nent—and operating systems are no different. One of the key standards implemented in 
off-the-shelf embedded OSes today is portable operating system interface (POSIX). POSIX 
is based upon the IEEE (1003.1-2001) and The Open Group (The Open Group Base Speci-
fications Issue 6) set of standards that define a standard operating system interface and 
environment. POSIX provides OS-related standard APIs and definitions for process manage-
ment, memory management, and I/O management functionality (see Table 9-3).

Table 9-3: POSIX functionality [9-14]

OS Subsystem Function Definition

Process
Management Threads Functionality to support multiple flows of control within a 

process. These flows of control are called threads and they
share their address space and most of the resources and 
attributes defined in the operating system for the owner
process. The specific functional areas included in threads 
support are:

• Thread management: the creation, control, and termina-
tion of multiple flows of control that share a common 
address space.

• Synchronization primitives optimized for tightly coupled 
operation of multiple control flows in a common, shared 
address space.

Semaphores A minimum synchronization primitive to serve as a basis 
for more complex synchronization mechanisms to be 
defined by the application program.

Priority schedul-
ing

A performance and determinism improvement facility to
allow applications to determine the order in which threads 
that are ready to run are granted access to processor re-
sources.
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How POSIX is translated into software is shown in Examples 9-16 and 9-17, examples 
in Linux and vxWorks of POSIX threads being created (note the identical interface to the 
POSIX thread create subroutine).

EXAMPLE 9-16: Linux POSIX example [9-3]

Creating a Linux POSIX thread:

if(pthread_create(&threadId, NULL, DEC threadwork, NULL)) {
 printf(“error”);
 …
 }

Here, threadId is a parameter for receiving the thread ID. The second argument is a 
thread attribute argument that supports a number of scheduling options (in this case 

Memory
Management Process memory 

locking
A performance improvement facility to bind applica-
tion programs into the high-performance random access
memory of a computer system. This avoids potential laten-
cies introduced by the operating system in storing parts of
a program that were not recently referenced on secondary 
memory devices.

Memory mapped 
files

A facility to allow applications to access files as part of the 
address space.

Shared memory 
objects

An object that represents memory that can be mapped con-
currently into the address space of more than one process.

I/O Management Synchronionized
I/O

A determinism and robustness improvement mechanism to 
enhance the data input and output mechanisms, so that an 
application can ensure that the data being manipulated is 
physically present on secondary mass storage devices.

Asynchronous
I/O

A functionality enhancement to allow an application 
process to queue data input and output commands with 
asynchronous notification of completion. 

… … …

Real-time signal 
extension

A determinism improvement facility to enable asynchro-
nous signal notifications to an application to be queued 
without impacting compatibility with the existing signal 
functions.

Timers A mechanism that can notify a thread when the time as 
measured by a particular clock has reached or passed a 
specified value, or when a specified amount of time has 
passed.

IPC A functionality enhancement to add a high-performance,
deterministic interprocess communication facility for local
communication.

OS Subsystem Function Definition

Process
Management

Table 9-3: POSIX functionality [9-14] (continued)
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NULL indicates the default settings will be used). The third argument is the sub-
routine to be executed upon creation of the thread. The fourth argument is a pointer 
passed to the subroutine (i.e., pointing to memory reserved for the thread, anything 
required by the newly created thread to do its work etc). 

EXAMPLE 9-17: vxWorks POSIX example [9-4]

Creating a POSIX thread in vxWorks:
….
pthread_t tid;
int ret;

/* create the pthread with NULL attributes to designate default values */
ret = pthread_create(&threadId, NULL, entryFunction, entryArg);
….

Here, threadId is a parameter for receiving the thread ID. The second argument is a 
thread attribute argument that supports a number of scheduling options (in this case 
NULL indicates the default settings will be used). The third argument is the sub-
routine to be executed upon creation of the thread. The fourth argument is a pointer 
passed to the subroutine (i.e., pointing to memory reserved for the thread, anything 
required by the newly created thread to do its work, etc). 

Essentially, the POSIX APIs allow for software that is written on one POSIX-compliant OS 
to be easily ported to another POSIX OS, since by definition the APIs for the various OS 
system calls must be identical and POSIX compliant. It is up to the individual OS vendors to 
determine how the internals of these functions are actually performed. This means that, given 
two different POSIX compliant OSes, both probably employ very different internal code for 
the same routines.

9.6 OS Performance Guidelines
The two subsystems of an OS that typically impact OS performance the most, and dif-
ferentiate the performance of one OS from another, are the memory management scheme 
(specifically the process swapping model implemented) and the scheduler. The performance 
of one virtual memory-swapping algorithm over another can be compared by the number of 
page faults they produce, given the same set of memory references—that is, the same number 
of page frames assigned per process for the exact same process on both OSes. One algorithm 
can be further tested for performance by providing it with a variety of different memory refer-
ences and noting the number of page faults for various number of page frames per process 
configurations.

While the goal of a scheduling algorithm is to select processes to execute in a scheme that 
maximizes overall performance, the challenge OS schedulers face is that there are a number 
of performance indicators. Furthermore, algorithms can have opposite effects on an indicator, 
even given the exact same processes. The main performance indicators for scheduling algo-
rithms include:
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Throughput, which is the number of processes being executed by the CPU at any 
given time. At the OS scheduling level, an algorithm that allows for a significant 
number of larger processes to be executed before smaller processes runs the risk of 
having a lower throughput. In a SPN (shortest process next) scheme, the throughput 
may even vary on the same system depending on the size of processes being executed 
at the moment.

Execution time, the average time it takes for a running process to execute (from 
start to finish). Here, the size of the process affects this indicator. However, at the 
scheduling level, an algorithm that allows for a process to be continually preempted 
allows for significantly longer execution times. In this case, given the same process, a 
comparison of a non-preemptable vs. preemptable scheduler could result in two very 
different execution times.

Wait time, the total amount of time a process must wait to run. Again this depends on 
whether the scheduling algorithm allows for larger processes to be executed before 
slower processes. Given a significant number of larger processes executed (for what-
ever reason), any subsequent processes would have higher wait times. This indicator 
is also dependent on what criteria determines which process is selected to run in the 
first place—a process in one scheme may have a lower or higher wait time than if it is 
placed in a different scheduling scheme.

On a final note, while scheduling and memory management are the leading components 
impacting performance, to get a more accurate analysis of OS performance one must measure 
the impact of both types of algorithms in an OS, as well as factor in an OS’s response time
(essentially the time from when a user process makes the system call to when the OS starts 
processing the request). While no one factor alone determines how well an OS performs, OS 
performance in general can be implicitly estimated by how hardware resources in the system 
(the CPU, memory, and I/O devices) are utilized for the variety of processes. Given the right 
processes, the more time a resource spends executing code as opposed to sitting idle can be
indicative of a more efficient OS. 

9.7 OSes and Board Support Packages (BSPs)
The board support package (BSP) is an optional component provided by the OS provider, the 
main purpose of which is simply to provide an abstraction layer between the operating system 
and generic device drivers. 

A BSP allows for an OS to be more easily ported to a new hardware environment, because it 
acts as an integration point in the system of hardware dependent and hardware independent 
source code. A BSP provides subroutines to upper layers of software that can customize the 
hardware, and provide flexibility at compile time. Because these routines point to separately 
compiled device driver code from the rest of the system application software, BSPs provide 
run-time portability of generic device driver code. As shown in Figure 9-39, a BSP provides 
architecture-specific device driver configuration management, and an API for the OS (or 
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higher layers of software) to access generic device drivers. A BSP is also responsible for 
managing the initialization of the device driver (hardware) and OS in the system.

The device configuration management portion of a BSP involves architecture-specific device 
driver features, such as constraints of a processor’s available addressing modes, endianess, 
and interrupts (connecting ISRs to interrupt vector table, disabling/enabling, control registers) 
and so on, and is designed to provide the most flexibility in porting generic device drivers 
to a new architecture-based board, with its differing endianess, interrupt scheme, and other 
architecture-specific features.

9.8 Summary
This chapter introduced the different types of embedded OSes, as well as the major compo-
nents that make up most embedded OSes. This included discussions of process management, 
memory management, and I/O system management. This chapter also discussed the POSIX 
standard and its impact on the embedded OS market in terms of what function requirements 
are specified. The impact of OSes on system performance was discussed, as well as OSes that 
supply a board-independent software abstraction layer, called a board support package (BSP).

The next chapter, Chapter 10, is the last of the software chapters and discusses middleware 
and application software in terms of their impact on an embedded architecture.

Figure 9-39: BSP within Embedded Systems Model [9-4]
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Chapter 9 Problems

1. [a] What is an operating system (OS) ? 
[b] What does an operating system do? 
[c] Draw a diagram showing where the operating system fits in the Embedded Systems 

Model.

2. [a] What is a kernel? 
[b] Name and describe at least two functions of a kernel.

3. OSes typically fall under one of three models:
A. monolithic, layered, or microkernel.
B. monolithic, layered, or monolithic-modularized.
C. layered, client/server, or microkernel.
D. monolithic-modularized, client/server, or microkernel.
E. None of the above.

4. [a] Match the type of OS model to Figures 9-40a, b, and c. 
[b] Name a real-world OS that falls under each model.

Figure 9-40a: OS block diagram 1 
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 Figure 9-40b: OS block diagram 2

Figure 9-40c: OS block diagram 3

5. [a] What is the difference between a process and a thread? 
[b] What is the difference between a process and a task?

6. [a] What are the most common schemes used to create tasks? 
[b] Give one example of an OS that uses each of the schemes.

7. [a] In general terms, what states can a task be in? 
[b] Give one example of an OS and its available states, including the state diagrams.

8. [a] What is the difference between preemptive and non-preemptive scheduling? 
[b] Give examples of OSes that implement preemptive and non-preemptive scheduling. 

9. [a] What is a real time operating system (RTOS)? 
[b] Give two examples of RTOSes.

10. [T/F] A RTOS does not contain a preemptive scheduler.
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11. Name and describe the most common OS intertask communication and synchronization 
mechanisms.

12. [a] What are race conditions? 
[b] What are some techniques for resolving race conditions?

13. The OS inter-task communication mechanism typically used for interrupt handling is:
A. a message queue.
B. a signal.
C. a semaphore.
D. All of the above.
E. None of the above.

14. [a] What is the difference between processes running in kernel mode and those running 
in user mode? 

[b] Give an example of the type of code that would run in each mode.

15. [a] What is segmentation? 
[b] What are segment addresses made up of? 
[c] What type of information can be found in a segment?

16. [T/F] A stack is a segment of memory that is structured as a FIFO queue.

17. [a] What is paging? 
[b] Name and describe four OS algorithms that can be implemented to swap pages in 

and out of memory.

18. [a] What is virtual memory? 
[b] Why use virtual memory? 

19. [a] Why is POSIX a standard implemented in some OSes? 
[b] List and define four OS APIs defined by POSIX. 
[c] Give examples of three real-world embedded OSes that are POSIX compliant.

20. [a] What are the two subsystems of an OS that most impact OS performance?  
[b] How do the differences in each impact performance?

21. [a] What is a BSP?
[b] What type of elements are located within a BSP? 
[c] Give two examples of real-world embedded OSes that include a BSP.
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C H A P T E R 10
Middleware and Application Software

In This Chapter

Defining middleware
Defining application software
Introducing real-world networking and Java examples of middleware
Introducing real-world networking and Java examples used in application software

The line between middleware and application software is blurred, which is why this chapter 
introduces both together. Middleware is software that has been abstracted out of the applica-
tion layer for a variety of reasons. One reason is that it may already be included as part of the 
off-the-shelf OS package. Other reasons to remove it from the application layer are: to allow 
reusability with other applications, to decrease development costs or time by purchasing it 
off-the-shelf-through a third party vendor, or to simplify application code. The remaining sec-
tions of this chapter define what middleware and application software is or isn’t, and provide 
real-world pseudocode examples of middleware and application software.

10.1 What Is Middleware?
In the most general terms, middleware software is any system software that is not the OS 
kernel, device drivers, or application software. Note that some OSes may integrate middle-
ware into the OS executable (see Chapter 9). In short, in an embedded system middleware is 
system software that typically sits on either the device drivers or on top of the OS, and can 
sometimes be incorporated within the OS itself.

Hardware Laye r

System Software Layer

Application Layer

Device Drivers

Hardware Laye r

System Software Layer

Application Layer

Device Drivers

Operating System

Middleware

Hardware Laye r

System Software Layer

Application Layer

Operating System

Middleware

Device Drivers

Middleware

Figure 10-1: Middleware within the Embedded Systems Model
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Middleware is usually the software that mediates between application software and the 
kernel or device driver software. Middleware is also software that mediates and serves dif-
ferent application software. Specifically, middleware is an abstraction layer generally used 
on embedded devices with two or more applications in order to provide flexibility, security, 
portability, connectivity, intercommunication, and/or interoperability mechanisms between 
applications. One of the main strengths in using middleware is that it allows for the reduction 
of the complexity of the applications by centralizing software infrastructure that would tradi-
tionally be redundantly found in the application layer. However, in introducing middleware 
to a system, one introduces additional overhead, which can greatly impact scalability and 
performance. In short, middleware impacts the embedded system at all layers.

There are many different types of middleware elements, including message oriented 
middleware (MOM), object request brokers (ORBs), remote procedure calls (RPCs), 
database/database access, and networking protocols above the device driver layer and below 
the application layers of the OSI model. However, most types of middleware commonly fall 
under one of two general categories:

general-purpose, meaning they are typically implemented in a variety of devices, 
such as networking protocols above the device driver layer and below the application 
layers of the OSI model, file systems, or some virtual machines such as the JVM. 

market-specific, meaning they are unique to a particular family of embedded systems, 
such as a digital TV standard-based software that sits on an OS or JVM. 

Whether general purpose or market-specific, a middleware element can be further categorized 
as proprietary, meaning it is closed software supported by a company that licenses it to others 
for use, or open, meaning it is standardized by some industry committee and can be imple-
mented and/or licensed by any interested party.

More complex embedded systems usually have more than one middleware element, since it 
is unusual to find one technology that supports all specified application requirements. In this 
case, the individual middleware elements are typically selected based upon their interoper-
ability with each other, so as to avoid later problems in integration. In some cases, integrated 
middleware packages of compatible middleware elements are available commercially, off-
the-shelf, for use in embedded systems, such as the Sun embedded Java solutions, Microsoft’s 
.NET Compact Framework, and CORBA from the Object Management Group (OMG), to 
name a few. Many embedded OS vendors also provide integrated middleware packages that 
run “out-of-the-box” with their respective OS and hardware platforms.

Section 10.3 of this chapter provides specific real-world examples of individual middleware 
networking elements, as well as integrated middleware Java packages. 
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10.2 What Is an Application?
The final type of software in an embedded 
system is the application software. As shown 
in Figure 10-2, application software sits on top 
of the system software layer, and is dependent 
on, managed, and run by the system software. 
It is the software within the application layer 
that inherently defines what type of device an 
embedded system is, because the functionality 
of an application represents at the highest level 
the purpose of that embedded system and does 
most of the interaction with users or administra-
tors of that device, if any exists. (Note: I say 
most because features such as powering on or off 
the device when a user hits a button may trigger 
a device driver function directly for the power-on/power-off sequence, rather than bringing up 
an application—it depends on the programmer how that is handled.) 

Like embedded standards, embedded applications can be divided according to whether they 
are market specific (implemented in only a specific type of device, such as video-on-demand 
applications in a interactive digital TV) or general-purpose (can be implemented across vari-
ous types of devices, such as a browser). 

Section 10.4 introduces real-world examples of types of application software, and how they 
contribute to an embedded system’s architecture.

10.3 Middleware Examples
10.3.1 Networking Middle-
ware Driver Examples
As discussed in Chapter 2, one of 
the simplest ways to understand the 
components needed to implement 
networking in an embedded device is 
to visualize networking components 
according to the OSI model and to 
relate that to the Embedded Systems 
Model. As shown in Figure 10-3, 
software that falls between the upper 
data-link and session layers can be 
considered networking middleware 
software components. 
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The examples given in this section, UDP and IP (shown in Figures 10-4a and b), are protocols 
that fall under the TCP/IP protocol stack and are typically implemented as middleware. As 
introduced in Chapter 2, this model is made up of four layers: the network access layer, inter-
net layer, transport layer, and the application layer. The TCP/IP application layer incorporates 
the functionality of the top three layers of the OSI model (the application, presentation, and 
session layers), and the network access layer incorporates the layers of the OSI model (physi-
cal and data-link). The internet layer corresponds to the network layer in the OSI model and 
the transport layers of both models are identical. This means that, in reference to TCP/IP, 
networking middleware falls under the transport, internet, and upper portion of the network 
access layers (see Figure 10-4a).

Figure 10-4a: TCP/IP, OSI Models and Embedded Systems Model block diagram

System Software Layer

Hardware LayerPhysical Layer

Application Software Layer

TCP/IP Model OSI Model

Internet Layer

Transport Layer

Application Layer

Network Access
Layer

Session Layer

Presentation Layer

Transport Layer

Data-Link Layer

Network Layer

Transport Layer



Middleware and Application Software

449

Network Access/Data-link Layer Middleware Example: PPP (Point-to-Point Protocol)

PPP (point-to-point protocol) is a common OSI data-link (or network access layer under 
the TCP/IP model) protocol that can encapsulate and transmit data to higher layer proto-
cols, such as IP, over a physical serial transmission medium (see Figure 10-5). PPP provides 
support for both asynchronous (irregular interval) and synchronous (regular interval) serial 
communication.

Figure 10-4b: TCP/IP model 
and protocols block diagram
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Figure 10-5: Data-link middleware
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PPP is responsible for processing data passing through it as frames. When receiving data from 
a lower layer protocol, for example, PPP reads the bit fields of these frames to ensure that 
entire frames are received, that these frames are error free, that the frame is meant for this 
device (using the physical address retrieved from the networking hardware on the device), and 
to determine where this frame came from. If the data is meant for the device, then PPP strips 
all data-link layer headers from the frame, and the remaining data field, called a datagram, is 
passed up to a higher layer. These same header fields are appended to data coming down from 
upper layers by PPP for transmission outside the device. 

In general, PPP software is defined via a combination of four submechanisms:

The PPP encapsulation mechanism (in RFC 1661) such as the high-level data-link 
control (HDLC) framing in RFC1662 or the link control protocol (LCP) framing 
defined in RFC 1661 to process (i.e., demultiplex, create, verify checksum, etc).

Data-link protocol handshaking, such as the link control protocol (LCP) handshaking 
defined in RFC 1661, responsible for establishing, configuring, and testing the data-
link connection. 

Authentication protocols, such as PAP (PPP authentication protocol) in RFC 1334, 
used to manage security after the PPP link is established.

Network control protocols (NCP), such as IPCP (Internet protocol control protocol) 
in RFC 1332, that establish and configure upper-layer protocol (i.e., OP, IPX, etc.) 
settings.

These submechanisms work together in the following manner: a PPP communication link, 
connecting both devices, can be in one of five possible phases at any given time, as shown 
in Table 10-1. The current phase of the communication link determines which mechanism—
encapsulation, handshaking, authentication, and so on—is executed.

Phase Description

Link Dead The link necessarily begins and ends with this phase. When an external event 
(such as carrier detection or network administrator configuration) indicates 
that the physical layer is ready to be used, PPP proceeds to the Link Estab-
lishment phase. During this phase, the LCP automaton (described later in 
this chapter) will be in the Initial or Starting states. The transition to the Link 
Establishment phase signals an Up event (discussed later in this chapter) to 
the LCP automaton. 

Establish Link The link control protocol (LCP) is used to establish the connection through an 
exchange of configuration packets. An establish link phase is entered once a 
Configure-Ack packet (described later in this chapter) has been both sent and 
received. 

Authentication Authentication is an optional PPP mechanism. If it does take place, it typi-
cally does so soon after the establish link phase.

Table 10-1: Phase table [10-1]
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Phase Description

Network Layer 
Protocol

Once PPP has completed the establish or authentication phases, each net-
work-layer protocol (such as IP, IPX, or AppleTalk) MUST be separately 
configured by the appropriate network control protocol (NCP). 

Link Termination PPP can terminate the link at any time. after which PPP should proceed to the 
Link Dead phase. 

Table 10-1: Phase table [10-1] (continued)

How these phases interact to configure, maintain, and terminate a point-to-point link is shown 
in Figure 10-6.

Figure 10-6: PPP phases [10-1]
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As defined by PPP layer 1 (i.e., RFC1662), data is encapsulated within the PPP frame, an 
example of which is shown in Figure 10-7.

Figure 10-7: PPP HDLC-like frame [10-1]
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The flag bytes mark the beginning and end of a frame, and are each set to 0x7E. The address
byte is a high-level data-link control (HDLC) broadcast address and is always set to 0xFF, 
since PPP does not assign individual device addresses. The control byte is an HDLC com-
mand for UI (unnumbered information) and is set to 0x03. The protocol field defines the 
protocol of the data within the information field (i.e., 0x0021 means the information field 
contains IP datagram, 0xC021 means the information field contains link control data, 0x8021 
means the information field contains network control data—see Table 10-2). Finally, the 
information field contains the data for higher level protocols, and the FCS (frame check 
sequence) field contains the frame’s checksum value. 
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Value (in hex) Protocol Name

0001 Padding Protocol

0003 to 001f reserved (transparency inefficient)

007d reserved (Control Escape)

00cf reserved (PPP NLPID)

00ff reserved (compression inefficient)

8001 to 801f unused

807d unused

80cf unused

80ff unused

c021 Link Control Protocol

c023 Password Authentication Protocol

c025 Link Quality Report

c223 Challenge Handshake Authentication Protocol

Table 10-2: Protocol information [10-1]

The data-link protocol may also define a frame format. An LCP frame, for example, is as 
shown in Figure 10-8.

Figure 10-8: LCP frame [10-1]
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The data field contains the data intended for higher network-
ing layers, and is made up of information (type, length, and 
data). The length field specifies the size of the entire LCP 
frame. The identifier is used to match client and server 
requests and responses. Finally, the code field specifies the 
type of LCP packet (indicating the kind of action being 
taken); the possible codes are summarized in Table 10-3. 
Frames with codes 1 thru 4 are called link configuration 
frames, 5 thru 6 are link termination frames, and the rest are 
link management packets.

Table 10-3: LCP codes [10-1]

Code Definition

1 configure-request
2 configure-ack
3 configure-nak
4 configure-reject
5 terminate-request
6 terminate-ack
7 code-reject
8 protocol-reject
9 echo-request
10 echo-reply
11 discard-request
12 link quality report



Middleware and Application Software

453

The LCP code of an incoming LCP datagram determines how the datagram is processed, as 
shown in the pseudocode example below.

 ….
if (LCPCode) {
        = CONFREQ: RCR(…);  //see table 10-3
end CONFREQ;
        = CONFACK: RCA(..); //see table 10-3
end CONFACK;
        = CONFNAK or CONFREJ: RCN(…);  //see table 10-3 
end LCPCode;
        = TERMREQ:

  event(RTR);      
            end TERMREQ;        
        = TERMACK:
          ….
      }
…..

In order for two devices to be able to establish a PPP link, each must transmit a data-link 
protocol frame, such as LCP frames, to configure and test the data-link connection. As 
mentioned, LCP is one possible protocol that can be implemented for PPP, to handle PPP 
handshaking. After the LCP frames have been exchanged (and thereby a PPP link estab-
lished), authentication can then occur. It is at this point where authentication protocols, such 
as PPP Authentication Protocol or PAP, can be used to manage security, through password 
authentication and so forth. Finally, Network Control Protocols (NCP) such as IPCP (Internet 
Protocol Control Protocol) establish and configure upper-layer protocols in the network layer 
protocol settings, such as IP and IPX. 

At any given time, a PPP connection on a device is in a particular state, as shown in Figure 
10-9; the PPP states are outlined in Table 10-4. 

Figure 10-9: PPP connection states and events [10-1]
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States Definition

Initial PPP link is in the Initial state, the lower layer is unavailable (Down), and no Open 
event has occurred. The Restart timer is not running in the Initial state.

Starting The Starting state is the Open counterpart to the Initial state. An administra-
tive Open has been initiated, but the lower layer is still unavailable (Down). The 
Restart timer is not running in the Starting state. When the lower layer becomes 
available (Up), a Configure-Request is sent.

Stopped The Stopped state is the Open counterpart to the Closed state. It is entered when 
the automaton is waiting for a Down event after the This-Layer-Finished action, 
or after sending a Terminate-Ack. The Restart timer is not running in the Stopped 
state.

Closed In the Closed state, the link is available (Up), but no Open has occurred. The 
Restart timer is not running in the Closed state. Upon reception of Configure-Re-
quest packets, a Terminate-Ack is sent. Terminate-Acks are silently discarded to 
avoid creating a loop.

Stopping The Stopping state is the Open counterpart to the Closing state. A Terminate-Re-
quest has been sent and the Restart timer is running, but a Terminate-Ack has not 
yet been received.

Closing In the Closing state, an attempt is made to terminate the connection. A Termi-
nate-Request has been sent and the Restart timer is running, but a Terminate-Ack 
has not yet been received. Upon reception of a Terminate-Ack, the Closed state 
is entered. Upon the expiration of the Restart timer, a new Terminate-Request is 
transmitted, and the Restart timer is restarted. After the Restart timer has expired 
Max-Terminate times, the Closed state is entered.

Request-Sent In the Request-Sent state an attempt is made to configure the connection. A 
Configure-Request has been sent and the Restart timer is running, but a Config-
ure-Ack has not yet been received nor has one been sent.

ACK-sent In the Ack-Received state, a Configure-Request has been sent and a Configure-
Ack has been received. The Restart timer is still running, since a Configure-Ack 
has not yet been sent.

Opened In the Opened state, a Configure-Ack has been both sent and received. The Re-
start timer is not running. When entering the Opened state, the implementation 
SHOULD signal the upper layers that it is now Up. Conversely, when leaving the 
Opened state, the implementation SHOULD signal the upper layers that it is now 
Down.

Table 10-4: PPP states [10-1]
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Event
Label

Event Description

Up lower layer is UP This event occurs when a lower layer indicates that it is 
ready to carry packets.

Down lower layer is Down This event occurs when a lower layer indicates that it is 
no longer ready to carry packets.

Open administrative Open This event indicates that the link is administratively 
available for traffic; that is, the network administra-
tor (human or program) has indicated that the link is 
allowed to be Opened. When this event occurs, and the 
link is not in the Opened state, the automaton attempts 
to send configuration packets to the peer. 

Close administrative Close This event indicates that the link is not available for 
traffic; that is, the network administrator (human or 
program) has indicated that the link is not allowed to be 
Opened. When this event occurs, and the link is not in 
the Closed state, the automaton attempts to terminate 
the connection. Futher attempts to re-configure the link 
are denied until a new Open event occurs. 

TO+ Timeout with counter > 0 This event indicates the expiration of the Restart timer. 
The Restart timer is used to time responses to Config-
ure-Request and Terminate-Request packets. The TO+ 
event indicates that the Restart counter continues to 
be greater than zero, which triggers the corresponding 
Configure- Request or Terminate-Request packet to be 
retransmitted.

The TO- event indicates that the Restart counter is 
not greater than zero, and no more packets need to be 
retransmitted.

TO– Timeout with counter 
expired

RCR+ receive configure request 
good

An implementation wishing to open a connection 
MUST transmit a Configure-Request. The Options field 
is filled with any desired changes to the link defaults. 
Configuration Options SHOULD NOT be included with 
default values.

RCR– receive configure request 
bad

Events (also shown in Figure 10-9) are what cause a PPP connection to transition from state 
to state. The LCP codes (from the RFC 1661 spec) in Table 10-5 define the types of events 
that cause a PPP state transition. 

Table 10-5: PPP events [10-1]
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Event
Label

Event Description

RCA receive configure ack This event occurs when a valid Configure-Ack packet 
is received from the peer. The Configure-Ack packet is 
a positive response to a Configure-Request packet. An 
out of sequence or otherwise invalid packet is silently 
discarded.

If every Configuration Option received in a Configure-
Request is recognizable and all values are acceptable, 
then the implementation MUST transmit a Configure-
Ack. The acknowledged Configuration Options MUST 
NOT be reordered or modified in any way. 

On reception of a Configure-Ack, the Identifier field 
MUST match that of the last transmitted Configure-
Request. Additionally, the Configuration Options in a 
Configure-Ack MUST exactly match those of the last 
transmitted Configure-Request. Invalid packets are 
silently discarded. 

RCN receive configure nak/rej This event occurs when a valid Configure-Nak or 
Configure-Reject packet is received from the peer. 
The Configure-Nak and Configure-Reject packets are 
negative responses to a Configure-Request packet. An 
out of sequence or otherwise invalid packet is silently 
discarded.

RTR receive terminate request This event occurs when a Terminate-Request packet is 
received. The Terminate-Request packet indicates the 
desire of the peer to close the connection. 

RTA receive terminate ack This event occurs when a Terminate-Ack packet is 
received from the peer. The Terminate-Ack packet is 
usually a response to a Terminate-Request packet. The 
Terminate-Ack packet may also indicate that the peer is 
in Closed or Stopped states, and serves to re-synchro-
nize the link configuration. 

RUC receive unknown code This event occurs when an un-interpretable packet is 
received from the peer. A Code-Reject packet is sent in 
response.

Table 10-5: PPP events [10-1] (continued)
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Event
Label

Event Description

RXJ+ receive code reject permitted 
or receive protocol reject

This event occurs when a Code-Reject or a Protocol-
Reject packet is received from the peer. The RXJ+ 
event arises when the rejected value is acceptable, such 
as a Code-Reject of an extended code, or a Protocol-
Reject of a NCP. These are within the scope of normal 
operation. The implementation MUST stop sending the 
offending packet type. The RXJ- event arises when the 
rejected value is catastrophic, such as a Code-Reject of 
Configure-Request, or a Protocol-Reject of LCP! This 
event communicates an unrecoverable error that termi-
nates the connection. 

RXJ- receive code reject cata-
strophic or receive protocol 
reject

RXR receive echo request, receive 
echo reply, or receive dis-
card request

This event occurs when an Echo-Request, Echo-Reply 
or Discard-Request packet is received from the peer. 
The Echo-Reply packet is a response to an Echo-Re-
quest packet. There is no reply to an Echo-Reply or 
Discard-Request packet. 

Table 10-5: PPP events [10-1] (continued)

As PPP connections transition from state to state, certain actions are taken stemming from 
these events, such as the transmission of packets and/or the starting or stopping of the Restart 
timer, as outlined in Table 10-6.

Action
Label

Action Definition

tlu this layer up This action indicates to the upper layers that the 
automaton is entering the Opened state. Typically, this 
action is used by the LCP to signal the Up event to a 
NCP, Authentication Protocol, or Link Quality Proto-
col, or MAY be used by a NCP to indicate that the link 
is available for its network layer traffic.

tld this layer down This action indicates to the upper layers that the autom-
aton is leaving the Opened state. Typically, this action 
is used by the LCP to signal the Down event to a NCP, 
Authentication Protocol, or Link Quality Protocol, or 
MAY be used by a NCP to indicate that the link is no 
longer available for its network layer traffic.

Table 10-6: PPP actions [10-1]
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Action
Label

Action Definition

tls this layer started This action indicates to the lower layers that the autom-
aton is entering the Starting state, and the lower layer is 
needed for the link. The lower layer SHOULD respond 
with an Up event when the lower layer is available. 
This results of this action are highly implementation 
dependent.

tlf this layer finished This action indicates to the lower layers that the autom-
aton is entering the Initial, Closed or Stopped states, 
and the lower layer is no longer needed for the link. 
The lower layer SHOULD respond with a Down event 
when the lower layer has terminated. Typically, this 
action MAY be used by the LCP to advance to the Link 
Dead phase, or MAY be used by a NCP to indicate to 
the LCP that the link may terminate when there are no 
other NCPs open. This results of this action are highly 
implementation dependent.

irc initialize restart count This action sets the Restart counter to the appropriate 
value (Max-Terminate or Max-Configure). The counter 
is decremented for each transmission, including the 
first.

zrc zero restart count This action sets the Restart counter to zero.
scr send configure request Configure-Request packet is transmitted. This indicates 

the desire to open a connection with a specified set 
of Configuration Options. The Restart timer is started 
when the Configure-Request packet is transmitted, to 
guard against packet loss. The Restart counter is decre-
mented each time a Configure-Request is sent.

sca send configure ack A Configure-Ack packet is transmitted. This acknowl-
edges the reception of a Configure-Request packet with 
an acceptable set of Configuration Options. 

scn send configure nak/rej A Configure-Nak or Configure-Reject packet is trans-
mitted, as appropriate. This negative response reports 
the reception of a Configure-Request packet with an 
unacceptable set of Configuration Options. Configure-
Nak packets are used to refuse a Configuration Option 
value, and to suggest a new, acceptable value. Config-
ure-Reject packets are used to refuse all negotiation 
about a Configuration Option, typically because it is 
not recognized or implemented. The use of Configure-
Nak versus Configure-Reject is more fully described in 
the chapter on LCP Packet Formats.

Table 10-6: PPP actions [10-1] (continued)
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Action
Label

Action Definition

str send terminate request A Terminate-Request packet is transmitted. This 
indicates the desire to close a connection. The Restart 
timer is started when the Terminate-Request packet is 
transmitted, to guard against packet loss. The Restart 
counter is decremented each time a Terminate-Request 
is sent.

sta send terminate ack A Terminate-Ack packet is transmitted. This acknowl-
edges the reception of a Terminate-Request packet or 
otherwise serves to synchronize the automatons. 

scj send code reject A Code-Reject packet is transmitted. This indicates the 
reception of an unknown type of packet.

ser send echo reply An Echo-Reply packet is transmitted. This acknowl-
edges the reception of an Echo-Request packet.

PPP states, actions, and events are usually created and configured by the platform-specific 
code at boot-time, some of which is shown in pseudocode form in the next several pages. 
A PPP connection is in an initial state upon creation; thus, among other things, the “initial” 
state routine is executed. This code can be called later at runtime to create and configure PPP, 
as well as respond to PPP runtime events (i.e., as frames are coming in from lower layers 
for processing). For example, after PPP software demuxes a PPP frame coming in from a 
lower layer, and the checksum routine determines the frame is valid, the appropriate field 
of the frame can then be used to determine what state a PPP connection is in and thus what 
associated software state, event, and/or action function needs to be executed. If the frame is 
to be passed to a higher layer protocol, then some mechanism is used to indicate to the higher 
layer protocol that there is data to receive (IPReceive for IP, for example).

Table 10-6: PPP actions [10-1] (continued)
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PPP (LCP) State Pseudocode

Initial: PPP link is in the Initial state, the lower layer is unavailable (Down), and no Open 
event has occurred. The Restart timer is not running in the Initial state. [10-1]

initial() {
    if (event) {
     = UP:

transition(CLOSED);  //transition to closed state
     end UP;
      = OPEN:

tls(); //action
transition(STARTING);  //transition to starting state
end OPEN;

     = CLOSE:
end CLOSE; //no action or state transition

    = any other event:
wrongEvent;  //indicate that when  PPP in initial state

    // no other event is processed
   }
}

PPP (LCP) Action Psuedocode

tlu () {
  …
  event(UP); // UP event triggered
  event(OPEN);  //OPEN event triggered
}

tld() {
    ….
  event (DOWN);  //DOWN event triggered
}

tls() {
  ….
  event(OPEN);   //OPEN event triggered
}

tls() {
  ….
  event(OPEN);   //OPEN event triggered
}

tlf() {
   ….
  event(CLOSE); //close event triggered
}

irc(int event) {
  if (event = UP, DOWN, OPEN, CLOSE, RUC, RXJ+, RXJ-, or RXR) {
     restart counter =Max terminate;
   } else {
     restart counter =Max Configure;
  }
}

zrc(int time) {
    restart counter =0;
    PPPTimer = time;
}

sca(…) {
    …
     PPPSendViaLCP (CONFACK);
     ….
  }

scn(…) {
    …
  if (refusing all Configuration Option negotiation) then {
       PPPSendViaLCP (CONFNAK);
  } else {

     PPPSendViaLCP (CONFREJ);
}

   ….
}

…..

event (int event)
{

if (restarting() && (event=DOWN)) return; //SKIP

if (state) {
    = INITIAL:

initial(); //call initial state routine
end INITIAL;

    = STARTING :
starting();  //call starting state routine
end STARTING;

    = CLOSED:
closed(); //call closed state routine
end CLOSED;

    = STOPPED:
stopped();//call stopped state routine
end STOPPED;

    = CLOSING:
closing();//call closing state routine
end CLOSING;

    = STOPPING:
stopping();//call stopping state routine
end STOPPING;

    = REQSENT:
reqsent();//call reqsent state routine
end REQSENT;

    = ACKRCVD:
ackrcvd();//call ackrcvd state routine
end ACKRCVD;

    = ACKSENT:
acksent();//call acksent state routine
end ACKSENT;

    = OPENED:
opened();//call opened state routine
end OPENED;

    = any other state:
wrongState; //any other state is considered invalid

  }
}
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Starting: The Starting state is the Open counterpart to the Initial state. An administrative 
Open has been initiated, but the lower layer is still unavailable (Down). The Restart 
timer is not running in the Starting state. When the lower layer becomes available 
(Up), a Configure-Request is sent. [10-1]

starting() {
  if (event) {
  = UP: 
   irc(event);  //action
   scr(true);   //action
   transition(REQSENT);  //transition to REQSENT state
   end UP;
  = OPEN: 
   end OPEN; //no action or state transition
  = CLOSE: 
   tlf();   //action
   transition(INITIAL);  //transition to initial state
   end CLOSE;

= any other event : 
   wrongEvent++;  //indicate that when  PPP in starting state no other event is processed

  }
}

Closed: In the Closed state, the link is available (Up), but no Open has occurred. The 
Restart timer is not running in the Closed state. Upon reception of Configure-Request 
packets, a Terminate-Ack is sent. Terminate-Acks are silently discarded to avoid 
creating a loop. [10-1]

closed (){
if  (event) {

  = DOWN : 
   transition(INITIAL) ;  //transition to initial state
   end DOWN;  
  = OPEN : 
   irc(event);  //action
   scr(true);  //action
   transition(REQSENT);  //transition to REQSENT state
   end OPEN; 
  = RCRP, RCRN, RCA, RCN, or RTR: 
   sta(…);  //action
   end EVENT;
  = RTA, RXJP, RXR, CLOSE : 
   end EVENT;  //no action or state transition
  = RUC: 
   scj(…);   //action
   end RUC;
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  = RXJN: 
   tlf();   //action
   end RXJN;
  = any other event :  
   wrongEvent; //indicate that when  PPP in  closed state no other event is processed
  }
  }

Stopped: The Stopped state is the Open counterpart to the Closed state. It is entered when 
the automaton is waiting for a Down event after the This-Layer-Finished action, or after 
sending a Terminate-Ack. The Restart timer is not running in the Stopped state. [10-1]

stopped (){
if (event) {

  = DOWN : tls(); //action
   transition(STARTING) ;  //transition to starting state
   end DOWN; 
  = OPEN : initializeLink();  //initialize variables
   end OPEN; 
  = CLOSE : transition(CLOSED) ;  //transition to closed state
   end CLOSE; 
  = RCRP :  irc(event);  //action
   scr(true);  //action
   sca(…);  //action
   transition(ACKSENT) ; //transition to ACKSENT state
   end RCRP; 
  = RCRN : irc(event);  //action
   scr(true);  //action
   scn(…);  //action
   transition(REQSENT) ;   //transition to REQSENT state
   end RCRN; 
  = RCA ,RCN or RTR :  sta(…); //action
   end EVENT;
  = RTA, RXJP, or RXR : 
   end EVENT;
  = RUC :  scj(…);  //action
   end RUC; 
  = RXJN : tlf();   //action
   end RXJN; 
  = any other event :  
   wrongEvent; //indicate that when  PPP in stopped state no other event is processed
    }
  }
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Closing: In the Closing state, an attempt is made to terminate the connection. A Termi-
nate-Request has been sent and the Restart timer is running, but a Terminate-Ack 
has not yet been received. Upon reception of a Terminate-Ack, the Closed state 
is entered. Upon the expiration of the Restart timer, a new Terminate-Request is 
transmitted, and the Restart timer is restarted. After the Restart timer has expired 
Max-Terminate times, the Closed state is entered. [10-1]

closing (){
if (event) {

  = DOWN : transition(INITIAL) ;  //transition to initial state
   end DOWN; 
  = OPEN : transition(STOPPING); //transition to stopping state
   initializeLink();  //initialize variables
   end OPEN; 
  = TOP : str(…);  //action
   initializePPPTimer;  //initialize PPP Timer variable
   end TOP;      
  = TON : tlf(); //action
   initializePPPTimer;  //initialize PPP Timer variable
   transition(CLOSED);  //transition to CLOSED state
   end TON; 
  = RTR : sta(…);    //action
   end RTR;
  = CLOSE, RCRP, RCRN, RCA,RCN, RXR, or RXJP: 
   end EVENT; //no action or state transition
  = RTA : tlf();  //action
   transition(CLOSED);  //transition to CLOSED stsate
   end RTA; 
  = RUC : scj(…); //action
   end RUC;
  = RXJN : tlf(); //action
   end RXJN;
  = any other event :  
   wrongEvent; //indicate that when  PPP in closing state no other event is processed
    }
  }

Stopping: The Stopping state is the Open counterpart to the Closing state. A Terminate-
Request has been sent and the Restart timer is running, but a Terminate-Ack has not 
yet been received. [10-1]

stopping (){
if (event) {

  = DOWN : transition(STARTING) ; //transition to STARTING state
   end DOWN; 
  = OPEN : initializeLink();  //initialize variables 
   end OPEN; 
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  = CLOSE : transition(CLOSING);  //transition to CLOSE state
   end CLOSE; 
  = TOP : str(….); //action
   initialize PPPTimer(); //initialize PPP timer
   end TOP; 
  = TON : tlf();  //action 
   initialize PPPTimer(); //initialize PPP timer
   transition(STOPPED);  //transition to STOPPED state
   end TON; 
  = RCRP, RCRN, RCA , RCN, RXJP, RXR : end EVENT;  // no action or state transition
  = RTR : sta(…);  //action
   end RTR; 
  = RTA : tlf(); //action
   transition(STOPPED);  //transition to STOPPED state
   end RTA; 
  = RUC : scj(…); //action
   end RUC; 
  = RXJN : tlf(); //action
   transition(STOPPED); //transition to STOPPED state
   end RXJN; 
  = any other event :  wrongEvent; //indicate that when PPP in stopping state no other event is
   //processed
}

}

Request-Sent: In the Request-Sent state an attempt is made to configure the connection. 
A Configure-Request has been sent and the Restart timer is running, but a Configure-
Ack has not yet been received nor has one been sent. [10-1]

reqsent (){
if (event) {

  = DOWN : transition(STARTING);  //transition to STARTING state
   end DOWN; 
  = OPEN : transition(REQSENT);  //transition to REQSENT state
   end OPEN; 
  = CLOSE : irc(event);  //action
   str(…);  //action
   transition(CLOSING);   //transition to closing state
   end CLOSE; 
  = TOP : scr(false);  //action
   initialize PPPTimer(); //initialize PPP timer
   end TOP; 
  = TON, RTA, RXJP, or RXR :  end EVENT;  //no action or state transition
  = RCRP : sca(…);    //action
   if (PAP  = Server) {
   tlu();  //action
   transition(OPENED);  //transition to OPENED state
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   } else { //client
   transition(ACKSENT); //transition to ACKSENT state
   }
   end RCRP; 
  = RCRN : scn(…);  //action
   end RCRN; 
  = RCA : if (PAP = Server) {
   tlu();  //action
   transition(OPENED); //transition to OPENED state
   } else { //client
   irc(event);  //action
   transition(ACKRCVD);  //transition to ACKRCVD state
   }
   end RCA; 
  = RCN : irc(event);  //action
   scr(false);   //action
   transition(REQSENT);   //transition to REQSENT state
   end RCN; 
  = RTR : sta(…);  //action
   end RTR; 
  = RUC : scj(..);  //action
   break;
  = RXJN : tlf();  //action
   transition(STOPPED);  //transition to STOPPED state
   end RXJN; 
  = any other event :  wrongEvent; //indicate that when  PPP in reqsent state no other event is 
   //processed
    }
  }

ACK-Received: In the Ack-Received state, a Configure-Request has been sent and a 
Configure-Ack has been received. The Restart timer is still running, since a Config-
ure-Ack has not yet been sent. [10-1]

ackrcvd (){
if (event) {

  = DOWN : transition(STARTING);  //transition to STARTING state
   end DOWN; 
  = OPEN, TON, or RXR: end EVENT;  //no action or state transition 
  = CLOSE : irc(event); //action
   str(…); //action
   transition(CLOSING);  //transition to CLOSING state
   end CLOSE; 
  = TOP : scr(false);  //action
   transition(REQSENT); //transition to REQSENT state
   end TOP; 
  = RCRP : sca(…);  //action



Chapter 10

466

   tlu(); //action
   transition(OPENED); //transition to OPENED state
   end RCRP; 
  = RCRN : scn(…);  //action
   end RCRN; 
  = RCA or RCN : scr(false);  //action
   transition(REQSENT);  //transition to REQSENT state
   end EVENT; 
  = RTR : sta(…);  //action
   transition(REQSENT); //transition to REQSENT state
   end RTR; 
  = RTA or RXJP : transition(REQSENT); //transition to REQSENT state
   end EVENT; 
  = RUC : scj(….);  //action
   end RUC; 
  = RXJN : tlf(); //action
   transition(STOPPED);  //event
   end RXJN; 
  = any other event :  wrongEvent; //indicate that when  PPP in ackrcvd state no other event is 
   //processed
    }
  }

ACK-Sent: In the Ack-Sent state, a Configure-Request and a Configure-Ack have both 
been sent, but a Configure-Ack has not yet been received. The Restart timer is run-
ning, since a Configure-Ack has not yet been received. [10-1]

acksent (){
if (event) {

  = DOWN : transition(STARTING); 
   end DOWN; 
  = OPEN, RTA, RXJP, TON, or RXR : end EVENT;  //no action or state transition
  = CLOSE : irc(event);  //action
   str(…); //action
   transition(CLOSING); //transition to CLOSING state
   end CLOSE; 
  = TOP : scr(false); //action
   transition(ACKSENT); //transition to ACKSENT state
   end TOP; 
  = RCRP : sca(…); //action
   end RCRP; 
  = RCRN : scn(…);  //action
   transition(REQSENT); //transition to REQSENT state
   end RCRN; 
  = RCA : irc(event); //action
   tlu(); //action
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   transition(OPENED); //transition to OPENED state
   end RCA; 
  = RCN : irc(event); //action
   scr(false); //action
   transition(ACKSENT); //transition to ACKSENT state
   end RCN; 
  = RTR : sta(…); //action
   transition(REQSENT); //transition to REQSENT state
   end RTR; 
  = RUC : scj(…);  //action
   end RUC; 
  = RXJN : tlf(); //action
   transition(STOPPED); //transition to STOPPED state
   end RXJN; 
  = any other event :  wrongEvent; //indicate that when  PPP in acksent state no other event is 
   //processed
    }
  }

Opened: In the Opened state, a Configure-Ack has been both sent and received. The Restart 
timer is not running. When entering the Opened state, the implementation SHOULD 
signal the upper layers that it is now Up. Conversely, when leaving the Opened state, 
the implementation SHOULD signal the upper layers that it is now Down. [10-1]

opened (){
if (event) {

  = DOWN : 
   tld();  //action
   transition(STARTING);  //transition to STARTING state
   end DOWN; 
  = OPEN :  initializeLink();  //initialize variables 
   end OPEN; 
  = CLOSE :  tld(); //action
   irc(event); //action
   str(…); //action
   transition(CLOSING);  //transition to CLOSING state
   end CLOSE; 
  = RCRP : tld(); //action
   scr(true); //action
   sca(…);  //action
   transition(ACKSENT);  //transition to ACKSENT state
   end RCRP; 
  = RCRN : tld(); //action
   scr(true); //action
   scn(…);  //action
   transition(REQSENT);  //transition to RCRN state
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   end RCRN; 
  = RCA : tld(); //action
   scr(true); //action
   transition(REQSENT); //transition to REQSENT state
   end RCA; 
  = RCN : tld(); //action
   scr(true); //action
   transition(REQSENT);  //transition to REQSENT state
   end RCN; 
  = RTR : tld(); //action
   zrc(PPPTimeoutTime); //action
   sta(…);  //action
   transition(STOPPING);  // transition to STOPPING state
   end RTR; 
  = RTA : tld(); //action
   scr(true); //action
   transition(REQSENT); // transition to REQSENT state
   end RTA; 
  = RUC : scj(…);  //action
   end RUC; 
  = RXJP : end RXJP;  //no action or state transition
  = RXJN : tld(); //action
   irc(event); //action
   str(…);  //action
   transition(STOPPING);  //transition to STOPPING state
   end RXJN; 
  = RXR : ser(…);  //action
   end RXR;
  = any other event :  wrongEvent; //indicate that when  PPP in opened state no other event is 
   //processed
    }
  }
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Internet Layer Middleware Example: Internet Protocol (IP)

The networking layer protocol called Internet Protocol, or IP, is based upon DARPA standard 
RFC791, and is mainly responsible for implementing addressing and fragmentation function-
ality (see Figure 10-10).

Hardware Layer

System Software Layer

Application Software Laye r

Ethernet RS-232

Internet Layer

Middleware Protocols

PPPLL C

Ethernet

IP

Addressing

Fragmentation

Figure 10-10: IP functionality

While the IP layer receives data as packets from upper layers and frames from lower layers, 
the IP layer actually views and processes data in the form of datagrams, whose format is 
shown in Figure 10-11. 

Ve rsion IHL Ty pe of Service To tal Length

Identif ication Flags Fragment Of fset

Header ChecksumProtocolTime To  Li ve

Source IP Address

Destination IP Address

Pa ddingOptions

Data

0 4 8 16 19 31

The entire IP datagram is what is received by IP from lower layers. The last field alone within 
the datagram, the data field, is the packet that is sent to upper layers after processing by IP. 
The remaining fields are stripped or appended, depending on the direction the data is going, 
to the data field after IP is finished processing. It is these fields that support IP addressing and 
fragmentation functionality.

Figure 10-11: IP datagram [10-2]
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The source and destination IP address fields are the networking addresses, also commonly 
referred to as the Internet or IP address, processed by the IP layer. In fact, it is here that one 
of the main purposes of the IP layer, addressing, comes into play. IP addresses are 32 bits 
long, in “dotted-decimal notation,” divided by “dots” into four octets (four 8-bit decimal 
numbers between the ranges of 0-255 for a total of 32 bits), as shown in Figure 10-12. 

Figure 10-12: IP address

100 . 0  . 24  . 1 01100100    . 00000000  .  00011000  .   00000001

4 sets of 8-bit decimal numbers separated by “dots ”

32-bits

IP address are divided into groups, called classes, to allow for the ability of segments to all 
communicate without confusion under the umbrella of a larger network, such as the World- 
Wide-Web, or the Internet. As outlined in RFC791, these classes are organized into ranges of 
IP addresses, as shown in Table 10-7. 

Table 10-7 IP address classes [10-2]

Class IP Address Range

A 0.0.0.0 127.255.255.255
B 128.0.0.0 191.255.255.255
C 192.0.0.0 223.255.255.255
D 224.0.0.0 239.255.255.255
E 244.0.0.0 255.255.255.255

The classes (A,B,C,D, and E) are divided according to the value of the first octet in an IP 
address. As shown in Figure 10-13, if the highest order bit in the octet is a “0”, then the IP 
address is a class “A” address. If the highest order bit is a “1”, then the next bit is checked for 
a “0”—if it is, then it’s a class “B” address, and so on.

In classes A, B, and C, following the class bit or set of bits is the network id. The network id 
is unique to each segment or device connected to the Internet, and is assigned by Internet 
Network Information Center (InterNIC). The host id portion of an IP address is then left 
up to the administrators of the device or segment. Class D addresses are assigned for groups 
of networks or devices, called host groups, and can be assigned by the InterNIC or the IANA 
(Internet Assigned Numbers Authority). As noted in Figure 10-13, Class E addresses have 
been reserved for future use.
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IP Fragmentation Mechanism

Fragmentation of an IP datagram is done for devices that can only process smaller amounts 
of networking data at any one time. The IP procedure for fragmenting and reassembling 
datagrams is a design that supports unpredictability in networking transmissions. This means 
that IP provides support for a variable number of datagrams containing fragments of data that 
arrive for reassembly in an arbitrary order, and not necessarily the same order in which they 
were fragmented. Even fragments of differing datagrams can be handled. In the case of frag-
mentation, most of the fields in the first 20 bytes of a datagram, called the header, are used in 
the fragmentation and reassembling process.

The version field indicates the version of IP being transmitted (i.e., IPv4 is version 4). The 
IHL (internet header length) field is the length of the IP datagram’s header. The total length
field is a 16-bit field in the header which specifies the actual length in octets of the entire 
datagram including the header, options, padding, and data. The implication behind the size of 
the total length field is that a datagram can be up to 65,536 (216) octets in size.

When fragmenting a datagram, the originating device splits a datagram “N” ways, and copies 
the contents of the header of the original datagram into the all of the smaller datagram headers. 
The Internet Identification (ID) field is used to identify which fragments belong to which data-
grams. Under the IP protocol, the data of a larger datagram must be divided into fragments, of 
which all but the last fragment must be some integral multiple of 8 octet blocks (64 bits) in size. 

The fragment offset field is a 13-bit field that indicates where in the entire datagram the frag-
ment actually belongs. Data is fragmented into subunits of up to 8192 (213) fragments of 
8 octets (64 bits) each—which is consistent with the total length field being 65,536 octets in 
size—dividing by 8 for 8 octet groups = 8192. The fragment offset field for the first fragment 
would be “0”, but for other fragments of the same datagram it would be equal to the total 
length (field) of that datagram fragment plus the number of 8 octet blocks. 

Figure 10-13: IP classes [10-2]
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The flag fields (shown in Figure 10-14) indicate whether or not a datagram is a fragment 
of a larger piece. The MF (More Fragments) flag of the flag field is set to indicate that the 
fragment is the last (the end piece) of the datagram. Of course, some systems don’t have the 
capacity to reassemble fragmented datagrams. The DF (don’t fragment) flag of the flag field
indicates whether or not a device has the resources to assemble fragmented datagrams. It is 
used by one device’s IP layer to inform another that it doesn’t have the capacity to reassemble 
data fragments transmitted to it. Reassembly simply involves taking datagrams with the same 
ID, source address, destination address, and protocol fields, and using the fragment offset 
field and MF flags to determine where in the datagram the fragment belongs.

Figure 10-14: Flags [10-2]
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The remaining fields in an IP datagram are summarized as follows: 

Time to live (which indicates the datagram’s lifetime)

Checksum (datagram integrity verification),

Options field (provide for control functions needed or useful in some situations but 
unnecessary for the most common communications (i.e., provisions for timestamps, 
security, and special routing.)

Type of service (used to indicate the quality of the service desired. The type of 
service is an abstract or generalized set of parameters which characterize the service 
choices provided in the networks that make up the internet.).

Padding (internet header padding is used to ensure that the internet header ends on a 
32 bit boundary. The padding is zero)

Protocol (indicates the next level protocol used in the data portion of the internet  
datagram. The values for various protocols are specified in “Assigned Numbers” 
RFC790. as shown in Table 10-8)
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Decimal Octal Protocol Numbers 

0 0 Reserved 

1 1 ICMP

2 2 Unassigned

3 3 Gateway-to-Gateway 

4 4 CMCC Gateway Monitoring Message 

5 5 ST

6 6 TCP

7 7 UCL

8 10 Unassigned

9 11 Secure

10 12 BBN RCC Monitoring 

11 13 NVP

12 14 PUP

13 15 Pluribus 

14 16 Telenet 

15 17 XNET

16 20 Chaos

17 21 User Datagram 

18 22 Multiplexing 

19 23 DCN

20 24 TAC Monitoring 

21-62 25-76 Unassigned

63 77 any local network 

64 100 SATNET and Backroom EXPAK 

65 101 MIT Subnet Support 

66-68 102-104 Unassigned

69 105 SATNET Monitoring 

70 106 Unassigned

71 107 Internet Packet Core Utility 

72-75 110-113 Unassigned

76 114 Backroom SATNET Monitoring 

77 115 Unassigned

78 116 WIDEBAND Monitoring 

79 117 WIDEBAND EXPAK 

80-254 120-376 Unassigned

255 377 Reserved

Table 10-8: Flags [10-2]
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Following are pseudocode examples for sending and receiving processing routines for a 
datagram at the IP layer. Lower layer protocols (i.e., PPP, Ethernet, SLIP, and so on) call the 
“IPReceive” routine to indicate to this layer to receive the datagram to disassemble, while 
higher layer protocols (such as TCP or UDP) call “IPSend” routine to transmit the datagram 
(for example).

ipReceive (datagram, ….) {

….

parseDatagram(Version, InternetHeaderLength, TotalLength, Flags,…);

….

if (InternetHeaderLength  “OR”  TotalLength = OutOfBounds) OR
   (FragmentOffset = invalid)  OR
   (Version = unsupported)  then {
    … do not process as valid datagram …;

} else {

  VerifyDatagramChecksum(HeaderChecksum…) ;

  if {HeaderChecksum = Valid) then

  ….
  if (IPDetsination = this Device) then   {

   ….
   if (Protocol  Supported by Device) then {   
    indicate/transmit to Protocol, data packet awaiting …;
    return;
   }
   ….
         } else {
   … datagram not for this device processing …;
   } //end if-then-else  Ipdestination…

  } else {
   … CHECKSUM INVALID for datagram processing …;
  } //end –then-else headerchecksum…

} //end if headerchecksum valid

  ICMP (error in processing datagram); //Internet Control Message Protocol used to indicate 
   //datagram not processed successfully by this device
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  } //end if-then-else (InternetHeaderLength …)
}

ipSend (packet,…) {
  ….

CreateDatagram(Packet,Version, InternetHeaderLength, TotalLength, Flags,…)
  sendDatagramToLowerLayer(Datagram);

….
  }

Transport Layer Middleware Example: User Datagram Protocol (UDP) 

The two most common transport layer pro-
tocols are the transmission control protocol 
(TCP) and the user datagram protocol (UDP). 
One of the main differences between the two 
protocols is reliability. TCP is considered 
reliable because it requires acknowledgments 
from recipients of its packets. If it doesn’t 
receive them, TCP then retransmits the unac-
knowledged data. UDP, on the other hand, is 
an unreliable transport layer protocol, because 
it never knows whether or not the recipient of 
its packets actually receive the data. In short, this example covers UDP, a simple, unreliable,
datagram-oriented protocol based upon RFC768. The UDP packet is shown in Figure 10-15.

Transport layer protocols, such as UDP (user datagram protocol), sit on top of internet layer 
protocols (such as IP), and are typically responsible for establishing and dissolving communica-
tion between two specific devices. This type of communication is referred to as point-to-point
communication. Protocols at this layer allow for multiple higher-layer applications running on 
the device to connect point-to-point to other devices. While some transport layer protocols can 
also ensure reliable point-to-point data transmission, UDP is not one of them. 

While the mechanisms for establishing communication on the server side can differ from 
those of the client device, both client and server mechanisms are based upon the transport lay-
er socket. There are several types of sockets that a transport protocol can use, such as stream, 
datagram, raw, and sequenced packet, to name a few. UDP uses datagram sockets, a message 
oriented socket handling data one message at a time (as opposed to a continuous stream of 
characters supported by a stream socket used by TCP, for example). There is a socket on each 
end of a point-to-point communication channel, and every application on a device wanting 
to establish communication to another device does so by establishing a socket. Sockets are 
bound to specific ports on that device, where the port number determines the application 
incoming data is intended for. The two devices (client and server) then send and receive data 
via their sockets. 

Figure 10-15: UDP diagram [10-3]

8
bytes

16-bit source port 16-bit destination port

16-bit UDP length 16-bit UDP checksum

data (if an y)

0 15 16 31



Chapter 10

476

In general, on the server side a server applica-
tion is running, listening to the socket, and 
waiting for a client to request a connection. 
The client essentially communicates to the 
server through its port (see Figure 10-16a). 
Ports are 16-bit unsigned integers, meaning 
each device has 65536 (0-65535) ports. Some 
ports are assigned to particular applications 
(i.e., FTP = ports 20-21, HTTP = port 80, 
etc.). UDP essentially includes the destination 
IP address and port number in the transmitted 
packet, there is no handshaking to verify the 
data is received in the correct order, or even at 
all. The server determines if the received data 
is for one of its own applications by extracting 
the IP address and port number from the received packet. After the connection is successfully 
established, the client application establishes a socket for communication, and the server then 
establishes a new socket to listen for incoming requests from other clients (see Figure 10-16b).

The pseudocode below demonstrates a sample UDP pseudocoded algorithm for processing 
an incoming datagram. In this example, if the socket for the received datagram is found, the 
datagram is sent up the stack (to the application layer), otherwise an error message is returned 
and the datagram discarded.

  demuxDatagram(datagram) {

     ….
      verifyDatagramChecksum(datagram.Cheksum);

      if (datagram.Length <= 1480 && datagram.Length >= 8) {
        …
        if (datagram.Checksum VALID) then {

          findSocket(datagram,DestinationPort);

          if (socket FOUND) {

            sendDatagramToApp(destinationPort, datagram.Data);  //send datagram to application
            return;
          } else {
            Icmp.send(datagram, socketNotFound); //indicate to internet layer  that 

  // data will not reach intended application
            return;

Figure 10-16b: Server connection established

Figure 10-16a: Client connection request 
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          } 
       }
    }
    discardInvalidDatagram();
}

Embedded Java and Networking Middleware Example 

As introduced in Chapter 2, a JVM 
can be implemented within a system’s 
middleware and is made up of a class 
loader, execution engine, and Java API 
libraries (see Figure 10-17). 

The type of applications in a Java-based 
design is dependent on the Java APIs 
provided by the JVM. The functionality 
provided by these APIs differs accord-
ing to the Java specification adhered 
to, such as inclusion of the Real Time 
Core Specification from the J Consor-
tium, Personal Java (pJava), Embedded 
Java, Java 2 Micro Edition (J2ME) and 
The Real Time Specification for Java 
from Sun Microsystems. Of these standards, pJava 1.1.8 
and J2ME’s Connected Device Configuration (CDC) stan-
dards are typically the standards implemented within larger 
embedded devices.

PJava 1.1.8 was the predecessor of J2ME CDC, and in the 
long term may be replaced by CDC altogether. There is a 
PJava 1.2 specification from Sun, but as mentioned J2ME 
standards are intended to completely phase out the pJava 
standards in the embedded industry (by Sun). However, 
because there are JVMs on the market still supporting pJava 
1.1.8, it will be used as a middleware example in this section 
to demonstrate what networking middleware functionality is 
implemented via the JVM. 

The APIs provided by pJava 1.1.8 are shown in Figure 
10-18. In the case of a pJava JVM implemented in the 
system software layer, these libraries would be included 
(along with the JVM’s loading and execution units) as 
middleware components.

Figure 10-17: Internal JVM components
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Figure 10-18: pJava 1.1.8 APIs [10-4]

java.applet
java.awt

java.awt.datatransfer
java.awt.event
java.awt.image

java.beans
java.io

java.lang
java.lang.reflect

java.math
java.net
java.rmi

java.rmi.dgc
java.rmi.registry
java.rmi.server
java.security

java.security.acl
java.security.interfaces

java.sql
java.text
java.util

java.util.zip



Chapter 10

478

In the pJava 1.1.8 specification, networking APIs are 
provided by the java.net package, shown in Figure 
10-19.

The JVM provides an upper-transport layer API for 
remote interprocess communication via the client-
server model (where the client requests data, etc. 
from the server). The APIs needed for client and 
servers are different, but the basis for establishing 
the network connection via java is the socket (one at 
the client end and one at the server end). As shown 
in Figure 10-20, Java sockets use transport layer 
protocols of middleware networking components, 
such as TCP/IP discussed in the previous middleware 
example.

Of the several different types of sockets (raw, 
sequenced, stream, and datagram, etc.), pJava 1.1.8 
JVM provides datagram sockets, in which data mes-
sages are read in their entirety at one time, and stream 
sockets, where data is processed as a continuous 
stream of characters. JVM datagram sockets rely on 
the UDP transport layer protocol, while stream sockets 
use the TCP transport layer protocol. As shown in Fig-
ure 10-19, pJava 1.1.8 provides support for the client 
and server sockets, specifically one class for datagram 
sockets (called DatagramSocket, used for either client or server), and two classes for client 
stream sockets (Socket, and MulticastSocket).

Figure 10-19: java.net package [10-4]
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Figure 10-20: Sockets and the JVM
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A socket is created within a higher layer application via one of the socket constructor calls, in 
the DatagramSocket class for a datagram socket, in the Socket class for a stream socket, or in 
the MulticastSocket class for a stream socket that will be multicast over a network (see Figure 
10-21). As shown in the pseudocode example below of a Socket class constructor, within the 
pJava API, a stream socket is created, bound to a local port on the client device, and then con-
nected to the address of the server. 

Socket(InetAddress address,  boolean stream) 
{
 X.create(stream);   //create stream socket
 X..bind(localAddress, localPort); //bind stream socket to port
 If problem ….
     X.close();//close socket
else
      X.connect(address, port); //connect to server
  }

Figure 10-21: Socket constructors in datagram, multicast, and socket classes [10-4]

Socket Class Constructor
Socket()

Creates an unconnected socket, with the system-default type of SocketImpl. 
Socket(InetAddress, int) 

Creates a stream socket and connects it to the specified port number at the specified IP address. 
Socket(InetAddress, int, boolean) 

Creates a socket and connects it to the specified port number at the specified IP address. 
Deprecated.

Socket(InetAddress, int, InetAddress, int) 
Creates a socket and connects it to the specified remote address on the specified remote port. 

Socket(SocketImpl)
Creates an unconnected Socket with a user-specif ied SocketImpl. 

Socket(String, int) 
Creates a stream socket and connects it to the specified port number on the named host. 

Socket(String, int, boolean) 
Creates a stream socket and connects it to the specified port number on the named host. Deprecated. 

Socket(String, int, InetAddress, int) 
Creates a socket and connects it to the specified remote host on the specified remote port. 

MulticastSocket Class Constructors
MulticastSocket()

Create a multicast socket.
MulticastSocket(int)

Create a multicast socket and bind it to a specific port. 

DatagramSocket Class Constructors
DatagramSocket()

Constructs a datagram socket and binds it to any available port on the local host machine. 
DatagramSocket(int)

Constructs a datagram socket and binds it to the specified port on the local host machine. 
DatagramSocket(int, InetAddress)

Creates a datagram socket, bound to the specif ied local address. 
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In the J2ME set of standards, there are networking APIs provided by the packages within 
the CDC configuration and Foundation profile, as shown in Figure 10-22. In contrast to the 
pJava 1.1.8 APIs shown in Figure 10-18, J2ME CDC 1.0a APIs are a different set of librar-
ies that would be included, along with the JVM’s loading and execution units, as middleware 
components.

Figure 10-22: J2ME packages [10-5]
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As shown in Figure 10-22, the CDC provides support for the client sockets. Specifically, 
there is one class for datagram sockets (called DatagramSocket and used for either client or 
server) under CDC. The Foundation Profile, that sits on top of CDC, provides three classes for 
stream sockets, two for client sockets (Socket and MulticastSocket) and one for server sockets 
(ServerSocket). A socket is created within a higher layer application via one of the socket 
constructor calls, in the DatagramSocket class for a client or server datagram socket, in the 
Socket class for a client stream socket, in the MulticastSocket class for a client stream socket 
that will be multicast over a network, or in the ServerSocket class for a server stream socket, 
for instance (see Figure 10-22). In short, along with the addition of a server (stream) socket 
API in J2ME, a device’s middleware layer changes between pJava 1.1.8 and J2ME CDC 
implementations in that the same sockets available in pJava 1.1.8 are available in J2ME’s 
network implementation, just in two different sub standards under J2ME as shown in 
Figure 10-23. 

Figure 10-23: Sockets and the J2ME CDC-based JVM
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The J2ME connected limited device configuration (CLDC) and related profile standards are 
geared for smaller embedded systems by the Java community.

Figure 10-24: CLDC/MIDP stack and networking 
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Continuing with networking as an example, the CLDC-based Java APIs (shown in Figure 
10-25) provided by a CLDC-based JVM do not provide a .net package, as do the larger JVM 
implementations (see Figure 10-25). 

Figure 10-25: J2ME CLDC APIs [10-5]
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Under the CLDC implementation, a generic connection is provided that abstracts network-
ing, and the actual implementation is left up to the device designers. The Generic Connection 
Framework (javax.microedition.io package) consists of one class and seven connection 
interfaces:

Connection – closes the connection

ContentConnection – provides meta data info

DatagramConnection – create, send, and receive

InputConnection – opens input connections

OutputConnection – opens output connections

StreamConnection – combines Input and Output

Stream ConnectionNotifier – waits for connection

The Connection class contains one method (Connector.open) that supports the file, socket, 
comm, datagram and http protocols, as shown in Figure 10-26.

Figure 10-26: Connection class used

Http Communication :
-Connection hc = Connector.open (“http:/ www.wirelessdevnet.com”) ;

Stream-based socket communic ation :
-Connection sc = Co nnector.open (“socket ://localhost:9000”);

Datagram-based socket communication:
-Connection dc = Connector.open (“datagr am://:9000);

Serial port communication :
-Connection cc = Connector.open (“co mm:0;b audrate=9000”);
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10.4 Application Layer Software Examples
In some cases, applications can be based upon industry-accepted standards, as shown in 
Figure 10-27. 

Figure 10-27: Application software and networking protocols

System Software Layer

Application Software Layer

Hardware Layer

HTTP FTP .. .

For example, for devices that need to be able to connect to other devices to transfer data or 
to have the remote device perform functions on command, an application networking pro-
tocol must be implemented in some form in the application layer. Networking protocols at 
the application level are independent of the software that they are implemented in, meaning 
an application-specific protocol can be implemented within a stand-alone application whose 
sole function is the implementation of that protocol, or can be implemented as a sub-unit of a 
larger application that provides many functions, as shown in Figure 10-28.

Figure 10-28: Application software and networking protocols
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The next three examples demonstrate networking protocols implemented in both general-
purpose and market-specific applications.

10.4.1 File Transfer Protocol (FTP) Client Application Example
FTP (File Transfer Protocol) is one of the simplest protocols used to securely exchange files 
over a network. FTP is based upon RFC959 and can be implemented as a standalone applica-
tion, solely dedicated to transferring files between networked devices, or within applications 
such as browsers and MP3 applications. As shown in Figure 10-29, the FTP protocol defines 
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the communication mechanisms between the device initiating the transfer, called the FTP cli-
ent or user-protocol interpreter (user PI), and the device receiving the FTP connection, called 
the FTP Server or FTP Site.

Figure 10-29: FTP network
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Two types of connections can exist between FTP client and servers: the control connection
in which commands are transmitted between the devices, and the data connection in which 
the files are transmitted. An FTP session starts with the FTP client initiating a control connec-
tion by establishing a TCP connection to port 21 of the destination device. The FTP protocol 
requires its underlying transport protocol to be a reliable, ordered data stream channel, such 
as TCP (as shown in Figure 10-29). Note: the FTP connection mechanism is in part based 
upon RFC854, the Telnet (terminal emulation) protocol. 

The FTP client, after transmitting its commands, waits for the FTP Site to respond with a reply code
over the control connection; these codes are defined in RFC 959 and shown in Table 10-9. 

Table 10-9: FTP reply codes [10-6]

Code Definition

110 Restart marker reply
120 Service ready in “x” minutes
125 Data connection already open
150 File status ok
200 Command ok
202 Command not implemented
211 System help
…. …..
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If the response from the FTP site is favorable, the FTP client then sends commands, like the 
ones shown in Table 10-10, that specify parameters for access control, such as username or 
password, transfer criteria (i.e., data port, transfer mode, representation type, and file struc-
ture, etc.), as well as the transaction (store, retrieve, append, delete, etc.). 

Table 10-10: FTP commands [10-6]

Code Definition

USER Username – access control command
PASS Password – access control command
QUIT Logout – access control command
PORT Data Port – transfer parameter command
TYPE Representation Type – transfer parameter command
MODE Transfer mode – transfer parameter command
DELE Delete – FTP service command
…. …..

The following pseudocode demonstrates a possible initial FTP connection mechanism within 
an FTP client application in which access control commands are transmitted to an FTP site.

FTP Client Pseudocode for access control commands USER and PASS 

FTPConnect (string host, string login, string password) {

TCPSocket s= new TCPSocket(FTPServer,21);    // establishing a TCP connection to port 21 of the 
  // destination device

Timeout = 3 seconds; // timeout for establishing connection 3 seconds
FTP Successful = FALSE;
Time = 0;
While   (time < timeout) {

  read in REPLY;

  If response from recipient then  {
   //login to FTP
    transmit to server (“USER ”+login+ “\r\n”);
    transmit to server (“PASS “ + password+ “\r\n”);
    read in REPLY;

    // reply 230 means user logged in, to proceed
    if REPLY not 230 {
     close TCP connection
     time = timeout;
    } else {
      time = timeout;
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     FTP Successful = TRUE;
    }

}  else   {
  time = time + 1;
} // end if-then-else response from recipient

  } // end while (time < timeout)
}

In fact, as shown in the pseudocode below, the FTP client needs to provide mechanisms that 
support the user being able to transmit the different types of commands (shown in Table 10-10) 
available via FTP, as well as process any response codes received (shown in Table 10-9).

FTP Client Pseudocode

// “QUIT” access command routine
FTPQuit () {

  transmit to server (“QUIT”);
  read in REPLY;

  // reply 221 means server closing control connection
  if REPLY not 221 {
   // error closing connection with server
  }
  close TCP connection
}

// FTP Service Command Routines

  // “DELE” 
  FTPDelete (string filename) {

    transmit to server (“DELE ” + filename);
    read in REPLY;

    // reply 250 means requested file action Ok
    if REPLY not 250 {
     // error deleting file
    } 
  }

  // “RNFR” 
  FTPRenameFile (string oldfilename, string newfilename) {
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    transmit to server (“RNFR ” + oldfilename);
    read in REPLY;

    // reply 350 means requested file action pending further infomration
    if REPLY not 350 {
     // error renaming file
    } 

    transmit to server (“RNTO ” + newfilename);
    read in REPLY;

    // reply 250 means requested file action Ok
    if REPLY not 250 {
     // error renaming file
    } 
  }

……..

The FTP Server initiates the data connection and any transfers according to the commands 
specified by the FTP client.

10.4.2 Simple Mail Transfer Protocol (SMTP) and E-Mail Example
Simple Mail Transfer Protocol (SMTP) is a simple application-layer ASCII protocol that 
is implemented within an e-mail (electronic mail) application for sending mail messages 
efficiently and reliably between devices (see Figure 10-30). 

Figure 10-30: SMTP network diagram [10-7]

E-mail can be transmitted to its ultimate destination directly, or via gateways and/or relay
devices. The sender of an e-mail is referred to as the “SMTP client”, whereas the recipient
of an e-mail is the “SMTP server”.
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Relay Device “N ”

SMTP was initially created in 1982 by ARPANET to replace file transfer protocols, which 
were too limited, used in e-mail systems of that time. The latest RFC published in 2001, 
RFC 2821, has become the de facto standard used in e-mail applications. According to 
RFC 2821, e-mail applications are typically made up of two major components: the Mail User 



Middleware and Application Software

489

Agent (MUA), which is the interface to the user 
that generates the e-mail, and the Mail Trans-
fer Agent (MTA), which handles the underlying 
SMTP exchange of e-mails. (Note: as shown in 
Figure 10-31, in some systems the MUA and 
MTA can be separate, but layered in applications.) 

The SMTP protocol specifically defines two main 
mechanisms relative to sending e-mails: 

The e-mail message format
The transmission protocol

Because the sending of e-mail in SMTP is 
handled via messages, the format of an e-mail 
message is defined by the SMTP protocol. According to this protocol, an e-mail is made 
up of three parts: the header, the body, and the envelope. An e-mail’s header, the format of 
which is defined in RFC2821, includes fields such as: Reply-To, Date, and From. The body 
is the actual content of the message being sent. According to RFC2821, the body is made up 
of NVT ASCII characters, and is based upon RFC2045 MIME specification (the “Multipur-
pose Internet Mail Extensions Part One: Format of Internet Message Bodies”). RFC2821 also 
defines the contents of the envelope, which includes the addresses of the sender and recipi-
ents. After an e-mail is written and the “send” button is hit, the MTU adds a few additional 
headers, and then passes the content (the combination of the body and headers) to the MTA. 
The MTA also adds headers of its own, incorporates the envelope, and then begins the proce-
dure of transmitting the e-mail to the MTA on another device. 

The SMTP protocol requires its underlying transport protocol to be a reliable, ordered data 
stream channel, such as TCP (which is used in RFC2821; however, any reliable transport pro-
tocol is acceptable). As shown in Figure 10-32, when using TCP, SMTP on the client device 
starts the transmission mechanism by establishing a TCP connection to port 25 of the destina-
tion device. 

Figure 10-31: E-mail and the MUA 
and MTA components [10-7]
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The device transmitting the e-mail (the client) then waits for the receiver (the server) to 
respond with reply code 220 (a greeting). RFC2821 actually defines a list of reply codes, 
shown in Table 10-11, that a server must use when responding to a client.

Table 10-11: SMTP reply codes [10-7]

Code Definition

211 System status
214 Help Message
220 Service Ready
221 Service closing transmission channel
250 Requested mail action completed
251 User not local, will forward
354 Start mail input…

Upon receiving the e-mail, the server starts by sending its identity, a fully qualified domain 
name of the server’s host, and reply code to the client. If the reply code indicates the server 
won’t accept the message, the client releases the connection. Also, if appropriate, an error 
report is sent back to the client along with the undeliverable message. If the server responds 
with a reply code of 220, for instance, it means the server is willing to accept the e-mail. In 
this case, the client then informs the server who the sender and recipients are. If the recipient 
is at that device, the server gives the client one of the “go ahead and send e-mail” reply codes 
to the client.

The reply codes are a subset of SMTP mechanisms that are used in an e-mail transaction 
between devices. SMTP transmission protocol is based upon commands with arguments, 
referred to as mail objects that represent the data being transmitted, basically the envelope 
and content. There are specific commands to transmit specific types of data, such as: the 
MAIL command whose data object is the address of the sender (reverse-path), the RCPT 
command whose mail object is the forward-path (recipients address), the DATA command 
whose mail object is the e-mail content (header and body), and so on (see Table 10-12). The 
SMTP server responds to each command with a reply code.

Table 10-12: SMTP commands [10-7]

Command Data Object (Argument) Definition

HELO fully qualified domain 
name of the client host

How the client identifies itself

MAIL Address of sender Identifies originator of message
RCPT Address of recipient RECIPIENT – Identifies who the e-mail is for
RSET none RESET – Aborts the current mail transaction and 

causes both ends to reset. Any stored information 
about sender, recipients or mail data is discarded

VRFY A user or mailbox VERIFY – Lets the client ask the sender to verify a re-
cipients address, without sending mail to the recipient.
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SMTP defines different buffers that can be implemented on a server to include the various 
types of data, such as the “mail-data” buffer to hold the body of an e-mail, a “forward-path” 
buffer to hold the addresses of recipients, and “reverse-path” buffer to hold addresses of 
senders. This is because data objects that are transmitted can be held pending a confirmation 
by the sender that the “end of mail data” has been transmitted by the client device. This “end 
of mail data” confirmation (QUIT) is what finalizes a successful e-mail transaction. Finally, 
because TCP is a reliable byte stream protocol, checksums are usually not needed in a SMTP 
algorithm to verify the integrity of the data. 

The following pseudocode is an example of SMTP pseudocode implemented in an e-mail 
application on a client device.

Email Application Task
{
  …
  Sender = “xx@xx.com”;
  Recipient = “yy@yy.com”;
  SMTPServer = “smtpserver.xxxx.com”

  SENDER = “tn@xemcoengineering.com”,;
  RECIPIENT = “cn@xansa.com”;
  CONTENT = “This is a simple e-mail sent by SMTP”;
  SMTPSend(“Hello!”);  // a simple SMTP sample algorithm
  ….
}

SMTPSend (string Subject) {

TCPSocket s= new TCPSocket(SMTPServer,25);    // establishing a TCP connection to port 25 of the 
  // destination device

Timeout = 3 seconds; // timeout for establishing connection 3 seconds
Transmission Successful = FALSE;
Time = 0;
While   (time < timeout) {
read in REPLY;

If response from recipient then  {

      if REPLY not 220 then    {
  //not willing to accept e-mail
  close TCP connection
  time = timeout;
   }  else    {
        transmit to RECIPIENT (“HELO”+hostname);  //client identifies itself
        read in REPLY;
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        if REPLY not 250 then      {
  //not mail action completed
  close TCP connection
  time = timeout;
       } else    {
              transmit to RECIPIENT (“MAIL FROM:<”+SENDER+”>”);
  read in REPLY;

  if REPLY not 250 then   {
   //not mail action completed

  close TCP connection
  time = timeout;

               }  else    {

  transmit to RECIPIENT (“RCPT TO:<”+RECEPIENT+”>”);
  read in REPLY;

if REPLY not 250 then     {
  //not mail action completed
  close TCP connection
  time = timeout;

  } else   {

  transmit to RECIPIENT (“DATA”);
  read in REPLY;

  if REPLY not 354 then{
  //not mail action completed
  close TCP connection

  time = timeout;
               } else   {
    //transmit e-mail content   according to STMP spec
    index=0;
    while (index < length of content) {
        transmit CONTENT[index] ;  //transmit e-mail content character by character
    index = index + 1;
    }     //end while

    transmit to RECIPIENT (“.”); // mail data is terminated by a line containing only 
     //a period 
                                   read in REPLY;

    if REPLY not 250 then     {
     //not mail action completed
     close TCP connection
    time = timeout;
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    } else   {

     transmit to RECIPIENT (“QUIT”);
     read in REPLY;

     if REPLY not 221 then     {
    //service not closing transmission channel

    close TCP connection
     time = timeout;

    } else   {
    close TCP connection;

     transmission successful = TRUE;
     time = timeout;
     } //end if-then-else “.” REPLY not 221

     } //end if-then-else “.” REPLY not 250
                  } //end if-then-else REPLY not 354
                } // end if-then-else RCPT TO REPLY not 250
              }   // end if-then-else MAIL FROM REPLY not 250
       } // end if-then-else HELO REPLY not 250
     } // end if-then-else REPLY not 220
  }  else   {
   time = time + 1;
  } // end if-then-else response from recipient
  } // end while (time < timeout)
} // end STMPTask

10.4.3 Hypertext Transfer Protocol (HTTP) Client and Server Example
Based upon several RFC standards, and supported by the World Wide Web (WWW) Consor-
tium, the Hypertext Transfer Protocol (HTTP) 1.1 is the most widely implemented application 
layer protocol, used to transmit all types of data over the Internet. Under the HTTP protocol, 
this data (referred to as a resource) is identifiable by its URL (Uniform Resource Locator).

As with the other two networking examples, HTTP is a based upon the client-server model 
that requires its underlying transport protocol to be a reliable, ordered data stream chan-
nel, such as TCP. The HTTP transaction starts with the HTTP client opening a connection 
to an HTTP server by establishing a TCP connection to default port 80 (for example) of the 
server. The HTTP client then sends a request message for a particular resource to the HTTP 
Server. The HTTP Server responds by sending a response message to the HTTP client with 
its requested resource (if available). After the response message is sent, the server closes the 
connection.
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The syntax of request and response messages both have headers that contain message 
attribute information that varies according to the message owner, and a body that contains 
optional data, where the header and body are separated by an empty line. As shown in Figure 
10-33, they differ according to the first line of each message—where a request message con-
tains the method (command made by client specifying the action the server needs to perform), 
the request-URL (address of resource requested), and version (of HTTP) in that order, and 
the first line of a response message contains the version (of HTTP), the status-code (response 
code to the client’s method), and the status-phrase (readable equivalent of status-code). 

Figure 10-33: Request and response message formats [10-8]

<m ethod> <r equest-URL><v ersion>

<headers>

“/r/n” [blank line]

<body>

<v ersion> <s tatus-code><statu s-phrase>

<headers>

“/r/n” [blank line]

<body>

Request Message Response Message

Tables 10-13a and 10-13b list the various methods and reply codes that can be implemented 
in an HTTP Server.

Table 10-13a: HTTP methods [10-8]

Method Definition

DELETE The DELETE method requests that the origin server delete the resource identified by 
the Request-URI. 

GET The GET method means retrieve whatever information (in the form of an entity) is 
identified by the Request-URI. If the Request-URI refers to a data-producing process, 
it is the produced data which shall be returned as the entity in the response and not the 
source text of the process, unless that text happens to be the output of the process.

HEAD The HEAD method is identical to GET except that the server MUST NOT return a 
message-body in the response. The metainformation contained in the HTTP headers in 
response to a HEAD request SHOULD be identical to the information sent in response 
to a GET request. This method can be used for obtaining metainformation about the 
entity implied by the request without transferring the entity-body itself. This method is 
often used for testing hypertext links for validity, accessibility,and recent modification.

OPTIONS The OPTIONS method represents a request for information about the communication 
options available on the request/response chain identified by the Request-URI. This 
method allows the client to determine the options and/or requirements associated with 
a resource, or the capabilities of a server, without implying a resource action or initiat-
ing a resource retrieval.
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Method Definition

POST The POST method is used to request that the destination server accept the entity 
enclosed in the request as a new subordinate of the resource identified by the Request-
URI in the Request-Line. POST is designed to allow a uniform method to cover the 
following functions:

• Annotation of existing resources;

• Posting a message to a bulletin board, newsgroup, mailing list, or similar group of 
articles;

• Providing a block of data, such as the result of submitting a form, to a data-handling 
process;

• Extending a database through an append operation.
PUT The PUT method requests that the enclosed entity be stored under the supplied 

Request-URI. If the Request-URI refers to an already existing resource, the enclosed 
entity SHOULD be considered as a modified version of the one residing on the origin 
server. If the Request-URI does not point to an existing resource, and that URI is ca-
pable of being defined as a new resource by the requesting user agent, the origin server 
can create the resource with that URI.

TRACE The TRACE method is used to invoke a remote, application-layer loop- back of the 
request message. TRACE allows the client to see what is being received at the other 
end of the request chain and use that data for testing or diagnostic information. 

Table 10-13a: HTTP methods [10-8] (continued)

Table 10-13b: HTTP reply codes [10-8]

Code Definition

200 Ok
400 Bad request
404 Not found
501 Not implemented

The pseudocode example below demonstrates HTTP implemented in a simple web server.

HTTP Server Pseudocode Example

….
HTTPServerSocket (Port 80)
ParseRequestFromHTTPClient (Request, Method, Protocol);
If (Method not “GET”, “POST”, or “HEAD”) then {
  Respond with reply code “501”;  // not implemented
  Close HTTPConnection;
}
If  (HTTP Version not “HTTP/1.0” or “HTTP/1.1”) then {
  Respond with reply code “501”; // not implemented
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 Close HTTPConnection;
}
…..

  ParseHeader,Path,QueryString(Request,Header,Path,Query);

    if (Length of Content > 0) {
          if (Method = “POST”) {
            ParseContent(Request,ContentLength,Content);
          } else {
   // bad request – content but not post

  Respond with reply code to HTTPURLConnection “400”; 
              Close HTTPConnection;

          } 
        }

  // dispatching servlet
  If (servlet(path) NOT found) {
        Respond with reply code “404”; // not found
        Close HTTPConnection
  } else {

    Respond with reply code “200”; // Ok
     ……
    Transmit servlet to HTTPClient;
    Close HTTPConnection;
}

Tables 10-13a and b are the methods that can be transmitted by an HTTP Client as shown in 
the following pseudocode example that demonstrates how HTTP can be implemented in a 
web client, such as a browser.

public void BrowserStart() 
{
    Create “UrlHistory” File;
    Create URLDirectory;
    Draw Browser UI (layout, borders, colors, etc.) 

   //load home page
   socket= new Socket(wwwserver,HTTP_PORT); 
   SendRequest(“GET “ + filename + “ HTTP/1.0\n”); 

     if(response.startsWith(“HTTP/1.0 404 Not Found”)) 
    { 
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      ErrorFile.FileNotFound(); 
     } else
   {
      Render HTML Page (Display Page);
    }

  Loop Wait for user event 
 {
    Respond to User Events;     
  }
}

10.4.4 A Quick Comment on Programming Languages and Application
Software

Certain types of higher-level programming languages can impact the application layer ar-
chitecture. One such language is Java; an application written in Java can integrate the JVM 
within it, shown in Figure 10-34. An example of this is the J2ME CLDC/MIDP JVM com-
piled into a .prc file (executable file on Palm OS) on a Palm Pilot PDA, or a .exe file on a 
PocketPC platform. In short, a JVM can be implemented in hardware, as middleware either 
integrated within the OS or sitting on top of the OS, or as part of an application.

Figure 10-34: JVM compiled in application
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Another case in which programming languages can impact the architecture of the application 
layer occurs when the application must process source code written in a scripting language, 
such as HTML (HyperText Markup Language, the language in which most of the files or 
pages found on the World Wide Web are written), or Javascript (used to implement interactiv-
ity functionality in web pages, including images changing on-the-fly when hit with a cursor, 
forms interacting, calculations executed, and so on). As shown in Figure 10-35, a scripting 
language interpreter is then integrated into the application software (such as a web browser, 
an HTTP client itself, where multiple scripting language interpreters are integrated). 

Figure 10-35: Browser and the Embedded Systems Model
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10.5 Summary
In this chapter, middleware was defined as system software that mediates between applica-
tion software and the kernel or device driver software, or software that mediates and serves 
different application software. Why middleware would be used was also discussed, as well as 
why application layer software was introduced in this same chapter. Application software was 
defined as software that sits on top of system software and that essentially gives the device 
its character, differentiating it from other embedded devices—and application software is 
usually the software that directly interacts with a user of the device. This chapter presented 
applications based on industry standards that would contribute to a device’s architecture if 
implemented. This included the impact of networking functionality, as well as the impact of 
various high-level languages (specifically Java and scripting languages) on the middleware 
and application layer architecture.

The next section puts all of these layers together and discusses how to apply Sections I–III in 
designing, developing, and testing an embedded system.



499

Chapter 10 Problems

1. What is middleware?  

2. Which of Figures 10-36a, b, c, and d is incorrect in terms of mapping middleware soft-
ware into the Embedded Systems Model?

Figure 10-36d: Example 4

Figure 10-36b: Example 2Figure10-36a: Example 1

Figure 10-36c: Example 3
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3. [a] What is the difference between general-purpose middleware and market-specific 
middleware? 

[b] List two real-world examples of each.
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4. Where in the OSI model is networking middleware located?

5. [a] Draw the TCP/IP model layers relative to the OSI model. 
[b] Which layer would TCP fall under?

6. [T/F] RS-232 related software is middleware.

7. PPP manages data as:
A. frames.
B. datagrams.
C. messages.
D. All of the above.
E. None of the above.

8. [a] Name and describe the four subcomponents that make up PPP software. 
[b] What RFCs are associated with each?

9. [a] What is the difference between a PPP state and a PPP event? 
[b] List and describe three examples of each.

10. [a] What is an IP address? 
[b] What networking protocol processes IP addresses?

11. What is the main difference between UDP and TCP?

12. [a] Name three embedded JVM standards that can be implemented in middleware.  
[b] What are the differences between the APIs of these standards? 
[c] List two real-world JVMs that support each of the standards.

13. [T/F] The .NET compact framework is implemented in the middleware layer of the 
Embedded Systems Model.

14. [a] What is application software? 
[b] Where in the Embedded Systems Model is application software typically located?

15. Name two examples of application-layer protocols that can either be implemented as 
stand-alone applications whose sole function is that protocol, or implemented as a sub-
component of a larger multi-function application.

16. [a] What is the difference between a FTP client and a FTP server?  
[b] What type of embedded devices would implement each?
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17. SMTP is a protocol that is typically implemented in:
A. an e-mail application.
B. a kernel.
C. a BSP.
D. every application.
E. None of the above.

18.  [T/F] SMTP typically relies on TCP middleware to function.

19.  [a] What is HTTP? 
[b] What types of applications would incorporate an HTTP client or server?

20.  What type of programming languages would introduce a component at the application 
layer?
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Putting It All Together: 
Design and Development

The chapters of Section II and Section III presented the fundamental technical details of the 
major embedded hardware and software elements that an engineer needs to be familiar with 
(at a minimum) in order to understand or create an architecture. As Chapter 1 indicated, 
Chapter 2, Section II and Section III are all part of the first phase in designing an embedded 
system—defining the system: Stage 1: having a solid technical base.

Section IV continues to outline the remaining stages of designing an embedded system, 
covering the remaining five stages of defining a system (Chapter 11): Stage 2, Understanding 
the Architecture Business Cycle; Stage 3, Defining the Architectural Patterns and Reference 
Models; Stage 4, Creating the Architectural Structures; Stage 5, Documenting the Archi-
tecture; and Stage 6, Analyzing and Evaluating the Architecture. Chapter 12 outlines the 
remaining phases of designing an embedded system—implementing a system based upon 
the architecture, debugging and testing the system, and maintaining the system.
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C H A P T E R 11
Defining the System—Creating the

Architecture and Documenting the Design

In This Chapter

Defining the stages of creating an embedded systems architecture
Introducing the architecture business cycle and its effect on architecture
Describing how to create and document an architecture
Introducing how to evaluate and reverse engineer an architecture

This chapter is about giving the reader some practical processes and techniques that have 
proven useful over the years. Defining the system and its architecture, if done correctly, is 
the phase of development which is the most difficult and the most important of the entire 
development cycle. Figure 11-1 shows the different phases of development as defined by the 
Embedded System Design and Development Lifecycle Model. [11-1]

Figure 11-1: Embedded Systems Design 
and Development Lifecycle Model [11-1]
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This model indicates that the process of designing an embedded system and taking that design
to market has four phases:

Phase 1. Creating the Architecture, which is the process of planning the design of the 
embedded system.

Phase 2. Implementing the Architecture, which is the process of developing the 
embedded system.

Phase 3. Testing the System, which is the process of testing the embedded system for 
problems, and then solving those problems.

Phase 4. Maintaining the System, which is the process of deploying the embedded 
system into the field, and providing technical support for users of that device for the 
duration of the device’s lifetime.

This model also indicates that the most important time is spent in phase 1, creating the 
architecture. At this phase of the process, no board is touched and no software is coded. It is 
about putting full attention, concentration and investigative skills into gathering information 
about the device to be developed, understanding what options exist, and documenting those 
findings. If the right preparation is done in defining the system’s architecture, determining 
requirements, understanding the risks, and so on, then the remaining phases of development, 
testing and maintaining the device will be simpler, faster, and cheaper. This, of course as-
sumes that the engineers responsible have the necessary skills.

In short, if phase 1 is done correctly, then less time will be wasted on deciphering code that 
doesn’t meet the system requirements, or guessing what the designers’ intentions were, which 
most often results in more bugs, and more work. That is not to say that the design process is 
always smooth sailing. Information gathered can prove inaccurate, specifications can change, 
and so on, but if the system designer is technically disciplined, prepared, and organized, new 
hurdles can be immediately recognized and resolved. This results in a development process 
that is much less stressful, with less time and money spent and wasted. Most importantly, the 
project will, from a technical standpoint, almost certainly end in success. 

11.1 Creating an Embedded System Architecture
Several industry methodologies can be adopted in designing an embedded system’s archi-
tecture, such as the Rational Unified Process (RUP), Attribute Driven Design (ADD), the 
object-oriented process (OOP), and the model driven architecture (MDA), to name a few. 
Within this book, I’ve taken a pragmatic approach by introducing a process for creating an 
architecture that combines and simplifies many of the key elements of these different meth-
odologies. This process consists of six stages, where each stage builds upon the results of the 
previous stages. These stages are:

Stage 1. Having a solid technical base

Stage 2. Understanding the architecture business cycle

Stage 3. Defining the architectural patterns and reference models

State 4. Creating the architectural structures
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Stage 5. Documenting the architecture

Stage 6. Analyzing and evaluating the architecture

These six stages can serve as a basis for further study of one of the many, more complex, 
architectural design methodologies in the industry. However, if given a limited amount of 
time and resources to devote to full-time architectural methodology studies of the many 
industry schemes before having to begin the design of a real product, these six stages can be 
used directly as a simple model for creating an architecture. The remainder of this chapter 
will provide more details on the six stages.

Author note: This book attempts to give a pragmatic process for creating an embedded 
systems architecture based upon some of the mechanisms that exist in the more complex 
industry approaches. I try to avoid using a lot of the specific terminology associated with 
these various methodologies because the same terms across different approaches can have 
different definitions as well as different terms can have identical meanings.

Stage 1: Have a Solid Technical Foundation
In short, stage 1 is about understanding the material presented in Chapters 2 through 10 of 
this book. Regardless of what portion of the embedded system an engineer or programmer 
will develop or work on, it is useful and practical to understand at a systems engineering level 
all of the elements that can be implemented in an embedded system. This includes the pos-
sible permutations of both the hardware and software as represented in the embedded systems 
model, such as the von Neumann model, reflecting the major components that can be found 
on an embedded board (shown in Figure 11-2a) or the possible complexities that can exist in 
the system software layer (shown in Figure 11-2b). 

Figure 11-2a: von Neumann and Embedded Systems Model diagrams
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Stage 2: Know the ABCs (Architecture Business Cycles) of Embedded
Systems
The Architecture Business Cycle (ABC)[11-2] of an embedded device, shown in Figure 11-3, is 
the cycle of influences that impact the architecture of an embedded system, and the influences 
that the embedded system in turn has on the environment in which it is built. These influences 
can be technical, business-oriented, political, or social. In short, the ABCs of embedded sys-
tems are the many different types of influences that generate the requirements of the system, 
the requirements in turn generate the architecture, the architecture then produces the system, 
and the resulting system in turn provides requirements and capabilities back to the organiza-
tion for future embedded designs. 

Figure 11-2b: System Software Layer and Embedded Systems Model diagrams
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Figure 11-3: Architecture Business Cycle [11-2]
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What this model implies is that, for better or worse, architectures are not designed on techni-
cal requirements alone. For example, given the same type of embedded system, such as a cell 
phone or TV, with the exact same technical requirements designed by different design teams, 
the different architectures produced that incorporate different processors, OSes, and other 
elements. An engineer that recognizes this from the start will have much more success in cre-
ating the architecture for an embedded system. If the responsible architects of an embedded 
system identify, understand, and engage the various influences on a design at the start of the 
project, it is less likely that any of these influences will later demand design changes or delays 
after a lot of time, money, and effort has gone into developing the original architecture.

The steps of Stage 2 include:

Step 1. Understanding that ABC influences drive the requirements of an embedded 
system, and that these influences are not limited to technical ones.

Step 2. Specifically identifying all the ABC influences on the design, whether techni-
cal, business, political and/or social. 

Step 3. Engaging the various influences as early as possible in the design and devel-
opment lifecycle and gathering the requirements of the system. 

Step 4. Determining the possible hardware and/or software elements that would meet 
the gathered requirements. 

The previous page introduced steps 1 and 2 in detail, and the next few sections of this chapter 
will discuss steps 3 and 4 in more depth.

Gathering the Requirements

Once the list of influences has been determined, then the architectural requirements of the 
system can be gathered. The process by which information is obtained from the various 
influences in the ABC can vary, depending on the project, from the informal, such as word-
of-mouth (not recommended), to formal methods in which requirements are obtained from 
finite-state machine models, formal specification languages, and/or scenarios, to name a few. 
Regardless of the method used for gathering requirements, what is important to remember 
is that information should be gathered in writing, and any documentation, no matter how 
informal (even if it is written on a napkin), should be saved. When requirements are in writ-
ing, it decreases the probability of confusion or past communication disagreements involving 
requirements, because the written documentation can be referenced to resolve related issues.

The kind of information that must be gathered includes both the functional and nonfunctional 
requirements of the system. Because of the wide variety of embedded systems, it is difficult 
in this book to provide a list of functional requirements that could apply to all embedded 
systems. Nonfunctional requirements, on the other hand, can apply to a wide variety of 
embedded systems and will be used as real-world examples later in this chapter. Furthermore, 
from nonfunctional requirements certain functional requirements can be derived. This can be 
useful for those that have no specific functional requirements at the start of a project, and only 
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have a general concept of what the device to be designed should be able to do. Some of the 
most useful methods for deriving and understanding nonfunctional requirements are through 
outlining general ABC features and utilizing prototypes.

General ABC features are the characteristics of a device that the various influence types 
require. This means that the nonfunctional requirements of the device are based upon general 
ABC features. In fact, because most embedded systems commonly require some combina-
tion of general ABC features, they can be used as a starting point in defining and capturing 
system requirements for just about any embedded system. Some of the most common features 
acquired from various general ABC influences are shown in Table 11-1.

Table 11-1: Examples of General ABC features

Influence Feature Description
Business

[Sales, Marketing, 
Executive 
Management, etc.]

Sellability How the device will sell, will it sell, how many will it sell, etc.

Time-to-Market When will the device be delivered with what technical features, etc.

Costs How much will the device cost to develop, how much can it sell for, is 
there overhead, how much for technical support once device is in field, 
etc.

Device Lifetime How long the device will be on the market, how long will the device be 
functionable in the field, etc.

Target Market What type of device is it, who will buy it, etc.

Schedule When will it be in production, when will it be ready to be deployed to 
the marketplace, when does it have to be completed, etc.

Capability Specifying the list of features that the device needs to have for the target 
market, understanding what the device actually can do once it ships from 
production, are there any serious bugs in the shipping product, etc. 

Risks Risks of lawsuits over device features or malfunctions, missing sched-
uled releases, not meeting customer expectations, etc.

Technical Performance Having the device appear to the user to be functioning fast enough, 
having the device do what it is supposed to be doing, throughput of 
processor, etc. 

User Friendliness How easy it is to use, pleasant or exciting graphics, etc.

Modifiability How fast it can be modified for bug fixes or upgrades, how simple it is to 
modify, etc.

Security Is it safe from competitors, hackers, worms, viruses, and even idiot-
proof, etc.

Reliability Does it crash or hang, how often does it crash or hang, what happens if it 
crashes or hangs, what can cause it to crash or hang, etc. 

Portability How simple is it to run the applications on different hardware, on differ-
ent system software, etc.

Testability How easily can the system be tested, what features can be tested, how 
can they be tested, are there any built in features to allow testing, etc.

Availability Will any of the commercial software or hardware implemented in the 
system be available when needed, when will they be available, what are 
the reputations of vendors, etc.

Standards (See Industry below.)

Schedule (See Business above.)
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Influence Feature Description
Industry Standards Industry standards (introduced in Chapter 2), which may be market 

specific (i.e., TV standards, medical device standards, etc.) or general 
purpose across different families of devices (programming language 
standards, networking standards, etc.)

Quality Assurance Testability (See Technical above.)

Availability When is the system available to be tested

Schedule (See Business above.)

Features (See Business above.)

QA Standards ISO9000, ISO9001, and so on. (See industry above.)

Customers Cost How much will the device cost, how much will it cost to repair or 
upgrade, etc.

User Friendliness (See Technical above.)

Performance (See Technical above.)

Table 11-1: Examples of General ABC features (continued)

Another useful tool in understanding, capturing, and modeling system requirements is 
through utilizing a system prototype, a physically running model containing some combi-
nation of system requirements. A prototype can be used to define hardware and software 
elements that could be implemented in a design, and indicate any risks involved in using these 
elements. Using a prototype in conjunction with the general ABC features allows you to accu-
rately determine early in the project what hardware and software solutions would be the most 
feasible for the device to be designed.

A prototype can be developed from scratch or can be based upon a currently deployed 
product in the market, which could be any similar devices or more complex devices that 
incorporate the desirable functionality. Even devices in other markets may have the desired 
look and feel even if the applications are not what you are looking for. For example, if you 
want to design a wireless medical handheld device for doctors, consumer PDAs (shown 
in Figure 11-4) that have been successfully deployed into the market could be studied and 
adapted to support the requirements and system architecture of the medical device.

Figure 11-4: PDAs
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When comparing your product to similar designs already on the market, also notice when 
what was adopted in the design wasn’t necessarily the best technical solution for that product. 
Remember, there could have been a multitude of nontechnical reasons, from nontechnical 
influences, that a particular hardware or software component was implemented. 
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Some of the main reasons for looking at similar solutions is to save time and money by gath-
ering ideas of what is feasible, what problems or limitations were associated with a particular 
solution, and, if technically the prototype is a reasonable match, understanding why that is the 
case. If there really is no device on the market that mirrors any of the requirements of your 
system, using an off-the-shelf reference board and/or off-the-shelf system software is another 
quick method to create your own prototype. Regardless of how the prototype is created, it is a 
useful tool in modeling and analyzing the design and behavior of a potential architecture. 

Deriving the Hardware and Software from the Requirements

Understanding and applying the requirements to derive feasible hardware and/or software 
solutions for a particular design can be accomplished through: 

1. Defining a set of scenarios that outlines each of the requirements. 

2. Outlining tactics for each of the scenarios that can be used to bring about the desired 
system response.

3. Using the tactics as the blueprint for what functionality is needed in the device, and 
then deriving a list of specific hardware and/or software elements that contain this 
functionality. 

As shown in Figure 11-5, outlining a scenario means defining:

the external and internal stimulus sources that interact with the embedded system 

the actions and events, or stimuli, that are caused by the stimulus sources

the environment which the embedded system is in when the stimulus takes place, 
such as in the field under normal stress, in the factory under high stress, outdoors 
exposed to extreme temperature, indoors, and so on.

the elements of the embedded system that could be affected by the stimulus, whether 
it is the entire system or the general hardware or software element within such as 
memory, the master processor, or data, for example.

the desired system response to the stimulus, which reflects one or more system re-
quirements.

how the system response can be measured, meaning how to prove the embedded 
system meets the requirements.

After outlining the various scenarios, the tactics can then be defined that bring about the 
desired system response. These tactics can be used to determine what type of functionality is 
needed in the device. These next several examples demonstrate how hardware and software 
components can be derived from nonfunctional requirements based upon performance, secu-
rity, and testability general ABC features.
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EXAMPLE 1: Performance

Figure 11-6a is one possible scenario for a performance-based requirement. In this example, 
the stimulus sources that can impact performance are internal and/or external sources to the 
embedded system. These stimulus sources can generate one-time and/or periodic asynchro-
nous events. According to this scenario, the environment in which these events take place 
occurs when there is normal to a high level of data for the embedded system to process. The 
stimulus sources generate events that impact the performance of the entire embedded device,
even if it is only one or a few specific elements within the system that are directly manipu-
lated by the events. This is because typically any performance bottlenecks within the system 
are perceived by the user as being a performance issue with the entire system. 

In this scenario, a desirable system response is for the device to process and respond to 
events in a timely manner, a possible indicator that the system meets the desired performance 
requirements. To prove that the performance of the embedded system meets specific perfor-
mance-based requirements, the system response can be measured and verified via throughput, 
latency or data loss system response measures.

Figure 11-5: General ABC user friendliness scenario [11-2]
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System Response Measures
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Environment
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Figure 11-6a: General ABC performance scenario [11-2]
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Embedded System

Tactic: Resource Management
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Given the performance scenario shown in Figure 11-6a, a method by which to bring about the 
desired system response is to control the time period in which the stimuli is processed and 
responses generated. In fact, by defining the specific variables that impact the time period, 
you can then define the tactics needed to control these variables. The tactics can then be used 
to define the specific elements within an architecture that would implement the functionality 
of the tactic in order to allow for the desired performance of the device.

For example, response time, a system response measure in this scenario, is impacted by the 
availability and utilization of resources within a device. If there is a lot of contention between 
multiple events that want access to the same resource, such as events having to block and 
wait for other events to finish using a resource, the time waiting for the resource impacts the 
response time. Thus, a resource management tactic shown in Figure 11-6b that arbitrates and 
manages the requests of events allowing for fair and maximum utilization of resources could 
be used to decrease response time, and increase a system’s performance. 

Figure 11-6b: Performance tactics and architectural elements [11-2]

A scheduler, such as that found within an operating system, is an example of a specific soft-
ware element that can provide resource management functionality. Thus, it is the operating 
system with the desired scheduling algorithm that is derived for the architecture in this sce-
nario example. In short, this example demonstrates that given the stimuli (events) and a desired 
system response (good performance), a tactic can be derived (resource management) to achieve 
the desired system response (good performance) measurable via a system response measure 
(response time). The functionality behind this tactic, resource management, can then be imple-
mented via an operating system through its scheduling and process management schemes.
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Author note: It is at this point where Stage 1, “Having a Solid Technical Foundation,” is 
critical. In order to determine what software or hardware elements could support a tactic, 
one needs to be familiar with the hardware and software elements available to go into 
an embedded system and the functionality of these elements. Without this knowledge, the 
results of this stage could be disastrous to a project.

EXAMPLE 2: Security 

Figure 11-7a is a possible scenario for a security-based requirement. In this example, the 
stimulus sources that can impact security are external, such as a hacker or a virus. These 
external sources can generate events that would access system resources, such as the contents 
of memory. According to this scenario, the environment in which these events can take place 
occurs when the embedded device is in the field connected to a network, doing uploads/down-
loads of data. In this example, these stimulus sources generate events that impact the security 
of anything in main memory or any system resource accessible to the stimulus sources.

In this scenario, desirable system responses for the embedded device include defending 
against, recovering from, and resisting a system attack. The level and effectiveness of system 
security is measured in this example by such system response measures as determining how 
often (if any) security breaches occur, how long it takes the device to recover from a security 
breach, and its ability to detect and defend against future security attacks. Given the security 
scenario shown in Figure 11-7a, one method by which to manipulate an embedded system’s 
response so that it can resist a system attack is to control the access external sources have to 
internal system resources. 

Figure 11-7a: General ABC security scenario [11-2]
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To manipulate access to system resources, one could control the variables that impact system 
access through the authentication of external sources accessing the system, and through limit-
ing access to a system’s resources to unharmful external sources. Thus, the authorization and 
authentication tactics shown in Figure 11-7b could be used to allow a device to track exter-
nal sources accessing the device and then deny access to harmful external sources, thereby 
increasing system security. 

Given a device resource impacted by a security breach, such as main memory for example, 
memory and process management schemes such as those found within an operating sys-

Figure 11-7b: Security tactics and architectural elements [11-2]
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tem, security APIs and memory allocation/garbage collection schemes included when using 
certain higher-level programming languages such as Java, and network security protocols are 
examples of software and hardware elements that can support managing access to memory 
resources. In short, this example shows that given the stimuli (attempt to access/delete/cre-
ate unauthorized data) and a desired system response (detect, resist, recover from attacks), a 
tactic can be derived (managing access to resources) to achieve the desired system response 
(detect, resist, recover from attacks) measured via a system response measure (occurrences of 
security breaches). 

EXAMPLE 3: Testability 

Figure 11-8a shows a possible scenario for a testability-based requirement. In this example, 
the stimulus sources that can impact testability are internal and external. These sources can 
generate events when hardware and software elements within the embedded system have been 
completed or updated, and are ready to be tested. According to the scenario in this example, 
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the environment in which these events take place occurs when the device is in development, 
during manufacturing, or when it has been deployed to the field. The affected elements within 
the embedded system can be any individual hardware or software element, or the entire em-
bedded device as a whole.

In this scenario, the desired system response is the easily controlled and observable responses 
to tests. The testability of the system is measured by such system response measures as the 
number of tests performed, the accuracy of the tests, how long tests take to run, verifying data 
in registers or in main memory, and whether the actual results of the tests match the specifi-
cations. Given the testability scenario in Figure 11-8a, a method in which to manipulate an 
embedded system’s response so that the responses to tests are controllable and observable is 
to provide accessibility for stimulus sources to the internal workings of the embedded system.

Figure 11-8a: General ABC testability scenario [11-2]
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To provide accessibility into the internal workings of the system, one could control the vari-
ables that impact the desired system response, such as the ability to do runtime register and 
memory dumps to verify data. This means that the internal workings of the system have to be 
visible to and manipulatable by stimulus sources to allow for requesting internal control and 
status information (i.e., states of variables, manipulating variables, memory usage, etc.), and 
receiving output based on the requests.
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Thus, an internal monitoring tactic, as shown in Figure 11-8b, could be used to provide 
stimulus sources with the ability to monitor the internal workings of the system and allow 
this internal monitoring mechanism to accept inputs and provide outputs. This tactic increases 
the system’s testability, since how testable a system is typically depends on how visible and 
accessible the internal workings of the system are.

Figure 11-8b: General ABC testability scenario [11-2]
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Built-in monitors such as those found on various processors, or debugging software subrou-
tines integrated into system software that can be called by a debugger on the development 
system to perform various tests, are examples of elements that can provide internal moni-
toring of a system. These hardware and software elements are examples of what could be 
derived from this scenario. In short, this example demonstrates that given the stimuli (element 
completed and ready to be tested) and a desired system response (easily test the element and 
observe results), a tactic can then be derived (internal monitoring of system) to achieve the 
desired system response (easily test the element and observe results) measurable via a system 
response measure (testing results, test times, testing accuracy, etc.). 

Note: While these examples explicitly demonstrate how elements within an architecture can be derived from 
general requirements (via their scenarios and tactics), they also implicitly demonstrate that the tactics for 
one requirement may be counterproductive to another requirement. For example, the functionality that allows 
for security can impact performance or the functionality that allows for testing accessibility can impact the 
system’s security. Also, note that:

a requirement can have multiple tactics

a tactic isn’t limited to one requirement

the same tactic can be used across a wide variety of requirements 

Keep these points in mind when defining and understanding the requirements of any system.
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Stage 3: Define the Architectural Patterns and Reference Models
An architectural pattern (also referred to as architectural idioms or architectural styles) for a 
particular device is essentially a high-level profile of the embedded system. This profile is a 
description of the various types of software and hardware elements the device could consist 
of, the functions of these elements within the system, a topological layout of these elements 
(a.k.a. a reference model), and the interrelationships and external interfaces of the various 
elements. Patterns are based upon the hardware and elements derived from the functional and 
nonfunctional requirements via prototypes, scenarios, and tactics. 

Figure 11-9 is an example of architectural pattern information. It starts from the top down in 
defining the elements for a digital TV set-top box (DTV-STB). This means that it starts with the 
types of applications that will run on the device, then outlines what system software and hard-
ware these applications implicitly or explicitly require, any constraints in the system, and so on. 

Figure 11-9: DTV-STB profile – application layer

1. Application Layer
1.1 Browser (Compliance based upon the type of web pages to render) 

1.1.1  International language support  (Dutch, German, French, Italian and Spanish, etc.)
1.1.2 Content type

HTML 4.0
Plain text
HTTP 1.1

1.1.3  Images
GIF89a
JPEG

1.1.4  Scripting
JavaScript 1.4 
DOM0 
DHTML

1.1.5 Applets
Java 1.1 

1.1.6 Styles
CSS1
Absolute positioning, z-index

1.1.7  Security
128 bit  SSL v3

1.1.8  UI
Model Printing
Scaling
Panning
Ciphers
PNG image format support
TV safe colors
anti-aliased fonts
2D Navigation  (Arrow Key) Navigation

1.1.9 Plug-Ins
Real Audio Plug-in support and integration on Elate
MP3 Plug-in support and integration on Elate
Macromedia Flash Plug-in support and integration on Elate
ICQ chat Plug-in support and integration on Elate
Windows Media Player Plug-in support and integration

1.1.10 Memory Requirement Estimate : 1.25 Mbyte for Browser 
                     16 Mbyte for rendering web pages

                 3-4 Real Audio & MP3 Plug-In…
1.1.11  System Software Requirement : TCP/IP (for an HTTP Client),… 

1.2 Email Client
POP3
IMAP4
SMTP
1.2.1 Memory Requirement Estimate : .25 Mbyte for Email Application

                      8 Mbyte for managing Emails
1.2.2  System Software Requirement : UDP-TCP/IP (for POP3, IMAP4, and SMTP),… 

1.3 Video-On-Demand Java Application
1.3.1 Memory Requirement Estimate : 1 MB for application

         32 MB for running video,…
1.3.2  System Software Requirement : JVM (to run Java), OS ported to Java, master processor supporting OS
                                                             and JVM, TCP/IP (sending requests and receiving video),…

1.4 ….
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The system profile can then be leveraged to come up with possible hardware and software 
reference models for the device that incorporates the relative elements. Figure 11-10 shows a 
possible reference model for the DTV-STB used as an example in Figure 11-9.

Figure 11-10: DTV-STB reference model 

EMail

POP3  / IMAP4 SMTP

Browser

CSS 1DOM 0 JavaScriptHTML4.0DHTMLReal Audio

HTTP

SSL 128 bit Encryption

…

Java Virtual Machine

Java AWT
Printing

Dynamic
Class Loader
& Verifier

Native
Method
Linker

Garbage
Collection
Heap   

Error &
Exception
Manager   

Class &
Method
Area

Native
Method
Area

…

LINUX Embedded OS

Interrupts TimersExceptions

Fi le Manager

[POP 3
email]

[J ava Classes]

Memory Management Scheduler …

Other Middleware

Real
Audio
Plug-in

MP3
Plug-in UD P

PPP

IP

TCP

D
H
C
P

                 Device Drivers

TV
Display
Drivers

USB
P/S2 USB

Audio Driver

IR

   

Power,
On-line,
Remote
& Data

LED
Drivers

Multi-media
BT878 &
Chrontel TV
Drivers

…

 Hardware

Video
Processor

P/S2 USB
Audio Processor

IR Parallel
Port Fl ash LEDs x86 Ma ster

Processor
…
…

M
a
n
a
g
e
r

S
e
c
u
r
i
t
y

E
n
g
i
n
e

E
x
e
c
u
t
i
o
n

I
n
t
e
r
f
a
c
e

T
h
r
e
a
d
s

M
a
n
a
g
e
r

M
e
m
o
r
y

D
r
i
v
e
r

F
l
a
s
h

C
a
r
d

S
m
a
r
t

P
r
i
n
t
e
r

P
r
i
n
t
e
r

P
a
r
a
l
l
e
l

M
o
u
s
e

K
e
y
b
o
a
r
d

M
o
u
s
e

K
e
y
b
o
a
r
d

M
o
u
s
e

K
e
y
b
o
a
r
d

Author Recommendation: If the software requirements are known, map and decompose as much of the major 
software elements (i.e., OS, JVM, applications, networking, etc.) as possible before finalizing the hardware 
elements. This is because the hardware will limit (or enhance) what can be done via software, and typically 
the less that is done in hardware, the cheaper the hardware. Then, while matching the software configuration 
with the possible master processor and board, come up with different models. This could include removing 
some functionality or implementing some software components within hardware, for example. 
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Selecting Commercially Available Hardware and Software 

Regardless of what elements make their way into an architecture, all typically have to meet a 
basic set of criteria, both functional and nonfunctional, as shown in stage 2, such as:

Cost. Does the purchasing (versus creating internally), integrating, and deploying of 
the element meet cost restrictions?

Time-to-market. Will the element meet the requirements in the required time frame 
(i.e. at various milestones during development, at production time, etc.)?

Performance. Will the element be fast enough for user satisfaction and/or for other 
dependent elements?

Development and Debugging Tools. What tools are available to make designing with 
the element faster and easier?

   …..

While all elements can be designed internally that support architectural requirements, many 
elements can be purchased commercially, off the shelf. Regardless of what the specific list of 
criteria is, the most common way of selecting between commercially available components 
is to build a matrix of required features for each element, and then fill in the matrix with the 
products that fulfill the particular requirements (see Figure 11-11). Matrices for different ele-
ments that rely on each other can then be cross-referenced.

Figure 11-11: Sample matrix

Requirement 1 Requirement 2 Requirement 3 Requirement … Requirement “N”

Product 1 YES
Features …

NO NOT YET

Next Year

… …

Product 2 YES
Features …

YES
Features …

YES
Features …

… …

Product 3 NO YES
Features …

NO … …

Product 4 YES
Features …

NOT YET

In 3 Months

NOT YET

In 6 Months

… …

Product … …. …. …. …. …
Product “N” … … … … …

While all off-the-shelf available elements (i.e., networking stack, device drivers, etc.) in an 
embedded architecture design are important in making the design a success, some of the 
most critical design elements that typically impact the other design decisions the most are the 
programming languages selected, the use of an operating system, and what master processor
the embedded board is based upon. In this section, these elements are used as examples in 
providing suggestions for how to select between commercially available options and creating 
the relative matrix in each of these areas.
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EXAMPLE 1: Programming Language Selection

All languages require a compiler to translate source into machine code for that processor, 
whether it’s a 32-bit, 16-bit, 8-bit, etc., processor. With 4-bit and 8-bit based designs that con-
tain kilobytes of memory (total ROM and RAM), assembly language has traditionally been 
the language of choice. In systems with more powerful architectures, assembly is typically 
used for the low-level hardware manipulation or code that must run very fast. Writing code in 
assembly is always an option, and in fact, most embedded systems implement some assembly 
code. While assembly is fast, it is typically more difficult to program than higher-level lan-
guages; in addition, there is a different assembly language set to learn for each ISA. 

C is typically the basis of more complex languages used in embedded systems, such as C++, 
Java, Perl, etc. In fact, C is often the language used in more complex embedded devices that 
have an operating system, or that use more complex languages, such as a JVM or scripting 
languages. This is because operating systems, JVMs, and scripting language interpreters, 
excluding those implemented in non-C applications, are usually written in C. 

Using higher-level object-oriented languages, such as C++ or Java, in an embedded device 
is useful for larger embedded applications where modular code can simplify the design, 
development, testing, and maintenance of larger applications over procedural coding (of C, 
for instance). Also, C++ and Java introduce additional out-of-the-box mechanisms, such as 
security, exception handling, namespace, type-safety, etc., not traditionally found in the C lan-
guage. In some cases, market standards may actually require the device to support a particular 
language (for example, the Multimedia Home Platform specification, or MHP, implemented 
in certain DTVs requires using Java). 

For implementing embedded applications that are hardware and system software independent, 
Java, .Net languages (C#, Visual Basic, etc.), and scripting languages are the most common
higher-level languages of choice. In order to be able to run applications written in any of 
these languages, a JVM (for Java), the .NET Compact Framework (for C#, Visual Basic, 
etc.), and an interpreter (for scripting languages, like JavaScript, HTML, Perl, etc.) all need 
to be included within the architecture. Given the desire for hardware and system software 
independent applications, the correct APIs must be supported on the device in order for the 
applications to run. For example, Java applications targeted for larger, more complex devices 
are typically based upon the pJava or J2ME CDC APIs, whereas Java applications targeted 
for smaller, simpler systems would typically expect a J2ME CLDC supported implementa-
tion. Also, if the element is not implemented in hardware (i.e., JVM in a Java processor), 
then it must either be implemented in the system software stack, either as part of the OS, 
ported to the OS and to the master processor (as is the case with .NET to WinCE, or a JVM to 
vxWorks, Linux, etc. on x86, MIPS, strongARM, and so on), or it needs to be implemented as 
part of the application (i.e., HTML, JavaScript in a browser, a JVM in a .exe file on WinCE or 
.prc file on PalmOS, etc.). Also, note, as with any other significant software element intro-
duced in the architecture, the minimal processing power and memory requirements have to be 
met in hardware in systems that contain these higher-level language elements in order for the 
code written in these languages to perform in a reasonable manner, if at all. 
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In short, what this example attempts to portray is that an embedded system can be based upon 
a number of different languages (assembly, C, Java, and HTML in an MHP-based DTV with 
a browser on an x86 board, for example), or based upon only one language (assembly in a 21" 
analog TV based on an 8-bit TV microcontroller, for example). As shown in Figure 11-12, 
the key is creating a matrix that outlines what available languages in the industry meet the 
functional and nonfunctional requirements of the device.

Figure 11-12: Programming language matrix

Real-Time Fast Performance MHP-
Spec

ATVEF-
Spec

Browser 
Application

…

Assembly YES YES NOT 
Required

NOT 
Required

NOT 
Required

…

C YES YES
Slower than assembly

NOT 
Required

NOT 
Required

NOT 
Required

…

C++ YES YES
Slower than C

NOT 
Required

NOT 
Required

NOT 
Required

…

.NetCE
(C#)

NO
WinCE NOT RTOS

Depends on processor, 
slower than C on less 
powerful processors

NOT 
Required

NOT 
Required

NOT 
Required

…

JVM
(Java)

Depends on JVM’s
Garbage Collector 
and is OS ported to 
RTOS

Depends on JVM’s byte 
code processing scheme 
(WAT almost as fast as 
C where interpretation 
requires more power-
ful processor i.e. 200+ 
MHz), slower than C on 
slower processors

YES NOT 
Required

NOT 
Required

…

HTML
(Scripting)

Depends on what 
language written 
in, and the OS (an 
RTOS in C/assem-
bly OK, .NetCE 
platform no, Java 
depends on JVM

Slower because of the 
interpretation that needs 
to be done but depends 
on what language 
interpreter written in 
(see above cells of this 
column)

NOT Re-
quired

YES YES …
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EXAMPLE 2: Selecting an Operating System

The main questions surrounding the use of an operating system (OS) within an embedded 
design are:

1. What type of systems typically use or require an OS?

2. Is an OS needed to fulfill system requirements?

3. What is needed to support an OS in a design?

4. How to select the OS that best fits the requirements?

Embedded devices based upon 32-bit processors (and up) typically have an OS, because these 
systems are usually more complex and have many more megabytes of code to manage than 
their 4-bit, 8-bit, and 16-bit based counterparts. Sometimes other elements within the architec-
ture require an OS within the system, such as when a JVM or the .NET Compact Framework 
is implemented in the system software stack. In short, while any master CPU can support some 
type of kernel, the more complex the device, the more likely it is that a kernel will be used.

Whether an OS is needed or not depends on the requirements and complexity of the system. 
For example, if the ability to multitask, to schedule tasks in a particular scheme, to man-
age resources fairly, to manage virtual memory, and to manage a lot of application code is 
important, then using an OS will not only simplify the entire project, but may be critical to 
completing it. In order to be able to introduce an OS into any design, the overhead needs to 
be taken into account (as with any software element introduced), including: processing power, 
memory, and cost. This also means that the OS needs to support the hardware (i.e., master 
processor).

Selecting an off-the-shelf OS, again, goes back to creating a matrix with requirements and the 
OS features. The features in this matrix could include:

Cost. When purchasing an OS, many costs need to be taken into consideration. For 
example, if development tools come with an OS package, there is typically a fee for 
the tools (which could be a per team or per developer fee), as well as a license fee for 
the OS. Some OS companies charge a one-time license OS fee, whereas others charge 
an upfront fee along with royalties (a fee per device being manufactured). 

Development and Debugging Tools. This includes tools that are compatible with 
or are included in the OS package, such as technical support (a website, a support 
engineer, or Field Applications Engineer to call for help), an IDE (Integrated Devel-
opment Environment), ICEs (In-circuit Emulators), compilers, linkers, simulators, 
debuggers, and so on.

Size. This includes the footprint of the OS on ROM, as well as how much main 
memory (RAM) is needed when OS is loaded and running. Some OSes can be 
configured to fit into much less memory by allowing the developer to scale out 
unnecessary functionality.
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Nonkernel Related Libraries. Many OS vendors entice customers by including addi-
tional software with the OS package or optional packages available with the OS (i.e., 
device drivers, file systems, networking stack, etc.) that are integrated with the OS 
and (usually) ready to run out-of-the-box.

Standards Support. Various industries may have specific standards for software (such 
as an OS) that need to meet some safety or security regulations. In some cases, an OS 
may need to be formally certified. There are also general OS standards (i.e., POSIX) 
which many embedded OS vendors support.

Performance. (See Chapter 9, Section 9.6 on OS performance).

Of course, there are many other desirable features that can go into the matrix such as process 
management scheme, processor support, portability, vendor reputation, and so on, but essen-
tially it comes down to taking the time to create the matrix of desired features and OSes as 
shown in Figure 11-13. 

Figure 11-13: Operating system matrix

Tools Portability Non-kernel Processor Scheduling Scheme …

vxWorks Tornado IDE, 
SingleStep
debugger, …

BSP Device Drivers 
w/ BSP, graphics, 
networking, …

x86, MIPS, 
68K, ARM, 
strongARM,
PPC …

Hard Real-Time, 
Priority-based …

…

Linux Depends on 
vendor for de-
velopment IDE, 
gcc, …

Depends
on vendor, 
some with 
no BSP

Device Drivers 
graphics, network-
ing, …

Depends on 
vendor

(x86, PPC, 
MIPS, …)

Depends on vendor, 
some are hard real-
time, others soft-real 
time …

…

Jbed Jbed IDE , Sun 
Java compiler, 
…

BSP Device Drivers 
– the rest depends 
on JVM specifica-
tion (graphics, 
networking, …)

PPC, ARM, 
…

EDF Hard Real 
Time Scheduling …

…

EXAMPLE 3: Selecting a Processor

The different ISA designs—application-specific, general purpose, instruction-level parallel-
ism, etc.—are targeted for various types of devices. However, different processors that fall 
under different ISAs could be used for the same type of device, given the right components 
on the board and in the software stack. As the names imply, general purpose ISAs are used 
in a wide variety of devices, and application-specific ISAs are targeted for specific types of 
devices or devices with specific requirements, where their purposes are typically implied by 
their names, such as: TV microcontroller for TVs, Java processor for providing Java support, 
DSPs (digital signal processors) that repeatedly perform fixed computations on data, and so 
on. As mentioned in chapter 4, instruction-level parallelism processors are typically general 
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purpose processors with better performance (because of their parallel instruction execution 
mechanisms). Furthermore, in general, 4-bit/8-bit architectures have been used for lower-end 
embedded systems, and 16-bit/32-bit architectures for higher-end, larger, and more expensive 
embedded systems. 

As with any other design decision, selecting a processor means both selecting it based on 
the requirements as well as identifying its impact on the remainder of the system, includ-
ing software elements, as well as other hardware elements. This is especially important with 
hardware, since it is the hardware that impacts what enhancements or constraints are imple-
mentable in software. What this means is creating the matrix of requirements and processors, 
and cross-referencing this matrix with the other matrices reflecting the requirements of other 
system components. Some of the most common features that are considered when selecting a 
processor include: the cost of the processor, power consumption, development and debugging 
tools, operating system support, processor/reference board availability and lifecycle, reputa-
tion of vendor, technical support and documentation (data sheets, manuals, etc.). Figure 11-14 
shows a sample matrix for master processor selection for implementing a Java-based system.

Figure 11-14: Processor matrix

Tools Java-specific Features OS Support …

aJile aj100 Java Processor 
(Application Specific ISA)

JEMBuilder, 
Charade debugger, 

J2ME/CLDC JVM NOT Needed …

Motorola PPC823 
(General Purpose ISA) 

Tornado tools, Jbed 
Tools, Sun tools, 
Abatron BDM…

Implemented in 
software (Jbed, PERC, 

CEE-J, …) 

Coming Soon — 
Linux, vxWorks, 

Jbed, Nucleus 
Plus, OSE, …

…

Hitachi Camelot Superscaler 
SoC(Instruction Level Parallel 
ISA)

Tornado Tools, QNX 
Tools, JTAG, …

Coming Soon — 
Implemented in 

software (IBM, OTI, 
Sun VMs..)

Coming Soon — 
QNX, vxWorks, 
WinCE, Linux, 

....

…

Stage 4: Define the Architectural Structures
After stages 1 through 3 have been completed, the architecture can be created. This is done 
by decomposing the entire embedded system into hardware and/or software elements, and 
then further decomposing the elements that need breaking down. These decompositions are 
represented as some combination of various types of structures (see Chapter 1, Table 1-1 for 
examples of structure types). The patterns defined under stage 3 that most satisfy the system 
requirements (the most complete, the most accurate, the most buildable, highest conceptual 
integrity, etc.) should be used as the foundations for the architectural structures. 

It is ultimately left up to the architects of the system to decide which structures to select and 
how many to implement. While different industry methodologies have different recommenda-
tions, a technique favored by some of the most popular methodologies, including the Rational 
Unified Process, Attribute Driven Design, and others, is the “4+1” model shown in Figure 11-15. 
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The “4+1” model states that a system architect should create five concurrent structures per 
architecture at the very least, and each structure should represent a different viewpoint of 
the system. What is literally meant by “4+1” is that four of the structures are responsible for 
capturing the various requirements of the system. The fifth structure is used to validate the 
other four, insuring that there are no contentions between the structures and that all structures 
describe the exact same embedded device, from their various viewpoints.

What is specifically shown in Figure 11-15 is that the four base structures of the “4+1” model 
should fall under the module, component and connector, and allocation structural types. 
Within each of these structural family types, this model after being adapted for use in embed-
ded systems by this author specifically recommends: 

Structure 1. One logical structure, which is a modular structure of the key functional 
hardware and software elements in the system, such as objects for an object-oriented 
based structure, or a processor, OS, etc. A logical modular structure is recommended 
because it demonstrates how the key functional hardware and software requirements 
of the system are being met by displaying the elements that meet the requirements, 
as well as their interrelationships. This information can then be leveraged to build the 
actual system through these functional elements, outlining which functional elements 
need to be integrated with which other functional elements, as well as outlining what 
functional requirements are needed by various elements within the system to execute 
successfully.

Structure 2. One process structure, which is the component and connector structure 
reflecting the concurrency and synchronization of processes in a system that would 
contain an OS. A process structure is recommended because it demonstrates how 
nonfunctional requirements, such as performance, system integrity, resource avail-
ability, etc., are being met by an OS. This structure provides a snapshot of the system 
from an OS process standpoint, outlining the processes in the system, the scheduling 
mechanism, the resource management mechanisms, and so on. 

Two Allocation Structures

Structure 3. A development structure describing how the hardware and software map 
into the development environment. A development structure is recommended because 
it provides support for nonfunctional requirements related to the buildability of the 

Figure 11-15: “4+1” model [11-2]

“4+1” Model

Logical Process Development Deployment

Module Component &
Connector

Allocation

Validation
- Logical Scenarios

  - Process Scenarios
- Development Scenarios
- Deployment Scenarios
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hardware and software. This includes information on any constraints of the develop-
ment environment like the integrated development environment (IDE), debuggers, 
compilers, and so forth; complexity of the programming language(s) to be used; and 
other requirements. It demonstrates this buildability through the mapping of the hard-
ware and software to the development environment. 

Structure 4. A deployment/physical structure showing how software maps into the 
hardware. A deployment/physical structure is recommended because, like the process 
structure, it demonstrates how nonfunctional requirements such as hardware resource 
availability, processor throughput, performance, and reliability of the hardware are 
met by demonstrating how all the software within the device maps to the hardware. 
This essentially defines the hardware requirements based on the software require-
ments. This includes the processors executing code/data (processing power), memory 
storing the code/data, buses transmitting code/data, and so on.

As seen from the definitions of these structures, this model assumes that, first, the system 
has software (development, deployment, and process structures), and, second, the embedded 
device will include some type of operating system (process structure). Essentially, modular 
structures apply universally regardless of what software components are in the system, or 
even if there is no software, as is the case with some older embedded system designs. With 
embedded designs that don’t require an operating system, then other component and connector 
structures, such as system resource structures like memory or I/O, can be substituted that rep-
resent some of the functionality that is typically found in an OS, such as memory management 
or I/O management. As with embedded systems with no OS, for embedded devices with no 
software, hardware-oriented structures can be substituted for the software-oriented structures. 

The “+1” structure, or fifth structure, is the mapping of a subset of the most important sce-
narios and their tactics that exist in the other four structures. This insures that the various 
elements of the four structures are not in conflict with each other, thus validating the entire 
architectural design. Again, keep in mind that these specific structures are recommended
for particular types of embedded systems, not required by the “4+1” model. Furthermore, 
implementing five structures, as opposed to implementing fewer or more structures, is also a 
recommendation. These structures can be altered to include additional information reflecting 
the requirements. Additional structures can be added if they are needed to accurately reflect 
a view of the system not captured by any of the other structures created. The important thing 
that the model is trying to relay regarding the number of structures is that it is very difficult to 
reflect all the information about the system in only one type of structure.

Finally, the arrows to and from the four primary structures shown in Figure 11-15 of the 
“4+1” module represent the fact that, while the various structures are different perspectives of 
the same embedded system, they are not independent of each other. This means that at least 
one element of a structure is represented as a similar element or some different manifestation 
in another structure, and it is the sum of all of these structures that makes up the architecture 
of the embedded system. 
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Author note: While the “4+1” model was originally created to address the creation of a 
software architecture, it is adaptable and applicable to embedded systems architectural 
hardware and software design as a whole. In short, the purpose of this model is to act as 
a tool to determine how to select the right structures and how many to select. Essentially, 
the same fundamentals of the “4+1” model concerning the number, types, and purposes 
of the various structures can be applied to embedded systems architecture and design 
regardless of how structural elements are chosen to be represented by the architect, or 
how strictly an architect chooses to abide by the various methodology notations (i.e., 
symbols representing various architectural elements within a structure) and styles (i.e., 
object oriented, hierarchical layers, etc.).

Many architectural structures and patterns have been defined in various architecture 
books (do your research), but some useful books include Software Architecture in Prac-
tice (Bass, Clements, Kazman, 2003), A System of Patterns: Pattern-Oriented Software 
Architecture (Buschmann, Meunier, Rohnert, Sommerlad, Stal, 1996), and Real-Time 
Design Patterns: Robust Scalable Architecture for Real-Time Systems (Douglass, 2003). 
These can all be applied to embedded systems design.

Stage 5: Document the Architecture
Documenting the architecture means documenting all of the structures—the elements, their 
functions in the system, and their interrelationships—in a coherent manner. How an archi-
tecture is actually documented ultimately depends on the standard practices decided by the 
team and/or management. A variety of industry methodologies provide recommendations and 
guidelines for writing architectural specifications. These popular guidelines can be summa-
rized in the following three steps: 

Step 1: A document outlining the entire architecture.

This step involves creating a table of contents that outlines the information and 
documentation available for the architecture, such as: an overview of the embedded 
system, the actual requirements supported by the architecture, the definitions of the 
various structures, the inter-relationships between the structures, outlining the docu-
mentation representing the various structures, how these documents are laid out (i.e., 
modeling techniques, notation, semantics, etc.), and so on.

Step 2: A document for each structure.

This document should indicate which requirements are being supported by the struc-
ture and how these requirements are being supported by the design, as well as any 
relative constraints, issues, or open items. This document should also contain graphi-
cal and nongraphical (i.e., tabular, text, etc.) representation of each of the various 
elements within the structure. For instance, a graphical representation of the structur-
al elements and relationships would include an index containing a textual summary of 
the various elements, their behavior, their interfaces, and their relationships to other 
structural elements.
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It is also recommended that this document or a related subdocument outline any 
interfaces or protocols used to communicate to devices outside the embedded system 
from the point-of-view of the structure. 

While in embedded systems there is no one template for documenting the various 
structures and related information, there are popular industry techniques for model-
ing the various structural related information. Some of the most common include the 
Universal Modeling Language (UML) by the Object Management Group (OMG) 
that defines the notations and semantics for creating state charts and sequence dia-
grams that model the behavior of structural elements, and the attribute driven design
(ADD) that, among other templates, provides a template for writing the interface 
information. Figures 11-16a, b, and c below are examples of templates that can be 
used to document the information of an architectural design.

Figure 11-16b: ADD interface template [11-2]

Figure 11-16a: UML diagrams [11-3]

UML is mainly a set of object-oriented graphical techniques

UML Sequence Diagram UML Use Case Diagram

Section 1 - Interface Identity
Section 2 - Resources Provided
    Section 2.1 - Resource Syntax
    Section 2.2 - Resource Semantics
    Section 2.3 - Resource Usage Restrictions
Section 3 - Locally defined data types
Section 4 - Exception Definitions
Section 5 - Variability Provided
Section 6 - Quality Attribute Characteristics
Section 7 - Element Requirements
Section 8 - Rationale and Design Issues
Section 9 - Usage Guide
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Step 3: An architecture glossary.

This document lists and defines all of the technical terms used in all of the architec-
tural documentation.

Regardless of whether the architecture documentation is made up of text and informal dia-
grams or is based upon a precise UML template, the documentation should reflect the various 
readers’ points-of-view, not only the writer’s. This means that it should be useful and unam-
biguous regardless of whether the reader is a beginner, nontechnical, or very technical (that 
is, it should have high-level “use case” models outlining the various users and how the system 
can be used, sequence diagrams, state charts, etc.). Also, the various architectural documenta-
tion should include the different kinds of information the various readers (stakeholders) need 
in order to do their analysis and provide feedback. 

Stage 6: Analyze and Evaluate the Architecture
While there are many purposes for reviewing an architecture, primarily it is to determine if an 
architecture meets the requirements, and to evaluate the potential risks, and possible failure, 
of a design long before it has been built. When evaluating an architecture, both who reviews 
the architecture must be established, as well as the process of how evaluations should occur. 
In terms of the “who,” outside of the architects and stakeholders, the evaluation team should 
include an engineer outside of the ABC influences to provide impartial perspectives on the 
design.

There are many techniques for analyzing and evaluating architectures that can be adapted 
and used in an embedded systems design process. The most common of these approaches 
typically fall under an architecture-oriented approach, a quality attribute-based approach, or 
some combination of these two approaches. In architecture-oriented approaches, scenarios 
to be evaluated are implemented by the system stakeholders and/or an evaluation team (with 
stakeholder representatives as a subset of the team). 

A quality attribute approach is typically considered either qualitative or quantitative. Under 
the qualitative-analysis approach, different architectures with the same quality attributes
(a.k.a. features of a system that nonfunctional requirements are based upon) are compared 
by an architect and/or by an evaluation team depending on the specific approach. Quantita-
tive-analysis techniques are measurement-based, meaning particular quality attributes of an 

Figure 11-16c: (Rough and informal) sequence diagram 

User Embedded Device

…….

User opens application via user interface

OS task spawned loading application into memory and begins to execute

User selects option X in application
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architecture and associated information are analyzed, as well as models associated with the 
quality attributes and related information are built. These models, along with associated char-
acteristics, can then be used to determine the best approach to building the system. There is a 
wide variety of both quality-attribute and architecture-oriented approaches, some of which are 
summarized in Table 11-2.

Methodology Description
Architecture Level Prediction of Software 
Maintenance [ALPSM]

Maintainability evaluated via scenarios.

The Architecture Tradeoff Analysis Method 
[ATAM]

Quality Attribute (quantitative) approach that defines 
problem areas and technical implications of an ar-
chitecture via question and measurement techniques. 
Can be used for evaluating many quality attributes.

Cost Benefit Analysis Method [CBAM] Extension of ATAM for defining the economical 
implications of an architecture.

ISO/IEC 9126-1 thru 4 Architecture analysis standards using internal and 
external metric models for evaluation (relevant to the 
functionality, reliability, usability, efficiency, main-
tainability and portability of devices).

Rate Monotonic Analysis (RMA) Approach which evaluates the real-time behavior of 
a design.

Scenario-Based Architecture Analysis 
Method [SAAM]

Modifiability evaluated through scenarios defined by 
stakeholders (an architecture-oriented approach).

SAAM Founded on Complex Scenarios 
[SAAMCS]

SAAM extension — Flexibility evaluated via scenar-
ios defined by stakeholders (an architecture-oriented 
approach).

Extending SAAM by Integration in the 
Domain [ESAAMI]

SAAM extension — Modifiability evaluated via 
scenarios defined by stakeholders (an architecture-
oriented approach).

Scenario-Based Architecture Reengineering 
[SBAR]

Variety of quality attributes evaluated via math-
ematical modeling, scenarios, simulators, objective 
reasoning (depends on attribute).

Software Architecture Analysis Method for 
Evolution and Reusability [SAAMER]

Evaluation of evolution and reusability via scenarios.

A Software Architecture Evaluation Model 
[SAEM]

A quality model that evaluates via different metrics 
depending on GQM technique.

Table 11-2: Architecture analysis approaches [11-2]

As seen in Table 11-2, some of these approaches analyze only certain types of requirements, 
whereas others are meant to analyze a wider variety of quality attributes and scenarios. In 
order for the evaluation to be considered successful, it is important that 1) the members of 
the evaluation team understand the architecture, such as the patterns and structures, 2) these 
members understand how the architecture meets the requirements, and 3) everyone on the 
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team agree that the architecture meets the requirements. This can be accomplished via mecha-
nisms introduced in these various analytic and evaluation approaches (see Table 11-2 for 
examples), general steps including:

Step 1. Members of the evaluation team obtain copies of the architecture documenta-
tion from the responsible architect(s), and it is explained to the various team members 
the evaluation process, as well as the architecture information within the documenta-
tion to be evaluated. 

Step 2. A list of the architectural approaches and patterns is compiled based upon 
feedback from the members of the evaluation team after they have analyzed the docu-
mentation.

Step 3. The architect(s) and evaluation team members agree upon the exact sce-
narios derived from the requirements of the system (the team responding with their 
own inputs of the architect’s scenarios: changes, additions, deletions, etc.), and the 
priorities of the various scenarios are agreed upon in terms of both importance and 
difficulty of implementation. 

Step 4. The (agreed upon) more difficult and important scenarios are where the evalu-
ation team spends the most evaluation time because these scenarios introduce the 
greatest risks. 

Step 5. Results the evaluation team should include (at the very least) the 1) uniformly 
agreed upon list of requirements/scenarios, 2) benefits (i.e., the return-on-investment 
(ROI) or the ratio of benefit to cost), 3) risks, 4) strengths, 5) problems, and 6) any of 
the recommended changes to the evaluated architectural design. 

11.2 Summary
This chapter introduced a simple process for creating an embedded systems architecture that 
included six major stages: having a solid technical background (stage 1), understanding the 
architectural business cycle of the system (stage 2), defining the architectural patterns and 
respective models (stage 3), defining the architectural structures (stage 4), documenting the 
architecture (stage 5), and analyzing and evaluating the architecture (stage 6). In short, this 
process uses some of the most useful mechanisms of the various popular industry architectur-
al approaches. The reader can use these mechanisms as a starting point for understanding the 
variety of approaches, as well as for creating an embedded system architecture based upon 
this simplified, pragmatic approach.

The next and final chapter in this text, Chapter 12, discusses the remaining phases of embed-
ded system design: the implementation of the architecture, the testing of the design, and the 
maintainability issues of a design after deployment.
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Chapter 11 Problems

1. Draw and describe the four phases of the Embedded System Design and Development 
Lifecycle Model.

2. [a] Of the four phases, which phase is considered the most difficult and important? 
[b] Why?

3. What are the six stages in creating an architecture?

4. [a] What are the ABCs of embedded systems? 
[b] Draw and describe the cycle.

5. List and define the four steps of Stage 2 of creating the architecture.

6. Name four types of influences on the design process of an embedded system.

7. Which method is least recommended for gathering information from ABC influences?
A. finite-state machine models.
B. scenarios.
C. by phone.
D. in an e-mail.
E. All of the above.

8. Name and describe four examples of general ABC features from five different influences.

9. [a] What is a prototype? 
[b] How can a prototype be useful?

10. What is the difference between a scenario and a tactic?

11. In Figure 11-17, list and define the major components of a scenario.
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Figure 11-17 General ABC user friendliness scenario [11-2]

External Stimulus Sources
(users: sales person, field application
engineers, customers, etc.)

User Friendliness Stimuli
(learning to use system, updating

system, etc.)

Affected Element
(Embedded System) System Response

(appropriate outputs to user input, etc.)

System Response Measures
(latency in reacting to user inputs, recovery

from user errors, user satisfaction, etc.)

Environment
(in field.)

12. [T/F] A requirement can have multiple tactics.

13. What is the difference between an architectural pattern and a reference model?

14.  [a] What is the “4+1” model?
[b] Why is it useful? 
[c] List and define structures that correspond to the “4+1” model.

15.  [a] What is the process for documenting an architecture? 
[b] How can a particular structure be documented?

16. [a] List and define two common approaches for analyzing and evaluating an 
architecture?

[b] Give at least five real-world examples of either.

17. What is the difference between a qualitative and quantitative quality attribute approach?

18. What are the five steps introduced in the text as a method by which to review an 
architecture?
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C H A P T E R 12
The Final Phases of Embedded Design:

Implementation and Testing

In This Chapter

Defining the key aspects of implementing an embedded systems architecture
Introducing quality assurance methodologies
Discussing the maintenance of an embedded system after deployment
Conclusion of book

12.1 Implementing the Design
Having the explicit architecture documentation helps the engineers and programmers on the 
development team to implement an embedded system that conforms to the requirements. 
Throughout this book, real-world suggestions have been made for implementing various 
components of a design that meet these requirements. In addition to understanding these 
components and recommendations, it is important to understand what development tools
are available that aid in the implementation of an embedded system. The development and 
integration of an embedded system’s various hardware and software components are made 
possible through development tools that provide everything from loading software into the 
hardware to providing complete control over the various system components.

Embedded systems aren’t typically developed on one system alone—for example, the hard-
ware board of the embedded system—but usually require at least one other computer system 
connected to the embedded platform to manage development of that platform. In short, a 
development environment is typically made up of a target (the embedded system being 
designed) and a host (a PC, Sparc Station, or some other computer system where the code is 
actually developed). The target and host are connected by some transmission medium, wheth-
er serial, Ethernet, or other method. Many other tools, such as utility tools to burn EPROMs 
or debugging tools, can be used wit                            hin the development environment in conjunction with the 
host and target. (See Figure 12-1.)

The key development tools in embedded design can be located on the host, on the target, 
or can exist stand-alone. These tools typically fall under one of three categories: utility,
translation, and debugging tools. Utility tools are general tools that aid in software or hard-
ware development, such as editors (for writing source code), VCS (Version Control Software) 
that manages software files, ROM burners that allow software to be put onto ROMs, and so 
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on. Translation tools convert code a developer intends for the target into a form the target 
can execute, and debugging tools can be used to track down and correct bugs in the system. 
Development tools of all types are as critical to a project as the architecture design, because 
without the right tools, implementing and debugging the system would be very difficult, if not 
impossible.

Real-World Advice

The Embedded Tools Market

The embedded tools market is a small, fragmented market, with many different vendors 
supporting some subset of the available embedded CPUs, operating systems, JVMs, and so 
on. No matter how large the vendor, there is not yet a “one-stop-shop” where all tools for 
most of the same type of components can be purchased. Essentially there are many different 
distributions from many different tool vendors, each supporting their own set of variants or 
supporting similar sets of variants. Responsible system architects need to do their research 
and evaluate available tools before finalizing their architecture design to ensure that both the 
right tools are available for developing the system, and the tools are of the necessary quality. 
Waiting several months for a tool to be ported to your architecture, or for a bug fix from the 
vendor after development has started, is not a good situation to be in. 

—Based on the article “The Trouble with The Embedded Tools Market” by Jack Ganssle

—Embedded Systems Programming. April 2004

12.1.1 The Main Software Utility Tool: Writing Code in an Editor or IDE
Source code is typically written with a tool such as a standard ASCII text editor, or an 
Integrated Development Environment (IDE) located on the host (development) platform, as 
shown in Figure 12-2. An IDE is a collection of tools, including an ASCII text editor, inte-
grated into one application user interface. While any ASCII text editor can be used to write 
any type of code, independent of language and platform, an IDE is specific to the platform 
and is typically provided by the IDE’s vendor, a hardware manufacturer (in a starter kit that 
bundles the hardware board with tools such as an IDE or text editor), OS vendor, or language 
vendor (Java, C, etc.). 

Target Board

Transmission Medium

Transmission Medium

Debug Tool

Target
System

Figure 12-1: Development environments
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12.1.2 Computer-Aided Design (CAD) and the Hardware
Computer-Aided Design (CAD) tools are commonly used by hardware engineers to simulate 
circuits at the electrical level in order to study a circuit’s behavior under various conditions 
before they actually build the circuit.  

Figure 12-2: IDEs [12-1]

Figure 12-3a: Pspice CAD simulation sample [12-2] Figure 12-3b: Pspice CAD circuit sample [12-2]

Figure 12-3a is a snapshot of a popular standard circuit simulator, called PSpice. This circuit 
simulation software is a variation of another circuit simulator that was originally developed at 
University of California, Berkeley called SPICE (Simulation Program with Integrated Circuit 
Emphasis). PSpice is the PC version of SPICE, and is an example of a simulator that can do 
several types of circuit analysis, such as nonlinear transient, nonlinear dc, linear ac, noise, 
and distortion to name a few. As shown in Figure 12-3b, circuits created in this simulator 
can be made up of a variety of active and/or passive elements. Many commercially available 
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electrical circuit simulator tools are generally similar to PSpice in terms of their overall 
purpose, and mainly differ in what analysis can be done, what circuit components can be 
simulated, or the look and feel of the user interface of the tool.

Because of the importance of and costs associated with designing hardware, there are many 
industry techniques in which CAD tools are utilized to simulate a circuit. Given a complex 
set of circuits in a processor or on a board, it is very difficult, if not impossible, to perform a 
simulation on the whole design, so a hierarchy of simulators and models are typically used. In 
fact, the use of models is one of the most critical factors in hardware design, regardless of the 
efficiency or accuracy of the simulator.

At the highest level, a behavioral model of the entire circuit is created for both analog and dig-
ital circuits, and is used to study the behavior of the entire circuit. This behavioral model can 
be created with a CAD tool that offers this feature, or can be written in a standard program-
ming language. Then depending on the type and the makeup of the circuit, additional models 
are created down to the individual active and passive components of the circuit, as well as for 
any environmental dependencies (temperature, for example) that the circuit may have. 

Aside from using some particular method for writing the circuit equations for a specific simu-
lator, such as the tableau approach or modified nodal method, there are simulating techniques 
for handling complex circuits that include one or some combination of: [12-1]

dividing more complex circuits into smaller circuits, and then combining the results.

utilizing special characteristics of certain types of circuits.

utilizing vector-high speed and/or parallel computers.
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12.1.3 Translation Tools—Preprocessors, Interpreters, Compilers, and
 Linkers
Translating code was first introduced in Chapter 2, along with a brief introduction to some 
of the tools used in translating code, including preprocessors, interpreters, compilers, and 
linkers. As a review, after the source code has been written, it needs to be translated into 
machine code, since machine code is the only language the hardware can directly execute. 
All other languages need development tools that generate the corresponding machine code 
the hardware will understand. This mechanism usually includes one or some combination of 
preprocessing, translation, and/or interpretation machine code generation techniques. These 
mechanisms are implemented within a wide variety of translating development tools. 

Preprocessing is an optional step that occurs either before the translation or interpretation 
of source code, and whose functionality is commonly implemented by a preprocessor. The 
preprocessor’s role is to organize and restructure the source code to make translation or inter-
pretation of this code easier. The preprocessor can be a separate entity, or can be integrated 
within the translation or interpretation unit.

Many languages convert source code, either directly or after having been preprocessed, to 
target code through the use of a compiler, a program which generates some target language, 
such as machine code, Java byte code, etc., from the source language, such as assembly, C, 
Java, etc. (see Figure 12-4). 

Figure 12-4: Compilation diagram

Preprocessing Header File (s) for languages like C and C++

Source Code

Compiler

Compiling

Target Code

A compiler typically translates all of the source code to a target code at one time. As is usu-
ally the case in embedded systems, most compilers are located on the programmer’s host 
machine and generate target code for hardware platforms that differ from the platform the 
compiler is actually running on. These compilers are commonly referred to as cross-compil-
ers. In the case of assembly, an assembly compiler is a specialized cross-compiler referred to 
as an assembler, and will always generate machine code. Other high-level language compilers 
are commonly referred to by the language name plus “compiler” (i.e., Java compiler, C com-
piler). High-level language compilers can vary widely in terms of what is generated. Some 
generate machine code while others generate other high-level languages, which then require 
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what is produced to be run through at least one more compiler. Still other compilers generate 
assembly code, which then must be run through an assembler. 

After all the compilation on the programmer’s host machine is completed, the remaining tar-
get code file is commonly referred to as an object file, and can contain anything from machine 
code to Java byte code, depending on the programming language used. As shown in Figure 
12-5, a linker integrates this object file with any other required system libraries, creating what 
is commonly referred to as an executable binary file, either directly onto the board’s memory 
or ready to be transferred to the target embedded system’s memory by a loader.

C Header File (s)

Host Computer

Loader

Embedded System

C System Libraries

C Executable File

Linker

C Object File (s)

Compiling

Preprocessing

C Compiler

C Source File (s)

Figure 12-5: C example compilation/linking steps and object file results

One of the fundamental strengths of a translation process is based upon the concept of software 
placement (also referred to as object placement), the ability to divide the software into modules 
and relocate these modules of code and data anywhere in memory. This is an especially useful 
feature in embedded systems, because: (1) embedded designs can contain several different 
types of physical memory; (2) they typically have a limited amount of memory compared 
to other types of computer systems; (3) memory can typically become very fragmented and 
defragmentation functionality is not available out-of-the-box or too expensive; and (4) certain 
types of embedded software may need to be executed from a particular memory location.

This software placement capability can be supported by the master processor, which supplies 
specialized instructions that can be used to generate “position independent code,” or it could 
be separated by the software translation tools alone. In either case, this capability depends 
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on whether the assembler/compiler can process only absolute addresses, where the starting 
address is fixed by software before the assembly processes code, or whether it supports a 
relative addressing scheme in which the starting address of code can be specified later and 
where module code is processed relative to the start of the module. Where a compiler/assem-
bler produces relocatable modules, process instruction formats, and may do some translation 
of relative to physical (absolute) addresses, for example, the remaining translation of relative 
addresses into physical addresses, essentially the software placement, is done by the linker.

While the IDE, preprocessors, compilers, linkers and so on reside on the host development 
system, some languages, such as Java and scripting languages, have compilers or interpreters
located on the target. An interpreter generates (interprets) machine code one source code line 
at a time from source code or target code generated by a intermediate compiler on the host 
system (see Figure 12-6 below). 

Figure 12-6: Interpretation diagram

Source L1

Source L2

Source L3

Source L4

Source L5

Source L6

Target Code for
Source L1

Target Code for
Source L2

Target Code for
Source L3

………….

An embedded developer can make a big impact in terms of selecting translation tools for a 
project by understanding how the compiler works and, if there are options, by selecting the 
strongest possible compiler. This is because the compiler, in large part, determines the size of 
the executable code by how well it translates the code.

This not only means selecting a compiler based on support of the master processor, particular 
system software, and the remaining toolset (a compiler can be acquired separately, as part of a 
starter kit from a hardware vendor, and/or integrated within an IDE). It also means selecting a 
compiler based upon a feature set that optimizes the code’s simplicity, speed, and size. These 
features may, of course, differ between compilers of different languages, or even different 
compilers of the same language, but as an example would include allowing in-line assembly 
within the source and standard library functions that make programming embedded code a 
little easier. Optimizing the code for performance means that the compiler understands and 
makes use of the various features of a particular ISA, such as math operations, the register set, 
knowing the various types of on-chip ROM and RAM, the number of clock cycles for various 
types of accesses, etc. By understanding how the compiler translates the code, a developer 
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can recognize what support is provided by the compiler and learn, for example, how to 
program in the higher-level language supported by the compiler in an efficient manner (“com-
piler-friendly code”), and when to code in a lower-level, faster language, such as assembly.

Real-World Advice

The Ideal Embedded Compiler

Embedded systems have unique requirements and constraints atypical of the non-embedded 
world of PCs and larger systems. In many ways, features and techniques implemented in many 
embedded compiler designs evolved from the designs of non-embedded compilers. These
compilers work fine for non-embedded system development, but don’t address the differ-
ent requirements of embedded systems development, such as limited speed and space. One
of the main reasons that assembly is still so prevalent in embedded devices that use higher 
level languages is that developers have no visibility into what the compiler is doing with the 
higher-level code. Many embedded compilers provide no information about how the code 
is generated. Thus, developers have no basis to make programming decisions when using 
a higher-level language to improve on size and performance. Compiler features that would 
address some of the needs, such as the size and speed requirements unique to embedded 
systems design, include:

• A compiler listing file that tags each line of code with estimates of expected execution 
times, an expected range of execution time, or some type of formula by which to do the 
calculation (gathered from the target-specific information of the other tools integrated with 
the compiler). 

• A compiler tool that allows the developer to see a line of code in its compiled form, and tag 
any potential problem areas.

• Providing information on size of the code via a precise size map, along with a browser that 
allows the programmer to see how much memory is being used by particular subroutines.

Keep these useful features in mind when designing or shopping for an embedded compiler.

—Based on the article “Compilers Don’t Address Real-Time Concerns” by Jack Ganssle

Embedded Systems Programming, March 1999

12.1.4 Debugging Tools
Aside from creating the architecture, debugging code is probably the most difficult task of 
the development cycle. Debugging is primarily the task of locating and fixing errors within 
the system. This task is made simpler when the programmer is familiar with the various types 
of debugging tools available and how they can be used (the type of information shown in 
Table 12-1).

As seen from some of the descriptions in Table 12-1, debugging tools reside and interconnect 
in some combination of standalone devices, on the host, and/or on the target board. 
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A Quick Comment on Measuring System Performance with Benchmarks

Aside from debugging tools, once the board is up and running, benchmarks are software 
programs that are commonly used to measure the performance (latency, efficiency, etc.) of 
individual features within an embedded system, such as the master processor, the OS, or the 
JVM. In the case of an OS, for example, performance is measured by how efficiently the master 
processor is utilized by the scheduling scheme of the OS. The scheduler needs to assign the 
approriate time quantum—the time a process gets access to the CPU—to a process, because 
if the time quantum is too small, thrashing occurs.

The main goal of a benchmark application is to represent a real workload to the system. 
There are many benchmarking applications available. These include EEMBC (Embedded 
Microprocessor Benchmark Consortium) benchmarks, the industry standard for evaluating 
the capabilities of embedded processors, compilers, and Java; Whetstone, which simulates 
arithmetic-intensive science applications; and Dhrystone, which simulates systems programming 
applications, used to derive MIPS introduced in Section II. The drawbacks of benchmarks are 
that they may not be very realistic or reproducible in a real world design that involves more 
than one feature of a system. Thus, it is typically much better to use real embedded programs 
that will be deployed on the system to determine not only the performance of the software, 
but the overall system performance.

In short, when interpreting benchmarks, insure you understand exactly what software was 
run and what the benchmarks did or did not measure.

Table 12-1: Debug tools

Tool Type Debugging Tools Descriptions Examples of Uses and Drawbacks

Hardware In-Circuit Emulator
(ICE)

Active device replaces micro-
processor in system

 typically most expensive debug solution, but 
has a lot of debugging capabilities

 can operate at the full speed of the processor 
(depends on ICE) and to the rest of the system 
it is the microprocessor

 allows visibility and modifiability of internal 
memory, registers, variables, etc. real-time

 similar to debuggers, allows setting break-
points, single stepping, etc.

 usually has overlay memory to simulate ROM
 processor dependent

…..

ROM Emulator Active tool replaces ROM 
with cables connected to 
dual port RAM within ROM 
emulator, simulates ROM. It 
is an intermediate hardware 
device connected to the target 
via some cable (i.e. BDM), 
and connected to the host via 
another port

 allows modification of contents in ROM (un-
like a debugger)

 can set breakpoints in ROM code, and view 
ROM code real-time

 usually doesn’t support on-chip ROM, custom 
ASICs, etc.

 can be integrated with debuggers
…..
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Tool Type Debugging Tools Descriptions Examples of Uses and Drawbacks

Hardware Background Debug 
Mode (BDM)

BDM hardware on board 
(port and integrated debug 
monitor into master CPU), 
and debugger on host, con-
nected via a serial cable to 
BDM port. The connector 
on cable to BDM port, com-
monly referred to as wiggler. 
BDM debugging sometimes 
referred to as On-Chip De-
bugging (OCD)

 usually cheaper than ICE, but not as flexible 
as ICE

 observe software execution unobtrusively in 
real time

 can set breakpoints to stop software execution
 allows reading and writing to registers, RAM, 
I/O ports, etc

 processor/target dependent, Motorola propri-
etary debug interface

…..

IEEE 1149.1 Joint Test 
Action Group (JTAG)

JTAG-compliant hardware 
on board

 similar to BDM, but not proprietary to specific 
architecture (is an open standard)
….

IEEE-ISTO Nexus 5001 Options of JTAG port, Nex-
us-compliant port, or both, 
several layers of compliance 
(depending on complexity of 
master processor, engineering 
choice, etc.)

 offers scalable debug functions depending on 
level of compliance of hardware 
…..

Oscilloscope Passive analog device that 
graphs voltage (on vertical 
axis) versus time (on horizon-
tal axis), detecting the exact 
voltage at a given time

 monitor up to 2 signals simultaneously
 can set a trigger to capture voltage given 
specific conditions
 used as voltmeter (though a more expensive one)
 can verify circuit is working by seeing signal 
over bus or I/O ports
 capture changes in a signal on I/O port to 
verify segments of software are running, calcu-
late timing from one signal change to next, etc.
 processor independent

….

Logic Analyzer Passive device that captures 
and tracks multiple signals 
simultaneously and can graph 
them

 can be expensive
 typically can only track 2 voltages (VCC and 
ground); signals in-between are graphed as 
either one or the other
 can store data (whereas only storage oscil-
loscopes can store captured data)
 2 main operating modes (timing, state) to al-
low triggers on changes of states of signal (i.e., 
high-to-low or low-to-high)
 capture changes in a signal on I/O port to 
verify segments of software are running, calcu-
late timing from one signal change to next, etc. 
(timing mode)
 can be triggered to capture data from a clock 
event off the target or an internal logic ana-
lyzer clock 

Table 12-1: Debug tools (continued)
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Tool Type Debugging Tools Descriptions Examples of Uses and Drawbacks

Hardware Logic Analyzer
(continued)

Passive device that captures 
and tracks multiple signals 
simultaneously and can graph 
them

 can trigger if processor accesses off-limits sec-
tion of memory, writes invalid data to memory, 
or accesses a particular type of instruction 
(state mode)
 some will show assembly code, but usually 
cannot set break point and single-step through 
code using analyzer
 logic analyzer can only access data transmit-
ted externally to and from processor, not the 
internal memory, registers, etc.
 processor independent and allows view of 
system executing in real time with very little 
intrusion

…

Voltmeter Measures voltage difference 
between 2 points on circuit

 to measure for particular voltage values
 to determine if circuit has any power at all
 cheaper then other hardware tools

…

Ohmmeter Measures resistance between 
2 points on circuit

 cheaper than other hardware tools
 to measure changes in current/voltage in terms 
of resistance (Ohm’s Law V=IR)
 …

Multimeter measures both voltage and 
resistance

 same as volt and ohm meters
 …

Software Debugger Functional debugging tool Depends on the debugger – in general:
 loading/singlestepping/tracing code on target
 implementing breakpoints to stop software 
execution
 implementing conditional breakpoints to stop 
if particular condition is met during execution
 can modify contents of RAM, typically cannot 
modify contents of ROM

….

Profiler Collects the timing history of 
selected variables, registers, 
etc.

 capture time dependent (when) behavior of 
executing software
 to capture execution pattern (where) of execut-
ing software

….

Table 12-1: Debug tools (continued)
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Tool Type Debugging Tools Descriptions Examples of Uses and Drawbacks

Software Monitor Debugging interface similar 
to ICE, with debug software 
running on target and host. 
Part of monitor resides 
in ROM of target board 
(commonly called debug 
agent or target agent), and a 
debugging kernel on the host. 
Software on host and target 
typically communicate via 
serial or Ethernet (depends on 
what is available on target).

 similar to print statement but faster, less intru-
sive, works better for soft real-time deadlines, 
but not for hard real-time
 similar functionality to debugger (breakpoints, 
dumping registers and memory, etc.)
 embedded OSes can include monitor for 
particular architectures
….

Instruction Set 
Simulator

Runs on host and simu-
lates master processor and 
memory (executable binary 
loaded into simulator as it 
would be loaded onto target) 
and mimics the hardware

 typically does not run at exact same speed 
of real target, but can estimate response and 
throughput times by taking in consideration 
the differences between host and target speeds
verify assembly code is bug free
 usually doesn’t simulate other hardware that 
may exist on target, but can allow testing of 
built-in processor components
 can simulate interrupt behavior
 capture variable, memory and register values
 more easily port code developed on simulator 
to target hardware
 will not precisely simulate the behavior of the 
actual hardware in real-time
 typically better suited for testing algorithms 
rather than reaction to events external to an 
architecture or board (waveforms and such 
need to be simulated via software)
 typically cheaper than investing in real hard-
ware and tools

…..

Manual Readily available, free or cheaper than other solutions, effective, simpler to use but usually more highly intru-
sive than other types of tools, not enough control over event selection, isolation, or repeatability. Difficult to 
debug real-time system if manual method takes too long to execute.

Print Statements Functional debugging tool, 
printing statements inserted 
into code that print variable 
information, location in code 
information, etc. 

 to see output of variables, register values, etc. 
while the code is running

 to verify segment of code is being executed
 can significantly slow down execution time
 can cause missed deadlines in real-time 
system.

….

Table 12-1: Debug tools (continued)
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Tool Type Debugging Tools Descriptions Examples of Uses and Drawbacks

Manual Dumps Functional debugging tool 
that dumps data into some 
type of storage structure at 
runtime

 same as print statements but allows faster 
execution time in replacing several print state-
ments (especially if there is a filter identifying 
what specific types of information to dump or 
what conditions need to be met to dump data 
into the structure)

 see contents of memory at runtime to deter-
mine if any stack/heap overruns

….

Counters/Timers Performance and efficiency 
debugging tool in which 
counters or timers reset and 
incremented at various points 
of code

 collect general execution timing information 
by working off system clock or counting bus 
cycles, etc.

 some intrusiveness
….

Fast Display Functional debugging tool in 
which LEDs are toggled or 
simple LCD displays present 
some data

 similar to print statement but faster, less intru-
sive, working well for real-time deadlines

 allows confirmation that specific parts of code 
running

…

Ouput ports Performance, efficiency, and 
functional debugging tool in 
which output port toggled at 
various points in software

 with an oscilloscope or logic analyzer, can 
measure when port is toggled and get execu-
tion times between toggles of port

 same as above but can see on oscilloscope that 
code is being executed in first place

 in multitasking/multithreaded system assign 
different ports to each thread/task to study 
behavior

….

Some of these tools are active debugging tools and are intrusive to the running of the embed-
ded system, while other debug tools passively capture the operation of the system with no 
intrusion as the system is running. Debugging an embedded system usually requires a com-
bination of these tools in order to address all of the different types of problems that can arise 
during the development process.

Table 12-1: Debug tools (continued)
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Real-World Advice
The Cheapest Way To Debug

Even with all the available tools, developers should still try to reduce debugging time and 
costs, because 1) the cost of bugs increases the closer to production and deployment time the 
schedule gets, and 2) the cost of a bug is logarithmic (it can increase tenfold when discovered 
by a customer versus if it had been found during development of the device). Some of the 
most effective means of reducing debug time and cost include:

• Not developing too quickly and sloppily. The cheapest and fastest way to debug is to not
insert any bugs in the first place. Fast and sloppy development actually delays the schedule 
with the amount of time spent on debugging mistakes. 

• System Inspections. This includes hardware and software inspections throughout the 
development process that ensures that developers are designing according to the architecture 
specifications, and any other standards required of the engineers. Code or hardware that 
doesn’t meet standards will have to be “debugged” later if system inspections aren’t used to 
flush them out quickly and cheaply (relative to the time spent debugging and fixing all that 
much more hardware and code later). 

• Don’t use faulty hardware or badly written code. A component is typically ready to be 
redesigned when the responsible engineer is fearful of making any changes to the offending 
component.

• Track the bugs in a general text file or using one of the many bug tracking off-the-shelf 
software tools. If components (hardware or software) are continuously causing problems, it 
may be time to redesign that component.

• Don’t skimp on the debugging tools. One good (albeit more expensive) debugging tool 
that would cut debug time is worth more than a dozen cheaper tools that, without a lot of 
time and headaches, can barely track down the type of bugs encountered in the process of 
designing an embedded system.

And finally what I (the author of this book) believe is one of the best methods by which to 
reduce debug times and costs—read the documentation provided by the vendor and/or 
responsible engineers first, before trying to run or modify anything. I have heard many, many 
excuses over the years—from “I didn’t know what to read” to “Is there documentation?”—as 
to why an engineer hasn’t read any of the documentation. These same engineers have spent 
hours, if not days, on individual problems with configuring the hardware or getting a piece 
of software running correctly. I know that if these engineers had read the documentation in 
the first place, the problem would have been resolved in seconds or minutes – or might not 
have occurred at all. 

If you are overwhelmed with documentation and don’t know what to read first, anything titled 
along the lines of “Getting Started…”, “Booting up the system…”, or “README” are good 
indicators of a place to begin.  Moreover, take the time to read all of the documentation 
provided with any hardware or software to become familiar with what type of information is 
there, in case it’s needed later.

—Based on the article “Firmware Basics for the Boss” by Jack Ganssle,
Embedded Systems Programming, February 2004
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12.1.5 System Boot-Up
With the development tools ready to go, and either a reference board or development board 
connected to the development host, it is time to start up the system and see what happens. 
System boot-up means that some type of power-on or reset source, such as an internal/
external hard reset (i.e., generated by a check-stop error, the software watchdog, a loss of lock 
by the PLL, debugger, etc.) or an internal/external soft reset (i.e., generated by a debugger, 
application code, etc.), has occurred. When power is applied to an embedded board (because 
of a reset), start-up code, also referred to as boot code, bootloader, bootstrap code, or BIOS
(basic input output system) depending on the architecture, in the system’s ROM is loaded and 
executed by the master processor. Some embedded (master) architectures have an internal 
program counter that is automatically configured with an address in ROM in which the start 
of the boot-up code (or table) is located, while others are hardware wired to start executing at 
a specific location in memory. 

Boot code differs in length and functionality depending on where in the development cycle 
the board is, as well as the components of the actual platform that need initialization. The 
same (minimal) general functions are performed by boot code across the various platforms, 
which are basically initializing the hardware, which includes disabling interrupts, initializing 
buses, setting the master and slave processors in a specific state, and initializing memory. This 
first hardware initialization portion of boot-up code is essentially the executing of the initial-
ization device drivers, as discussed in Chapter 8. How initialization is actually done—that 
is, the order in which drivers are executed—is typically outlined by the master architecture 
documentation or in documentation provided by the manufacturers of the board. After the 
hardware initialization sequence, executed via initialization device drivers, the remaining 
system software, if any, is then initialized. This additional code may exist in ROM, for a sys-
tem that is being shipped out of the factory, or loaded from an external host platform (see the 
callout box with bootcodeExample).

bootcodeExample ()

{
….
  // Serial Port Initialization Device Driver
   initializeRS232(UART,BAUDRATE,DATA_BITS,STOP_BITS,PARITY); 

  // Initialize Networking Device Driver
  initializeEthernet(IPAddress,Subnet, GatewayIP, ServerIP);

  //check for host development system for down loaded file of rest of code to RAM   
  // through ethernet
  // start executing rest of code(i.e. define memory map, load OS, etc.)

…
}
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MPC823-Based Board Booting Example

The MPC823 processor contains a reset controller that is responsible for responding to all 
reset sources. The actions taken by the reset controller differ depending on the source of a 
reset event, but in general the process includes reconfiguring the hardware, and then sampling 
the data pins or using an internal default constant to determine the initial reset values of sys-
tem components.
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Figure 12-7a: Interpretation diagram [12-3]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

Figure 12-7b: Interpretation diagram [12-3]
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The data pins sample represents initial configuration (setup) parameters as shown in Figure 
12-7c.

The Embedded Planet RPXLite Board assumes that onboard ROM (FLASH) contains the 
bootloader monitor/program, called PlanetCore, originally created by Embedded Planet. The 
PowerPC processor and on-board memory start up in a default configuration set via hardware 
(CS0 is an output pin that can be configured to be the global chip select for the boot device, 
HRESET/SRESET, data pins,…) , and has no dedicated accessible PC register. 

Figure 12-7c: Interpretation diagram [12-3]

Figure 12-7d: Interpretation diagram [12-3]

If.. then..
No external arbitration SIUMCR.EARB = 0 D0 = 0

D0
External arbitration SIUMCR.EARB = 1 D0 = 1
EVT at 0 MSR.IP = 0 D1 = 1 D1
EVT at 0xFFF00000 MSR.IP = 1 D1 = 0
Do not activate 
memory controller

BR0.V = 0 D3 = 1
D3

Enable CS0 BR0.V = 1 D3 = 0
Boot port size is 32 BR0.PS = 00 D4 = 0, D5 = 0

D4
D5

Boot port size is 8 BR0.PS = 01 D4 = 0, D5 = 1
Boot port size is 16 BR0.PS = 10 D4 = 1, D5 = 0
Reserved BR0.PS = 11 D4 = 1, D5 = 1
DPR at 0 immr = 0000xxxx D7 = 0, D8 = 0

D7
D8

DPR at 0×00F00000 immr = 00F0xxxx D7 = 0, D8 = 1
DPR at 0×FF000000 immr = FF00xxxx D7 = 1, D8 = 0
DPR at 0×FFF00000 immr = FFF0xxxx D7 = 1, D8 = 1
Select PCMCIA func-
tions, Port B

SIUMCR.DBGC = 0 D9 = 0, D10 = 0

D9
D10

Select Development 
Support functions

SIUMCR.DBGC = 1 D9 = 0, D10 = 1

Reserved SIUMCR, DBGC = 2 D9 = 1, D10 = 0
Select program track-
ing functions

SIUMCR.DBGC = 3 D9 = 1, D10 = 1

Select as in DBGC + 
Dev. Supp. comm pins

SIUMCR.DBPC = 0 D11 = 0, D12 = 0

D11
D12

Select as in DBGC + 
JTAG pins

SIUMCR.DBPC = 1 D11 = 0, D12 = 1

Reserved SIUMCR.DBPC = 2 D11 = 1, D12 = 0
Select Dev. Supp. 
comm and JTAG pins

SIUMCR.DBPC = 3 D11 = 1, D12 = 1

CLKOUT is GCLK2 
divided by 1

SCCR.EBDF = 0 D13 = 0, D14 = 0

D13
D14

CLKOUT is GCLK2 
divided by 2

SCCR.EBDF = 1 D13 = 0, D14 = 1

Reserved SCCR.EBDF = 2 D13 = 1, D14 = 0
Reserved SCCR.EBDF = 3 D13 = 1, D14 = 1

D0 specifies whether external arbitration or the internal arbiter is to

be used.

D1 controls the initial location of the exception vector table, and the

IP bit in the machine state register is set accordingly.

D3 specifies whether Chip Select 0 is active on reset.

If Chip Select 0 is active on reset pins D4 and D5 specify the port

size of theboot ROM, with a choice of 8, 16, or 32 bits.

D7 and D8 specify the initial value for the IMMR registers. There

are four different possible locations for the internal memory map.

D9 and D10 select the configuration for the debug pins.

D11 and D12 select the configuration of the debug port pins. This

selection involves configuring these pins either as JTAG pins, or

development support communication pins.

D13 and D14 determine which clock scheme is in use; one clock

scheme Implements GCLK2 divided by one, and the second

implements GCLK2 divided by two.
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The default configuration executed via hardware includes the configuration of only one bank 
of memory, whose base address is determined by D7 and D8 where 00 = 0x00000000, 01 = 
0x00F000000, 10 = 0xFF000000, 11 = 0xFFF00000. This bank is in some type of ROM (i.e., 
Flash) and is where the boot code resides. After the board has been powered on, the PowerPC 
processor executes the boot code in this memory bank to complete the initialization and con-
figuration sequence. In fact, all the MPC8xx processor series (not just the MPC823) require 
either a high or low boot, depending on the specific board and revision, meaning PlanetCore 
is located either at the high end of Flash or at the low end of Flash. PlanetCore starts at virtual 
address 0xFFF00000 if it is located at the high end of Flash. On the other hand, PlanetCore is 
in the first sectors of the Flash—i.e., located at virtual address 0xFC000000 for 64 Mbytes of 
Flash—if it is located at the low end of Flash. 
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Figure 12-7e: Interpretation diagram [12-3]

Copyright of Freescale Semiconductor, Inc. 2004. Used by permission.

On this MPC823-based board, after the hardware initialization sequence initializing the pro-
cessor, the CPU begins executing the PlanetCore bootloader code. As shown in the following  
callout box, all of the hardware specific to the MPC823 architecture as well as specific to the 
board is initialized (i.e., serial, networking, etc.) via this type of boot code.
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/************************************************************************
 *                          c_entry
 *  Description :
 *  -------------
 *
 *  First C-function
 *
 *  Return values :
 *  ---------------
 *
 *  Never returns
  ************************************************************************/
int c_entry(void){

BootLoader
- Board initialization for custom BSP

Initializing the MPC823, itself (not board initialization), involves about 24 steps, which includes : 

1. disable the data cache to prevent a machine check error from occuring
2. Initialize the Machine State Register and the Save and Restore Register 1 with a 
value of 0x1002. 
3. Initialize the Instruction Support Control Register, or ICTRL, modifying it so that 
the core is not serialized (which has an impact on performance).
4. Initialize the Debug Enable Register, DER. 
5. Initialize the Interrupt Cause Register, ICR. T
6. Initialize the Internal Memory Map Register, or IMMR. 
7. Initialize the Memory Controller Base and Options registers as required.
8. Initialize the Memory Periodic Timer Pre-scalar Register, or MPTPR.
9. Initialize the Machine Mode Registers, MAMR and MBMR.
10. Initialize the SIU Module Configuration Register, or SIUMCR. Note that this step 
configures many of the pins shown on the right hand side of the main pin diagram in 
the User Manual.
11. Initialize the System Protection Register, or SYPCR. This register contains settings 
for the bus monitor and the software watchdog.
12. Initialize the Time Base Control and Status Register, TBSCR.
13. Initialize the Real Time Clock Status and Control Register, RTCSC.
14. Initialize the Periodic Interrupt Timer Register, PISCR.
15. Initialize the UPM RAM arrays using the Memory Command Register and the 
Memory Data Register. We also discuss this routine in the chapter regarding the 
memory controller.
16. Initialize the PLL Low Power and Reset Control Register, or PLPRCR.
17. is not required, although many programmers implement this step. This step moves 
the ROM vector table to the RAM vector table.
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18. changes the location of the vector table. The example shows this procedure byget-
ting the Machine State Register, setting or clearing the IP bit, and writing the Machine 
State Register back again.
19. Disable the instruction cache.
20. Unlock the instruction cache.
21. Invalidate the instruction cache.
22. Unlock the data cache.
23. Verify whether the cache was enabled, and if so, flush it.
24. invalidates the data cache.

 - Initialization of all components: processor, clocks, EEPROM, I2C, serial, Ethernet 10/100, chip 
selects, UPM machine, DRAM initialization, PCMCIA(Type I and II), SPI,UART, video encoder, 
LCD, audio, touch screen, IR,…

Flash Burner
Diagnostics and Utilities
- Test DRAM
- Command line interface

}

[12-3]

MIPS32-Based Booting Example

The Ampro Encore M3 Au1500 based board assumes that on-board ROM (i.e., Flash) 
contains the bootloader monitor/program, called YAMON, originally created by MIPS Tech-
nologies. Where this boot ROM is mapped on the Au1500 is based upon the requirements of 
the MIPS architecture itself, which specifies that upon a reset, a MIPS processor must fetch 
the Reset exception vector from address 0xBFC00000. Basically, when a cold boot occurs on 
a MIPS32-based processor, a reset exception occurs which performs a full reset “hardware” 
initialization sequence that (in general) puts the processor in a state of executing instructions 
from unmapped, uncached memory, initializes registers (such as Rando, Wired, Config, and 
Status) for reset, and then loads the PC with 0xBFC0_0000, the Reset Exception Vector. 

0xBFC0_0000 is a virtual address, not a physical address. All addresses under the MIPS32 
architecture are virtual addresses, meaning the actual physical memory address on the board is 
translated when processing, such as instruction fetches and data loading and storing. The upper 
bits of the virtual address define the different regions in the memory map; for example:

KUSEG (2 GBytes of virtual memory ranging from 0x0000000–0x7FFFFFFF).

KSEG0 (512 MB virtual memory from 0x8000000 to 9FFFFFFF) which is a direct 
map to physical addresses and inherently cacheable.

KSEG1 (512 MB virtual memory from 0xA000000 to BFFFFFFF) which is a direct 
map to physical addresses and inherently non-cacheable.
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This means virtual addresses (KSEG0) 0x80000000 (a cache-
able view of physical memory) and (KSEG1) 0xA00000000 
(a non-cacheable view of physical memory) both map directly 
onto physical address 0x00000000. The MIPS32 Reset Excep-
tion Vector (0xBFC0_0000) is located in the last 4 Mbytes of 
the KSEG1 region of memory, a non-cacheable region that 
can execute even if other board components are not yet initial-
ized. This means that a physical address of 0x1FC00000 is 
generated for the first instruction fetch from the boot ROM. 
Basically, the programmer puts the start of the boot code 
(i.e., YAMON) at 0x1FC0_0000, which is the value the PC is 
set to start executing upon power-on, and effectively could occupy the entire 4MB of space 
(0x1FC00000 thru 0x1FFFFFFF) or more. 

Figure 12-8a: 
Interpretation diagram [12-4]

Figure 12-8b: Interpretation diagram [12-4]

Figure 12-8c: Interpretation diagram [12-4]

Sys Address Flash Address Sectors Description

bfC00000 – bfC03FFF 00000000 – 00003FFF 0 Reset Image (16kB)

bfC04000 – bcC05FFF 00004000 – 00005FFF 1 Boot Line (8kB0

bfC06000 – bfC07FFF 00006000 – 00007FFF 2 Parameter Flash (8kB0

bfC08000 – bfC0FFFF 00008000 – 0000FFFF 3 User NVRAM (32kB)

bfC10000 – bfC8FFFF 00010000 – 0008FFFF 4–11 YAMON Little Endian (512kB)

bfC90000 – bfD0FFFF 00090000 – 0010FFFF 12–19 YAMON Big Engian (512kB)

bfD10000 – bfDEFFFF 00110000 – 001EFFFF 20–33 System Flash (896kB)

bfDF0000 – bfDFFFFF 001F0000 – 001FFFFF 34 Environmental Flash (64kB0
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The physical address 0x1FC000000 is fixed for the Reset Exception Vector (the start of 
YAMON) on the MIPS32, regardless of how much physical memory is actually on the 
board—meaning the Flash chip on the board has to be integrated so that it correlates to 
this physical address. In the case of the Ampro Encore M3 Board, there are 2 MB of Flash 
memory on the board. 

On this MIPS32 based board, after the hardware initialization sequence initializing the 
processor, the CPU begins executing the code located at the address within the PC register. 
In this case it is the YAMON bootloader code that has been ported to the Ampro Encore M3 
Board. All of the hardware specific to the MIPS32 architecture (i.e.: initialization of inter-
rupts) as well as specific to the board (i.e., serial, networking, etc.) is initialized via the 
YAMON program, which is proprietary software available from MIPS.

System Booting with an OS

Typically, 32-bit architectures include a more complex system software stack that includes 
an OS and, depending on the OS, may also include a BSP. Regardless of where the additional 
bootstrapping code comes from, if the system includes an OS, then it is the OS (with its BSP 
if there is one) that is initialized and loaded. While the boot sequence of a particular OS may 
vary, all architectures essentially execute the same steps when initializing and loading differ-
ent embedded OSes. 

For example, the boot sequence for a Linux kernel on an x86 architecture occurs via a BIOS 
that is responsible for searching for, loading and executing the Linux kernel, which is the 
central part of the Linux OS that controls all other programs. This is basically the “init” par-
ent process that is started (executed) next. Code within the init process takes care of setting up 
the remainder of the system, such as forking tasks to manage networking/serial port, etc. The 
vxWorks RTOS boot sequence on most architectures, on the other hand, occurs via a vxWorks 
boot ROM that performs the architecture and board-specific initialization, and then starts the 
multitasking kernel with a user booting task as its only activity.

After the completion of the start-up sequence, an embedded system then typically enters an 
infinite loop, waiting for events that trigger interrupts, or actions triggered after some compo-
nents are polled (see Figure 12-9 below).

Figure 12-9: System running

System Running

Incoming
Network Packet

Interrupt
Triggered Polling for Input

System Bootup
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12.2 Quality Assurance and Testing of the Design
Among the goals of testing and assuring the quality of a system are finding bugs within a 
design and tracking whether the bugs are fixed. Quality assurance and testing is similar to 
debugging, discussed earlier in this chapter, except that the goals of debugging are to actually
fix discovered bugs. Another main difference between debugging and testing the system 
is that debugging typically occurs when the developer encounters a problem in trying to 
complete a portion of the design, and then typically tests-to-pass the bug fix (meaning tests 
only to ensure the system minimally works under normal circumstances). With testing, on 
the other hand, bugs are discovered as a result of trying to break the system, including both 
testing-to-pass and testing-to-fail, where weaknesses in the system are probed.

Under testing, bugs usually stem from either the system not adhering to the architectural spec-
ifications—i.e., behaving in a way it shouldn’t according to documentation, not behaving in a 
way it should according to the documentation, behaving in a way not mentioned in documen-
tation—or the inability to test the system. The types of bugs encountered in testing depend on 
the type of testing being done. In general, testing techniques fall under one of four models: 
static black box testing, static white box testing, dynamic black box testing, or dynamic white
box testing (see the matrix in Figure 12-9). Black box testing occurs with a tester that has no 
visibility into the internal workings of the system (no schematics, no source code, etc.). Black 
box testing is based on general product requirements documentation, as opposed to white box 
testing (also referred to clear box or glass box testing) in which the tester has access to source 
code, schematics, and so on. Static testing is done while the system is not running, whereas 
dynamic testing is done when the system is running.
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Black Box Testing White Box Testing

Static
Testing 

Testing the product specifications by:

1. looking for high-level fundamental 
problems, oversights, omissions (i.e., 
pretending to be customer, research 
existing guidelines/standards, review and 
test similar software, etc.).

2. low-level specification testing by 
insuring completeness, accuracy, 
preciseness, consistency, relevance, 
feasibility, etc. 

Process of methodically reviewing hardware 
and code for bugs without executing it.

Dynamic
Testing

Requires definition of what software and 
hardware does, includes:

• data testing, which is checking info of 
user inputs and outputs
• boundary condition testing, which is 
testing situations at edge of planned 
operational limits of software
• internal boundary testing, which is 
testing powers-of-two, ASCII table
• input testing, which is testing null, 
invalid data
• state testing, which is testing modes 
and transitions between modes software 
is in with state variables

i.e., race conditions, repetition testing 
(main reason is to discover memory 
leaks), stress (starving software = low 
memory, slow cpu slow network), load 
(feed software = connect many peripher-
als, process large amount of data, web 
server have many clients accessing it, 
etc.), and so on.

Testing running system while looking at 
code, schematics, etc. 

Directly testing low-level and high-level 
based on detailed operational knowledge, 
accessing variables and memory dumps. 
Looking for data reference errors, data 
declaration errors, computation errors, 
comparison errors, control flow errors, sub-
routine parameter errors, I/O errors, etc.

Figure 12-10: Testing model matrix [12-5]

Within each of the models (shown in Figure 12-10), testing can be further broken down to 
include unit/module testing (incremental testing of individual elements within the system), 
compatibility testing (testing that the element doesn’t cause problems with other elements in 
the system), integration testing (incremental testing of integrated elements), system testing
(testing the entire embedded system with all elements integrated), regression testing (rerun-
ning previously passed tests after system modification), and manufacturing testing (testing to 
ensure that manufacturing of system didn’t introduce bugs), just to name a few.
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From these types of tests, an effective set of test cases can be derived that verify that an ele-
ment and/or system meets the architectural specifications, as well as validate that the element 
and/or system meets the actual requirements, which may or may not have been reflected 
correctly or at all in the documentation. Once the test cases have been completed and the tests 
are run, how the results are handled can vary depending on the organization, but typically 
vary between informal, where information is exchanged without any specific process being
followed, and formal design reviews, or peer reviews where fellow developers exchange 
elements to test, walkthroughs where the responsible engineer formally walks through the 
schematics and source code, inspections where someone other than the responsible engineer 
does the walk through, and so on. Specific testing methodologies and templates for test cases, 
as well as the entire testing process, have been defined in several popular industry quality 
assurance and testing standards, including ISO9000 Quality Assurance standards, Capability 
Maturity Model (CMM), and the ANSI/IEEE 829 Preparation, Running, and Completion of 
Testing standards.

Finally, as with debugging, there are a wide variety of automation and testing tools and tech-
niques that can aid in the speed, efficiency, and accuracy of testing various elements. These 
include load tools, stress tools, interference injectors, noise generators, analysis tools, macro 
recording and playback, and programmed macro, including tools listed in Table 12-1. 

Real-World Advice

The Potential Legal Ramifications (in the United States) of NOT Testing 

The US laws of product liabilities are considered very strict, and it is recommended that those 
responsible for the quality assurance and testing of systems receive training in products liability 
law in order to recognize when to use the law to ensure that a critical bug is fixed, and when 
to recognize that a bug could pose a serious legal liability for the organization. 

The general areas of law under which a consumer can sue for product problems are:

• Breach of Contract (i.e., if bug fixes stated in contract are not forthcoming in timely 
manner)

• Breach of Warranty and Implied Warranty (i.e., delivering system without promised 
features)

• Strict and Negligence liability for personal injury or damage to property (i.e., bug causes 
injury or death to user)

• Malpractice (i.e., customer purchases defective product)

• Misrepresentation and Fraud (i.e., product released and sold that doesn’t meet advertised 
claims, whether intentionally or unintentionally)

Remember, these laws apply whether your “product” is embedded consulting services, 
embedded tools, an actual embedded device, or software/hardware that can be integrated 
into a device.

—Based on the chapter “Legal Consequences of Defective Software” by Cem Kaner
—Testing Computer Software. 1999 
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12.3 Conclusion: Maintaining the Embedded System
  and Beyond
This chapter introduced some key requirements behind implementing an embedded system 
design, such as understanding utility, translation, and debugging development tools. These 
tools include IDE and CAD tools, as well as interpreters, compilers, and linkers. A wide 
range of debugging tools useful for both debugging and testing embedded designs were 
discussed, from hardware ICEs, ROM emulators, and oscilloscopes to software debuggers, 
profilers, and monitors, just to name a few. This chapter also discussed what can be expected 
when booting up a new board, providing a few real-world examples of system bootcode. 

Finally, even after an embedded device has been deployed, there are responsibilities that typi-
cally need to be met, such as user training, technical support, providing technical updates, bug 
fixes, and so on. In the case of user training, for example, architecture documentation can be 
leveraged relatively quickly as a basis for technical, user, and training manuals. Architecture 
documentation can also be used to assess the impact involved in introducing updates (i.e., 
new features, bug fixes, etc.) to the product while it is in the field, mitigating the risks of 
costly recalls or crashes, or on-site visits by FAEs that could be required at the customer site. 
Contrary to popular belief, the responsibilities of the engineering team last throughout the 
lifecycle of the device, and do not end when the embedded system has been deployed to the 
field.

To ensure success in embedded systems design, it is important to be familiar with the phases 
of designing embedded systems, especially the importance of first creating an architecture. 
This requires that all engineers and programmers, regardless of their specific responsibilities 
and tasks, have a strong technical foundation by understanding at the systems level all the 
major components that can go into any embedded system’s design. This means that hardware 
engineers understand the software, and software engineers understand the hardware at the 
systems level, at the very least. It is also important that the responsible designers adopt, or 
come up with, an agreed-upon methodology to implement and test the system, and then have 
the discipline to follow through on the required processes. 

It is the hope of the author that you appreciated the architectural approach of this book, and 
found it a useful tool as a comprehensive introduction to the world of embedded systems 
design. There are unique requirements and constraints related to designing an embedded sys-
tem, such as those dictated by cost and performance. Creating an architecture addresses these 
requirements very early in a project, allowing a design team to mitigate risks. For this reason 
alone, the architecture of an embedded device will continue to be one of the most critical ele-
ments of any embedded system project.
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Chapter 12 Problems

1. What is the difference between a host and a target?

2. What high-level categories do development tools typically fall under?

3. [T/F] An IDE is used on the target to interface with the host system.

4. What is CAD? 

5. In addition to CAD, what other techniques are used to design complex circuits?

6. [a] What is a preprocessor? 
[b] Provide a real-world example of how a preprocessor is used in relation to a pro-

gramming language.

7. [T/F] A compiler can reside on a host or a target, depending on the language.

8. What are some features that differentiate compiling needs in embedded systems versus in 
other types of computer systems?

9. [a] What is an object file? 
[b] What is the difference between a loader and a linker?

10. [a] What is an interpreter?
[b] Name three real-world languages that require an interpreter.

11. An interpreter resides on:
A. the host.
B. the target and the host.
C. in an IDE.
D. A and C Only.
E. None of the above.

12. [a] What is debugging?    
[b] What are the main types of debugging tools? 
[c] List and describe four real-world examples of each type of debugging tool.

13. What are five of the cheapest techniques to use in debugging?  
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14. Boot code is
A. Hardware that powers on the board.
B. Software that shuts down the board.
C. Software that starts-up the board.
D. All of the above.
E. None of the above.

15. What is the difference between debugging and testing?

16. [a] List and define the four models under which testing techniques fall. 
[b] Within each of these models, what are five types of testing that can occur?

17. [T/F] Testing-to-pass is testing to insure that system minimally works under normal cir-
cumstances.

18. What is the difference between testing-to-pass and testing-to-fail?

19. Name and describe four general areas of law under which a customer can sue for product 
problems.

20. [T/F] Once the embedded system enters the manufacturing process, the design and devel-
opment team’s job is done.
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Section IV: Endnotes

Chapter 11: Endnotes

[11-1] The Embedded Systems Design and Development Lifecycle Model is specifically derived from the SEI’s 
Evolutionary Delivery Lifecycle Model and the Software Development Stages Model.

[11-2] Based on the software architectural brainchildren of the Software Engineering Institute (SEI), read “Soft-
ware Architecture in Practice.” Bass, Clements, and Kazman. 2003 or go to http://www.sei.cmu.edu/ for 
more information. Whitepapers: “A Survey on Software Architecture Analysis Methods,” Dobrica and 
Niemela. IEEE Transactions on Software Engineering, Vol. 28, No. 7, July 2002. “The 4+1 View Model of 
Architecture,” Kruchten, IEEE Software, 1995.”

[11-3] http://mini.net/cetus/oo_uml.html#oo_uml_examples.

Chapter 12: Endnotes
[12-1] The Electrical Engineering Handbook, Dorf, Chapter 27.

[12-2] “Short Tutorial on Using PSPice,” Bill Rison, http://www.ee.nmt.edu/~rison/ee321_fall02/Tutorial.html

[12-3] Embedded Planet RPXLite Board Documentation and Freescale’s PowerPC MPC823 User’s Manual. 

[12-4] Ampro Encore M3 Au150 Documentation.

[12-5] “Software Testing,” Ron Patton, 2001.
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A P P E N D I X A
Projects and Exercises

The projects found in this appendix are designed to complement an embedded systems 
architecture class and corresponding laboratory course. They are intended to help the reader 
become familiar with embedded systems concepts, hardware, software, and development and 
diagnostic tools that may be available to the student. Because of the variations between labs at 
different institutions, these exercises encourage students to independently investigate, acquire, 
and work with different platforms as an engineer in the real world would do. Ultimately, the 
goal of these exercises is to allow the reader to be able to:

• Investigate, understand, and articulate the primary characteristics of any embedded 
system through creating an architecture, including any design criteria and constraints.

• Investigate, understand, and articulate embedded system software and hardware stan-
dards, and their importance. 

• Understand, articulate, and implement the overall design process of an embedded sys-
tem as defined by the Embedded Systems Design and Development Lifecycle Model.

• Understand the development and debugging tools and environment when designing 
an embedded system.

• Search out and gather information from various sources, such as the internet, profes-
sional magazines, embedded conferences, and so on. 

• Learn how to work in an engineering team environment, including understanding the 
importance and benefits of teamwork, as well as the potential problems.

When doing the projects, the following guidelines are recommended:**

1. Create project reports for each project containing information similar to that shown in 
the following sample project report.

2. Original references should always be read, understood, and cited.

3. All technical work used, whether published, unpublished, proprietary, open source, 
etc., should always be credited to the source (“engineer so-and-so says this is how the 
field should be configured”, “ section of code was modified from ... to ...”, etc.). 

** Recommended project guidelines are based on guidelines for projects from the Specification and Modeling of 
Reactive Real-Time Systems course by Prof. Edward A. Lee at the University of California at Berkeley. 
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Sample Project Report

Student Name:

Project Number and Title:

Contribution to the lab: %_______ Description of Contribution:

List any team members and their contributions to the lab: 

Name 1: _________________ %_______ Description of Contribution: 

Name 2: _________________ %_______ Description of Contribution:

Name 3: _________________ %_______ Description of Contribution:

  .

  .

  .

Name “N”: _________________ %_______ Description of Contribution:

Project Summary: 

What were the steps taken to implement the project: 

What where the results of the project (attach any generated output): 

Comments/Suggestions:

Attach any documentation (schematics, users manuals, etc.) and software used in this 
project.
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4. It is not recommended that hardware or software be built from scratch for projects 
in this lab book. This material is intended for a systems engineering course in which 
projects are not evaluated on the basis of how much effort is put into a specific ele-
ment, but rather on how effective the entire architecture of the embedded system is. 
To be able to design the most interesting and exciting of projects given limitations in 
time and budget, it is not recommended to “reinvent the wheel” if it isn’t absolutely 
necessary. Use the internet to find commercial hardware and software (evaluations, 
open source, etc.), and leverage any relevant work already engaged in.

 5. These projects reflect a serious effort to go beyond the material in the text, requir-
ing readers to obtain additional information from the internet, journals, or books, 
for example. This is how the reader will most likely be expected to function on the 
job. There typically is no hand holding provided to professionals. In fact, the most 
successful engineers are typically the ones who can learn and function quickly and 
independently. The sooner readers are comfortable with developing and maintaining 
the latest technical skills on their own, the more successful they are likely to be.

6. Learn to use the relevant IDEs, languages, hardware, etc. at least to the level of 
proficiency required to complete the project. Get the compiler, simulator, or design 
environment and install it, read all the documentation, and run it.

7. Students are encouraged to work in a team (of two or more), as this is typically how 
things are done in the real world. Working in a team is also an excellent way to pro-
duce a more ambitious and exciting project in a given amount of time, with each team 
member being assigned a portion of the project.

Real-World Advice

It is  recommend that labs used for this course be stocked with as many different boards and 
system software elements as possible, to encourage students to gain the hands-on experi-
ence of figuring out and bringing up different hardware and software as quickly as possible 
(meaning in hours or minutes, not days and weeks). With this type of lab, students can learn 
the skills of a seasoned professional and can become comfortable with the endless permuta-
tions of hardware and software elements available to embedded developers. Students need 
to discover that this vast array of possibilities is nothing to be intimidated by as long as they 
pay attention to the details and learn to work with elements they have never had hands-on 
experience with before. For example, they need to learn to check for cables needing to be 
swapped or plugged in, jumpers on a board set to desired configurations, boot code config-
ured, and especially to search for and read the documentation.

In these projects, I encourage students to experience many different elements, such as different 
boards with different master CPUs and multiple OSes, because I feel that in many cases the 
expectations placed on students today relative to what they need to succeed after graduation 
are far too low. I have heard arguments that the reason not to have multiple architectures in 
the lab, for instance, is because it is too complicated for students to figure out the different 
boards in a reasonable time. In today’s electronic gadget world where many students at a much 
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earlier age have mastered games, cell phones, DVD players, PDAs, and so forth, it isn’t expect-
ing too much to ask them to apply those skills to learning embedded systems engineering. 
Learning the types of skills introduced in these labs will save students years of having to learn 
it in the real world. This is especially crucial because, with pressing international competition, 
many students can no longer afford those years of hand-holding if they want to compete for 
engineering jobs after graduation.

Section I Projects

Project 1: The Product Concept
Using Table A-1, select a product concept and use the internet to find at least four com-
mercially available products that fall under that product category. Using available on-line 
documentation, compile a document that outlines their main features, their similarities, and 
their differences. Create a product concept for your device based on this information.

MARKET PRODUCT CONCEPT

AUTOMOTIVE Ignition

Engine control

Brake system (i.e., antilock braking system)

CONSUMER ELECTRONICS Digital and Analog Televisions

Set-top Boxes (DVDs, VCRs, Cable Boxes, etc.)

Personal Data Assistant (PDAs)

Kitchen Appliances (refrigerators, toasters, microwave ovens)

Automobiles

Toys/Games

Telephones/Cell Phones/Pagers

Cameras

Global Positioning Systems (GPS)

INDUSTRIAL CONTROL Robotics and Control Systems (manufacturing)

MEDICAL Infusion Pumps

Dialysis Machines

Prosthetic Devices

Cardiac Monitors

NETWORKING Routers

Hubs

Gateways

OFFICE AUTOMATION Fax machine

Photocopier

Printers

Monitors

Scanners

Table A-1: Examples of embedded systems and their markets [A-1]
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Project 2: Modeling the Design of the Product Concept
Outline the developmental process of the project based on the product concept of Project 1 
using :

A. the big-bang model

B. the code-and-fix model

C. the waterfall model

D. the spiral model

E. the Embedded Systems Design and Development Lifecycle Model

Draw each model from product conception to product completion, describing the strengths 
and drawbacks of each model. What would be required when using each model for the project 
to succeed? What factors could cause failure? 

Project 3: The Embedded Systems Model and the Product Concept
Given the provided documentation on the four commercially available products of Project 1, 
outline what specific hardware and/or software elements are specified (if none, then find prod-
ucts that do provide more information in their documentation). Draw the Embedded Systems 
Model for each product, and show where in this model each of these elements would fall.

Project 4: The Product Concept and Recent Developments
Given the list of technical magazines in Table A-2, or any other relevant magazine (there are 
many more not shown in Table A-2), select and summarize ten articles from at least five dif-
ferent magazines released this month, that impact features of your product concept.

Table A-2: Examples of technical magazines

Magazine Website

C/C++ Users Journal http://www.cuj.com/

C++ Report http://www.creport.com/

Circuit Cellar http://www.circellar.com/

CompactPCI Systems http://www.picmgeu.org/magazine/CPCI_magazine.htm

Compliance Engineering (CE) www.ce-mag.com

Dedicated Systems Magazine http://www.realtime-magazine.com/magazine/magazine.htm

Design News http://www.designnews.com/index.asp?cfd=1

Dr. Dobbs Journal http://www.ddj.com/

Dr. Dobbs Embedded Systems http://www.ddjembedded.com/resources/articles/2001/0112g/0112g.htm

EE Product News http://www.eepn.com/

EDN Asia http://www.ednasia.com/

EDN Australia http://www.electronicsnews.com.au/

EDN China http://www.ednchina.com/Cstmf/BCsy/index.asp

EDN Japan http://www.ednjapan.com/

EDN Korea http://www.ednkorea.com/
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Magazine Website

EDN Magazine – Europe http://www.reed-electronics.com/ednmag/

EDN Taiwan http://www.edntaiwan.com/

EE Times ASIA Edition http://www.eetasia.com/

EE Times – China Edition http://www.eetchina.com/

EE Times France http://www.eetimes.fr/

EE Times Germany http://www.eetimes.de/

EE Times Korea http://www.eetkorea.com/

EE Times - North America http://www.eet.com/

EE Times Taiwan http://www.eettaiwan.com/

EE Times UK http://www.eetuk.com/

Electronic Design http://www.elecdesign.com/Index.cfm?Ad=1

Elektor – France http://www.elektor.presse.fr/

Elektor - Germany http://www.elektor.de/

Elektor - Netherlands http://www.elektuur.nl/

Elektor - UK http://www.elektor-electronics.co.uk/

Electronics Express Europe http://www.electronics-express.com/

Electronics Supply and Manufacturing http://www.my-esm.com/

Embedded Linux Journal http://www.linuxjournal.com/

Embedded Systems Engineering http://www.esemagazine.co.uk/

Embedded Systems Europe http://www.embedded.com/europe

Embedded Systems Programming 
– North America

http://www.embedded.com/

European Medical Device Manufacturer http://www.devicelink.com/emdm/

Evaluation Engineering http://www.evaluationengineering.com/

Handheld Computing Magazine http://www.hhcmag.com/

Hispanic Engineer http://www.hispanicengineer.com/artman/publish/index.shtml

IEEE Spectrum http://www.spectrum.ieee.org/

Java Developers Journal http://sys-con.com/java/

Java Pro http://www.ftponline.com/javapro/

Table A1-2 Continued Examples of 
technical magazines.

Magazine Website

Linux Journal http://www.linuxjournal.com/

Linux Magazine http://www.linux-mag.com/

Medical Electronics Manufacturing

Design and Development of Medical 
Electronic Products

http://www.devicelink.com/mem/index.html

Microwaves & RF http://www.mwrf.com/

Microwave Engineering Europe http://www.kcsinternational.com/microwave%20engineering%20europe.html

Military and Aerospace Electronics http://mae.pennnet.com/home.cfm

MSDN Magazine http://msdn.microsoft.com/msdnmag/

Table A-2: Examples of technical magazines (continued)
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Magazine Website

PC/104 Embedded Solutions http://www.pc104online.com/

Pen Computing Magazine http://www.pencomputing.com/

PocketPC Magazine http://pocketpcmag.com/

Portable Design http://pd.pennnet.com/home.cfm

Practical Electronics http://www.epemag.wimborne.co.uk/

RTC Magazine http://www.rtcmagazine.com/

Silicon Chip http://www.siliconchip.com.au/

TRONIX http://www.tronix-mag.com/

US Black Engineering http://www.blackengineer.com/artman/publish/index.shtml

VMEBus Systems http://www.vmebus-systems.com/

Wired http://www.wired.com/wired/

Wireless Systems Design http://www.wsdmag.com/

Table A-2: Examples of technical magazines (continued)

Project 5: Finding Market-Specific Standards
Using Table A-1, select three products each under a different market, or three products as-
signed by the instructor, and use the internet, journals, books, the list of magazines in Table 
A-2 or your own magazines, to find at least six recent market-specific standards that apply to 
each of the selected types of embedded systems. At least two of the market-specific standards 
should be competing standards. Compile three documents (one for each product) that outline 
what requirements each of these standards impose on the respective embedded system.

Project 6: Finding General-Purpose Standards
Given the products and market-specific standards in Project 1, find at least six recent general-
purpose standards that apply to the selected type of embedded system. At least two of the 
general-purpose standards should be competing standards. Compile three documents, one for 
each product selected in Project 1, that outline what requirements each of these general-pur-
pose standards impose on the respective embedded system.

Project 7: Standards and the Embedded Systems Model
Compile three documents, one for each product selected under Project 1, that map into the 
Embedded Systems Model what hardware and/or software elements each of the standards of 
Projects 1 and 2 define. There can be more than one model reflecting competing standards.
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Section II Projects

Project 1: Hardware Documentation
This project is based upon one of the most efficient ways of learning how to read or draw a 
hardware diagram, the Traister and Lisk method,[A-2] which involves:

Step 1. Learning the basic symbols used in the type of diagram, such as timing or schematic 
symbols. To aid in the learning of these symbols, rotate between this step and steps 2 
and 3.

Step 2. Reading as many diagrams as possible, until reading them becomes boring (in that 
case rotate between this step and steps 1 and 3) or comfortable (i.e., there is no longer 
the need to look up every other symbol while reading).

Step 3. Drawing a diagram to practice what has been learned, again until it either becomes 
boring (which means rotating back through steps 1 and 2) or comfortable.

Therefore, this project is made up of three exercises, each exercise reflecting a step within the 
Traister and Lisk method. [A-2]

Exercise 1: The Symbols, Conventions, and Rules of Schematic Diagrams 
Generate a report that lists three different standards (organizational, regional and/or interna-
tional) that define symbols, conventions and rules for schematic diagrams. Use the internet, 
books, journals, etc., to gather this information. 

Exercise 2: Reading Schematic Diagrams 
Using schematics available from the professor or acquired on the internet (for example, 
search on “schematic diagrams”) and approved by your professor, select three schematic dia-
grams based on different boards, and write a report identifying the symbols, conventions, and 
rules of these schematic diagrams.

Exercise 3: Drawing Schematic Diagrams 
For this project, either use a program provided in your labs, or find and download an evalu-
ation copy of a program that allows for drawing schematic diagrams. There are several of 
them, so do a web search (for example, search on “drawing schematic diagrams” or “sche-
matic diagram software”). It may be necessary to evaluate two or three programs before 
finding one that is stable and has the symbols and features you need. 

Because this isn’t a class on building electronic circuits from scratch, this exercise is designed 
to enable the reader, whether hardware engineers or programmers, to become comfortable 
with finding, evaluating, and using schematic diagram software and drawing circuits. Being 
able to document the hardware is an important part of the process of creating an architecture.

Using the schematic application, draw the schematics and create your own files of these sche-
matics from Exercise 2, using the schematic diagram software. 
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Project 2: Simulating a Circuit
Because of the importance and costs associated with designing hardware, computer-aided 
design (CAD) tools are commonly used by hardware engineers to simulate circuits at the 
electrical level in order to study a circuit’s behavior under various conditions before they 
actually build the circuit. There are many commercially available electrical circuit simulator 
tools that are generally similar in terms of their overall purpose, but differ in what analysis 
can be done, what circuit components can be simulated, and the look and feel of the user 
interface of the tool, for example.

There are many industry techniques in which CAD tools are used to simulate a circuit, and 
circuits created in this simulator can be made up of a variety of active and passive elements. 
This project is about being able to find, evaluate, and use a CAD tool to simulate a simple 
circuit. Unless otherwise specified by the professor, you won’t be asked to perform a simula-
tion on an entire complex set of circuits in a processor or on a board; it is so difficult, if not 
impossible, to perform a simulation on an entire design that a hierarchy of simulators and 
models are typically used. 

For this project, either use a CAD tool provided in your labs, or find and download an evalu-
ation copy of a program that allows for simulating circuits. There are several of them, so do 
a web search (search on the program “pSpice,” or “circuit simulator”). It may be necessary 
to evaluate two or three programs before finding one that is stable and has the symbols and 
features you need. 

Read the documentation provided with the CAD tool to understand how to create and simu-
late a simple circuit. This includes understanding how to input your circuit, what types of 
output files are generated, any semantical rules that must be followed, the symbols that can 
be used to build the circuit, and how to actually simulate the circuit that you have created and 
analyze the output. Some CAD tools come with tutorials, while others have many on-line 
tutorials from various sources available (do a web search for “pSpice tutorial” if using pSpice, 
for example—some tutorials will provide a link for obtaining a free evaluation version of 
the tool). Input and simulate four simple circuits provided by your professor, or the simple 
circuits shown in Figures A-1a, b, c, and d.

Figure A-1a: Simple circuit #1 [A-3]
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Project 3: Working with a Real Board

Warning

To avoid injury or damage to a circuit, and to accurately measure signals, carefully follow all 
instructor and device directions about wearing a grounding strap and using lab equipment. 
For example, when connecting probes to a board, be careful not to short adjacent wires or 
pins, which could result in damage to the board. Also, when measuring signals with a device 
in which one probe is attached to ground, because of noise produced from other circuit ele-
ments, it is recommended that you connect to a ground pin that is in close proximity to the 
signal being measured.

This project will familiarize you with the techniques and tools that allow you to understand 
a circuit’s behavior, verify the system is working correctly, and track down problems on a 
board. This project is not only for hardware engineers but also for programmers who need to 
verify that their software is doing what it is supposed to, or find out whether problems with 
the board are hardware related or software related. The variables that essentially describe a 
circuit’s behavior, and that can be manipulated via software or hardware to reflect behavior, 
are current and voltage. Thus, in order to understand what is happening on a board, it is nec-
essary to be able to measure and monitor these variables. 

Many different types of measurement and monitoring devices can be used, including 
ammeters that measure current, voltmeters that measure voltage, ohmmeters that measure re-
sistance, multimeters that measure multiple characteristics (voltage, current, and resistance), 
logic probes that measure voltage of a digital circuit and determine if a signal is a binary one 
or a binary zero, and oscilloscopes that can graph voltage signals, to name a few. In general, 
many measurement devices, such as voltmeters, ohmmeters, and ammeters, measure board 
characteristics using two probes, one for positive terminal (the red probe) and one for nega-
tive terminal (the black probe). Measurements are taken at various points in the circuit by 
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Figure A-1c: Simple circuit #3 [A-5]

Figure A-1d: Simple circuit #4 [A-5]
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inserting the metal tips of these probes into the board. Figures A-2a and b are examples of 
two such measurement devices along with their probes, and Figure A-2c shows how these 
probes can be inserted into a circuit.

Figure A-2a: Multimeter

Figure A-2b: Logic probe 

Figure A-2c: Inserting probes into circuit

The next several exercises involve the student becoming comfortable using these tools and 
interacting with a board. Because different labs contain different sets of tools with different 
types of boards and circuitry, the exercises in this project will serve as an outline that, along 
with instructor directions, can be used to complete the project.
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Exercise 1: Using an Ammeter with an Embedded Board
An ammeter measures the current flowing through a circuit. This is accomplished by hook-
ing up an ammeter’s probes in series, meaning the probes have to be hooked up to the board 
so that the current flowing through the section of the circuit you want to measure also flows 
through the ammeter (see Figure A-3). Use the ammeter to measure current using the instruc-
tions and circuits outlined to you by the instructor on the hardware available in your lab.

Figure A-3: Ammeter hooked up to circuit in series
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Exercise 2: Using a Voltmeter with an Embedded Board
The voltage between two locations on a circuit can be measured across a voltmeter. As shown 
in Figure A-4, a voltmeter is connected to the circuit in parallel, meaning that the voltmeter 
needs to be connected so that the voltage across it is identical to the voltage across the section 
of the circuit being measured. Use the voltmeter to measure voltage using the instructions and 
circuits outlined to you by the instructor on the hardware available in your lab.

Figure A-4: Voltmeter hooked up to circuit in parallel

Vsource

+

V

The rest of
the circuit

−

+



Projects and Exercises

583

Exercise 3: Using an Ohmmeter with an Embedded Board
The resistance of a board element is measured using an ohmmeter, and can also be used to 
check for short or open circuits. As shown in Figure A-5, an ohmmeter measures a circuit 
element’s resistance with the power disconnected. 

Figure A-5: Ohmmeter measuring circuit elements with no power

The rest of
the circuit

In a simple circuit, as long as there is no electron flow (due to a voltage source) then the 
measurement can be relatively accurate. In more complex circuits it is recommended that 
the element be removed from the board, so the measurement won’t be adversely affected by 
other circuit elements. Use the ohmmeter to measure resistance of circuit elements using the 
instructions and circuits outlined to you by the instructor on the hardware available in your lab.

Exercise 4: Using a Logic Probe with an Embedded Board
Because the data an embedded board processes is digital by nature, typically voltage levels 
are used to indicate a binary one or binary zero. What these levels are depends on the circuit, 
such as +5 volts, -3 volts or -12 volts for a binary one and 0 volts, +3 volts, +12 volts for a 
binary zero, for example. A logic probe is a device that measures the voltage in a digital cir-
cuit, and indicates whether the signal is a binary one or binary zero.

Note: Sometimes a logic analyzer is referred to as a logic probe, but a logic analyzer is a dif-
ferent, more complex type of measurement tool.

In general, logic probes have two probes—for example, a black probe connected to ground 
and a red probe connected to the circuit at a voltage source indicated by the instructor for 
your particular circuit and logic probe, as well as an additional probe with a metal tip that 
is connected to the section of the circuit to be measured. Use the logic probe to measure for 
logical zero and logical one data using the instructions and digital circuits outlined to you by 
the instructor on the hardware available in your lab.
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Exercise 5: Using an Oscilloscope with an Embedded Board
One of the most indispensable tools 
for designing and debugging an 
embedded system is an oscilloscope,
a measurement device that displays 
electrical signals in the form of 
graphs. All of the switches and input 
ports needed to graph signals are typi-
cally located on the front panel of an 
oscilloscope. As seen in Figure A-6, 
there is a screen on the front of an 
oscilloscope, as well as a control and 
connector section. There are several 
types of oscilloscopes, so read the 
documentation provided and become 
familiar with the oscilloscope in your 
own lab. This includes understanding your oscilloscope’s features and limitations, as well as 
how it connects to a circuit. This is because how an oscilloscope interacts with a circuit will 
impact any measurements taken.

As shown in Figure A-7, an oscilloscope typically displays a three-dimensional graph within 
its screen, a horizontal X-axis typically representing time when the input to the X axis is con-
nected to a clock, a vertical Y-axis typically representing voltage when the input to the Y axis 
is connected to measure voltage, and a Z axis representing the intensity of the signal via the 
brightness of the display. This graph can relay several types of key information about a signal, 
such as signal frequency, voltage relative to time, and distortions/noise in signals. It can be 
used to distinguish between AC and DC portions of signals, and to verify software by moni-
toring an I/O port being toggled in software, to determine if a software routine is executing 
and how often. These are just a few applications of this versatile and powerful device.

Figure A-6: Typical oscilloscope front panel. [A-6]

Courtesy Tektronix, Inc.

Figure A-7: Oscilloscope graph [A-7]
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Learning to use an oscilloscope is essentially a six-step process:

Step 1: Learn the general oscilloscope terminology. 

This means reading the documentation provided with the oscilloscope, or going online and 
looking for an oscilloscope tutorial to tell you the types of waveforms that can be observed by 
your particular scope, how to measure these waveforms, and what features differentiate one 
oscilloscope from another. The latter is especially important, because different types of oscil-
loscopes are better suited for certain types of circuits.

Step 2: Grounding. 

This means learning how to ground yourself and the oscilloscope correctly. This step is very 
important for your safety and for protecting the circuit being measured. 

Step 3: Learn the controls of your oscilloscope and how to set them.

Again, read the documentation provided by the manufacturer of the oscilloscope, buy a book, 
or go on the web and understand what all the controls are, what they do, and how to set them.

Step 4: Using the probes.

Learn how to connect the probes to the oscilloscope as well as to the board, without shorting 
anything and be able to take accurate measurements.

Step 5: Calibrating the scope.

Most oscilloscopes have a waveform to allow the user to calibrate the oscilloscope after the 
set-up of the probe is complete, to insure that the oscilloscope has the correct electrical prop-
erties when you are taking measurements.

Step 6: Learn how to take the actual measurements.

While some digital oscilloscopes will take measurements automatically, it is useful to learn 
how to take measurements manually to allow you to be able to work with a variety of oscil-
loscopes, and to verify automatically generated results. This means learning how to read 
the graphs generated on the display, including any grid markings and what these markings 
represent.

In short, the key to learning to use an oscilloscope is to PRACTICE! So, use an oscilloscope 
to measure various signals outlined to you by the instructor on the hardware available in your 
lab.
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Section III Projects
Software developers often get hardware from board vendors or internal hardware designers 
with schematics that may or may not be accurate, and with these hardware documents they 
are then responsible for figuring out how to get the hardware up and running. It is usually 
easier to start with an off-the-shelf board similar to the hardware that will be in the final 
product, and to get the major system software components running on the off-the-shelf board. 
Even if there is only a simulator, this allows the software engineers to familiarize themselves 
with the development environment and system software components that will be used during 
the design and development process of the embedded system. 

These projects were designed to reflect what usually happens on the job, where those respon-
sible for embedded software development have to adapt to new development environments 
and new system software elements on various types of hardware and/or hardware simulation 
environments as they move from project to project. 

Project 1: Introduction to IDEs
An Integrated Development Environment (IDE) is commonly provided as the software devel-
opment environment for designing the software of a particular embedded system. 

After software has been designed with an IDE, it is then downloaded onto the target board to 
run. Sometimes an IDE is provided with an emulator that plugs into an embedded board, or 
sometimes this is provided by an OS vendor. Whatever the situation, it is important to un-
derstand what is provided with this IDE (i.e., compilers, linkers, debuggers, etc.), and what 
additional tools can be integrated with it. 

In this project, the reader will become familiar with whatever IDE is available for the project, 
and will learn how to write, compile, and download the software to be run and debugged on a 
simulator or real target board.

Either execute the tutorial provided in the vendor’s IDE manual or instructor for an IDE avail-
able in your project, or go to a commercial embedded OS vendor (there are at least 100 of 
them), such as Wind River for vxWorks/Linux, Mentor Graphics for Nucleus Plus, or Mi-
crosoft for WinCE, and so on, and get an evaluation copy of their IDE for their OS platform 
running on a simulator or available hardware in your project. You can also search the internet 
for free, open source OS IDE packages as well.

Project 2: Using an Embedded Operating System
In this project you will need to work with two different OSes, each with their relative IDEs, 
either on a target board or using simulators. If the IDE used in Project 1 doesn’t support a 
multitasking embedded OS, first repeat Project 1 with an IDE specifically for an embedded 
OS until you are comfortable working with the IDE. If the IDE in Project 1 is an OS vendor 
IDE then this can count as one of the OSes. Implement exercises 1 through 3 on both OSes.
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Exercise 1: Multitasking and Intertask Synchronization 
This exercise will provide an introduction in the basic concepts of process management in a 
multitasking OS. Create five tasks that will operate on shared memory, concurrently calling 
some function that increments a shared variable, for example. 

In order to implement this correctly, only one task should be allowed to update the shared 
variable at a time, meaning mutual exclusion mechanisms need to be used. To provide mutual 
exclusion to the critical region (i.e., the increment function), you will need to use whatever 
synchronization mechanisms are available in the OS (i.e., semaphores) . 

Exercise 2: Producer/Consumer
In this exercise, you will implement a popular problem in the OS arena, reflected in the 
producer/consumer problem. This problem concerns multiple concurrent tasks modifying a 
bounded buffer. 

Create two concurrent tasks, a consumer task and a producer task. The consumer task ran-
domly removes data from the bounded buffer as long as the buffer is not empty. The producer 
task randomly adds data to the bounded buffer as long as the buffer is not full. The key here is 
to insure that memory is managed correctly by the tasks, keeping in mind the restrictions on 
the size of memory in embedded devices (i.e., memory is allocated on an as-needed basis, and 
deallocated when no longer in use). Also, use task synchronization mechanisms to insure that 
the buffer boundaries are respected. 

Have these tasks generate output reflecting what is produced or consumed, as well as outline 
in your project report what guarantees there are that there will be no contention between the 
two tasks.

Exercise 3: Dining Philosophers
A very popular concurrency problem which many 
designers using an embedded OS face is reflected in 
the dining philosophers problem. In dining philoso-
phers, five philosophers are seated at a round table, 
with food in the center of the table. As shown in 
Figure A-8, each philosopher has a fork to the left and 
right of them, for a total of five forks.

Each philosopher requires both the fork on the left 
and the fork on the right in order to eat, thus requir-
ing that each philosopher share their forks with their 
neighbors. Based on the assumption that no philoso-
pher is ever done eating, the problem is that is if all 
philosophers grab their right forks, then everyone is 
waiting for the left fork, and vice-versa. Furthermore, 
if philosophers don’t put down their forks, a neighbor-
ing philosopher starves. Figure A-8: Dining philosophers
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The purpose of this problem is to use the OS and create a scheme in which philosophers can 
get both forks to eat, and no philosopher starves. Create five tasks, one for each philosopher, 
as well as any other functions that may be required (i.e., GetForkA, GetForkB, PutForkA, 
PutForkB, etc.). Use the OS task synchronization mechanisms to insure that there are no 
deadlocks, and that critical sections of code (i.e., a fork) are respected by other task “phi-
losophers”. Have your application output the number of philosophers eating after any fork 
acquisition.

Project 3: Middleware and the JVM
The purpose of this project is to gain experience using embedded middleware software, spe-
cifically a JVM. 

Exercise 1: Learning Java
This exercise is for readers who have no Java experience. In the real world, even the most 
knowledgeable experts may have to quickly learn and evaluate a new language for possible 
use in a design. Thus, in this exercise, go online to java.sun.com and run the Java Tutorial, or 
purchase a book on Java.

Exercise 2: Two Different Embedded JVM Standards
For this exercise, download evaluations of two different JVMs that support two different 
embedded Java standards (i.e., a pJava and J2ME CLDC/MIDP JVMS, a J2ME CDC and 
J2ME CLDC JVMS, a pJava and a J2ME/CDC/Personal Profile JVMS, etc.), and write three 
Java applications assigned by your instructor or implement the Java code samples provided at 
java.sun.com (under the link Code Samples & Apps) for one of the standards to run on both 
JVMs. It is not necessary to have the JVMs ported to an embedded OS in this exercise, as 
long as the JVMs are embedded JVMs. This means that you can use embedded JVMs ported 
to a Windows PC or UNIX station directly from Sun Microsystems, for example. Report the 
differences in libraries that were missing or that had to be renamed (if any) in the application 
to get the application to run on both implementations. How did your results compare to the 
marketed notion that Java is platform independent?

Exercise 3: Two Different Embedded JVMs Supporting the Same Standard
For this exercise, download evaluations of two different JVMs that support the same standard 
(i.e., Sun’s pJava implementation and Tao’s Elate/Intent pJava implementation), and write 
three Java applications assigned by your instructor or implement three java code samples pro-
vided at java.sun.com (under the link Code Samples & Apps) for one of the standards to run 
on both JVMs. Report the differences in libraries that had to be modified (if any) in the ap-
plication to get the application to run on both implementations. How did your results compare 
to the marketed notion that Java is platform independent? 
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Section IV Projects
In the projects in this section, the student or team of students will apply the technical foun-
dations provided in the text, along with the methodology for creating an embedded systems 
architecture, to take a product concept and develop a prototype of it. Specifically, this will be 
the implementation of Phase 1 of the Embedded System Design and Development Lifecycle 
Model [A-8] shown in Figure A-9. Phase 1 of this model is Creating the Architecture, which is 
the process of planning the design of the embedded system. The first four steps of this pro-
cess—product concept, preliminary analysis of requirements, creation of architecture design, 
and developing version of architecture—are reflected in the projects of this section.

Figure A-9: Embedded Systems Design and Development Lifecycle Model [A-8]
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As stated at the beginning of this appendix, it is recommended that the students work in 
teams, especially for these projects, both for the real-world experience needed in how to work 
in a team environment, as well as because many of the activities in a project can be executed 
in parallel by different team members. 
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Project 1: Product Concept and Preliminary Analysis of Requirements
The key to a successful project is the planning and preparation. This means starting with 
defining the project goals, objectives, scope, timetable, and the roles and responsibilities of 
the various team members. 

In this project, create a project plan that outlines what it is exactly that you want to build, with 
what features, in what time frame, and with what resources.

Project 2: Creating an Architecture
As discussed in the main text, several industry methodologies can be adopted in designing 
an embedded system’s architecture, such as the Rational Unified Process (RUP), Attribute 
Driven Design (ADD), and the Object Oriented Process (OOP), to name just a few. However, 
if given a limited amount of time and resources as in most lab courses, this project will pro-
vide exercises based on the pragmatic approach I have introduced in the main text for creating 
an architecture. This process is a six-stage process that combines and simplifies many of the 
key elements of these popular industry different methodologies. In review, these stages are:

Stage 1. Having a solid technical base

Stage 2. Understanding the architecture business cycle

Stage 3. Defining the architectural patterns and reference models

Stage 4. Creating the architectural structures

Stage 5. Documenting the architecture

Stage 6. Analyzing and evaluating the architecture

It is assumed that the reader has by now gained a solid technical base from the material stud-
ies in previous chapters, and understands how to further independently learn new skills if 
necessary for implementing a project. Thus, the exercises in this project will reflect stages 2 
through 6, defining the Architecture Business Cycle (Exercise 1), defining architectural pat-
terns and reference models (Exercise 2), creating and documenting the architectural structures 
(Exercise 3), and analyzing and evaluating the architecture (Exercise 4). 

Exercise 1: Defining the Architecture Business Cycle
In this exercise, create a requirements specification identifying all the stakeholders (i.e., the 
professor, yourself, your team mates), and gather both the functional and non-functional 
requirements for your product concept. Use the process outlined in Chapter 11 of the main 
text, including how to derive hardware and/or software functionality that may be necessary to 
include in your design based on these requirements.
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Exercise 2: Defining the architectural patterns and reference models
Again using Chapter 11 of the main text as a reference, create a product high-level systems 
reference specification outlining at least two possible patterns that your team can implement 
in a final prototype, and include a reference model of the various possible hardware and soft-
ware components in each pattern.

Exercise 3: Creating and documenting the architectural structures
In this exercise, the patterns defined in the high-level specification in Exercise 3 will be 
turned into an actual architecture. Using the internet, recommendations in the main text, or 
any other relevant sources, define which architectural structures will be used to represent 
your design. Then, either using an industry methodology (such as UML) or your own team’s 
scheme, document the structures for each pattern.

Exercise 4: Analyzing and evaluating the architecture
In this exercise, the team will review the architectures and select which would be most fea-
sible to implement in a final prototype. Using the guidelines under the “Stage 6” section of 
Chapter 11 in the main text, identify and document the risks associated with the design, and 
highlight what the critical success factors are. 

Figure A-10: Architecture Business Cycle  [A-9]
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Review the architecture with the instructor, and prepare necessary action items to integrate 
the required measures to mitigate the risks back into the architecture design, as well as any 
other changes to requirements. Repeat the other exercises of this project as necessary until the 
architecture has been finalized.

Project 3: Finalizing the Prototype
Given the architecture created in Project 2, implement a prototype using the tools available 
to you in your lab or from other sources. The team lead is responsible for partitioning the 
various responsibilities to the team members and insuring that each team member has what 
they need to do their work. The team lead is also responsible for gathering the day-to-day 
reports from team members on progress and/or missed milestones, as well as reports reflect-
ing any meetings of the team. At the end of this project, you should have the prototype itself, 
the architecture documentation, and the reports reflecting the process of implementing the 
architecture into the finalized prototype.
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Appendix A: Endnotes

[A-1] Embedded Microcomputer Systems, Valvano, p. 3.; Embedded Systems Building Blocks, Labrosse, p. 61.

[A-2] Beginner’s Guide to Reading Schematics, Traister and Lisk, p. 49.

[A-3] http://tuttle.merc.iastate.edu/ee333/spice/pspicetutorial/basics/pspicebasics.htm

[A-4] http://www.ee.olemiss.edu/atef/engr360/tutorial/ex1.html?banner=ck+here+to+see+some+interactive+
tutorial+examples...++

[A-5] http://www.ee.nmt.edu/~rison/ee321_fall02/Tutorial.html

[A-6] Tektronix, “Digital Storage Oscilloscopes TDS1002, TDS1012, TDS2002, TDS2012, TDS2014, TDS2022, 
TDS2024” datasheet

[A-7] “Oscilloscope Tutorial,” Hitesh Tewari

[A-8] The Embedded Systems Design and Development Lifecycle Model is specifically derived from the SEI’s 
Evolutionary Delivery Lifecycle Model and the Software Development Stages Model.

[A-9] Based on the software architectural brainchildren of the Software Engineering Institute (SEI); Software 
Architecture in Practice, Bass, Clements, and Kazman, 2003 (go to http://www.sei.cmu.edu/ for more 
information).
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A P P E N D I X B
Schematic Symbols

Antenna

Balanced

Genera l

Loop [Shielded]

Loop [Unshielded]

Unbalanced

Attenuator

Fixe d

Variable

+

–

Battery/DC Cell

Buffer {Amplifier}

AC Voltage Source

Voltage source that generates AC (alternating current). 
Because an AC voltage source can come from a variety
of different components (outlet, oscillator, signal
generator, etc.), the type of AC source is typically 
stated somewhere on the schematic.

A transducer made up of conductive material
(i.e., wires, metal rod, etc.) used to transmit and
receive wireless signals (i.e., radio waves, IR, etc.).

Commonly used for a variety of purposes including 
to extend the dynamic range of certain devices 
(i.e., power meters, amplifiers, etc.), reduce signal
levels, match circuits, and to balance out unequal 
signal levels in transmission lines just to name a few.

Voltage source that creates voltage through a 
chemical reaction in a battery.

An electrical device that is used to provide 
compatibility between two signals (i.e., interfacing the 
output of a CMOS to the input of a TTL).

These symbols are a subset of industry-accepted schematic symbols representing electronic 
elements on schematic diagrams. Note that symbols for the same electronic device can differ 
internationally, as well as depending on what standards are being adhered to by a particular 
organization (i.e., NEMA, IEEE, JEDEC, ANSI, IEC, DoD, etc.). If there are any unfamiliar 
symbols within a schematic, it is always best to ask the engineer responsible for drafting the 
schematic.
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Delay Line

Crystal

Connector

Female

Male

Circuit Breaker
[single pole]

Cathode

Cold

Directly Heated

Indirectly Heated

Cavity Resonator

Coaxial Cable

Capacitors
Non-Polarized General

Feedthrough

Non-Polarized/Bipolar Fixed

Polarized Fixed  [Electrolytic]

Variable Single

 Split-Stator

A passive electrical element that stores electric
charge in a circuit.

The feedthrough capacitor is uniquely constructed to
provide lower parallel inductance, better decoupling
capability for all high di/dt environments, significant
noise reduction in digital circuits, EMI suppression, 
broadband I/O filtering, Vcc power line conditioning
in comparison to other types of capacitors.

A non-polar/bipoal fixed capacitor has no “implicit”
polarity, thus can be connected in any way into a 
circuit.

A fixed polarized has an “explicit” polarity, thus
there is only one way to connect it into a circuit.

A variable capacitor has capacitance that can be
varied on the fly.

The split-stator capacitor is a variable capacitor
used to preserve balance in a circuit.

[1] The positively charged pole (terminal) of a 
voltage source. [2] The negatively charged 
electrode of a device (i.e., diode) that acts as an
electron source.

A component that contains and maintains an
oscillating electromagnetic field.

An electrical component which insures that a current
load doesn’t get too large by shutting down the 
circuit when its overheat sensor senses there is too 
much current.

A type of cabling made up of two layers of physical
wire, one center wire and one grounded wire
shielding. Coaxial cables also include two layers of
insulation, one between the wire shielding and center
wire, and one layer above the wire shielding. The 
shielding allows for a decrease in interference 
(electrical, RF, etc.).

An electrical component, which interconnects 
different types of subsystems.

An electrical component that determines an
oscillator’s frequency. A crystal is typically made up
of two metal plates separated by quartz, with two 
terminals attached to each plate.  The quartz within
a crystal vibrates when current is applied to the 
terminals, and it is this frequency that impacts the 
frequency at which the oscillator operates.

An electrical component that delays the 
transmission of a signal.
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Fuse

Gates

AND

OR

NOT/Inverter

NAND

NOR

XOR

Standard NEMA ANSI

Flip-Flop

RS

JK

D

Diode 2-terminal semiconductor device that allows current 
flow in 1 direction, and blocks current flow in the 
opposite direction.
Diode is typically cheaper and more common, made
of silicon or germanium.
All diodes emit light, LEDs made from special semi
conductive material, which optimizes the light.
The photodiode optimizes the fact that diodes are 
light sensitive, i.e., solar cells that convert light into
electrical energy.
The zener diode is designed with a specific reverse 
breakdown voltage that causes a specific amount of
resistance when blocking current flow.

Flip-flops are sequential circuits that are called such
because they function by alternating (flip-flopping)
between two output states (0 and 1) depending on
the input.

The RS flip-flop alternates between the two output
lines (Q and Q NOT) depending on the R and S 
inputs.

The JK flip-flop alternates between the two output
lines (Q and Q NOT) depending on the J and K 
inputs, as well as the clock signal (C).

The D flip-flop alternates between the two output
lines (Q and Q NOT) depending on the D input,
as well as the clock signal (C).

An electrical component that protects a circuit from
too much current by breaking the circuit when a 
high enough current passes through it.

A more complex type of electronic switching circuit
designed to perform logical binary operations.

An AND gate’s output is 1 when both inputs are 1.

An OR gate’s output is 1 if either of the inputs are 1.

An electrical device that inverts (i.e., a HIGH to a 
LOW or vice-versa) a logical level input.

A NAND gate’s output is 0 when both inputs are 1.

A NOR gate’s output is 0 either of the inputs are 1.

A XOR gate’s output is 1 (or on, or high, etc.) if
only one input (but not both) is 1.

C A

C A

C A

C A

 Diode

LED [Light Emitting Diode]

Photodiode/Photosensitive

Zener

S

R

Q

Q

J
C
K

Q

Q

D
C

Q

Q

A

A

OR

OR

OE+
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Ground

Circuit

Earth

Special

Integrated Circuit (IC)
Generic

Inductor [Coil]

Air Core

Iron Core

Tapped

Variable

Jack

Coaxial

2 Conductor

3 Conductor

Phono

Lamp

Incandescent

Neon

Xenon Flash

Loudspeaker

An arbitrary point for “0” potential voltage that a 
circuit is connected to.

An electrical component made up of coiled wire
surrounding some type of core (air, iron, etc.). 
When a current is applied to a conductor, energy is
stored in the magnetic field surrounding the coil
allowing for an energy storing and filtering effect.

An electrical device made up of several other 
discrete electrical active elements, passive 
elements, and devices (transistors, resistors, etc.) – 
all fabricated and interconnected on a continuous
substrate (chip).

An electrical device designed to accept a plug.

An electrical device that produces light.

An incandescent lamp produces light via heat.

A neon lamp produces light via neon gas.

Xenon flash lamps produces large flashes of bright
white light via some combination that includes high
voltage, electrodes, and gas.

A type of transducer that coverts variations of
electrical current into sound waves.

2
1

3
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Meter

Ammeter

Galvanometer

Voltmeter

Wattmeter

Microphone

Condenser Microphone

Dynamic

Electret

ECM Microphone

Plug
2-Conductor

3-Conductor

Phono/RCA

Rectifier

Semiconductor

Silicon-Controlled [thyristor]

Tube-Type

A measurement device that measures some from 
of electrical energy.

An ammeter is a meter that measures current in a 
circuit.

A galvanometer is a meter that measures smaller
amounts of current in a circuit.

A voltmeter is a meter that measures voltage.

A wattmeter is a meter that measures power.

A type of transducer that converts sound waves into
electrical current.

A condenser microphone uses changes in
capacitance in proportion to changes in sound waves 
to produce its conversions.

A dynamic microphone uses a coil that vibrates to
sound waves, and a magnetic field to generate a 
voltage that varies in proportion to sound variations.

An electret microphone is dynamic and uses a small
transistor amplifier.

Electrical components used to connect one 
subsystem into the jack of another subsystems.

A four-layer PNPN (3 P-N junction) device that
functions as a cross between a diode and transistor.

+ – + – + –M

A

G

V

W P

A

G
C

A

G

C

P
N
P
N
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Relay

DPDT

DPST

SPDT

SPST

Used to limit current in a circuit.

Fixed resistors have resistance value set at
manufacturing.

Variable resistors have a dial that allows a 
change in resistance values on the fly.

USA
Japan

Europe

USA
Japan Europe

Europe

Resistor

Fixed

Variable/Potentiometers

Rheostat

Photosensitive/Photoresistor

Thermally Sensitive/Thermistor

Switch

Single Pole Single Throw

Single Pole Double Throw

Double Pole Single Throw

Double Pole Double Throw

Normally Closed Push Button

Normally Open Push Button

An electromagnetic switch.

A DPDT (Double Pole Double Throw)
relay contains two contacts that can be
toggled both ways (on and off).

A DPST (Double Pole Single Throw) relay 
contains two contacts that can only be
switched on or off.

A SPDT (Single Pole Double Throw) relay 
contains one contact that can be toggled
both ways (on and off).

A SPST (Single Pole Single Throw) relay 
contains one set of contacts and can only
be switched one way (on or off).

Potentiometer Variable-resistance control,
similar to potentiometer but with three 
discrete areas of control. The part of the 
circuit connected off the arrow can be
varied in resistance to the two circuit points
connected to the other two leads.

Photosensitive resistors have resistance that
changes on the fly depending on the amount
of light photo resistor are exposed to.

Thermistors have a resistance changes on-
the-fly depending on the temperature the 
thermistor is exposed to (typically resist-
ance decreases as temperature increases).

An electrical device is used to turn an
electricalcurrent flow on or off.

SPST switch contains one set of contacts 
that can only be switched on or off 
(one way).

SPDT switch contains one contact that
can be toggled on and off (both ways).

DPST switch contains two contacts that
can only be switched one way (on or off)

DPDT contains two contacts that can be
toggled on and off (both ways).

A normally closed push button switch is a 
switch in the form of a button that is
normally closed.

A normally open push button switch is
a switch in the form of a button that is
normally open.

T
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Thermocouple

Transistor

Bipolar / BJT
(Bipolar Junction Transistor)

Junction FET
(Field Effect Transistor)

MOSFET
(Metal Oxide Semiconductor FET)

Photosensitive (phototransistor)

PNPNPN

N Channel P Channel

Transformer

Air Core

Iron Core

Tapped Primary

Tapped Secondary

Wire

Wire

Wires Crossing and Connected

Wires Crossing and Unconnected

An electronic circuit that relays temperature 
differences via current flowing through two 
wires joined at either end. Each wire is made
of different materials with one junction of the
connected wires at the stable lower tempera-
ture, while the other junction is connected at
the temperature to measured.

P Channel
Enhancement

N Channel
Depletion

N Channel
Enhancement

P Channel
Depletion

A type of inductor that can increase or
decrease the voltage of an AC signal.

3 terminal semiconductor device that provides
current amplification, as well as can act as a 
switch.

A bipolar transistor is made of alternating 
P-Type and N-Type semi conductive material
(meaning both positive and negative charges 
used to conduct – hence the name “bipolar”

A junction FET is also made up of both
N-Type and P-Type material, however 
unipolar, involving only positive or negative 
charges to conduct. Gate voltage applied 
across P-N Junction.

A MOSFET is similar to Junction FET, except
gate voltage applied across insulator.

A photosensitive transistor is a bipolar 
transistor designed to leverage a transistor’s
sensitivity to light.

Wires are conductors that carry signals 
between the other components on a board.

The wires crossing and connected symbol
represents two connected wires.

The wires crossing and unconnected symbol
represents two wires crossing on the board 
but not connected.

B C

E

C
B

E

D
G

S

D
G

S

B C

E

G
S

D

G
S

D

G
S

D

G
S

D



601

A P P E N D I X C
Acronyms and Abbreviations

A

AC Alternating Current
ACK Acknowledge
A/D Analog-To-Digital
ADC Analog-To-Digital Converter
ALU Arithmetic Logic Unit
AM Amplitude Modulation
AMP Ampere
ANSI American National Standards Institute
AOT Ahead-of-Time
API Application Programming Interface
ARIB-BML Association of Radio Industries and Business of Japan
AS Address Strobe
ASCII American Standard Code for Information Interchange
ASIC Application Specific Integrated Circuit
ATM Asynchronous Transfer Mode, Automated Teller Machine
ATSC Advanced Television Standards Committee
ATVEF Advanced Television Enhancement Forum

B

BDM Background Debug Mode
BER Bit Error Rate
BIOS Basic Input/Output System
BML Broadcast Markup Language
BOM Bill of Materials
bps Bits per Second
BSP Board Support Package
BSS “Block Started by Symbol”, “Block Storage Segment”, “Blank Storage 

Space”, ...
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C
CAD Computer Aided Design
CAN Controller Area Network
CAS Column Address Select
CASE Computer Aided Software Engineering
CBIC cell-based IC or cell-based ASIC
CDC Connected Device Configuration
CEA Consumer Electronics Association
CEN European Committee for Standardization
CISC Complex Instruction Set Computer
CLDC Connected Limited Device Configuration
CMOS Complementary Metal Oxide Silicon
CPU Central Processing Unit
COFF Common Object File Format
CPLD Complex Programmable Logic Device
CRT Cathode Ray Tube
CTS Clear-to-Send

D

DAC Digital-to-Analog Converter
DAG Data Address Generator
DASE Digital TV Applications Software Environment
DAVIC Digital Audio Visual Council
dB Decibel
DC Direct Current
D-Cache Data Cache
DCE Data Communications Equipment
Demux Demultiplexor
DHCP Dynamic Host Configuration Protocol
DIMM Dual Inline Memory Module
DIP Dual Inline Package 
DMA Direct Memory Access
DNS Domain Name Server,  Domain Name System,  Domain Name Service
DPRAM Dual port RAM
DRAM Dynamic Random Access Memory
DSL Digital Subscriber Line
DSP Digital Signal Processor
DTE Data Terminal Equipment
DTVIA Digital Television Industrial Alliance of China
DVB Digital Video Broadcasting
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E

EDA Electronic Design Automation 
EDF Earliest Deadline First
EDO RAM Extended Data Out Random Access Memory
EEMBC Embedded Microprocessor Benchmarking Consortium
EEPROM Electrically  Erasable Programmable Read Only Memory
EIA Electronic Industries Alliance
ELF Extensible Linker Format
EMI Electromagnetic Interference
EPROM Erasable Programmable Read Only Memory
ESD Electrostatic Discharge
EU European  Union

F

FAT File Allocation Table
FCFS First Come First Serve
FDA Food and Drug Administration - USA
FDMA Frequency Division Multiple Access
FET Field Effect Transistor
FIFO First In First Out
FFS Flash File System
FM Frequency Modulation
FPGA Field Programmable Gate Array
FPU Floating Point Unit
FSM Finite State Machine
FTP File Transfer Protocol

G

GB Gigabyte
GBit Gigabit
GCC GNU C Compiler
GDB GNU Debugger
GHz Gigahertz
GND Ground
GPS Global Positioning System
GUI Graphical User Interface
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H

HAVi Home Audio/Video Interoperability
HDL Hardware Description Language
HL7 Health Level Seven
HLDA Hold Acknowledge
HLL High-level Language
HTML HyperText Markup Language
HTTP HyperText Transport Protocol
Hz Hertz

I

IC Integrated Circuit
I2C Inter Integrated Circuit Bus
I-Cache Instruction Cache
ICE In-Circuit Emulator
ICMP Internet Control Message Protocol
IDE Integrated Development Environment
IEC International Engineering Consortium
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
INT Interrupt
I/O Input/Output
IP Internet Protocol
IPC Interprocess Communication
IR Infrared
IRQ Interrupt ReQuest
ISA Instruction Set Architecture
ISA Bus Industry Standard Architecture Bus
ISO International Standards Organization
ISP In-System Programming
ISR Interrupt Service Routine
ISS Instruction Set Simulator 
ITU International Telecommunication Union

J

JIT Just-In-Time
J2ME Java 2 MicroEdition
JTAG Joint Test Access Group
JVM Java Virtual Machine
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K

kB Kilobyte
kbit Kilobit
kbps Kilo bits per second
kHz kilohertz
KVM K Virtual Machine

L

LA Logic Analyzer
LAN Local Area Network
LCD Liquid Crystal Display
LED Light Emitting Diode
LIFO Last-In-First-Out
LSb Least Significant Bit
LSB Least Significant Byte
LSI Large Scale Integration

M

m Milliohm
M Megaohm
MAN Metropolitan Area Network
MCU Microcontroller
MHP Multimedia Home Platform
MIDP Mobile Information Device Profile
MIPS Millions of Instructions per Second,  Microprocessor without Interlocked Pipe-

line Stages
MMU Memory Management Unit
MOSFET Metal Oxide  Silicon Field Effect Transistor
MPSD Modular Port Scan Device
MPU Microprocessor
MSb Most Significant bit
MSB Most Significant Byte
MSI Medium Scale Integration
MTU Maximum Transfer Unit
MUTEX Mutual Exclusion
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N

nSec nanosecond
NAK NotAcKnowledged
NAT Network Address Translation
NCCLS National Committee For Clinical Laboratory Standards
NFS Network File System
NIST National Institute of Standards and Technology
NMI Nonmaskable Interrupt
NTSC National Television Standards Committee
NVRAM NonVolatile Random Access Memory

O

OCAP Open Cable Application Forum
OCD On Chip Debugging
OEM Original Equipment Manufacturer
OO Object Oriented
OOP Object Oriented Programming
OS Operating System
OSGi Open Systems Gateway Initiative
OSI Open Systems Interconnection
OTP One Time Programmable

P

PAL Programmable Array Logic, Phase Alternating Line
PAN Personal Area Network
PC Personal Computer
PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PCP Priority Ceiling Protocol
PDA Personal Data Assistant
PDU Protocol Data Unit
PE Presentation Engine, Processing Element
PID Proportional Integral Derivative
PIO Parallel Input/Output
PIP Priority Inheritance Protocol, Picture-In-Picture
PLC Programmable Logic Controller, Program Location Counter
PLD Programmable Logic Device
PLL Phase Locked Loop
POSIX Portable Operating System Interface X
POTS Plain Old Telephone Service
PPC PowerPC
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PPM Parts Per Million
PPP Point-to-Point Portocol
PROM Programmable Read-Only Memory
PSK Phase Shift Keying
PSTN Public Switched Telephone Network
PTE Process Table Entry
PWM Pulse Width Modulation

Q

QA Quality Assurance

R

RAM Random Access Memory
RARP Reverse Address Resolution Protocol
RAS Row Address Select
RF Radio Frequency
RFC Request For Comments
RFI Radio Frequency Interference
RISC Reduced Instruction Set Computer
RMA Rate Monotonic Algorithm
RMS Root Mean Square
ROM Read Only Memory
RPM Revolutions Per Minute
RPU Reconfigurable Processing Unit
RTC Real Time Clock
RTOS Real Time Operating System
RTS Request To Send
RTSJ Real Time Specification for Java
R/W Read/Write

S

SBC Single Board Computer
SCC Serial Communications Controller
SECAM Système Électronique pour Couleur avec Mémoire
SEI Software Engineering Institute
SIMM Single Inline Memory Module
SIO Serial Input/Output
SLD Source Level Debugger
SLIP Serial Line Internet Protocol
SMPTE Society of Motion Picture and Television Engineers
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SMT Surface Mount
SNAP Scalable Node Address Protocol
SNR Signal-to-Noise Ratio
SoC System–On-Chip
SOIC Small Outline Integrated Circuit
SPDT Single Pole Double Throw
SPI Serial Peripheral Interface
SPST Single Pole Single Throw
SRAM Static Random Access Memory
SSB Single Sideband Modulation
SSI Small Scale Integration

T

TC Technical Committee
TCB Task Control Block
TCP Transmission Control Protocol
TDM Time Division Multiplexing
TDMA Time Division Multiple Access
TFTP Trivial File Transfer Protocol
TLB Translation Lookaside Buffer
TTL Transistor-Transistor Logic

U

UART Universal Asynchronous Receiver/Transmitter
UDM Universal Design Methedology
UDP User Datagram Protocol
ULSI Ultra Large Scale Integration
UML Universal Modeling Language
UPS Uninterruptible Power Supply
USA United States of America
USART Universal Synchronous-Asynchronous Receiver-Transmitter
USB Universal Serial Bus
UTP Untwisted Pair
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V

VHDL Very High Speed Integrated Circuit Hardware Design Language
VLIW Very Long Instruction Word
VLSI Very Large Scale Integration
VME VersaModule Eurocard
VoIP Voice Over Internet Protocol
VPN Virtual Private Network

W

WAN Wide Area Network
WAT Way-Ahead-of-Time
WDT Watchdog Timer
WLAN Wireless Local Area Network
WML Wireless Markup Language
WOM Write Only Memory

X

XCVR Transceiver
XHTML eXtensible HyperText Markup Language
XML eXtensible Markup Language
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A P P E N D I X D
Glossary

A
Absolute Memory Address The physical address of a specific memory cell.

Accumulator A special processor register used in arithmetic and logical operations to store 
an operand used in the operation, as well as the results of the operation. 

Acknowledge (ACK) A signal used in bus and network “handshaking” protocols as an 
acknowledgment of data reception from another component on the bus (on an embed-
ded board for bus handshaking) or from another embedded system via some networking 
transmission medium (for network handshaking).

Active High Where a logic value of “1” is a higher voltage than a logic value of “0” in a 
circuit.

Active Low Where a logic value of “0” is a higher voltage than a logic value of “1” in a 
circuit.

Actuator A device used for converting electrical signals into physical actions, commonly 
found in flow-control valves, motors, pumps, switches, relays and meters.

Adder A hardware component that can be found in a processor’s CPU that adds two numbers.

Address Bus An address bus carries the addresses (of a memory location, or of particular sta-
tus /control registers) between board components. An address bus can connect processors 
to memory, as well as processors to each other.

Ahead-of-Time Compiler (AOT) See Way-Ahead-of-Time Compiler.

Alternating Current (AC) An electric current whose voltage source changes polarity of its 
terminals over time, causing the current to change direction with every polarity change.

Ammeter A measurement device that measures the electrical current in a circuit.

Ampere The standard unit for measuring electrical current, defined as the charge per unit 
time (meaning the number of coulombs that pass a particular point per second). 

Amplifier A device that magnifies a signal. There are many types of amplifiers (log, linear, 
differential, etc.), all differing according to what how they modify the input signal.
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Amplitude A signal’s size. For an AC signal it can be measured via the high point of an AC 
wave from the equilibrium point (center) to the wave’s highest peak or by performing the 
RMS (root mean square) mathematical scheme—which is by 1) finding the square of the 
waveform function, 2) averaging the value of the result of step 1) over time, and 3) taking 
the square root of the results of step 2). For a DC signal, it is its voltage level.

Amplitude Modulation (AM) The transmission of data signals via modifying (modulat-
ing) the amplitude of a waveform to reflect the data (i.e., a “1” bit being a wave of some 
amplitude, and a “0” bit being a wave with a different amplitude).

Analog Data signals represented as a continuous stream of values.

Analog-to-Digital Converter (A/D Converter) A device that converts analog signals to 
digital signals.

AND Gate A gate whose output is 1 when both inputs are 1.

Anion A negative ion, meaning an atom that gains electrons.

Anode (1) The negatively charged pole (terminal) of a voltage source. (2) The positively 
charged electrode of a device (i.e., diode), which accepts electrons (allowing a current to 
flow through the device). 

Antenna A transducer made up of conductive material (wires, metal rod, etc.) used to trans-
mit and receive wireless signals (radio waves, IR, etc.).

Antialiased Fonts Fonts in which a pixel color is the average of the colors of surrounding 
pixels. It is a commonly used technique in digital televisions for evening (smoothing) 
displayed graphical data.

Application Layer The layer within various models (OSI, TCP/IP, Embedded Systems 
Model, etc.), which contains the application software of an embedded device.

Application Programming Interface (API) A set of subroutine calls that provide an inter-
face to some type of component (usually software) within an embedded device (OS APIs, 
Java APIs, MHP APIs, etc.).

Application Specific Integrated Circuit (ASIC) An application-specific ISA-based IC 
that is customized for a particular type of embedded system or in support of a particular 
application within an embedded system. There are mainly full-custom, semi-custom, or 
programmable types of ASICs. PLDs and FPGAs are popular examples of (program-
mable) ASICs.

Architecture See Embedded Systems Architecture or Instruction Set Architecture.

Arithmetic Logic Unit (ALU) The component within a processor’s CPU, which executes 
logical and mathematical operations.

Aspect Ratio A ratio of width to height (in memory the number of bits per address to the 
total number of memory addresses, the size or resolution of a display, etc.).
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Assembler A compiler that translates assembly language into machine code.

Astable Multivibrator A sequential circuit in which there is no state it can hold stable in.

Asynchronous A signal or event that is independent of, unrelated to, and uncoordinated with
a clock signal.

Attenuator A device that reduces (attenuates) a signal (the opposite of what an amplifier 
does).

Autovectoring The process of managing interrupts via priority levels rather than relying on 
an external vector source. 

B
Background Debug Mode (BDM) Components used in debugging an embedded system. 

BDM components include BDM hardware on the board (a BDM port and an integrated 
debug monitor in the master CPU), and debugger on the host (connected via a serial cable 
to BDM port). BDM debugging is sometimes referred to as On-Chip Debugging (OCD).

Bandwidth On any given transmission medium, bus, or circuitry—the frequency range of an 
analog signal (in hertz, the number of cycles of change per second) or digital signal (in 
bps, the number of bits per second) traveling through it (as in the case of a bus or trans-
mission medium) or being processed by it (as in the case of a processor).

Basic Input/Output System (BIOS) Originally the boot up firmware on x86-based PCs, now 
available for many off-the-shelf embedded x86-based boards and a variety of embedded 
OSes.

Battery A voltage source where voltage is created through a chemical reaction within it. A 
battery is made up of two metals submerged within a chemical solution, called an electro-
lyte, that is in liquid (wet cell) or paste (dry cell) form. Basically, the two metals respond 
with different ionic state after they are exposed to the electrolyte. Wet cells are used in 
automobiles (car batteries), and dry cells are used in many different types of portable 
embedded systems (radios, toys, etc.).

Baud Rate The total number of bits per some unit of time (kbits/sec, Mbits/sec, etc.) that can 
be transmitted over some serial transmission link.

Bias An offset (such as voltage or current) applied to a circuit or electrical element to modify 
the behavior of the circuit or element.

Big Endian A method of formatting data in which the lowest-order byte (or bits) are stored 
in the highest byte (or bits). For example, if the highest-order bits are from left to right 
in descending order in a particular 8-bit ISA, big endian mode in this ISA would mean 
that bit 0 of the data would be stored from left to right in ascending order (the value of 
“B3h/10110011b” would be stored as “11001101b”). In a 32-bit ISA, for instance, where 
the highest-order bytes are stored from left to right in descending order, big endian mode 



Glossary

613

in this ISA would mean that byte 0 of the data is stored from left to right in the word in 
ascending order (i.e., the value of “B3A0FF11h” would be stored as “11FFA0B3h”).

Binary A base-2 number system used in computer systems, meaning the only two symbols are 
a “0” or “1”. These symbols are used in a variety of combinations to represent all data.

Bit Error Rate (BER) The rate at which a serial communication stream loses and/or trans-
fers incorrect data bits.

Bit Rate The (number of actual data bits transmitted / total number of bits that can be trans-
mitted) * the baud rate of the communications channel.

Black-Box Testing Testing that occurs with a tester that has no visibility into the internal 
workings of the system (no schematics, no source code, etc.) and is basing testing on 
general product requirements documentation.

Block Started by Symbol (BSS) BSS is several different things depending on the context 
and who is asked, including “Block Started by Symbol”, “Block Storage Segment”, and 
“Blank Storage Space”. The term “BSS” originated from the 1960’s, and while not every-
one agrees on what the BSS acronym stands for, it is generally agreed upon that BSS is 
a statically allocated memory space containing the source code’s uninitialized variables 
(data).

Board Support Package (BSP) A software provided by many embedded off-the-shelf OS 
vendors that allow their OSes to be ported more easily over various boards and architec-
tures. BSPs contain the board and architecture-specific libraries required by the OS, and 
allow for the device drivers to be integrated more easily for use by the OS through BSP 
APIs.

Bootloader Firmware in an embedded system that initializes the system’s hardware and 
system software components. 

Breakpoint A debugging mechanism (hardware or software), which stops the CPU from 
executing code. 

Bridge A component on an embedded board that interconnects and interfaces two different 
buses.

Bus A collection of wires that interconnect components on an embedded board.

Byte A byte is defined as being some 8-bit value.

Byte code Byte (8-bit) size opcodes that have been created as a result of high-level source 
code (such as Java or C#) being compiled by a compiler (a Java or some Intermediate 
Language (IL) compiler) on a host development machine. It is byte code that is trans-
lated by a Virtual Machine (VM), such as: the Java Virtual Machine (JVM) or a .NETCE 
Compact Framework virtual machine, for example.
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Byte Order How data bits and/or bytes are represented and stored in a particular component 
of a computer system. 

C
Cache Very fast memory that holds copies of a subset of main memory, to allow for faster 

CPU access to data and instructions typically stored in main memory.

Capacitor Used to store electrostatic energy, a capacitor is basically made up of conductors 
(two parallel metal plates), separated by an insulator (a dielectric such as: air, ceramic, 
polyester, mica, etc.). The energy, itself, is stored in an electric field created between the 
two plates given the right environment.

Cathode (1) The positively charged pole (terminal) of a voltage source. (2) The negatively 
charged electrode of a device (diode) that acts as an electron source.

Cation A positive ion, meaning an atom that has lost electrons.

Cavity Resonator A component that contains and maintains an oscillating electromagnetic 
field.

Central Processing Unit (CPU) (1) The master/main processor on the board. (2) The pro-
cessing unit within a processor that is responsible for executing the indefinite cycle of 
fetching, decoding, and executing instructions while the processor has power.

Checksum A numerical value calculated from some set of data to verify the integrity of that 
data, commonly used for data transmitted via a network.

Chip See Integrated Circuit (IC).

Circuit A closed system of electronic components in which a current can flow.

Circuit Breaker An electrical component that insures that a current load doesn’t get too large 
by shutting down the circuit when its overheat sensor senses there is too much current.

Class Used in object-oriented schemes and languages to create objects, a class is a proto-
type (type description) that is made up of some combination of interfaces, functions 
(methods), and variables.

Clear-box Testing See White-box Testing.

Clock An oscillator that generates signals resulting in some type of waveform. Most embed-
ded boards include a digital clock that generates a square waveform.

Coaxial Cable A type of cabling made up of two layers of physical wire, one center wire and 
one grounded wire shielding. Coaxial cables also include two layers of insulation, one 
between the wire shielding and center wire, and one layer above the wire shielding. The 
shielding allows for a decrease in interference (electrical, RF, etc.).

Compiler A software tool that translates source code into assembly code, an intermediary 
language opcode, or into a processor’s machine code directly.
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Complex Instruction Set Computer (CISC) A general-purpose ISA which typically is made 
up of many, more complex operations and instructions than other general-purpose ISAs.

Computer Aided Design (CAD) Tools Tools used to create technical drawings and docu-
mentation of the hardware, such as schematic diagrams.

Computer Aided Software Engineering (CASE) Tools Design and development tools that 
aid in creating an architecture and implementing a system, such as UML tools and code 
generators.

Conductor A material that has fewer impediments to an electric current (meaning it more 
easily loses/gains valence electrons) allowing for an electrical current to flow more eas-
ily through them than other types of materials. Conductors typically have <=3 valence 
electrons.

Connector An electrical component that interconnects different types of subsystems.

Context The current state of some component within the system (registers, variables, flags, 
etc.).

Context Switch The process in which a system component (interrupts, an OS task, etc.) 
switches from one state to another.

Coprocessor A slave processor that supports that master CPU by providing additional func-
tionality, and that has the same ISA as the master processor.

Coulomb In electronics, the charge of one electron is too small to be of practical use, so in 
electronics, the unit for measuring charges is called a Coulomb (named after Charles 
Coulomb who founded Coulomb’s law), and is equal to that of 6.28 x 1018 electrons.

Critical Section A set of instructions that are flagged to be executed without interruption.

Cross Compiler A compiler that generates machine code for hardware platforms that differs 
from the hardware platform the compiler is actually residing and running on.

Crystal An electrical component that determines an oscillator’s frequency. A crystal is typi-
cally made up of two metal plates separated by quartz, with two terminals attached to 
each plate. The quartz within a crystal vibrates when current is applied to the terminals, 
and it is this frequency that impacts the frequency at which the oscillator operates.

Current A directed flow of moving electrons.

D
Daisy Chain A type of digital circuit in which components are connected in series (in a 

“chain-like” structure), and where signals pass through each of the components down 
through the entire chain. Components at the top of the chain essentially can impact (slow 
down, block, etc.) a signal for being received by components further down in the chain. 
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Datagram What the networking data received and processed by the networking layer of the 
OSI model or corresponding layer in other networking models (the Internet layer in the 
TCP/IP model) is called.

Data Communications Equipment (DCE) The device that the DTE wants to serially com-
municate with, such as an I/O device connected to the embedded board.

Data Terminal Equipment (DTE) The initiator of a serial communication, such as a PC or 
embedded board.

Deadlock An undesired result related to the use of an operating system, in which a set of 
tasks are blocked, awaiting an event to unblock that is controlled by one of the tasks in 
the blocked set.

Debugger A software tool used to test for, track down, and fix bugs.

Decimal A base-10 number system, meaning there are 10 symbols (0-9), used in a variety of 
combinations to represent data.

Decoder A circuit or software that translates encoded data into the original format of the data. 

Delay Line An electrical component that delays the transmission of a signal.

Demodulation Extracting data from a signal that was modified upon transmission to include 
a carrier signal and the added transmitted data signal.

Demultiplexor (Demux) A circuit which connects one input to more than one output, where 
the value of the input determines which output is selected.

Device Driver Software that directly interfaces with and controls hardware.

Dhrystone A benchmarking application which simulates generic systems programming ap-
plications on processors, used to derive the MIPS (Millions of Instructions per Second) 
value of a processor.

Die The portion of an integrated circuit that is made of silicon, that can either be enclosed in 
some type of packaging or connected directly to a board.

Dielectric An insulative layer of material found in some electrical components, such as 
capacitors.

Diode A two-terminal semiconductor device that allows current flow in one direction, and 
blocks current which flows in the opposite direction.

Differentiator A circuit that calculates a mathematical (calculus) derivative output based on a 
given input.

Digital A signal that is expressed as some combination of one of two states, a “0” or “1”.

Digital Signal Processor (DSP) A type of processor that implements a datapath ISA, and is 
typically used for repeatedly performing fixed computations on different sets of data.
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Digital Subscriber Line (DSL) A broadband networking protocol that allows for the direct 
digital transmission of data over twisted pair wired (POTS) mediums.

Digital-to-Analog Converter (DAC) A device that converts digital signals to analog signals.

Direct Current (DC) Current that flows constantly in the same direction in a circuit. DC cur-
rent is defined by two variables: polarity (the direction of the circuit) and magnitude (the 
amount of current). 

Direct Memory Access (DMA) A scheme in which data is exchanged between I/O and 
memory components on a board with minimal interference from and use of the master 
processor.

Disassembler Software that reverse-compiles the code, meaning machine language is trans-
lated into assembly language.

Domain Name Service (DNS) An OSI model session layer networking protocol that converts 
domain names into internet (network layer) addresses.

Dual Inline Memory Module (DIMM) A type of packaging in which memory ICs can come 
in, specifically a mini-module (PCB) that can hold several ICs. A DIMM has protrud-
ing pins from 1 side (both on the front and back) of the module that connect into a main 
embedded motherboard, and where opposing pins (on the front and back of the DIMM) 
are each independent contacts.

Dual Inline Package (DIP) A type of packaging that encloses a memory IC, made up of 
ceramic or plastic material, with pins protruding from two opposing sides of the package. 

Dual Port Random Access Memory (DPRAM) RAM that can connect to two buses 
allowing for two different components to access this memory simultaneously.

Dynamic Host Configuration Protocol (DHCP) A networking layer networking protocol 
that provides a framework for passing configuration information to hosts on a 
TCP/IP-based network.

Dynamic Random Access Memory (DRAM) RAM whose memory cells are circuits with 
capacitors that hold a charge in place (the charges or lack thereof reflecting the data). 

E
Earliest Deadline First (EDF) A real-time, preemptive OS scheduling scheme in which tasks 

are scheduled according to their deadline, duration, and frequency.

Effective Address The memory address generated by the software. This is the address that is 
then translated into the physical address of the actual hardware.

Electrically Erasable Programmable Read Only Memory (EEPROM) A type of ROM 
which can be erased and reprogrammed more then once, the number of times of erasure 
and re-use depending on the EEPROM. The contents of EEPROM can be written and 
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erased “in bytes” without using any special devices. This means the EEPROM can stay 
on its residing board, and the user can connect to the board interface to access and modify 
EEPROM.

Electricity Energy generated by the flow of electrons through a conductor.

Electron A negatively charged subatomic particle.

Emitter One of three terminals of a bipolar transistor.

Encoder A device that encodes (translates) a set of data into another set of data.

Endianness See Byte Order.

Energy The amount of work performed that can be measured in units of joules (J) or 
watts * Time.

Erasable Programmable Read Only Memory (EPROM) A type of ROM that can be erased 
more than one time using other devices that output intense short wavelength, ultraviolet 
light into the EPROM package’s built-in transparent window.

Ethernet One of the most common LAN protocols, implemented at physical and data link 
layers of the OSI model.

Extended Data Out Random Access Memory (EDO RAM) A type of RAM commonly 
used as main and/or video memory; it is a faster type of RAM that can send a block of 
data and fetch the next block of data simultaneously. 

F
Farad The unit of measurement in which capacitance is measured.

Field Programmable Gate Array (FPGA) A type of programmable ASIC implementing the 
application specific ISA model.

Firmware Any software stored on ROM.

Flash Memory A CMOS-based faster and cheaper variation of EEPROM. Flash can be 
written and erased in blocks or sectors (a group of bytes). Flash can also be erased electri-
cally, while still residing in the embedded device.

Flip-Flop One of the most commonly used types of latches in processors and memory 
circuitry. Flip-flops are sequential circuits that are called such because they function by 
alternating (flip-flopping) between both states (0 and 1), and the output is then switched 
(such as from 0-to-1 or from 1-to-0, for example). There are several types of flip-flops, 
but all essentially fall under either the asynchronous or synchronous categories. 

Fuse An electrical component that protects a circuit from too much current by breaking the 
circuit when a high enough current passes through it. Fuses can also be used in some 
types of ROMs as the mechanism to store data.
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G
Galvanometer A measurement device that measures smaller amounts of current in a circuit.

Garbage Collector A language-related mechanism that is responsible for deallocating unused 
memory at runtime.

Gate A more complex type of electronic switching circuit designed to perform logical binary 
operations, such as AND, OR, NOT, NOR, NAND, XOR, and so on.

Glass-box Testing See White-box testing.

Ground In a circuit, the negative reference point for all signals.

H
Half Duplex An I/O communications scheme in which a data stream can be transmitted and 

received in either direction, but in only one direction at any one time.

Handshaking The process in which protocols are adhered to by components on a board or 
devices over a network that want to initiate and/or terminate communication.

Hard Real Time Describes a situation in which timing deadlines are always met.

Hardware All of the physical components of an embedded system.

Harvard Architecture A variation of the von Neumann model of computer systems, which dif-
fers from von Neumann in that it defines separate memory spaces for data and instructions.

Heap A portion of memory used by software for dynamic allocation of memory space.

Heat Sink A component on a board that extracts and dissipates heat generated by other board 
components.

Henry The unit of measurement for inductance.

Hertz The unit of measurement for frequency in terms of cycles per second.

High-Level Language A programming language that is semantically further away from 
machine language, more resembles human language, and is typically independent of the 
hardware.

Hit Rate A cache memory term indicating how often desired data is located in cache relative 
to the total number of times cache is searched for data.

Host The computer system used by embedded developers to design and develop embedded 
software; it can be connected to the embedded device and/or other intermediary devices 
for downloading and debugging the embedded system.

Hysteresis The amount of delay in a device’s response to some change in input.
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I
In-circuit Emulator (ICE) A device used in the development and debugging of an embedded 

system which emulates the master processor on an embedded board.

Inductance The storage of electrical energy within a magnetic field.

Inductor An electrical component made up of coiled wire surrounding some type of core (air, 
iron, etc.). When a current is applied to a conductor, energy is stored in the magnetic field 
surrounding the coil allowing for a energy storing and filtering effect.

Infrared (IR) Light in the THz (1,000 GHz , 2 x 1011 Hz—2 x 1014 Hz) range of frequencies.

Instruction Set Architecture (ISA) The features that are built into an architecture’s instruc-
tion set, including the types of operations, types of operands, and addressing modes, to 
name a few.

Insulator A type of component or material which impedes the movement of an electric current.

Integrated Circuit (IC) An electrical device made up of several other discrete electrical 
active elements, passive elements, and devices (transistors, resistors, etc.)—all fabricated 
and interconnected on a continuous substrate (chip).

Interpreter A mechanism that translates higher-level source code into machine code, one line 
or one byte code at a time.

Interrupt An asynchronous electrical signal.

Interrupt Handler The software that handles (processes) the interrupt, and is executed after 
the context switch from the main instruction stream as a response to the interrupt.

Interrupt Vector An address of an interrupt handler.

Interrupt Service Routine (ISR) See Interrupt Handler.

Inverter A NOT gate that inverts a logical level input, such as from HIGH to a LOW or 
vice-versa.

J
Jack An electrical device designed to accept a plug. There are many type of jacks, including 

coaxial, 2-plug, 3-plug, and phono, just to name a few.

Joint Test Access Group (JTAG) A serial port standard that defines an external interface to 
ICs for debugging and testing.

Just-In-Time (JIT) Compiler A higher-level language compiler that translates code via 
interpretation in the first pass, and then compiles into machine code that same code to be 
executed for additional passes.
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K
Kernel The component within all operating systems that contains the main functionality of 

the OS, such as process management, memory management, and I/O system management. 

L
Lamp An electrical device that produces light. There are many types of lamps used on differ-

ent types of embedded devices, including neon (via neon gas), incandescent (producing 
light via heat), and xenon flash lamps (via some combination that includes high voltage, 
gas, and electrodes), to name a few.

Large Scale Integration (LSI) A reference to the number of electronic components in an IC. 
A LSI chip is an IC containing 3000–100,000 electronic components per chip.

Latch A bistable multivibrator that has signals from its output fed back into its inputs, and 
can hold stable at only one of two possible output states: 0 or 1. Latches come in several 
different subtypes, including S-R, Gated S-R, and D.

Latency The length of elapsed time it takes to respond to some event.

Least Significant Bit (LSb) The bit furthest to the right of any binary version of a number.

Least Significant Byte (LSB) The 8 bits furthest to the right of any binary version of a 
number; for example, the two digits furthest to the right of any hexadecimal version of a 
number larger than a byte.

Light Emitting Diode (LED) Diodes that are designed to emit visible or infrared (IR) light 
when in forward bias in a circuit.

Lightweight Process See Thread.

Linker A software development tool used to convert object files into executable files.

Little Endian Data represented or stored in such a way that the LSB and/or the LSb is stored 
in the lowest memory address.

Loader A software tool that relocates developed software into some location in memory.

Local Area Network (LAN) A network in which all devices are within close proximity to 
each other, such as in the same building or room. 

Logical Memory Physical memory as referenced from the software’s point-of-view, as a one-
dimensional array. The most basic unit of logical memory is the byte. Logical memory is 
made up of all the physical memory (registers, ROM, and RAM) in the entire embedded 
system.

Loudspeaker See Speaker.
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Low-Level Language A programming language which more closely resembles machine 
language. Unlike high-level languages, low-level languages are hardware depen-
dent, meaning there is typically a unique instruction set for processors with different 
architectures.

M
MAC Address The networking address located on networking hardware. MAC addresses are 

internationally unique due to the management of allocation of the upper 24-bits of these 
addresses by the IEEE organization. 

Machine Language A basic language consisting of ones and zeros that hardware components 
within an embedded system directly transmit, store, and/or execute.

Medium Scale Integration (MSI) A reference to the number of electronic components in an 
IC. A MSI chip is an IC containing 100-3,000 electronic components per chip.

Memory Cell Physical memory circuit that can store one bit of memory.

Memory Management Unit (MMU) A circuit used to translate logical addresses into physi-
cal addresses (memory mapping), as well as handling memory security, controlling 
cache, handling bus arbitration between the CPU and memory, and generating appropriate 
exceptions.

Meter A measurement device that measures some form of electrical energy, such as voltage, 
current, or power.

Microcontroller Processors that have most of the system memory and peripherals integrated 
on the chip.

Microphone A type of transducer that converts sound waves into electrical current. There are 
many types of microphones used on embedded boards, including condenser microphones 
which use changes in capacitance in proportion to changes in sound waves to produce its 
conversions, dynamic microphone which use a coil that vibrates to sound waves, and a 
magnetic field to generate a voltage that varies in proportion to sound variations, to name 
a few.

Microprocessor Processors that contain a minimal set of integrated memory and I/O 
peripherals.

Most Significant Bit (MSb) The bit furthest to the left of any binary version of a number.

Most Significant Byte (MSB) The 8 bits furthest to the left of any binary version of a 
number; for example, the two digits furthest to the left of any hexadecimal version of a 
number larger than a byte.

Multitasking The execution of multiple tasks in parallel.

Multivibrator A type of sequential logical circuit designed so that one or more of its outputs 
are fed back as input.
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N
NAND Gate A gate whose output is 0 when both inputs are 1.

Noise Any unwanted signal alteration from an input source, or any part of the input signal 
generated from something other then a sensor. 

NonVolatile Memory (NVM) Memory that contains data or instructions that remain even 
when there is no power in the system.

NOR Gate A gate whose output is 0 if either of the inputs are 1.

NOT Gate See Inverter.

O
On-Chip Debugging (OCD) Refers to debugging schemes in which debugging capabilities 

are built into the board and master processor.

One Time Programmable (OTP) A type of ROM that can only be programmed (perma-
nently) one time outside the manufacturing factory, using a ROM burner. OTPs are based 
upon bipolar transistors, in which the ROM burner burned out fuses of cells to program 
them to “1” using high voltage/current pulses.

Operating System (OS) A set of software libraries that serve two main purposes in an 
embedded system: providing an abstraction layer for software on top of the OS to be less 
dependent on hardware (making the development of middleware and applications that sit 
on top of the OS easier), and managing the various system hardware and software re-
sources to ensure the entire system operates efficiently and reliably. 

OR Gate A gate whose output is 1 if either of the inputs are 1.

P
Packet A unit to describe some set of data being transmitted over a network at one time.

Parallel Port An I/O channel that can transmit or receive multiple bits simultaneously.

Plug An electrical component used to connect one subsystem into the jack of another subsys-
tems. There are many types of plugs, such as 2-conductor, 3-conductor, and phono/RCA.

Polling Repeatedly reading a mechanism (such as a register, flag, or port) to determine if 
some event has occurred.

Printed Circuit Board (PCB) Thin sheets of fiberglass in which all the electronics within 
the circuit sits on. The electric path of the circuit is printed in copper, which carries the 
electrical signals between the various components connected on the board.

Process A creation of the OS that encapsulates all the information that is involved in the 
execution of a program, such as a stack, PC, the source code and data.
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R
Random Access Memory (RAM) Volatile memory in which any location within it can be 

accessed directly (randomly, rather than sequentially from some starting point), and 
whose content can be changed more than once (the number depending on the hardware).

Read Only Memory (ROM) A type of non-volatile memory that can be used to store data on 
an embedded system permanently.

Rectifier An electronic component that allows current to flow in only one direction.

Reduced Instruction Set Computer (RISC) An ISA that usually defines simpler operations 
made up of fewer instructions.

Register A combination of various flip-flops that can be used to temporarily store data or 
delay signals. 

Relay An electromagnetic switch. There are many types of relays, including the DPDT (Dou-
ble Pole Double Throw) relay which contains two contacts that can be toggled both ways 
(on and OFF), a DPST (Double Pole Single Throw) relay which contains two contacts 
that can only be switched on or off, a SPDT (Single Pole Double Throw) relay which 
contains one contact that can be toggled both ways (on and off), and a SPST (Single Pole 
Single Throw) relay which contains one set of contacts and can only be switched one way 
(on or off). 

Resistor An electronic device made up of conductive materials that have had their conductiv-
ity altered in some fashion in order to allow for an increase in resistance.

Real Time Operating System )RTOS) An OS in which tasks meet their deadlines, and re-
lated execution times are predictable (deterministic).

Romizer A device used to write data to EPROMs.

S
Scheduler A mechanism within the OS that is responsible for determining the order and the 

duration of tasks to run on the CPU. 

Semaphore A mechanism within the OS which can be used to lock access to shared memory 
(mutual exclusion), as well as can be used to coordinate running processes with outside 
events (synchronization). 

Semiconductor Material or electrical component whose base elements have a conductive 
nature that can be altered by introducing other elements into their structure meaning it has 
the ability to behave both as a conductor (conducting part of the time) and as an insulator 
(blocking current part of the time).

Serial Port An I/O channel that can transmit or receive one bit at any given time.

Speaker A type of transducer that converts variations of electrical current into sound waves.
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Switch An electrical device used to turn an electrical current flow on or off.

T
Target The embedded system platform, connected to the host, being developed.

Task See Process.

Thermistor A resistor with a resistance changes on-the-fly depending on the temperature 
the thermistor is exposed to. A thermistor’s resistor typically decreases as temperature 
increases.

Thermocouple An electronic circuit that relays temperature differences via current flowing 
through two wires joined at either end. Each wire is made of different materials with one 
junction of the connected wires at the stable lower temperature, while the other junction 
is connected at the temperature to measured. 

Thread A sequential execution stream within a task. Threads are created within the context of 
a task, meaning a thread is bound to a task. Depending on the OS, a task can also own one 
or more threads. Unlike tasks, threads of a task share the same resources, such as working 
directories, files, I/O devices, global data, address space, and program code. 

Throughput The amount of work completed in a given period of time.

Tolerance Represents at any one time how much more or less precise the parameters of an 
electrical component are at any given time based on its actual labeled parameter value. 
The actual values should not exceed plus (+) or minus (–) the labeled tolerance.

Transceiver A physical device which receives and transmits data bits over a networking 
transmission medium.

Transducer An electrical device that transforms one type of energy into another type of 
energy.

Transformer A type of inductor that can increase or decrease the voltage of an AC signal.

Transistor Some combination of P-type and N-type semiconductor material, typically with 
three terminals connecting to one type of each material. Depending on the type of transis-
tor, they can be used for a variety of purposes, such as current amplifiers (amplification), 
in oscillators (oscillation), in high-speed integrated circuits, and/or in switching circuits 
(DIP switches and push buttons commonly found on off-the-shelf reference boards).

Translation Lookaside Buffer )TLB) A portion of cache used by an MMU for allocating 
buffers that store address translations.

Trap Software and internal hardware interrupts that are raised by some internal event to the 
master processor .

Truth Table A table that outlines the possible input (s) of a logic circuit or boolean equation, 
and the relative output (s) to the input (s).
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Twisted Pair A pair of tightly interwrapped wires used for digital and analog data 
transmission.

U
Ultra Large Scale Integration (ULSI) A reference to the number of electronic components 

in an IC. A ULSI chip is an IC containing over 1,000,000 electronic components per chip.

Universal Asynchronous Receiver Transmitter (UART) A serial interface that supports 
asynchronous serial transmission.

Universal Synchronous Asynchronous Receiver Transmitter (USART) A serial interface 
that supports both synchronous and asynchronous serial transmission.

Untwisted Pair (UTP) A pair of parallel wires used for digital and analog data transmission.

V
Very Large Scale Integration (VLSI)  A reference to the number of electronic components 

in an IC. A VLSI chip is an IC containing 100,000–1,000,000 electronic components per 
chip.

Virtual Address A memory location based upon a logical address that allows for the expan-
sion of the physical memory space. 

Voltage Divider An electrical circuit made up of a few or more resistors that can decrease the 
input voltage of a signal.

Voltmeter A measurement device that measures voltage.

W
Wattmeter A measurement device that measures power.

Way-Ahead-of-Time (WAT) Compiler A compiler that translates higher-level code directly 
into machine code.

White-box testing Testing that occurs with a tester that has visibility into the system’s inter-
workings, such as having access to source code and schematics information.

Wire A component made up of conductive material that carries signals between components 
on a board (i.e., bus wires) or between devices (i.e., wired transmission mediums).

X
XOR Gate A gate whose output is 1 (or on, or high) if only one input (but not both) is 1.
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Symbols
.NET, 33
.NET Compact Framework, 45

base class library (BCL), 45
common language runtime (CLR), 45

2000 MPC823 User’s Manual, 365, 376

A
air transmissions, 91
ammeter, 582
application software, 447

general-purpose, 447
market specific, 447

architectural structures, 10
allocation, 10
component and connector, 10
module, 10

B
base class library (BCL), 45
base register (BR), 336
baud rate generator register (I2BRG), 354
Bluetooth protocol stack, 54
board buses, 287

backplane buses, 288
bridges, 287
bus arbitration and timing, 289, 291

asynchronous, 291
acknowledgment/ACK or enquiry/ENQ, 292
handshaking, 292
READ or WRITE, 292

FIFO (first in, first out), 289
I2C (Inter IC) bus, 294

complete transfer diagram, 296
data transfer example, 295
serial clock line (SCL), 294
serial data line (SDA), 294
START and STOP conditions, 295

master, 289
preemption priority-based scheme, 290
priority-based system, 289

schemes
centralized serial (daisy-chain), 289
distributed self-selection, 289
dynamic central parallel, 289

slave, 289
synchronous, 291

clock signal, 291
expandable, 288
I/O buses, 288
non-expandable, 288
PCI (peripheral component interconnect) bus, 296

expansion PCI interface, 296
internal PCI interface, 296
PCI arbitration scheme, 297

performance, 300
bandwidth, 300

bus width, 301
split transactions, 301
wait state, 301

structure, 287
system buses, 288

board I/O, 253
components, 254

debugging I/O, 254
graphics and output I/O, 254
input, 254
networking and communications I/O, 254
real time and miscellaneous I/O, 254
storage I/O, 254

hardware, 254
communication interface, 255
communication port, 254
I/O buses, 255
I/O controller, 255
master processor integrated I/O, 255
transmission medium, 254

interfacing the I/O components, 277
communication interface, 278
communication port, 277
I/O bus, 278
I/O controller, 279
I/O ports, 278
master CPU, 279
memory-mapped I/O, 279
programmed transfer, 280
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special I/O instructions, 279
parallel, 267

CRT ports, 268
IEEE 1284 controllers, 268

control signals, 270
interface, 267
parallel output and graphics I/O, 268

geometric engine, 268
raster and display engine, 268
rendering engine, 268

SCSI, 268
parallel and serial I/O

Ethernet, 271
attachment unit interface (AUI), 273
gigabit media independent interface (GMII), 275
media access control (MAC), 273
media independent interface (MII), 275
medium attachment unit (MAU), 273
medium dependent interface (MDI), 272
physical coding sub layer (PCS), 275
physical layer device (PHY), 275
physical layer signaling (PLS), 273
physical medium attachment (PMA), 273
physical medium dependent (PMD), 275
reconciliation sub layer (RS), 275

serial, 257
asynchronous transfer, 258
data transmission, 257

full duplex scheme, 257
half duplex scheme, 257
simplex scheme, 257

IEEE 802.11 wireless LAN, 264
OSI model, 266
standards summary, 264, 265

interface, 257, 259
SPI (serial peripheral interface), 259
UART (universal asynchronous receiver-transmitter), 259

RS-232, 260
DCE (Data Circuit-terminating Equipment), 260
DTE (Data Terminal Equipment), 260
null modem, 262
RS-232 interface, 261

synchronous transfer, 258
von Neumann based I/O block diagram, 253

board I/O driver, 358
Ethernet driver, 358

CDMA/CD (MAC sublayer) reception mode, 363
flow chart, 363
Motorola/Freescale MPC823 Ethernet example, 365
NetSilicon NET+ARM40 Ethernet example, 372

CDMA/CD (MAC sublayer) transmission mode, 361
flow chart, 362, 364

data encapsulation, 359
frame, 359–360

802.1Q tag type, 360
canonical format indicator (CFI), 361
CRC (cyclical redundancy check), 360
data, 360

error checking, 360
length/type, 360
media access control (MAC) address, 360
pad, 360
preamble, 360
routing information field (RIF), 361
start, 360
tag control information, 360
user priority field (UPF), 361
VLAN identifier (VID), 361

initializing, 358
media access management, 361

IEEE 802.3 half-duplex carrier sense multiple 
access/collision detect (CDMA/CD), 361

IEEE 802. 3x full-duplex Ethernet, 361
receive data decapsulation (RDD), 361
receive media access management (RMAM), 361
transmit data encapsulation (TDE), 361
transmit media access managment (TMAM), 361

topologies, 359
functions, 358
RS-232 driver, 375

initializing, 375
Motorola/Freescale MPC823 RS-232

block diagram, 376
example, 376
serial management controllers (SMCs), 376

board I/O startup (initialization) device drivers, 358
RS232 I/O, 358

board memory, 223
memory hierarchy, 223
primary memory, 223

level-2+ cache, 223
main memory, 223
ROM, 223
secondary/tertiary memory, 223

registers, 223
summary, 239

board support package (BSP), 440

C
campus area networks (CAN), 47
capacitor, 97

schematic symbols, 99
central processing unit (CPU), 82, 149

arithmetic logic unit (ALU), 149, 151
cascaded adder, 154
full adder, 151

gate-level circuit, 153
logic symbol, 153
truth table and logic equations, 153

half-adder, 152
ripple-carry adder, 154

control unit (CU), 150, 164
address generation unit, 165
branch prediction unit, 165
instruction queue, 165
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sequencer, 165
internal CPU buses, 150
memory, 166

level-1 cache, 166
random access memory (RAM), 166
read-only memory (ROM), 166
registers, 166

memory hierarchy, 166
pipeline, 149
processor performance, 203

availability, 205
bandwidth, 204
benchmarks, 205
latency, 204
millions of instructions per seconds (MIPS), 205
MTBF (mean time between failures), 205
MTTR (mean time to recover), 205
pipelining, 205
recoverability, 205
reliability, 205
throughput, 203

register, 149, 156
counters, 158, 160

asynchronous, 160
synchronous, 163

flag, 158–159
set-reset (SR) flip-flop, 159

flip-flops, 156
general purpose, 158
I/O ports, 158
shift, 156
special purpose, 158
storage, 156

system (master) clock, 165, 204
clock period, 204
clock rate, 204
CPI (average number of clock cycles per instruction), 204
execution time, 204

chip select (CS), 335
combinational circuit, 114
common language runtime (CLR), 45
common language specification, 45
conductors, 89
context switch, 323

D
datasheets, 206

DC characteristics, 213
EXTAL and EXTLCK input high voltage, 214
input high voltage, 213
input leakage currents, 214
input low voltage, 213
operating voltage, 213
output high voltage, 214
output low voltage, 214

maximum tolerated ratings, 210
power dissipation, 212

thermal calculation and measurement, 216
thermal characteristics, 211

data control registers (MD_CTR), 342
data pathway(s)/bus(es), 82
DCE (cata circuit-terminating equipment), 260
device driver, 311

architecture-specific, 312
generic, 312
interrupt-handling, 315

connecting, 323
disable, 315
enable, 315
enabling/disabling, 323
enabling/disabling interrupts, 323
interrupt handler, 323
interrupt services, 323
interrupt service routine (ISR), 323
IRQ (Interrupt Request Level), 316
locking/unlocking, 323
performance, 330
pseudocode examples, 323
servicing, 315
shutdown, 315
startup, 315

memory, 332
blocks, 333
byte ordering scheme

big endian, 333
little endian, 333

functions, 332
memory controller, 335

general-purpose chip-select machine (GPCM), 335
memory bank, 334, 336
user-programmable machines (UPMs), 335

memory management
pseudocode examples, 334

offset, 333
segments, 333
segment number, 333

on-board bus, 351
protocol, 351

functions, 351
I2C, 351

pseudocode example, 351
digital signal processors (DSPs), 139
digital television (DTV), 65

set-top box (STB), 66
diodes, 101

anode, 101
cathode, 101
depletion region, 102
light emitting diodes (LEDs), 102
schematic symbols, 101

DMA (direct memory access), 176
DTE (data terminal equipment), 260
DTV standards, 66

examples, 66
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E
effective page number (EPN) register, 342, 344
electromagnetic waves, 91
embedded board, 82

AMD/National Semiconductor x86 reference board, 84
Ampro MIPS reference board, 85
Ampro PowerPC reference board, 85
components, 82

active, 86
central processing unit (CPU), 82
data pathway(s)/bus(es), 82
input device, 82
memory, 82
output device, 82
passive, 86

hardware
conductors, 89
insulators, 89–90
semiconductors, 89, 91

integrated circuits (ICs), 86
Mitsubishi analog TV reference board, 85
Net Silicon ARM7 reference board, 84
oscillator, 114
passive components, 93

capacitor, 97
inter-electrode capacitance, 98
temperature coefficient of capacitance, 98
tolerance, 98

inductors, 99
magnetic field, 99

resistor, 93
fixed, 94
power rating, 94
reliability level rating, 94
temperature coefficient of resistance, 94
tolerance, 93
variable, 97

von Neumann model, 83
embedded operating systems, 383

architecture business cycle, 512
features, 514
performance, 517
prototype, 515
requirements, 513
security, 519
testability, 520
user friendliness scenario, 517

creating architecture, 510
stages, 510
stage 1, 511
stage 2, 512
stage 3, 523

architectural idioms, 523
architectural styles, 523
programming language selection, 526
selecting an operating system, 528
selecting a processor, 529

stage 4, 530
structures, 530

stage 5, 533
documenting, 533

stage 6, 535
analysis approaches, 536
analyze and evaluate, 535

design phases, 510
phase 1: creating the architecture, 510
phase 2: implementing the architecture, 510
phase 3: testing the system, 510
phase 4: maintaining the system, 510

layered, 385
maintaining, 566
microkernel, 385
monolithic, 385

embedded processor, 129
architectures, 130

examples of, 131
examples of, 131
integrated processor, 130
master, 129

microcontroller, 130
microprocessor, 130

slave, 129
embedded software, 309

application software, 309
systems software, 309

device driver, 311
architecture-specific, 312
functions, 314
generic, 312
interrupt-handling, 315, 330
von Neumann model, 312

memory device driver, 332
embedded systems

alternating current (AC), 87
analog signal, 88

noise, 88
architecture, 9, 11

elements, 9
importance of, 11
structures, 9

definition of, 5
digital signal, 88

noise, 88
direct current (DC), 87
examples of, 6, 7, 574

embedded systems design, 7
development models, 7

big-bang, 7
code-and-fix, 7
Embedded Systems Design and Development Life-

cycle Model, 7
spiral, 7
waterfall, 7

I/O performance, 280
implementation, 541
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development tools, 541
benchmarks, 549
debugging, 541, 548–554
translation, 541, 545
utility, 541–542

system boot-up, 555
BIOS (basic input output system), 555
bootcodeExample, 555
booting example, 556, 560
bootloader, 555
bootstrap, 555
boot code, 555

testing, 541, 563
compatibility testing, 564
dynamic black box testing, 563
dynamic white box testing, 563
integration testing, 564
manufacturing testing, 564
regression testing, 564
static black box testing, 563
static white box testing, 563
system testing, 564
testing model matrix, 564
unit/module testing, 564

Embedded Systems Design and Development Lifecycle 
Model, 7

embedded systems hardware, 83
Embedded Systems Model, 12, 82

layers, 12
erasing flash, 349

F
Flash memory, 349

G
garbage collection, 39, 425

copying, 42, 425
generational, 42, 425
generations, 41, 426
mark and sweep, 40, 42, 425
memory fragmentation, 40

gates, 110
general-purpose standards, 17, 19
general-purpose standards examples

networking, 27
programming languages, 28
quality assurance, 28
security, 28

H
hardware diagrams, 77

block diagrams, 77
learning to read, 77

Traister and Lisk method, 81
logic diagrams/prints, 78

schematic diagram, 78
conventions and rules, 80
example, 80
schematic symbols, 78

timing diagrams, 78
example, 79
fall time, 79
rise time, 79
symbol table, 79

Traister and Lisk method of learning, 81
wiring diagrams, 78

Harvard architecture model, 146
HTML, 34

I
I/O bus, 278
I/O controller, 279
I/O device, 358
I/O performance, 280

common units measuring performance
execution time, 281
response time, 281
throughput, 281

negative impact on performance, 280
data rates of the I/O devices, 280
how I/O and the master processor communicate, 281
speed of the master processor, 280
synchronizing the speed of the master processor to the 

speeds of I/O, 280
I/O ports, 278
I2C (Inter IC) bus, 294

complete transfer diagram, 296
data transfer example, 295
START and STOP conditions, 295

I2C address register (I2ADD), 354
I2C buffer descriptor initialization, 357

pseudocode sample, 357
I2C controller, 356
I2C event register (I2CER), 354
I2C mask register (I2CMR), 354
I2C mode register (I2MOD), 354
I2C paramater RAM initialization

pseudocode example, 356
I2C parameter RAM, 355
I2C register initialization, 354

maximum receive buffer length register (MRBLR), 354
pseudocode example, 354
receive buffer descriptor array (Rbase), 354
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read-only memory (ROM), 227
electrically erasable programmable ROM 

(EEPROM), 231
Flash memory, 232

erasable programmable ROM (EPROM), 231
mask ROM (MROM), 231



Index

634
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effective address fields, 342
memory mapping, 248
translation lookaside buffers (TLBs), 340

tablewalk, 340
TLB miss, 340

memory managers, 247
memory map, 340

internal memory map register (IMMR), 338
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message queues, 417
mutual exclusion, 413
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fork/exec, 390
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interleaving, 390
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physical medium, 48
TCP/IP protocol stack, 54
transmission medium, 48
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direct mapped, 176
DMA (direct memory access), 176
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memory management units (MMU), 176
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write-back, 176
write-through, 176
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memory map, 178
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memory management units (MMUs), 177
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memory controller, 173
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read-only memory (ROM), 166
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PROMs (programmable ROM), 168
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operating system (OS), 383

application software, 447
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Model, 509
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file system management, 435
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file access methods, 436
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I/O system management, 384
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security system management, 384
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interrupt and error detection management, 384
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microkernel (client-server), 385
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Linux operating system, 386
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I/O management, 437
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memory management
memory mapped files, 437
process memory locking, 437
shared memory objects, 437

process management
IPC, 437
priority scheduling, 437
real-time signal extension, 437
semaphores, 437
threads, 437
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process, 388
task, 388

context switch, 398
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fork/exec, 395
embedded Linux and states, 401

diagram, 401
RUNNING, 401
STOPPED, 401
WAITING, 401
ZOMBIE, 401

fork/exec, 390
fork/exec process creation model, 391

interrupt handling in vxWorks, 420
routines, 420
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Jbed memory management and segmentation, 430
Jbed RTOS, 394

spawn threading, 394
Linux memory management and segmentation, 430
Linux POSIX example, 438
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multitasking (also see multitasking), 388
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spawn, 390
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system call interface module, 411
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vxWorks memory management and segmentation, 427
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taskSpawn, 427

vxWorks POSIX example, 439
threadId, 439

vxWorks scheduling, 409
wind scheduler, 409

vxWorks semaphores, 414
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mutual exclusion, 415

user mode, 421
system calls, 421
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output device, 82

P
PCI (peripheral component interconnect) bus, 296

expansion PCI interface, 296
internal PCI interface, 296
PCI arbitration scheme, 297

PCI Local Bus Specification Revision 2.1, 296
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input high voltage, 213
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output low voltage, 214
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communication interface, 182
components

debugging I/O, 180
graphics and output I/O, 180
input, 180
networking and communications I/O, 180
real-time and miscellaneous I/O, 180
storage I/O, 180
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hardware, 181

communication interface, 181
communication port, 181
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I/O controller, 181
master processor integrated I/O, 181
transmission medium, 181

I/O ports, 182
interrupts, 195

auto-vectored, 198
dynamic multilevel priority scheme, 202
edge-triggered, 196
equal single level priority scheme, 202
external hardware, 195
handling, 195
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interrupt acknowledgment (IACK), 198
interrupt controller, 197
interrupt levels (priorities), 199
interrupt vector, 198
IRQ (interrupt request level), 196
level-triggered, 196
software, 195
static multilevel priority scheme, 202
summary of priorities and usages, 202
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serial peripheral interface [SPI], 191
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SPI (serial peripheral interface), 187
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SCC (serial communication controller), 188
SMC (serial management controller), 188
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throughput, 203, 249
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I/O instructions (I/O mapped), 195
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DMA (direct memory access), 195
programmed transfer, 195
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.NET, 33
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C++, 30
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evolution of, 31
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machine language, 31
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high-level language, 30
high-level language compilers, 32
host system, 31
interpretation, 31
interpreter, 33–34
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HTML, 34
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real-time operating system (RTOS), 408
real-world protocol stacks, 54
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light emitting diodes (LEDs), 102
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schematic symbols, 101
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bipolar junction transistor (BJT), 103
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