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Foreword

February 8, 2009 is the 175th anniversary of the birth of Dmitrii Ivanovich

Mendeleev, the great Russian scientist and statesman. All of his wide-ranging

scientific activities were oriented towards strengthening and developing the Russian

state: science, education, industry, and trade. In his notebook, he wrote: “I . . . have
endeavored, and will endeavor, as long as I am able, to contribute to the country in a

fruitful, industrially realistic way, confident that the country’s politics, develop-

ment, education, and even defense is now unthinkable without development of

industry. . .Science and industry – those are my dreams.”

D.I. Mendeleev made a fundamental contribution to the development of metro-

logy, both domestically and around the world. In 1892, he headed the first govern-

ment metrological institution in Russia – the Depositary of Standard Weights and

Measures, transforming it into a scientific research center of world significance – the

Main Chamber of Weights and Measures (currently known as the D.I. Mendeleev

All-Russian Scientific Research Institute for Metrology). Mendeleev’s genius was

fully apparent in that even in the early twentieth century he understood the nature of

the internal relationship between metrology and the level of scientific and industrial

development. His metrological reformmarked for the first time that an infrastructure

for ensuring uniformity of measurements had been established under the auspices of

the Russian government; the scientific, legal, and organizational bases of this

infrastructure have continued to remain important, even into the present day. D.I.

Mendeleev developed a general approach to metrological research and encouraged

domestic metrological research to be performed using his own trademarked personal

style, which involved a preliminary deep study of the item under study, extremely

careful formulation of the experiment, a detailed study of all sources of error, and

mandatory reduction of the research results to practice. He founded the Russian

metrological school, and initiated professional training of metrologists. Mende-

leev’s traditions have been carefully guarded by several generations of VNIIM

scientific personnel, who can rightfully be considered students and disciples of the

great metrologist.
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One ofMendeleev’s legacies has been the special attention paid to popularization

(in light of the “great impact of properly directed education on the success of the

country”) and, in particular, improving the quality of metrological education in

Russia. This metrology book was written for the great scientist’s anniversary by

one of the oldest staff members of the D.I. Mendeleev All-Russian Scientific

Research Institute for Metrology, Dr. (Eng. Sci.) A.E. Fridman.

St. Petersburg, Russia N.I. Khanov
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From the Author

I was prompted to write this book by my experience in teaching metrology at the

Saint Petersburg State Polytechnic Institute (SPbGPU). Metrology is a unique

scientific discipline that occupies an intermediate position between the fundamental

and applied sciences. The study of metrology is extremely valuable in the training

of scientists, primarily because it assists in forming the scientific worldview of

young specialists and accustoms them to thinking from a metrological point of

view, and to thinking from the point of view of a stochastic approach to quantitative

data on objects and phenomena in the tangible world.

Moreover, the role played by measurements in the modern world makes it

essential to study metrology. Measurements are an important part of many areas

in modern high technology: industrial production, scientific research, medicine,

defense, and many others. Scientists and technical specialists must therefore have

the theoretical knowledge and practical skills to develop measurement procedures,

perform measurements, and assess and interpret the results of measurements, i.e.,

the knowledge and skills imparted by a course in metrology.

These goals could be more readily achieved by including a mandatory metrology

course in the curricula for all technical specialties at the university level. However,

none of the textbooks and books that I know of in this field meet the current

requirements since they do not reflect the enormous changes that have occurred

in metrology in recent years. This statement refers not only to the textbooks that

have been prominent fixtures on the desks of several generations of Russian

metrologists – the book by M.F. Malikov [1], textbooks [2, 3], and several later

books [4–7, etc.].

The changes referred to above have affected virtually all of the major areas of

metrological activity. Several radically new approaches to metrology have been

theoretically validated and implemented. For example, a new system for the

assessment of measurement accuracy based on the concept of measurement uncer-

tainty has become generally accepted, even becoming an international regulation.

A radically new system for assurance of measurement accuracy has seen wider and

wider use both in this country and around the world: This system uses measures of
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convergence and reproducibility (obtained by comparison of results obtained from

measurements of the same quantity by a group of measurement laboratories) in

place of measures of measurement error (obtained through calibration of measure-

ment instruments against standards).

The traditional systems for realization and dissemination of units, which served

throughout the twentieth century as the basis for ensuring traceability of measure-

ments, can no longer serve that purpose, now that traceability of measurements is

required on a worldwide level. Therefore, these systems, which function as before

on the national level, have been supplemented by an international system for

confirming metrological equivalence of national standards based on key compar-

isons and regional comparisons under the auspices of international metrological

organizations.

These changes have significantly affected the content of metrological activities

in Russia and other countries around the world. At the same time, implementation

of these new ideas should not lead to a rejection of the classical approaches, which

continue to play a key role in practical metrology. Making the new and classical

approaches consistent has had a substantial impact on the system of metrological

terms and concepts; this impact has included the development of several new

concepts, revision of our understanding of many existing concepts, and a reformu-

lation of these concepts.

All of these scientific results (and many others) that have been obtained over the

past decade and that have seen widespread use in practical metrology are covered in

this book, which is an expanded version of the lecture notes for a metrology course

I taught at the Saint Petersburg State Technical Institute.

Chapter 1 discusses the basic concepts of metrology from amodern point of view.

Chapter 2 is devoted to measurement errors. For the readers’ convenience, the book

includes the minimum information required from probability theory and statistics.

The theory of random measurement errors, which shows that these errors follow a

generalized normal distribution law (and, in the most common special case –

a normal distribution law), is then discussed. A mathematical description of instru-

mental systematic error is provided as a function of the metrological characteristics

of the measurement system and as a function of the measurement conditions.

Procedural measurement error is also discussed, along with techniques for eliminat-

ing systematic error. Chapter 3 discusses the concept of measurement uncertainty,

which is now covered by international regulation [19]. This concept is shown to be

compatible and consistent with the classical theory of measurement errors. The

method for determining measured results (and for estimating the uncertainty in said

results) implemented by this regulation is also described. Chapter 4 provides a

detailed discussion of methods for statistical reduction of measurement results

(revised in light of this procedure).

Chapter 5 describes the basic assumptions and principles underlying the design

of the International System of Units (SI). Chapter 6 is devoted to traceability of

measurements. A detailed discussion of the major elements of national systems for

traceability of measurements is provided: references, calibration schemes, and

organizational structures. The metrological and legal characteristics of the two
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forms for dissemination of units – calibration and verification – are described; a

mathematical description of the statistical errors in verification is provided; and a

mechanism for determining the value of the uncertainty in the magnitude of a unit

during such operations will be provided. A new international system for assuring

traceability of measurements is described; this system is based on an agreement

among the directors of the various national metrological institutes, as well as key

comparisons among national standards. Chapter 7 describes methods for determi-

nation and adjustment of the verification and calibration periods. Since these

methods are grounded in the theory underlying the metrological reliability of the

SI system, they will therefore be discussed simultaneously with a presentation of

the basic provisions of this theory. Chapter 8 describes a new methodology for

assurance of measurement accuracy (based on the provisions contained in the

ISO 5725-series standards) that is now becoming more and more common around

the world.

Since this book is primarily addressed to metrology students and instructors, all

metrological quantities defined in the text are in italics.

A.E. Fridman
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Chapter 1

Basic Concepts in Metrology

1.1 Introduction

1.2 Properties and Quantities

It will be convenient to begin our discussion of metrological concepts with the

concepts of property and magnitude. A property of an object is one of its
distinguishing traits or characteristics. Heavy, long, strong, bright – these are all
examples of properties of various objects. In philosophy, property is defined as a
philosophical category, which expresses that aspect of an object that determines
whether it has something in common with other objects or is different from other
objects. Properties are qualitative characteristics, and many of them cannot be
expressed quantitatively. Other properties can be expressed quantitatively. Such
properties are called quantities. A quantity is a property that many objects (states,
systems, and processes) have in common on a qualitative basis, but the quantitative
value of the property for each object is specific to that object.

An extremely general classification of quantities as a concept is shown in Fig. 1.

Quantities are initially divided into real quantities and ideal quantities. An ideal

quantity is any numerical value. It is, by its very essence, an abstraction, not

associated with any real object. Therefore, ideal quantities are studied in mathe-

matics rather than metrology.

Real quantities are divided into physical quantities and ideal quantities.

Non-physical quantities are introduced, determined, and studied in information

science, the social sciences, economic sciences, and humanitarian sciences (e.g.,

sociology or linguistics). Examples of non-physical quantities are as follows:

Amount of information in bits, amount of financial capital in dollars, and a variety

of ratings determined using sociological surveys. The physical quantities that

A.E. Fridman, The Quality of Measurements: A Metrological Reference,
DOI 10.1007/978-1-4614-1478-0_1, # Springer Science+Business Media, LLC 2012
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metrology deals with are the properties of tangible objects, processes, and phenom-

ena. Unlike non-physical quantities, they exist in the tangible world around us in an

objective manner, independent of human desires.

Physical quantities are divided with respect to the method used for quantitative

determination into measured quantities and estimated quantities. The distinguishing

feature of a measurement is the presence of a measuring instrument – a special

piece of equipment that stores the magnitude of a unit and is used to determine the

value of a quantity. The process of estimation primarily refers to expert assessments

and organoleptic assessments (i.e., assessments using human sensory organs) of

quantities, such as, for example, determination of distances “by eye.” In such cases,

there is no piece of equipment in which to store the magnitude of a unit, meaning

that there is no assurance that the estimate obtained meets accuracy requirements.

The magnitude of the standard length dimension maintained by a person in his

consciousness varies substantially from one individual to another, and this value

can also vary for a single individual depending on his psychological and physical

condition. Thus, such an estimate is inaccurate and unreliable, and there is no

guarantee that the result of the estimation process will be objective. Only a piece

of equipment not subject to human deficiencies is capable of providing such a

guarantee. This is in fact the reason that measurements are the highest form of

quantitative estimation.

The history of metrology indicates that all physical quantities follow what is

essentially an identical path. Following discovery and identification of a new

property and determination of a physical quantity: first, a method for quantitative

estimation of the quantity is developed, and then, as knowledge increases, estima-

tion is replaced by indirect measurements. Measures and approaches for direct

measurements of this quantity will then be developed and used as a basis for

Quantities

Real Ideal

Physical Non-physical

Measured Determined by
evaluation

Fig. 1 Classification of quantities

2 1 Basic Concepts in Metrology



establishment of a system for metrological traceability of the new form of

measurements. For example, this was the path followed by measurements of

color: from color atlases to a form of measurement – colorimetry, including

equipment and measurement techniques, as well as metrologic traceability of said

measurements. Acoustic measurements and salinity measurements followed a

similar path. Measurement techniques will obviously be developed for many

other physical quantities that are currently estimated via expert or organoleptic

methods, such that said quantities become measured quantities.

The above analysis enables us to draw a clear boundary between measured and

estimated quantities: Measured quantities are physical quantities for which mea-

surement techniques already exist, and estimated quantities are physical quantities

for which measurement techniques have yet to be developed.

1.3 Magnitude and Value of a Quantity. Units
of Measurement for Quantities. Reference Scales
for Quantities

In actual fact, it is not the quantities themselves, but the quantities associated with

specific objects, phenomena, or processes, i.e., quantities with specific dimensions,

that are measured. Strictly speaking, measurement is the act of estimating the
magnitude of a quantity using specialized equipment (*). The magnitude of a
quantity is understood to be a quantitative determination of a quantity related to
a specific tangible object, system, phenomenon, or process.

Upon comparing the magnitude of some quantity to the unit for that quantity, we

obtain the value of the quantity. Thus, the value of a quantity expresses the
magnitude of a quantity in the form of some number of the units adopted for that
quantity. In formal notation, this is written as follows:

X ¼ x� ½X�; (1.1)

where X is the value of the quantity,

[X] is the unit of measurement for the quantity,

x is an abstract number occurring in the value of the quantity. It is called the

numerical value of the quantity.
Equation (1.1) is called the fundamental equation of measurement.
Setting x ¼ 1 in (1.1), we find that: X ¼ 1� ½X�. This then implies the following

definition of a unit:

A unit of measure (or, briefly, a unit) is understood to be a quantity of specific
magnitude that is arbitrarily assigned a numerical value of 1 and is used for
quantitative expression of homogeneous quantities. For example, the unit of length

is 1 m (m) and the unit of mass is 1 kg (kg).

1.3 Magnitude and Value of a Quantity. Units of Measurement for Quantities. . . 3



Upon comparing (1.1) with definition (*), the following definition of the term

“measurement” can be provided:

Measurement is the act of comparing a physical quantity against the unit for that
quantity using specialized equipment (**).

However, this definition does not include many physical quantities that are

measured using equipment, but for which units are not available due to

considerations of a fundamental nature. On the one hand, since no units are avail-

able, this is considered “estimation” rather than “measurement” under definition

(**). On the other hand, if the problem is posed in this manner, many equipment-

determined physical quantities of manufacturing or social importance might turn out

to be beyond the scope of practical metrology, which would, of course, be unaccept-

able. In order to resolve this contradiction, definition (**) needs to be expanded. This

is done using the concept of a quantity-value scale. By analogy with the definition of
“unit,” a “quantity-value scale” can be defined as follows:

A “quantity-value scale” is defined as an ordered set of quantity values
(manifestations of properties) that are arbitrarily assigned to certain specific
values used for quantitative expression of quantities (properties) that are homoge-
neous with said ordered set. Five basic types of scales are distinguished based on

the logical structure behind manifestation of the properties [8]:

1. Scale of names (scale of classifications). Scales of this type are used for

classification of objects whose properties only manifest themselves in the form

of equivalence or non-equivalence. The only statement that can be made with

respect to two objects A and B within this class is the following: A ¼ B (A is

identical to B) or A 6¼ B. These properties cannot be described quantitatively,

and the scales for these properties do not include the concepts of “larger,”

“smaller,” “zero,” or “one.” One example of this type of scale would be

classification of object colors based on the names (red, green, etc.) contained

in standard color atlases. Other examples of name scales include classifications

of components based on appearance/type, power consumption, etc. A B
2. Order scale (rank scale) This scale is monotonically increasing or decreasing, and

enables establishment of equivalence and order relationships (A<B or A>B)
among quantities describing this property. In an order scale, it is possible to

establish a hierarchy of objects with respect to the property being assessed, i.e., if

A<B and B<C, then A<C. The concept of “order scale” includes arbitrary scales –
scaleswhose values are given in arbitrary units (for example, the 12-valueBeaufort

marine wind scale). Order scales and the reference points on order scales have

become very common. The various hardness scales – Brinell, Rockwell, Vickers,

etc. – are classified as order scales. For example, the Mohs scale for determination

of mineral hardness contains ten reference minerals that are assigned

arbitrary hardness numbers: talc–1, gypsum–2, calcium–3, fluorite–4, apatite–5,

orthoclase–6, quartz–7, topaz–8, corundum–9, and diamond–10. Mineral

hardnesses are estimated by scratching with the reference minerals. For example,

if scratching the mineral with quartz (7) leaves a mark, and orthoclase (6) does not,

the hardness of this mineral satisfies the inequality 6<Q<7.
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3. Interval scale (difference scale). These scales are used for objects in which the
differences among properties satisfy equivalence, order, and additivity

relations (an additive quantity is a homogeneous physical quantity whose

values may be added, multiplied by a numerical factor, divided by one another;

thus, if A� B ¼ q1 and B� C ¼ q2, then A� C ¼ ðA� BÞ þ ðB� CÞ ¼
q1 þ q2, ðA� BÞp ¼ q1p, and ðA� BÞ=ðB� CÞ ¼ q1=q2. An interval scale

consists of identical intervals, has a “1” and one arbitrarily chosen zero

point. The Celsius, Fahrenheit, and Reaumur temperature scales are interval

scales, as is the count of years in various calendars.

Interval scales have arbitrary (adopted by agreement) units and arbitrary zeros

based on some sort of reference. By analogy with (1), they are described using

the equation

Q ¼ Q0 þ q½Q� (1.2)

where Q is the value of the quantity, [Q] is the unit of the quantity, q is a

numerical value, and Q0 is the zero point of the scale. We see that the interval

between any two quantitiesQ1 and Q2, which is equal to Q1 � Q2 ¼ ðq1 � q2Þ�
½Q� satisfies the fundamental equation of measurement (1.1). Thus, on such

scales, the difference between two quantities is also a quantity that has a specific

physical meaning. However, the sum of quantities

Q1 þ Q2 ¼ 2Q0 þ ðq1 þ q2Þ½Q� satisfies neither the fundamental equation of

measurement (1.1) nor the equation for the interval scale (1.2). This means

that the sum of quantities does not have any physical meaning on an interval

scale. For example, the difference in temperature between two bodies is the

temperature difference by which one of the bodies must be heated in order for

their temperatures to become equal, while the sum of two temperatures has no

physical meaning. In exactly the same way, the difference between two dates on

the calendar has clear physical meaning as the duration of the period of time

between these two dates, while the sum of the dates has no physical meaning.

4. Ratio scale. These scales describe object properties that satisfy equivalence,

order, and additivity relationships. Mass scales, length scales, and current scales

(and many other scales) are examples of such scales. Ratio scales have arbitrary

units and natural zeros. They therefore satisfy the equation

Q ¼ q½Q�: (1.3)

The fact that the sum of the quantities Q1 ¼ q1½Q� and Q2 ¼ q2½Q�, which is

equal to ðQ1 þ Q2Þ ¼ ðq1 þ q2Þ½Q�, satisfies fundamental equation of measure-

ment (1.1) implies that both differences of quantities and sums of quantities have

physical meaning in ratio scales.

5. Absolute scale When measuring relative quantities (ratios of homogeneous

quantities: molar concentration of a component, power factor, coefficient of

friction, and many others), the unit of measure is introduced in a natural way:

½Q� ¼ 1. In this case, the scale equation takes the formQ ¼ q. Such scales, which
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are also ratio scales, are frequently called “absolute scales.” Dimensionless and

count units of absolute scales are used for generation of many SI derived units.

Using the above information on scales of quantities, we can now revise defini-

tion (**):

Measurement is the act of comparing a physical quantity against the unit or
scale for that quantity using specialized equipment (***).

1.4 Measurement

In discussing this parameter, we must first of all define how measurement differs

from other evaluation methods. An answer to this question is provided by the

following definition, which was given by Professor K.P. Shirokov in GOST

16263–70 [9]:

Measurement is the act of experimentally determining a physical quantity using
specialized equipment.

This definition includes four traits:

1. Only physical quantities (i.e., properties of physical objects, phenomena,

or processes) can be measured. Thus, sociological, economic, psychological,

philological, and other quantitative assessments of non-physical quantities

remain outside the bounds of metrology.

2. Measurement is the experimental estimation of parameters, i.e., it always

involves an experiment. Thus, determination of a calculation through calculation

using a formula and known input data, statistical assessment of product quality

indicators via an opinion survey, and other similar procedures cannot be called

“measurement.”

3. Measurement is performed using special technical equipment – carriers of units

of measurement or scales, called measuring instruments. Thus, this definition

does not include other determination methods that do not use technical devices

(in particular, organoleptic determinations, and determinations via expert

assessment).

It should, of course, be noted that the widespread use of analytical

measurements and the increased importance of this measurement field have

made it necessary to provide an expanded definition of this trait. The issue is

that many analytical measurements are made by performing a series of

operations, with the portion of the operation involving use of measurement

instruments definitely not determining the accuracy of the result. For example,

laboratory measurements of the quality of oil in a railroad tank car will include

the following mandatory operations: Collection of a sample, delivery of the

sample to the laboratory, preparation of the sample, and measurement.

The quality with which each of these operations is performed has an effect on

measurement accuracy, and an error in performing any of them may have a

decisive impact. Strict rules for performing these operations are described in a
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metrological document called a Measurement Procedure (MP). By analogy with

medical terminology, we could say that an MP is a “prescription” describing the

measurement procedure, with strict compliance being required. Obviously, in the

case of such measurements, it is not so much the measuring instrument itself as

the overall MP that plays the decisive role in providing the required measurement

accuracy. In such cases, it would be logical to understand the “special technical

device” in K.I. Shirokov’s definition as referring to the MP as a whole (including

the measuring instruments used in the procedure).

4. Measurement is defined as determination of the value of a quantity. Thus,

measurement is the “comparison of a quantity against the unit or scale for that

quantity.” This approach has been developed through hundreds of years of

practical experience in measurement, and is completely consistent with the

concept of “measurement” defined over 200 years ago by the great mathemati-

cian L. Euler: “It is not possible to determine or measure one quantity other than

by assuming that another quantity of the same type is known and determining the

ratio between the quantity being measured and that quantity” [10].

Measurements may be classified as follows:

1. In terms of the trait of accuracy – “measurements of equal accuracy” and

“measurements of unequal accuracy.”

“Measurements of equal accuracy” refers to a series of measurements of some
quantity performed using measuring instruments of identical accuracy under
identical conditions.

“Measurements of unequal accuracy” refers to a series of measurements of
some quantity performed using measuring instruments with different accuracies
and/or under different conditions.

The methods used for reduction of “measurements of equal accuracy” and

“measurements of unequal accuracy” are slightly different. Thus, prior to reduc-

ing a series of measurements, a check needs to be performed to determine

whether or not the measurements are of equal accuracy. This is performed via

a statistical procedure based on the Fisher goodness-of-fit test.

2. In terms of number of measurements – single measurements and multiple

measurements.

A single measurement is a measurement that is only performed once.
A multiple measurement is a measurement of the same quantity in which the

result is obtained from several single measurements (readings) in succession.
What is the number of measurements above which a measurement can be

considered a “multiple measurement”? There is no strict answer to this question.

However, it is known that tables of statistical distributions can be used for

reduction of a series of measurements based on the rules of mathematical

statistics for a number of measurements n>4. It is therefore believed that a

measurement can be considered a “multiple measurement” if the number of

measurements is at least 4.

Inmany cases, especially ineveryday life, “singlemeasurements” are performed.

For example, a specific instantof time is generallymeasuredusing a clockonlyonce.
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In the case of some measurements, however, a single reading is not sufficient to

provide confidence in the result. In everyday life as well, it is frequently

recommended that several measurements be performed rather than a single mea-

surement. For example,whenmonitoringhumanarterial bloodpressure, the fact that

blood pressure is variable means that it is desirable to perform two or three

measurements and adopt the median value as the result. Pairs of measurements

and triplemeasurements differ frommultiplemeasurements in that it does notmake

sense to use statistical methods for assessment of the measurement accuracy.

3. Based on nature of the quantity being measured – static or dynamic.

“Dynamicmeasurement” is definedasmeasurement of a quantitywhosemagnitude
varies as a function of time. If there is rapid variation in the magnitude of a

measurand, said measurand must be measured in such a way that the time is

precisely recorded. Examples include measuring the distance to the ground from

an airplane that is descending, or measuring the varying voltage of an electrical

current. Essentially, a “dynamical measurement” consists of determining the

functional dependence of the measurand on time.

“Static measurement” is defined as measurement of a quantity that is
assumed (in the context of a specific measurement task) to remain unchanged
for the amount of time required to perform the measurement. For example,

measurement of the linear size of a fabricated part at standard temperature can

be considered a static measurement, since variations in the shop temperature at a

level of a few tenths of a degree will introduce a measurement error of no more

than 10 mm per m, which is insignificant compared relative to the error in

fabrication of the part. Thus, in the context of this measurement task, the

measurand can be considered constant. When performing calibration measure-

ments of the line standard meter on the primary state reference, the temperature

is held stable to within 0.005�C; such temperature variations will give rise to a

thousand times smaller measurement error – no more than 0.01 \mu m. However,

in the context of this measurement task, this would be a substantial variation, and

the variation in temperature during the measurement process must be taken into

account in order to achieve the desired measurement accuracy. These

measurements should therefore be performed using a procedure appropriate to

dynamic measurements.

4. Based on purpose of measurement – technical measurements and metrological

measurements.

“Technical measurements” are measurements intended to obtain information on
the properties of physical objects, processes, and phenomena in the surrounding
world. Such measurements are performed, for example, when monitoring and

controlling scientific experiments, when monitoring the parameters of products

or various technological processes, when controlling the movement of various

types of vehicles, for diagnosis of disease, for monitoring environmental pollution,

etc. Technical measurements are generally performed using ordinary measuring

instruments. However, measurement standards are frequently used in the perfor-

mance of experiments involving high-precision or unique measurements.
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“Metrological measurements” are measurements to ensure metrologic trace-
ability and required accuracy of technical measurements. Metrological

measurements include the following:

– Reproduction of units and scales for physical quantities using primary

measurement standards and dissemination of said units and scales using

lower-accuracy measurement standards;

– Calibration of measuring instruments;

– Measurements performed during verification of measurement instruments;

– Other measurements performed for this purpose (for example, measurements

made during comparison of measurement standards with the same accuracy

level), or for addressing other requirements internal to metrology (for exam-

ple, measurements for more accurate determination of fundamental physical

constants and for improvement of standard reference data for the properties of

substances and materials; and measurements for confirmation of the stated

capabilities of laboratories).

Metrological measurements are performed using measurement standards.

Products intended for consumption (by industry, agriculture, the army, govern-

ment executive-branch agencies, the public, etc.) are obviously produced using

technical measurements, while the system ofmetrological measurements serves

as an infrastructure for the system of technical measurements, and is required in

order for the latter system to exist, be developed, and be improved.

5. Based on the dimensions of the units used – absolute and relative.

A “relative measurement” is a measurement of the ratio of some quantity to a
quantity of the same dimensions acting as a unit. For example, determination of

the activity of a radionuclide in a source by measuring the ratio of the activity to

that of the radionuclide in another source that has been certified as a standard for

this quantity.

The opposite concept is “absolute measurement.” When such a measurement

is being performed, no unit for the quantity being measured is available to the

experimenter. Therefore, it is necessary to reproduce the unit during the mea-

surement process itself. This is possible via two methods:

– obtaining it “directly from the natural world,” i.e., reproducing it based on

the use of physical laws and fundamental physical constants (in the VIM

International Vocabulary of Metrology [11], this type of measurement is

called a “fundamental measurement”);

– reproducing the unit based on a known relationship between the unit and the

units for other quantities.

Thus, we can define an “absolute measurement” as follows:

Absolute measurements are measurements based on direct measurements of
one or more fundamental quantities and/or the use of fundamental physical
constants.

For example, measurement of force using a dynamometer would be

“relative measurement,” while measurement of force using the physical
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constant (the universal gravitational constant) and measures of mass

(a fundamental quantity in the SI system) g.
Implementation and metrological traceability of relative measurements is

generally the best solution for many measurement tasks, since relative

measurements are simpler, more accurate, and more reliable than absolute

measurements. In practice, absolute measurements (in the sense that

corresponds to the meaning of “fundamental measurement”) should be used

as an exception. Absolute measurements are used for independent reproduc-

tion of SI fundamental units and discovery of new physical relationships.

6. Based on method by which measurement results are obtained – direct measure-

ments, indirect measurements, measurements in a closed series, and combined

measurements.

Direct measurements are measurements performed using measuring instruments

that store a unit or scale for the quantity being measured. Examples include

measurement of the length of a part using a micrometer, measurement of current

using an ammeter, or measurement of mass on a scale.

Indirect measurements are measurements in which the value of a quantity is
determined based on results for direct quantities functionally related to the
quantity being determined. Examples of indirect measurements:

– Determination of the height h of an object based on the results from

measurements of the distance l to the object and the angle a of a right triangle
including the object, which are related by the equation h ¼ l� tan a;

– determination of the density r of a homogeneous cylindrical body based on

the results from measurement of the mass m and the height h and diameter d
of the cylinder, which are related by the equation

r ¼ m

0:25pd2h
:

Measurements in a closed series are measurements of several homogeneous
quantities performed simultaneously, in which the values of these quantities are
determined by solving a system of equations obtained via measurements of various
combinations of these quantities.

The classical example of measurements in a closed series is calibration of a set of

weights using a single standardweight, bymeasuring various combinations ofweights

from the weight set being calibrated, and solving the resulting set of equations.

Combined measurements are simultaneous measurements of two or more
non-homogeneous quantities to identify dependences between them. In other words,

combined measurements are measurements of the dependences between quantities.

One example of a combined measurement would be measurement of the

coefficient of linear thermal expansion (CLTE), which is performed by simulta-

neously measuring the change in temperature of a sample of the material under test

and the corresponding increase in the length of that sample, and then performing

mathematical reduction of the measured results.
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Distinctions should also be made with respect to measurement fields, types, and

subtypes.

Measurement field is understood to mean the full set of measurements of physical
quantities inherent in some area of science and engineering and distinguished by
specific characteristics.

The following measurement fields are currently identified:

– Measurement of quantities related to space and time;

– Mechanical measurements (including measurements of kinematical and

dynamical quantities, measurements of the mechanical properties of substances

and materials, and measurements of the mechanical properties and shapes of

surfaces);

– Thermal measurements (thermometry, measurements of thermal energy and the

thermal-physics properties of substances and materials);

– Electrical and magnetic measurements (measurements of electric and magnetic

fields, measurements of the parameters of electric circuits, measurements of the

characteristics of electromagnetic waves, and measurements of the electrical and

magnetic properties of substances and materials);

– Analytical (physical and chemical) measurements;

– Optical measurements (measurements of quantities in physical optics, coherent

optics, and nonlinear optics, measurements of the optical properties of substances

and materials);

– Acoustic measurements (measurements of quantities in physical optics, and

measurements of the acoustic properties of substances and materials);

– Measurements in atomic and nuclear physics (measurements of ionizing radiation

and radioactivity, and measurements of the properties of atoms and molecules).

“Type of measurement” is a subcategory within “field of measurement,” with its
own unique characteristics, and homogeneous measured quantities.

Within the field of electrical and magnetic measurements, the following

[types of measurements] can be identified: Measurement of electrical resistance,

measurement of electrical voltage, measurement of electromagnetic field (EMF),

measurement of magnetic induction, etc.

“Subtype of measurement” is a subcategory within “type of measurement,”
which describes the characteristics for measurements of a homogeneous quantity
(range, magnitude of quantities, measurement conditions, etc.).

For example, with respect to length measurements, a distinction is made between

measurement of large lengths (tens, hundreds, or thousands of kilometers) and

measurement of small and extremely small lengths.

1.5 Measurement Method and Procedure

The solution to any measurement task involves implementation of a specific

measurement principle.
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A measurement principle is the physical phenomenon or effect on which
measurements using a specific measuring instrument are based. Examples of

measurement principles are as follows:

– Use of the Josephson effect for measurements of electrical voltage;

– Use of the Doppler effect for measurements of [radial] velocity;

– Use of the force of gravity to measure mass by weighing;

– Resistance of platinum as a function of temperature, as implemented in platinum

resistance thermometers;

– ThermoEMF as a function of temperature difference, as implemented in ther-

moelectric thermometers.

However, selection of a measurement principle does not completely define the

measurement method, since measurement method is a much more general concept

that describes the method used to solve a measurement task. It is defined as follows:

A measurement method is a procedure or set of procedures (consistent with the
measurement principle implemented) for comparison of the quantity being
measured against the unit or scale for said quantity.

A wide variety of measurement methods are used. They may be classified based

on a variety of criteria. The first criterion is the physical principle used. In terms of

physical principle, measurement methods are divided into electrical, magnetic,

acoustic, optical, mechanical, etc. The second criterion used is the way in which

the measurement signal varies as a function of time. According to this criterion, all

measurement methods are divided into static methods and dynamic methods. The

third criterion is the means by which the measuring instrument interacts with the

subject of the measurements. In terms of this criterion, measurement methods are

divided into contact methods (where the measuring instrument sensor is in contact

with the subject of the measurements) and non-contact methods (where the

measuring instrument sensor does not come into contact with the subject of the

measurements). The fourth criterion is the type of measurement signal used in

the measuring instrument. According to this criterion, measurement methods are

divided into analog methods and digital methods.

This classification scheme could undergo further development. However,

a metrological classification scheme for measurement methods based on the methods

used for comparison of the measured quantity against the unit (see Fig. 2) would be

more general. According to this criterion, all measurement methods fall under one of

two methods:

– Direct estimation method (the value of the quantity is determined directly from

the readout device on the measuring instrument, i.e., a clock or ammeter);

– Method of comparison against a measure (the quantity being measured is

compared against a quantity that reproduces a measure, e.g., measurements of

mass using a lever scale).

There are several versions of the method involving comparison with a measure:

the differential method, the substitution method, the supplementation method, and

the coincidence method.
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The differential method is a measurement method in which the difference
between the quantity being measured and a homogeneous quantity with a known
value that differs only slightly from the value of the quantity being measured.

An example of a differential method is calibration of length measures by

comparison with standard measures using a comparator (an instrument designed

for comparison of measures) In this case, the measured quantity X is partially

balanced against the quantity reproducing the measure Xm, and the difference DX
is determined . Thus, the result of the measurement is X ¼ Xm þ DX. The differen-
tial method enables the accuracy of measurement to be substantially increased. For

example, if DX ¼ 0:01%, and the relative measurement error DX is 1%, the relative

error in the measured result X will be 0.01% (if the error in the measure is ignored).

One special case of the differential method is called the zero-measurement

method – a measurement method in which the resultant effect of the quantity

being measured and of the measure on the comparator is reduced to zero. In this

case, the value of the quantity being measured is equal to the value reproduced by

the measure. Examples of the zero method include: weighing a mass on a scale

using a set of weights; measurement of electrical voltage using a fully balanced

bridge.

The differentialmethod reduces the randomerror ofmeasurement. The substitution

method is useful in dealing with systematic errors. The substitution method is a
comparison-with-a-measure method in which the quantity to be measured is
substituted with a quantity reproduced by a measure. Since both measurements are

performed by the same instrument under identical conditions, systematic error can

largely be compensated for. For example, a significant component of themeasurement

error when determining mass on lever scales – the error from unequal scale arms – can

be eliminated from themeasured result if themeasurement is performed usingBorda’s

method (weighing by alternately placing weights and the unknown mass on the same

scale pan).

In certain measurement tasks, it is convenient to use other versions of the

comparison-against-a-measure method: The supplementation method and the coin-

cidence method. The supplementation method is a comparison-against-a-measure

Measurement methods.

Direct estimation method Method of comparison against a
measure

Differential Substitution Supplementation Coincidence

Zero

Fig. 2 Metrological classification of measurement methods
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method in which the quantity being measured is supplemented by a measure so that
the comparison instrument operates on the sum, which is equal to a previously
known value. For example, in certain cases, it may turn out that a mass measure-

ment in which a weight whose value is known to high accuracy is balanced against

the mass to be determined and a set of lighter weights placed in the other pan of

the balance.

The coincidence method is a measurement method in which the difference
between the quantity being measured and the quantity reproducing a measure is
determined via coincidence of scale markings or periodic signals. One example of

this method is measurement of length using a vernier caliper. The coincidence

method is frequently used in measurements of periodic processes. If, for example,

a frequency n is to be measured using an oscillator with a standard frequency n0, the
coincidence method would consist of recording the number n of the frequency n
coincident in time with the number n0 of frequency n0. In this case, the result of the
frequency measurement, which is given by the equation n ¼ n0n=n0, will have
almost the same error as the error in reproduction of the standard frequency n0 by
the oscillator.

Obviously, selection of a measurement method will depend on theoretical

justification, availability of the necessary measuring instruments, and the type

and design characteristics of the measuring instruments (measure, measuring

device, etc.). For example, an extremely simple measurement task such as measur-

ing the height of a factory smokestack may be performed by selecting one of the

following methods:

– climbing the stack with a ruler, and then performing the measurement (method

of comparison against a measure);

– Flying a helicopter with an altimeter until it is level with the smokestack, and

measuring the altitude (direct-assessment method);

– Calculating the height of the stack as the leg of a right triangle based on

measurements of the distance to the stack and the angle of this triangle (indirect

measurement).

If themeasurement method calls for development of basic procedures for use of the

measuring instruments, the measurement procedure is essentially the measurement

process that will best implement the selected measurement method. “Measurement
procedure” (MP) is the term used to describe the required set of rules and operations
such that compliance with said rules and operations will ensure that the required
measurement results are obtained using the selected method. The MP includes

requirements with respect to selection of measuring instruments, specifications

regarding preparation of the measuring instruments for use, requirements with respect

to measurement conditions, specifications regarding measurement procedures and

reduction of measurement results, including estimation of measurement accuracy.

The MP for analytical measurements also includes requirements with respect to

sample collection, sample storage, transportation of samples to the measurement

laboratory, and preparation of samples for measurement.
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Standardization of MPs is of great value for metrological traceability. For this

reason, MPs for recurrent measurements are generally covered by a regulatory

document of some kind.

1.6 Measuring Instruments

Technical devices that are used in measurements and which have standardized
metrological properties are called measuring instruments. The heart of this defini-
tion, which describes the metrological essence of a measuring instrument (MI), is

contained in the words “standardized metrological properties.” The existence of

“standardized metrological properties” means, first of all, that the MI is capable of

storing or reproducing a unit (or scale), and second, that the magnitude of this unit

remains unchanged for a specified time. If the magnitude of the unit were not stable,

it would be impossible to guarantee the required accuracy of the measurement

result. This then implies three conclusions:

– It is possible to make a measurement only when the device intended for this

purpose is able to store a unit such that the magnitude of the unit is sufficiently

stable (invariant as a function of time);

– Immediately after fabrication, the technical device is still not an MP; it becomes

one only after a unit is transferred to said technical device from another, more

accurate MI (this operation is called calibration);

– The magnitude of the unit stored in the MP must be periodically verified, and its

prior value restored, if necessary, via a new calibration.

In terms of purpose, a distinction is made between ordinary MPs used for

performing technical measurements and metrological MPs intended for perfor-

mance of metrological measurements. Metrological MIs are called measurement

standards.

In order to understand the metrological classification of MPs, consider the

typical block diagram for a direct measurement shown in Fig. 3 [7].

A direct measurement procedure consists of the following elementary operations:

– Transformation Q ¼ FðXÞ of a measured quantity X into another quantity Q that

is either homogeneous or inhomogeneous with respect to the first quantity;

Q=F(X) Δ = F(X ) − N [Q]X Measuring
transducer
function F

Comparison
against
measure Measured

result
q = N[Q]+Δ;

X̂ = F0
−1{q}.Reproduction of a

quantity of specified
magnitude N[Q] 

QM =N [Q]

Fig. 3 Structural diagram of direct measurement
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– Reproduction of a quantity Qm ¼ N½Q� of specified magnitude, approximately

equal to the magnitude of the quantity Q (where [Q] is the unit for said quantity);
– Comparison of the homogeneous quantities Q and Qm, determination of the

difference between them D ¼ Q� Qm, and determination of the actual transfor-

mation function for the quantity being measured F½X� ¼ N½Q� þ D;
– Generation of the measurement result X̂ by comparison against the calibration

function for the MP Q0 ¼ F0ðXÞ, which acts as a memory element. At this point,

the back-transformation X̂ ¼ F�1
0 fN½Q� þ Dg is performed using the transfor-

mation function F0ðXÞ that the MI had at the time the calibration relationship

was determined. Obviously, the magnitude ½Q0� of the unit determined in the last

calibration may differ from the magnitude ½Q�of the unit stored in the MI at the

time of measurement. This is one of the major sources of measurement error.

All of the above operations are performed using technical devices that are either

standalone measurement instruments or are part of an MI.

1.6.1 Measuring Transducers

This first operation requires a measuring transducer (MT) – an MI intended for
transformation of a measured quantity into another quantity or into a measurement
signal convenient for processing, further transformation, display, or transmission.
A distinction is made between primary and intermediate MTs based on location

within the measurement chain. A primary MT, also called a sensor, is an MT on
which the quantity being measured acts directly. Other MTs are called intermedi-
ate. They are located downstream of the primary MT, and may perform a variety of
operations related to transformation of the measurement signal. These operations
generally include the following:

– A change in the physical type of the quantity;

– A scale transformation (linear or non-linear);

– A scale and time transformation;

– An analog-digital transformation;

– A digital-analog transformation;

– A functional transformation (any mathematical operations on quantity values).

It should be remembered that this classification is somewhat arbitrary. First of all

a single MI may include several primary MTs (e.g., a thermocouple as part of a

thermoelectric thermometer). Second, the specialized nature of analytical

measurements also causes this classification principle to break down.

Analytical measurements are a transformation of the measured quantity and

comparison of this quantity against a measure, with being an information-bearing

parameter describing the medium being analyzed (an information-bearing parameter

is a parameter that contains information on the measured quantity). Such measure-

ments are generally performed using a set of MTs of the following types [12]:
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– MT1: Composition–composition MTs that enable large-scale transformation of

probes for analysis. The sample is characterized by an information-bearing

parameter C (concentration of the component being measured) and a combina-

tion of non-information-bearing parameters �Cn, including the contribution of

undetermined (interfering) components and the thermodynamic parameters of

the medium being analyzed. Passage through an MT1 includes processes such as

cleaning, drying, and modifying the temperature and pressure of the mixture to

the required values, and, after these transformations have been performed on the

medium being analyzed, collection of the required amount of medium. MT1s are

generally called sampling units or sample preparation units.

– MT2: A composition–property MT that supports transformation of the quantity

being measured, C, into some physical or chemical property suitable for later

measurement and recording. In many cases, this transformation occurs in two

phases: Production of a liquid-phase or solid-phase intermediate product in

which the concentration of the component is Yint(C), followed by transformation

of this concentration into the property F (Yint).
– MT3: An MT of the property–input signal type, which supports transformation

of the measured quantity into a measurement-signal output W. This transforma-

tion is also generally performed in two stages: Into an intermediate signal

WintðFÞ and then into the output signal W(Wint). In this case, the transformation

of Wint into W involves transformation of one electrical signal into another.

After obtaining output signals from the item being analyzed using a set of MTs, a

calibration function is used to compare the measured quantity against the measure

and generate estimation values C� of the quantity C being measured.

This set of MTs does not fit within the classification presented above, since the

measured quantity affects not only the first MT in the measurement chain, but also

affects all of them, including MT1, MT2, and the first transducer in the MT3 group.

In this case, only the second transducer in the MT3group is an intermediate

transducer. This then implies that in analytical instruments, the entire set of MTs

plays the role of a primary MT, successively transforming, in several phases, the

measured quantity into a measurement signal.

1.6.2 Measures

Reproduction of a quantity Qm ¼ N½Q� of specified magnitude is accomplished

using a measure of the quantity Q. An MT intended for reproducing and/or storing
the physical magnitude of one or more pre-specified magnitudes whose values are
known to the requisite accuracy. Examples of such measures include the line

standard meter, a normal element (a measure of EMF with a nominal value of

1 V), a quartz oscillator (a measure of the frequency of electrical oscillations),

a source of microscopic flows of gasses and vapors (an ampule containing material

released in gaseous form that is a measure for rate of transformation into the target
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substance gas. Measures are divided into single-valued measures (measures storing
a single magnitude of a quantity, for example, a plane-parallel end measure of

length or a constant-capacitance capacitor) and multi-valued measures (a measure
storing several magnitudes of a quantity, e.g., a line standard meter and a variable-

capacitance capacitor). In terms of practical measurements, wide use is made of sets
of measures (sets of measures containing various magnitudes of the same quantity,
e.g., a set of plane-parallel end measures of length) and boxes of measures (sets of
measures structurally combined into a single device with devices for connecting the
measures in various combinations, e.g., an electrical resistance box) in addition to

single measures.

By reproducing or storing the magnitude of a quantity assigned a certain value,

a measure stores the unit for that quantity. In other words, measures carry the units

for quantities, and is therefore serves as the basis for measurement.

Standard samples are a special class of measure. A standard sample is a measure
of one or more quantities characterizing the composition or properties of a
substance or material, in the form of a sample of said substance or material.
Examples of standard samples for properties include standard samples of benzoic

acid as measures for heat of combustion, standard samples of special steel as

measures for the properties of ferromagnetic materials, and standard samples of

quartz as measures for relative dielectric permittivity. Various substances, e.g.,

metals and alloys with well-defined values of the dominant component and

impurities present, are examples of standard samples for composition. The primary

application for standard samples is calibration of MIs when performing analytical

measurements. In addition, like ordinary standards, homogeneous standard samples

are used to create hierarchical (in order of decreasing accuracy) chains for dissemi-

nation of units. Standard samples are used in these chains for dissemination of units

to less accurate MIs, including other standard samples.

Special standard samples called calibration gas mixtures (CGMs), which are

very widely used in gas analysis measurements, have a special status in the system

of measures. A calibration gas mixture is a cylinder containing a pure gas or
gaseous mixture, and certified by a metrological service as a unique measure for
the concentration of components in a gaseous mixture. There are certain differences
between CGMs and standard samples in the form of solid objects. The most

important of these is that they are consumed in the process of measurement, and

this in turn frequently leads to a substantial increase in the cost of multiple

measurements.

As a general rule, standard samples are prepared and distributed by measurement

laboratories based on orders received from specialized forms or metrological labo-

ratories. However, there are exceptions. For example, some samples can be

prepared by the person performing the measurement, provided preparation is in

strict compliance with the preparation requirements set forth in the specifications

for the standard samples. For example, a standard sample for the concentration of

iron in water may be prepared by dissolving a standard sample of powdered iron

into a specified quantity of distilled water. Such standard samples are frequently

called calibration mixtures.
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In conclusion to our discussion of measures and their use, we should also

mention that it is also possible to use certain natural phenomena as measures. For

example, precision measurements of angles widely rely on a natural standard – the

full angle (planar or solid). The light from one specific star in the sky has been used

for metrologic traceability of photometers. The relative spectral energy distribution

in the spectrum of this star observed from various points in the USSR was carefully

determined. Once the energy curve of this star was found to be constant, this

methodology was legally established for calibration of ultraviolet photometers.

The last example illustrates how instruments can be calibrated using tables of

standard reference data. These calibrations include the following:

– In mechanical measurements – the mechanical characteristics of various

substances (for example, the density of pure substances at specified temperature,

humidity, and pressure);

– In temperature measurements – the constants characterizing phase transitions

(melting/hardening or boiling/condensation), EMFs of various thermocouples, etc.;

– In electrical measurements – the characteristics of various stable electrical

phenomena (for example, the EMFs of various galvanic pairs);

– In optical measurements – various atomic constants, since all physical optics is

based on the emissive and absorptive properties of atoms and molecules;

Analytical measurements very commonly make use of standard reference data. Such

data includes information on a wide variety of properties of pure substances, various

dependences of the properties of alloys and gaseous mixtures on composition, absorp-

tion coefficients and indices of refraction of transparent substances, hygrometric and

psychrometric tables, etc.

The standard reference data category is one of the most important in metrology.

Scientific research in this area is being performed by all of the large metrological

institutes in the world and many physical laboratories in various countries. The US

metrological center – the National Institute of Standards and Technology (NIST),

which has as one of its primary missions development and approval of standard

reference data – is playing a leading role. In Russia, coordination of research in this

area is performed by the Scientific Research Institute for Standard Reference Data

(NIISSD) under the Russian Federation Federal Agency for Technical Regulation

and Metrology. On the world level, research is coordinated by the Committee on

Data for Science and Technology (CODATA).

1.6.3 Measuring Devices

A measuring instrument that performs all of the actions indicated in Fig. 3 is called

a measuring device. A measuring device is a measuring instrument intended for
measurement of a measurand over an established range. As a general rule,

a measuring device includes devices for transformation of a measurand into a mea-

surement data signal and a device for displaying the data in the most accessible form.
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In many cases, the display device has a scale and an arrow, a diagram, a digital

annunciator panel, or display, which can be used for reading or recording the result of

the measurement. In computerized measuring instruments, the measurement result

can be automatically recorded on various specific media. The following types of

measuring devices are distinguished: analog devices (the output signal is a continuous

function of the measurand) and digital devices (the output signal is represented in

digital form), display devices (which only allow the readings to be read) and recording

devices (which allow the measured results to be recorded), summing devices

(the readings are functionally related to the sum of two or more quantities)

and integrating devices (the value of the measurand is determined by integration

over another quantity). For example, micrometers and digital voltmeters are classified

as display measuring devices, while barographs are classified as recording measuring

devices.

A distinction is also drawn between direct-action devices and comparison

devices. In a direct-action device, the measured result is obtained directly from

the device display. Examples of such devices include the ammeter, manometer, and

mercury glass thermometer. Direct-action measuring devices are intended for

direct-estimation measurements.

In contrast with these devices, comparison-with-a-measure measurements are

performed using comparison measuring devices, which are also called comparators.

A comparison measuring device is a measuring device intended for direct compari-
son of a measurand to a quantity whose value is known. Examples of comparators

include: Dual-pan balance, interference-based length comparator, electrical resis-

tance bridge, electrical measuring potentiometer, and a photometric bench with

photometer. Comparators need not store a unit in order to perform their functions.

Strictly speaking, such comparators cannot be considered measuring instruments.

They must nevertheless have several important metrological properties, with the

emphasis being placed on low random error and high measurement sensitivity.

Any direct-acting measuring device may be used as a comparator if it is used for

successive measurement of a quantity reproducing a measure and an unknown

quantity. This is precisely what is done in analytical measurements: Standard

samples are generally certified by comparison, using a comparator consisting of

any analytical device capable of measuring to acceptable accuracy the quantity

reproduced by these samples. As a general rule, using a measuring device in this

way can provide a much higher measurement accuracy than when it is used for

direct-estimation measurements. This is easy to understand in light of the fact that

using a measuring device as a comparator implements the measurement method

called the “substitution method,” which eliminates the systematic error introduced

by the measuring device. On the other hand, in the substitution method, the

measured result is burdened with twice the random error, since two measurements

are performed (of the measurand and the quantity reproducing the measure). Thus,

if a measuring device has a high random error, it is not suitable for use as a

comparator. If, on the other hand, the random error is small, the measurement

error will be smaller than for measurement by direct estimation (due to the absence

of the systematic component).
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1.6.4 Measuring Installations and Measuring Systems

Sets of measuring instruments are frequently combined into units called measuring

installations or measuring systems. A measuring installation is a set of functionally
combined measures, measuring devices, measuring transducers, and other devices
intended for measurement of one or more quantities and located in a single
location. A measuring installation and the standards included in it is called a

calibration or standards installation, while an installation used for testing a product

of any type is called a test bench. Some types of large measuring installations are

called measuring machines.

A measuring system is a set of functionally connected measures, measuring
devices, measuring transducers, computers, and other equipment located at various
points throughout the area being monitored and used for measurements of one or
more quantities related to said area. For example, the measuring system for a heat

and electricity generating plant enables measured data to be obtained with respect

to several quantities in various power generating units; changes in weather are

monitored using a measuring system consisting of several functionally interrelated

measuring units that are spatially separated by significant distances. Measuring

systems are classified based on purpose into measuring and information systems

and measuring and control systems, etc. A distinction is made between one-

channel, two-channel, three-channel, etc., measurement systems, depending on

the number of measurement channels.
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Chapter 2

Measurement Errors

2.1 Classification of Measurement Errors

The effectiveness of the use of measurement information depends on the precision
of the measurements – the properties that reflect the closeness of measurement
results to the true values of the measured quantities. Measurement precision can be

greater or lesser, depending on allocated resources (expenditures for measuring

instruments, conducting measurements, stabilizing of external conditions, and so

forth). It is obvious that this should be optimal: sufficient to complete the appointed

task but no more, since further increase in precision leads to unjustified financial

expenditures. Hence along with the concept of precision is also used the concept of

the certainty of measurement results, by which is understood that the measurement
results have a precision that is sufficient to solve the task at hand.

The classical approach to evaluating accuracy of measurement, first applied by

the great mathematician Karl Gauss and then developed by many generations of

mathematicians and metrologists, can be presented in the form of the following

sequence of affirmations.

1. The purpose of measuring is to find the true value of a quantity – the value that
ideally would characterize the measurand, both qualitatively and quantitatively.
However, it is in principle impossible to find the true value of a quantity. But not

because it does not exist; any physical quantity inherent in a concrete object of

the material world has a fully defined magnitude, the ratio of which to the unit

value is the true value of this quantity. This signifies no more than the unknown

of the true value of a quantity, which is in the gnoseological sense an analog to

absolute truth. The best example to confirm this position is the set of fundamen-

tal physical constants (FPCs). They are measured by the most authoritative

scientific laboratories of the world, with the highest accuracy, and then the

results obtained by different laboratories are coordinated with each other. In

this, the coordinated FPC values are established with such a large number of

significant digits that any change in successive refinement would occur only in

the last significant digit. Hence, the true values of the FPCs are unknown, but
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each succeeding refinement makes the value of this constant as derived by the

world community approach its true value.

In practice, rather than the true value, there is used the conventional true value –
the value of the quantity that is derived experimentally and is so close to the true
value that it can be used instead of it in the measurement task set forth.

2. Deviation of the result X from the true value Xtr (the conventional true value Xctr

of a quantity is called the measurement error

DX ¼ X � XtrðXctrÞ: (2.1)

Due to the imperfection of the methods used and measuring instruments, the

instability of measurement conditions, and other reasons, the result of each

measurement is burdened with error. But, since Xtr and Xctr are unknown, the

error DX likewise remains unknown. It is a random variable, and thus in the best

case can only be estimated according to the rules of mathematical statistics. This

absolutely must be done, since the measurement result has no practical value

without indicating an error estimate.

3. Using different estimation procedures, an interval estimate of the error DX is

found, in the form that most often provides confidence intervals � DP;þ DP of
the measurement error for a specified probability P. These are understood to be
the upper and lower bounds of the interval within which the measurement error
DX is located with a specified probability P.

4. It follows from the preceding fact that

X � DP �XtrðXctrÞ�X þ DP (2.2)

– the true value of the measurand is located, with probability P in the interval
½X � DP; X þ DP�. The bounds of this interval are called the confidence limits of
the measurement result.

Hence, a measurement result finds not the true (or conventional true) value of the

measurand, but an estimate of its value in the form of the limits of an interval where

it is located with the specified probability.

Measurement errors can be classified by various criteria.

1. They are divided into absolute and relative errors according to their method of

expression. An absolute measurement error is an error expressed in units of the
measurand. Thus, the error DX in formula (2.5) is an absolute error. A deficiency

of this method of expressing these values is the fact that they cannot be used for a

comparative estimation of the accuracy of different measurement technologies.

In fact, DX ¼ 0.05 mm for X ¼ 100 mm corresponds to a rather high accuracy

of measurement, while for X ¼ 1 mm it would be low. This deficiency is

ameliorated by the concept of “relative error,” defined by the expression (2.7).

dX ¼ DX
Xtr

DX
X

� �
: (2.3)
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Hence, relative measurement error is the ratio of the absolute measurement
error to the true value of the measurand or the measurement result.
To characterize the accuracy, the measuring instrument often uses the concept of

“fiducial error”, defined by formula (2.8)

gX ¼ DX
Xn

; (2.4)

where Xn is the value of the measurand, conventionally taken as the normalized

value of the scale range of the measuring instrument. Most commonly, the differ-

ence between the upper and lower limits of this scale range is used for the Xn.

Hence, a fiducial error of the measuring instrument is the ratio of the absolute
error of the measuring instrument at a given point in the scale range of the
measuring instrument to the normalized value of this range.

2. Measurement errors are divided into instrumental, methodological, and subjective,

according to the source of the measurement errors.

An instrumental measurement error is that component of measurement error that
is caused by imperfection in the measuring instrument being used: the diver-

gence of the actual functioning of the instrument’s transformation from its

calibrated relationship, unavoidable noise in the measurement chain, delay in

the measured signal as it passes through the measuring instrument, internal

resistance, and so forth. Instrumental error of measurements is divided into

intrinsic error (measurement error when using a measuring instrument under
normal conditions) and complementary (the component of measurement error
that arises as a consequence of the deviation of any of the influencing variables
from its nominal value or exceeding the limits of its normal range of values).
The method of estimating is shown below.

Methodological measurement error is that component of measurement error
caused by imperfection in the method of measurement. This includes errors

caused by the deviation of the accepted model of the object of measurement

from the actual object, imperfection in the method of realization of the principle

of measurement, inaccuracy in the formulas used to find the results of

measurements, and other factors not associated with the properties of the

measuring instrument. Examples of methodological measurement errors are:

– Errors in the manufacture of a cylindrical body (deviation from an ideal

circle) when measuring its diameter;

– Imperfection in determining the diameter of a spherical body as the average

of the values for its diameter in two perpendicular planes chosen previously;

– Error in measurements as a consequence of a piecewise-linear approximation

of the calibration curve of the measuring instrument, when calculating the

measurement results;

– Error in the static indirect method of measurements of the mass of petroleum

product in a reservoir due to nonuniform density of the petroleum product

with respect to the height of the reservoir.
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Subjective (personal) measurement error is that component of measure-
ment error caused by the individual features of the operator; i.e. error in the
operator’s reading of indicators from the measuring instrument’s scales.
These are evoked by the operator’s condition, imperfection of sensory organs,

and the ergonomic properties of the measuring instrument. The characteristics

of subjective measurement error are determined by taking into account the

capabilities of the “average operator” with interpolation within the limits of

the scale interval of the measuring instrument. The most well-known and

simple estimation of this error is its largest possible value in the form of half

the scale interval.

3. Systematic, random, and gross errors are delineated according to the nature of

the event.

Gross measurement error (failure) refers to measurement error significantly
exceeding the error expected under the given conditions. They arise, as a rule,

from mistakes or incorrect actions of the operator (incorrect reading, mistakes in

writing or calculations, improper switch-on of the measuring instrument, and so

forth). A possible reason for failure may be malfunctions in the operation of the

equipment, as well as transient sharp changes in the conditions of measurement.

Naturally, gross errors must be detected and removed from the series of measure-

ments. A statistical procedure designed for this will be examined in Sect. 4.1.

The division into systematic and random errors is more substantive.

Systematic measurement error is that component of measurement error that
in replicate measurements remains constant or varies in a predictable manner.
Systematic errors are subject to exclusion, as far as possible, using one or

another method. The most well-known of these is the correction action on

known systematic errors. However, it is virtually impossible to fully exclude a

systematic error, and some traces remain even in corrected measurement results.
These traces are referred to as residual bias (RB). Residual bias is the measure-
ment error caused by errors in computation and in corrective action or by
systematic error to which a correction has not been introduced.

For example, to exclude systematic measurement error caused by instability

of the transform function for an analytical instrument, calibration is periodically

performed using measurement standards (verifying gas mixtures or standard

samples). However, despite this, at the moment of measurement, there will

nevertheless be a certain deviation of the actual transform function of the

instrument from the calibrated curve, caused by calibration error and drift of

the transform function of the instrument since the time of calibration. The

measurement error caused by this deviation is residual bias.

Random measurement error is that component of measurement error that
varies randomly (in sign and in magnitude) for repeated measurements of one
and the same quantity. There are multiple reasons for random errors: noise in the

measuring instrument, variations in its indications, random fluctuations of the

parameters of the instrument power supply and the measurement conditions,

rounding errors on the readings, and many others. No uniformity is observed in
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the manifestation of such errors, and they appear with repeated measurements of

one and the same quantity as a scattering of measurement results. Hence, an

estimation of random measurement errors if possible only if based on mathe-

matical statistics (this mathematical discipline was engendered as the study of

methods of processing series of measurements burdened with random errors).

In contrast with systematic errors, it is not possible to exclude random errors

from measurement results by corrective action, although it is possible to substan-

tially reduce their effect by conducting multiple measurements.

2.2 Laws of Random Measurement Error Distribution

2.2.1 Some Information from the Theory of Probability

It is known from probability theory that the most complete description of a random

variable is provided by its distribution law, which can be presented as two mutually

linked forms, called the cumulative (integral) and the differential distribution

function. The cumulative integral distribution function FxðxÞ of a random variable
x is the name given to a function x, equal to the probability that x has a value less
then x:

FxðxÞ ¼ Pfx<xg (2.5)

Figure 4 shows the chart of a cumulative integral function.

These obvious properties of FxðxÞ follow from (2.5):

– FxðxÞ� 0 (non-negative function);

– if x2>x1, then Fxðx2Þ�Fxðx1Þ (nondecreasing function of x);
– Fxð�1Þ ¼ 0; Fxð1Þ ¼ 1;
– Pfx1<x<x2g ¼ Fxðx2Þ � Fxðx1Þ: ð2:6Þ

From (2.6), onemay derive the definition of a differentiable distribution function:

fxðxÞ ¼ lim
Dx¼0

Fxðxþ DxÞ � FxðxÞ
Dx

¼ dFxðxÞ
dx

: (2.7)

Figure 5 shows the graph of a differentiable distribution function fxðxÞ.
It is evident that fxðxÞ � 0 for any x. It follows from (2.7) that FxðxÞ ¼Ðx

�1
fxðzÞ dz and, consequently,

Ð1
�1

fxðzÞ dz ¼ 1.
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The probability of finding a random variable x in the interval ½x1; x2� is equal to

Pðx1 � x<x2Þ ¼
ðx2
x1

fxðzÞ dz: (2.8)

It follows from the last equation that the probability that a random variable falls

in the specified interval ½x1; x2� is equal to the area under the curve fxðxÞ between
the abscissas x1 and x2. If one presents this region in the form of a planar geometric

figure, then it will become clear why a differentiable distribution function is called

the probability density of a random variable.
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Every distribution law can be fully characterized by an infinite set of numerical

characteristics called the probability moments. The rth order initial moment is

calculated from the origin of the coordinates and is defined by the formula

ar ¼
ð1

�1
xrfxðxÞ dx; r ¼ 1; 2; :::: (2.9)

The most widespread among these is the first initial moment, referred to as the
mean of the random variable:

mx ¼ a1 ¼
ð1

�1
xfxðxÞ dx: (2.10)

The mean is the most likely value of the random variable. If, as before, one

presents the graph of the probability density as a planar geometric figure, then a

point on the axis of the abscissa with coordinate mx will be the center of gravity of

this figure. Hence the mean is treated as the center of gravity of the probability

distribution.

The central moment is calculated from the mean and is defined by the formula

mr ¼
ð1

�1
ðx� mxÞrfxðxÞ dx: (2.11)

The most well-known central moment is the second one, referred to as the

dispersion of the random variable:

Dx ¼ m2 ¼
ð1

�1
ðx� mxÞ2fxðxÞ dx: (2.12)

The dispersion characterizes the scattering of the random variable relative to the

mean.

A comparatively accurate experimental determination of the third moment

requires at least 80 independent measurements, and for the fourth, at least 200.

Further increase in the order of moments of a distribution is accompanied by a

similarly increasing volume of required measurement information. Hence in prac-

tice mainly the first two orders mentioned above are used.

The moments of the distribution are closely associated with the numerical

characteristics of the probability distributions. As a rule, two types of numeri-

cal characteristics are used: the characteristics of the center of the distribution

and the characteristics of the scattering of the random variable.

The center of the distribution can be determined by several methods. The most

fundamental method involves determining the mean mx. Another method involves
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finding the center of symmetry of the distribution, i.e., that point Me on the axis of

the abscissa at which the probability of the random variable falling to the left or to

the right are the same and equal to 0.5:

FxðMeÞ ¼ 1� FxðMeÞ ¼ 0:5. The value Me is referred to as the median or the

50% quantile.

The mode Mo can be used as a center of the distribution; this is the point of the

abscissa that corresponds to the maximum of the probability density of the random

value (fxðMoÞ ¼ maxx2ðMo�z; MoþzÞfxðxÞ). A distribution with one maximum is

called unimodal; with two, bimodal; and so forth.

The dispersion Dx introduced above is a characteristic of the scattering of a

random variable. The dispersion is not always convenient to use, since its

dimensionality is equal to the square of the dimensionality of the random variable.

Hence, the mean square deviation (MS), equal to the square root of the dispersion

taken with a positive sign, is often used in its place:

sx ¼
ffiffiffiffiffiffi
Dx

p
: (2.13)

The mean square deviation is often called the standard deviation (SD).

2.2.2 The Normal Distribution Law

The goal of any measurement is to find the true (actual) value of a measurand.

However, the experimenter does not have at hand the set of all possible values of the

random variable (called the general set), but a sampling from this set, which

incorporates a limited number of measurement results. The numerical charac-

teristics of this sample provide a representation of the characteristics of the center

of distribution of the general set – the mean. However, due to the random nature of

the sample, they themselves are random variables, and using them for the mean

introduces additional error. Hence, it is essential to select from among them the best

and most efficient estimate.

In principle, the center of distribution of a sample ðx1; x2; :::; xnÞ of n measure-

ment results can be characterized using the following methods:

– arithmetic mean

�x ¼ 1

n

Xn
i¼1

xi

(the mean, taken from the sample);

– median

Me ¼
xðnþ1Þ=2; . . . n odd,

xn=2 þ xðnþ1Þ=2
2; . . . n even;

8<
:
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– mode Mo (value at which the density is maximal);

– geometric mean g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1:::xnn

p
;

– power mean

u ¼ 1

n

Xn
i¼1

xFi

 !1=F

;

including its particular cases:

– if F ¼ 1, the mean,

– if F ¼ 2, the mean square

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

x2i

s
;

– if F ¼ �1, the harmonic mean

h ¼ n
Xn
i¼1

x�1
i

 !�1

:

Which of these estimates is the best approximation of the mean of the distribution

of a random error? The answer to this question was provided 200 years ago by Carl

Gauss. In his work “On the Motion of Celestial Bodies”, published in 1809, he

formulated three postulates [13].

1. In a series of independent observations, errors of different sign appear equally
frequently.

2. Large deviations from the true value occur less frequently than small ones.
3. If any value is determined from many observations that are produced under

equal conditions and with the same attentiveness, then the arithmetic mean from
all observed values will be a more probable value.

From these axioms, Gauss drew out the distribution law of random values, which

has had immense application in science and technology. Let us introduce this proof.

Let x1; x2; :::; xn be the results of n uniformly accurate measurements of

a quantity, the true value of which is equal to z. Random measurement errors ei ¼
xi � z are distributed according to some unknown law with probability density

f ðxi � zÞ. In accordance with the second postulate, the probability of larger values

for the random error are small in comparison with the probability of small

values. Hence the probability that the measurement result is equal to xi is equal to

Pi ¼
Ð xiþDx
xi

f ðy� zÞ dy ffi f ðxi � zÞ Dx; where Dx is a small value. The probability

of obtaining a series x1; x2; :::; xn of measurement results will, by the theorem for

multiplying probabilities, be equal to the product of the Pi probabilities:

P ¼ P1 � P2 � :::� Pn ffi f ðx1 � zÞ � f ðx2 � zÞ � :::� f ðxn � zÞ � ðDxÞn:
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There exists a z ¼ y for which this probability has the maximum value Pmax.

Since lnP is a monotonic function of P, for z ¼ y the function lnP likewise has a

maximum value:

max lnP½ � ¼ lnPmax ¼
Xn
i¼1

ln f xi � zð Þ½ �
( )

z¼y

þ n ln Dxð Þ:

From this it follows that

d lnP

dz
z¼y ¼j

Xn
i¼1

f 0ðxi � yÞ
f ðxi � yÞ ¼ 0; (2.14)

where f 0ðxi � yÞ is the derivative of the density f ðxi � yÞ on xi.
In accordance with the third postulate, y ¼ 1=n

Pn
i¼1 xi. This expression can be

written as
Pn

i¼1 ðxi � yÞ ¼ 0. Joining this with (2.14), we derive:

Xn

i¼1

f 0ðxi � yÞ
f ðxi � yÞ þ Cðxi � yÞ
� �

¼ 0:

For this expression to be valid for any values of xi, it is necessary and sufficient

that for any i ¼ 1; 2; :::; n this condition be fulfilled:

f 0 xi � yð Þ
f xi � yð Þ ¼ �C xi � yð Þ: (2.15)

Expression (2.15) is a differential equation with separable variables relative to

the unknown function f x� yð Þ. Its solution is the function

f x� yð Þ ¼ e�C x�yð Þ2=2
ffiffiffiffiffiffi
C

2p

r
:

Further, substituting this expression into (2.10) and (2.12), after transformations

we derive the fact that the mean m of this distribution is equal to y and the

dispersion s2 ¼ 1=C. Taking this into account, the probability density x of the

measurement results is equal to

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e� x�mð Þ2 2s2= : (2.16)

Since the measurement error e ¼ x� m, its distribution has the form

f ðeÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�e2 2s2= : (2.17)
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This function, which describes the distribution of random measurement errors,

differs from (2.16) in that it has a mean of zero.

Distribution (2.16) has received the designation of the normal distribution of a

random value. It is also referred to as the Gaussian distribution.

In accordance with the central limit theorem of probability theory, the sum of n
independent random variables, each of which is small compared with the sum of the

other variables, approaches the normal distribution as n ! 1. This provides the

foundation for thinking that the normal law is not an artificial mathematical

construct, but a fundamental governing law of the phenomena of nature and the

material world.

Figure 6 shows a chart of the normal probability density. It has the following

properties.

1. The distribution is symmetric with respect to the mean: f ðx� mÞ ¼ f ð�xþ mÞ.
HenceMe ¼ Mo ¼ m; the median and mode of the distribution coincide with the

mean.

2. The distribution is reproducing. This means that the sum of values distributed

normally is likewise distributed normally. This property of a normal distribution

facilitates the creation of a family of probability distributions that are widely

used in the statistical processing of measurement results.

3. P a� x<bf g ¼ Ðb
a

f ðxÞ dx ¼ F b�m
s

� �� F a�m
s

� �
; ð2:18Þ

where FðxÞ ¼ 1ffiffiffiffi
2p

p
Ðx

�1
e�0;5t2 dt, is the cumulative integral function of a normal

distribution.

The definite integral FðxÞ ¼ 1ffiffiffiffi
2p

p
Ðx
0

e�0:5t2 dt is called the Laplace integral

function. The following equalities are valid for this: FðxÞ ¼ FðxÞ � 0:5;
FðxÞ ¼ �Fð�xÞ; Fð�1Þ ¼ �0:5; Fð0Þ ¼ 0; Fð1Þ ¼ 0:5. Hence the

other notation (2.18): P a� x<bf g ¼ F b�m
s

� �� F a�m
s

� �
.
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Fig. 6 Graph of the normal distribution density for m ¼ s and t ¼ x
s
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For a ¼ �b it takes on the widely known form:

P �b� x<bf g ¼ F
bþ m

s

� �
þ F

b� m

s

� �
:

The normal distribution is very useful for obtaining integral estimates. For

example, the confidence limits corresponding to probability P, for a normal distri-

bution of a random variable with meanm and SD s are calculated from the formulas:

� DP ¼ m� lðPÞs;

DP ¼ mþ lðPÞs;

where lðPÞ is the two-sided quantile of the normal distribution, corresponding to

probability P, and calculated from the formula lðPÞ ¼ F�1ð2P� 1Þ.

2.2.3 Generalized Normal Distribution Law

The validity of the third postulate, formulated by Gauss in his development of the

normal distribution law, just like many other axioms that lie at the basis of

mathematical theories, can neither be proven theoretically nor verified experimen-

tally. Hence, for two centuries, it has been subject to some doubt. In particular, it

has been proven that for many measuring instruments it is not fulfilled. Let us

introduce an example of such an instrument.

Example 2.1. The equation of electrodynamic measurements has the form

WY2 ¼ K
X2

R2
þM;

where X is the measurand (input instrument signal), Y is the reading (output

instrument signal), R is input resistance,W is spring tension, K is an electrodynamic

constant, and M is the moment of friction in the supports, the sign of which is

determined by the direction of change of the input signal.

The main source of random measurement error is friction in the supports, subject

to the normal law. To reduce this error, a series of 2n measurements are conducted,

each time reversing the direction of the voltage changing, and the measurement

result is determined from the formula for the mean:

�X ¼ R

ffiffiffiffiffi
W

K

r
1

2n

Xn
i¼1

Yþ;i þ Y�;i

� �
;
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where Yþ;i; Y�;i are instrument readings, as the input signal increases or decreases.

However, this estimation of the measurand is not the best one. Actually, it is a

biased estimator, since the moment of friction in the supports and, consequently, the

error due to friction is not totally excluded.1 To the contrary, the computation of the

mean,

�X2 ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W

K

1

2n

Xn
i¼1

ðY2
þ;i þ Y2

�;iÞ
s

;

makes it possible to fully exclude the error from friction. One may show that �X2 is

an unbiased, consistent, and efficient estimate of this value; i.e., its best valuation.

The example introduced shows that the mean of measurement results is not

always the best valuation of the measurand. A theoretically proven and stronger

assertion is that the mean is an efficient estimator of the measurand when the

measurement errors are normally distributed. Hence, if the distribution rule differs

from the normal, finding its mean is not the best solution.

Nevertheless, one ought not bring into doubt the merit of the wide utilization of

the normal distribution in the statistical processing of a series of experiments.

Processing the results of measurements must be concluded by determining the

interval in which the measurand lies. And if the methods of statistical modeling

are not applied, this is practically feasible only with a normal distribution of a series

of measurements, since only this fully ensures the statistical distributions necessary

for solving this problem. Hence, in practice, processing of measurement results

proceeds as a rule by a presentation regarding its normal distribution. For this

reason, what is pressing is also the generalization of the normal distribution of

random measurement errors using another probability law which, while preserving

the advantages of a normal distribution, at the same time would be, due to its

flexibility, useful in more precisely approximating the sample distributions of a

series of tests. It is possible to derive such a distribution if, in Gauss’ axiomatic

development in the former section, we replace the third postulate with the

following:

If any quantity is determined from many equally precise measurements

x1; :::; xn, then the power mean u ¼ 1=n
Pn

i¼1 x
F
i

� �1=F
of all observed values with

1 Some information from the theory of statistical valuations:

– A statistical valuation of a quantity is the best if it is unbiased, consistent, and efficient;
– a statistical valuation is called consistent if it approaches the true value of the quantity as the

amount of experimental data increases;
– a statistical valuation is called unbiased if its mean is equal to the measurand;
– a statistical valuation is called efficient if its SD is less than the SD of any other estimate of this

quantity.
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parameter F, the value of which is defined along the series x1; :::; xn, will be the
most probable value.

In this regard, the arbitrary exponent F is determined from the sample and can be

equated to 1 in a particular case. This approach was first employed in 1955 by I.G.

Fridlender [14]. As a result, he derived a new distribution that generalizes the

normal law. However, this distribution had a significant deficiency: by limiting the

region of dispersion to non-negative values of the quantities, then contradicting

the first postulate of Carl Gauss as well as the nature of random errors. But this

deficiency can be easily removed if one takes as the true value of the measurand for

F 6¼ 0 the limit as n ! 1 of the value x̂ ¼ sign½ẑ� � ½ ẑj j�1=F, where

ẑ ¼ 1=n
Pn

i¼1 signðxiÞð xij jÞF (signðyÞ is the sign of the quantity y) [15]. In the

particular case for F ¼ 0, one may take as the true value the limit as n ! 1 of

the value x̂ ¼ sign½ẑi� � exp½ẑi�, where ẑi ¼ 1=n
Pn

i¼1 signðxiÞ � ln ð xij jÞ.
From Gauss’ axiomatic development in this case, it follows that by the normal

law these values will be distributed:

zi ¼ signðxiÞ � ð xij jÞF; F 6¼ 0;
lnð xij jÞ; F ¼ 0:

	
(2.19)

Since the values zi are subject to normal distribution with density

f ðzÞ ¼ 1ffiffiffiffi
2p

p e�ðz�mFÞ2 2s2F= , mean mF, and standard deviation sF, the probability dis-

tribution of the values of xi is equal to [15]

f ðxÞ¼ @z=@xffiffiffiffiffiffi
2p

p
s
e�ðz�mFÞ2 2s2F= ¼

Fj j�ð xj jÞF�1ffiffiffiffi
2p

p
s

e�ðsignðxÞð xj jÞF�mFÞ2 2s2F= ; F 6¼ 0;

1ffiffiffiffi
2p

p
s� xj je

�ðsignðxÞ lnð xj jÞ�mlnÞ2 2s2
ln= ; F¼ 0:

8<
: (2.20)

Expression (2.20) describes the density of a generalized normal distribution of

random measurement error. In contrast to the normal distribution, this distribution

is triparametric: to parameters mF and sF is added F. Here, the valuations of mF and

sF depend on F. Figure 7 shows graphs of this distribution’s density for various

values of mF, sF, and F. They demonstrate that by varying parameter F, it is
possible to derive distribution densities that differ from each other in principle:

symmetric and nonsymmetric, gently sloping top and sharp-peaked, unimodal and

bimodal.

The graphs of the coefficient of skewness and kurtosis, shown in Fig. 8, also

substantiate this. It is know that the coefficient of skewness of a normal distribution

is zero and of kurtosis is three. The graphs show that by varying F, it is possible to
obtain a coefficient of skewness in the range from 0 to 5 and kurtosis from 1 to 20.
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Hence by selecting a value for F, it is possible to approximate any experimental

series with a high degree of precision using a generalized normal distribution. Here,

the possibility is preserved to derive the statistical limits for the parameters of this

distribution, since the values of zi, defined by formula (2.19), are subject to the

normal distribution.

1. F =1, m =1, σ =1

(normal distribution law)

2. F=0,1, mF =1, σF =1

6. F=2, mF =1, σF =15. F=2, mF =0, σF =1

4. F=0.5, mF =1, σF =13. F=0.5, mF =0, σF =1
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Fig. 7 Density graphs of the generalized normal distribution
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The probability that a random measurement error subject to the generalized

normal distribution is located in the interval ða; bÞ, is computed according to this

formula, analogous to (2.18):

Pfa<x� bg ¼
ðb
a

f ðxÞ dx

¼ F
signðbÞ � hðbÞ � mF

sF

� �
� F

signðaÞ � hðaÞ � mF

sF

� �
; (2.21)

in which

hðxÞ ¼ ð xj jÞF; F 6¼ 0;
lnð xj jÞ; F ¼ 0;

	

is the function at x ¼ a or b, and mF; sF are as in (2.20).

2.2.4 Basic Statistical Distributions Applied in Processing
Measurement Results

The hypothesis of the correspondence of the distributions of random measurement

errors to the normal law has facilitated the establishment of a number of probability

distributions of random values that are widely used in statistical processing of

measurement results. The following distributions are the ones most commonly used.

The x2 distribution [16]
Let x1; x2; :::; xn be normally distributed random values with mean m and SD s.
After the replacement of variables xi ¼ ðxi � mÞ=s, the series of normally

distributed random values x1; x2; :::; xn will have a mean of zero and an SD

equal to 1. The distribution function

w2 ¼
Xn
i¼1

xi
2

E(F)

-5

55

541 32

-5

50.1 p

Fig. 8 Graphs of the

coefficient of skewness

and coefficient of kurtosis

as functions of F.
(1) Kurtosis for

k ¼ mF=sF ¼ 0.

(2) Coefficient of skewness

for k ¼ mF=sF ¼ 1
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is called the w2 distribution (chi-square distribution). This distribution plays an

important role in metrology. The density of the w2 distribution has the form

fðxÞ ¼ xðn=2Þ�1e�x=2

2n=2Gðn=2Þ ; x� 0; (2.22)

where GðxÞ is the gamma function, defined by the equation Gðxþ 1Þ ¼ ðxþ 1ÞGðxÞ
(which for positive integers x satisfies the equality GðxÞ ¼ x!), n is a distribution

parameter, referred to as the degree of freedom.

Figure 9 shows a graph of this probability density for n ¼ 1, 2, and 6.

The most well-known application of the w2 distribution is in verifying the

hypothesis regarding the form of the distribution laws to be used for the measure-

ment results.

Student’s distribution [16]
Student’s distribution describes a probability density for a mean that is calculated by

sampling from n randommeasurement results of one and the same quantity, distributed

according to the normal law. Student’s distribution is derived as follows. A series

x1; x2; :::; xn of normally distributed random values with mean m and SD s is

examined. After replacement of variables xi ¼ xi � m=s, the series of normally

distributed random values x1; x2; :::; xn will have a mean of zero and an SD

equal to 1.

By force of the reproducibility of the normal distribution, the mean of this

sample x ¼ 1=n
Pn

i¼1 xi is likewise distributed by the normal law with density

f ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffi
n=2p

p
e�0:5nx2 . The sampling standard deviation � of the series x1;

x2; :::; xn is defined by the formula � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

Pn
i¼1 x

2
i

q
¼ w=

ffiffiffi
n

p
; where w is as in
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Fig. 9 w2– distribution density
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(2.21). W.S. Gosset proved that the quotient from dividing these independent

random values, z ¼ x=�, has the probability density

f ðzÞ ¼ G ðnþ 1Þ 2=ð Þffiffiffi
p

p
Gðn=2Þ ð1þ z2Þ� nþ1 2=ð Þ: (2.23)

Formula (2.23) describes a family of Student’s (Gosset’s pseudonym)

distributions, as a function of the number n of degrees of freedom. Student’s

distribution is symmetrical about zero and thus its mean is equal to zero. The

dispersion of this distribution is equal to DðzÞ ¼ n=ðn� 2Þ. As n increases,

Student’s distribution transitions to the normal distribution, although for small n
it noticeably differs from it. Figure 10 shows a graph of the Student’s probability

density for n ¼ 3. The dotted line shows the normal distribution density for

m ¼ 0; s ¼ 1.

Student’s distribution is widely used in processing results of multiple

measurements. Since the mean �x of a normally distributed sample is subject to

Student’s distribution, the confidence interval for it is calculated using the formula

�x� tðn� 1; PÞ Sffiffiffi
n

p ; �xþ tðn� 1; PÞ Sffiffiffi
n

p
� �

; (2.24)

where �x ¼ 1=n
Pn

i¼1 xi is the result of multiple measurements,

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðn� 1ÞPn

i¼1 ðxi � �xÞ2
q

is the sample SD of the measurement results,
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Fig. 10 Student’s probability density for n ¼ 3
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tðn� 1; PÞ is the Student’s distribution quantile with number n – 1 of degrees of

freedom, and confidence probability P.

Fisher’s distribution [16]
Let x1; x2; :::; xm; �1; �2; :::; �n be normally distributed independent random

values with parameters 0 and s. As shown above, the values x ¼ 1=s2
Pm

i¼1 x
2
i and

� ¼ 1=s2
Pn

i¼1 �
2
i have a w

2-distribution with m and n degrees of freedom. Then, as

R.A. Fisher demonstrated, the value

t ¼ x
�
¼
Pm

i¼1 x
2
iPn

i¼1 �
2
i

;

has the probability density:

fmnðtÞ ¼ G ðmþ nÞ 2=ð Þ
Gðm=2ÞGðn=2Þ �

tðm=2Þ�1

ðtþ 1ÞðmþnÞ=2 ; x>0: (2.25)

The basic use of Fisher’s distribution is to verify the hypothesis regarding

equality of the dispersions of two series of measurements.

2.3 Systematic Measurement Errors

Systematic errors distort measurement results most substantially. Hence great

significance is assigned to the detection and exclusion of systematic errors. Sys-

tematic errors are differentiated according to their source of origin, as caused by

– The properties of the measurement facilities;

– Deviation of the measurement conditions from normal conditions;

– Imperfection in the method of measurement;

– Error in operator actions.

Let us examine these components of systematic measurement error.

2.3.1 Systematic Errors Due to the Properties of Measurement
Equipment and the Measurement Conditions Deviating
from Normal Conditions

The sum of these errors is often called measurement instrumental error. As a rule,
instrumental error brings a basic contribution to the error in measurement results. In

formalized form, the reasons for the occurrence of instrumental error can be

presented as follows. Let
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y ¼ f ðx; Ri; xj; P; tÞ; i ¼ 1; :::; n; j ¼ 1; :::; m (2.26)

be a real function of the transformation of the measuring instrument at the sampling

instant, expressing the dependence of the output signal of the measuring installation

y on the measured value x, parameters Ri of the components of the measuring

instrument, the conditions of measurement, and the inconclusive parameters of the

measurement signal2 xj, energy P extracted by the measuring instrument from the

object of measurement, and the delay time of the measurement signal t. The result
of measurements, equal to

x̂ ¼ f�1
K ðyÞ; (2.27)

is determined from the calibrating function y ¼ fKðxÞ, assigned to the measuring

instrument at its last calibration. It will not be burdened with the systematic

component of instrumental error if the following conditions are satisfied:

fKðxÞ ¼ fnomðxÞ; (2.28)

where y ¼ fnomðxÞ is a nominal transform function of the measuring instrument,
equal to the theoretical dependence of the transform function of the measurement
signal in the measuring instrument yðxÞ in accordance with the measurement
method implemented;

– the values of the parameters Ri of the components of the measuring instrument at

the time of measurement will precisely coincide with their values Ri:K at the time

of the last calibration of the measuring instrument;

– xj ¼ xjnom; j ¼ 1; :::; n, the measurement conditions, coincide with the nor-

mal conditions and the non-information parameters of the input signal are equal

to zero;

– P ¼ 0, the energy extracted by the measuring instrument from the object of

measurement, is equal to zero;

– t ¼ 0, the time delay, is absent.

As a consequence of these conditions being fulfilled, the following equality will

be valid:

f ðx;Ri; xj;P; tÞ ¼ f ðx;Ri;k; xjnom; 0; 0Þ ¼ fKðxÞ: (2.29)

Let us substitute expression (2.28) into (2.27):

x̂ ¼ f�1
k ½f ðx; Ri; xj; P; tÞ�: (2.30)

We expand this function into a Taylor series in the neighborhood of the straight

line ðx; Ri:k; xjnom; 0; 0Þ. Here, since the systematic error is a small value

compared with the measurement results, it can be bounded by the first derivatives

of this series. Let us designate as @f ðx; Ri:k; xjnom; 0; 0Þ the derivative of
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@f ðx; Ri; xj; P; tÞ for Ri ¼ Ri:k; xj ¼ xjnom; P ¼ 0; t ¼ 0. From expressions

(2.28) and (2.29) we derive:

f�1
K ½f ðx;Ri;k; xjnom; 0; 0Þ� ¼ f�1

nom½f ðx;Ri;k; xjnom; 0; 0Þ� ¼ x;

@f�1
K ½f ðx;Ri;k; xjnom; 0; 0Þ�
@f ðx;Ri;k; xjnom; 0; 0Þ

¼ @x

@y
¼ 1

@y=@x
¼ 1

WðxÞ ;

whereW(x) is the function of the sensitivity of the measuring instrument to the input

signal.

Then formula (2.30) can be written as follows:

x̂ ¼ xþ 1

WðxÞ Df þ
Xm
j¼1

WðxjÞ�ðxj � xjnomÞ þWðPÞ � PþWðtÞ � t

" #
;

where Df ¼ ½f ðx; Ri; xjnom; 0; 0Þ � fnomðxÞ� ¼ Df1 þ Df2, Df1 ¼ ½fkðxÞ � fnom
ðxÞ� is the deviation of the calibration function from the nominal transform function

of the measuring instrument, Df2 ¼ ½f ðx; Ri; xjnom; 0; 0Þ � fkðxÞ� ¼
Pn

i¼1 WðRiÞ
ðRi � RikÞ is the deviation of the actual transform function from the calibrated

dependency, due to instability of the measuring instrument components,

WðxjÞ ¼
@f ðx; Ri:k; xjnom; 0; 0Þ

@xj

is the function of the sensitivity of the measuring instrument to the jth measurement

condition (or to a non-information parameter of the input signal),

WðPÞ ¼ @f ðx; Ri:k; xjnom; 0; 0Þ
@P

is the function of the sensitivity of the measuring instrument to the energy extracted

from the object of measurement,

WðRiÞ ¼
@f ðx; Ri:k; xjnom; 0; 0Þ

@Ri

is the function of the sensitivity of the measuring instrument to a change in the

parameter Ri of the components of the measuring instrument, WðtÞ is the function
of the sensitivity of the measuring instrument to signal time delay, which is equal to

WðtÞ ¼ @f ðx; Ri:k; xjnom; 0; 0Þ
@t

¼ @f ðx; Ri:k; xjnom; 0; 0Þ
@x

� @x
@t

¼ WðxÞ � @x
@t

;
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since

@f ðx; Ri:k; xjnom; 0; 0Þ
@x

¼ @y

@x
¼ WðxÞ;

and @x=@t is the rate of change of the sensing signal.

Consequently, the instrumental component of systematic measurement error,

Dinstr: ¼ Dx ¼ x̂� x, is equal to

Dinstr: ¼ 1

WðxÞ Df1 þ Df2 þ
Xm
j¼1

WðxjÞ�ðxj � xjnomÞ þWðPÞ � P

" #
þ @x

@t
t:

(2.31)

The formula presents the basic groups of the constituents of instrumental mea-

surement error. The first two members characterize the first group, called the intrinsic

error. Fundamental measurement error is measurement error under normal measure-
ment conditions. It arises as a consequence of the deviation of the actual transform

function of the measuring instrument from the nominal transform function. Df1=W�
ðxÞ is that part of the intrinsic error caused by the difference between the calibration

function and the nominal transform function, which reflects the transformation of the

measurand in precise correspondence with the method of its measurement. Primarily,

it is the consequence of measurement error when calibrating the measuring instru-

ment. In addition, it is caused by imperfection in the design of the measuring

instrument and the technology for its manufacture. Df2=WðxÞ is the second part of

intrinsic error, caused by the difference of the actual transform function of the

measuring instrument at the sampling instant from the calibrated function. This is

due to instability of the measuring instrument, caused by fatigue and wear of

measuring instrument components and the accumulation of various fault conditions

(deformation, corrosion, and so forth), and small defects due to mechanical, thermal,

or electrical overloads.

The third term characterizes errors of the second group, referred to as supplemental

errors. They contain the errors D@j, caused by the sensitivity of the measuring

instrument to changes in the j influencing quantities and the non-information

parameters of the input signal relative to their nominal values. These can be thermal

and air currents, magnetic and electrical fields, changes in atmospheric pressure, air

humidity, and vibration. The ambient temperature can significantly distort the mea-

surement results, especially with the nonuniform effect on the measuring instrument

or the object of measurement. Magnetic fields created near positioned electrical

devices, transformers, and wires cause magnetization of any moving elements of a

measuring instrument that are made of magnetic materials, and thus their mutual

attraction and deviation from normal position. Errors occur also as the result of the

effect of electrical fields. The effect ofmagnetic and electrical fields on the accuracy of

measurements increases with higher frequency of an AC current that creates this

field. Temperatures of phase transitions (boiling point, solidifying, and melting) of

various pure substances and compounds widely used in temperature and analytical
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measurements depend significantly on atmospheric pressure. Hence in these types of

measurements, error in determining such pressure is also a source of systematic error.

Moisture can also be a reason for supplemental errors. Moisture in an object of

measurement (such as petroleum and natural gas) is a non-information parameter

of the measuring signal that distorts the measurements results (such as net weight of

petroleum and the heat value of natural gas when measured by the chromatographic

method). Moisture of the ambient air affects hydroscopic materials, modifying their

properties (such as electrical resistance).

The fourth term characterizes the third group of errors – errors that are formed as

a result of the interaction of the measuring instrument and the object of measure-

ment. We shall see the essence of these errors in the following example.

Example 2.2. Measuring an electrical resistance R by comparison with a known

resistance R0 can be done by comparing the currents crossing these resistances with

successive connection to a DC current source. The measurement equation, without

accounting for ammeter resistance, is R ¼ R0ðI0=IÞ (I and I0 are the currents when
connecting R and R0), while the actual measurement equation is

R ¼ ðR0 þ rÞðI0=IÞ � r, where r is the resistance of the ammeter. The relative

measurement error caused by the interaction of the ammeter with the object of

measurement is dR ¼ r=R� ðI0 � I=IÞ. Consequently, this method of measurement

can only be used to measure large (R>>r) resistances.

The fifth term characterizes the fourth group of errors – errors caused by inertia

of the measuring instrument and the rate of change of the input signal. These are

called dynamic errors.

2.3.2 Normalizing Metrological Characteristics
of Measuring Equipment

In developing measurement methodology, one must select a measuring instrument

that will guarantee the necessary measurement accuracy. However, as follows from

the preceding section, the special feature of all enumerated groups of errors, except

for the first group, consists in the fact that they are associated not only with the

properties of the measuring instrument but also with the measurement conditions.

Hence in the process of developing this methodology, one must evaluate the

instrumental component of measurement errors in the specified measurement

conditions. In connection with this, when any measuring instrument is being

developed, the technical characteristics of a special type, referred to as the metro-

logical characteristics, are standardized and specified (the properties of the mea-
suring instrument that affect measurement error are called the metrological
properties, and the characteristics of these properties are the metrological
characteristics of the measuring instrument). The system of notations of the

metrological characteristics of a measuring instrument and the methods for
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standardizing them are established in [17]. The metrology of standardization,

established by this standard, proceeds from the following.

Normalizing metrological characteristics are essential in solving two basic

problems:

– monitoring each model of a measuring instrument for compliance with established

standards,

– determining measurement results and the a priori valuation of measurement

instrumental error.

Here out must keep in mind that the metrological properties of each specific

model of a measuring instrument are constant at a specificmoment in time, but in the

aggregate of measuring instruments of a given type, they vary in a random manner.

This occurs as a consequence of the scattering of manufacturing parameters when

building the measuring instrument, and the differentiation of the conditions of use

resulting in the random nature of the processes of wear and aging of its components

and the random measurement error with periodic calibrations of the measuring

instrument, and other similar reasons. Hence two types of normalizing metrological

characteristics are theoretically possible. Limits of allowable values for this type of

metrological characteristics of a measuring instrument pertain to characteristics of

the first type, almost exclusively used in practice. They are used both to monitor the

suitability of each model of a measuring instrument and to evaluate the maximally

possible instrumental measurement error. Characteristics of the second type, used

extremely rarely, relate to the mean and SD of the values of a measurement

characteristic; these are computed in the aggregate for measuring instruments of

this type and are convenient for the evaluation of the instrumental measurement

error by the statistical summation method.

Thus, the characteristics of the systematic component of the basic error Dxc are
either the limits of its allowable values 	 Dc or else its limits and the mean mc and

SD sc, wherein it is permissible to use the second method of normalization if it is

possible to ignore changes in these characteristics under extended use and in

various measurement conditions. In other cases, only the 	 Dc are normalized.

For many measuring instruments in which several systematic components of basic

error are differentiated, one may normalize the limits of allowable values of these

components, 	 Dci, in place of the 	 Dc. For this, the condition must be satisfied:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

k2i D
2
ci

s
�Dc: (2.32)

Example 2.3. For many measuring instruments, some limits are normalized instead

of limits on systematic error 	 Dc: absolute additive error 	 Da, relative multi-

plicative error 	 dm, and the adjusted error (to the maximum value xmax of the

range of the measuring instrument), caused by the non-linearity of the calibration

function 	 dnl. The values of these limits must satisfy this condition:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
a þ ðdmxÞ2 þ ðdnlxmaxÞ2

q
�DcðxÞ;
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where x is the value of the measurand and DcðxÞ is the limit of absolute systematic

error at this point of the range of the measuring instrument.

The characteristics of this group also relate to characteristics of the random error
_D, the limit of allowable values of the standard deviation of the random error s _D
and to the characteristics of the random error from hysteresis _DH, the limit H of the

allowable variation of the input signal to the measuring instrument.2

In those cases when the random error of the measuring instrument is insignifi-

cant, it is recommended to normalize the characteristics of the error of the measur-

ing instrument – the limits 	 D of the allowable error of the measuring instrument

and the limit H of the allowable variation in the input signal to the measuring

instrument. It is possible also to normalize one generalized characteristic of the

intrinsic error of measurement – the limit 	 Do of the allowable intrinsic error of

the measuring instrument.

The characteristics of the sensitivity of the measuring instrument to influencing

quantities and to the non-information parameters of the sensing signal xj are source
functions ofCðxjÞ ¼ WðxjÞ=WðxÞ. In normalization, the nominal source function of

CnomðxjÞ and the limits DCðxjÞ of allowable deviations from it are established.

The nominal source functions serve to determine corrections for systematic errors

caused by the difference between the values of the influencing quantities and their

nominal values. The limits DCðxjÞ are used to monitor the quality of the measuring

instrument and evaluate the residual systematic error left after introducing the

corrections. If the measuring instrument of one type has great scattering of the

source function (i.e., DCðxjÞ>0:2CnomðxjÞ), the determination of corrections taking

account of the CnomðxjÞ can introduce a significant error into the measurement

results. Hence for specific samples of such measuring instruments, it is advisable

to show the individual source functions used to determine corrections and to

normalize the boundary source functions of this type to monitor quality and evaluate

the residual of systematic error: CþðxjÞ ¼ CnomðxjÞ þ DCðxjÞ and C�ðxjÞ ¼
CnomðxjÞ � DCðxjÞ.

It is permissible to normalize the sensitivity of the measuring instrument to

influencing quantities by another method: by fixing the limits e�ðxjÞ; eþðxjÞ of

allowable changes to the metrological characteristics of the measuring instrument

that are caused by changes in the influencing quantities within established limits.

Precisely the same way, by establishing the nominal characteristics and the

limits of allowable deviations from them, the sensitivity characteristics of the

measurement results to the energy extracted from the object of measurement by

the measuring instrument CðPÞ ¼ WðPÞ=WðxÞ, as well as the dynamic

characteristics of the measuring instrument as recommended by [16], are

normalized: the transitional characteristics h, amplitude–phase characteristics

2 Two Variation of the input signal is the name given to the difference between the two means of the
informational parameter of the input signal of the measuring instrument, derived during
measurements of a quantity that has one and the same value, with a smooth, slowly varying
approach to this number from the upper and lower sides.
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GðjoÞ, amplitude–frequency characteristics AðoÞ, reaction time tr, and others.

For measuring instruments which have large (more than 20% from the nominal

characteristics) scatter of these characteristics in the aggregate of measuring

instruments of this type, the boundary characteristics used to monitor quality and

evaluate the residuals of the systematic measurement errors are normalized, and the

corrections to the measurement results are determined with the aid of the individual

characteristics of each sample measuring instrument. For measuring instruments for

which this scatter is less than 20%, the nominal characteristics and limits of

allowable deviations from them are normalized.

Example 2.4. Calculating the instrumental measurement error with an analog

voltmeter [18]

1. Input data

(a) Measured voltage W ¼ 0.6 V.

(b) Normalized metrological characteristics of the measuring instrument:

– limit of allowable intrinsic error Do ¼ 20 mV,

– boundary source function of the temperature x1 on the error C(x1) ¼ 0.5

mV/
C,
– limit of permissible changes in error due to deviation of the voltage from

the nominal value (x2nom ¼ 220 V) by 	 10%, is eþðx2Þ ¼ 10 mV,

– nominal amplitude–frequency characteristics3

AðoÞ ¼ Aðo0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2T2

p ;

where T ¼ 5 ms is a time constant, o0 ¼ 0; Aðo0Þ ¼ 1:

(c) Characteristics of influencing quantities:

x1nom ¼ 20
C; x�1 ¼ 25
C; xþ1 ¼ 35
C; x�2 ¼ 200B; x�2 ¼ 230B;

o ¼ ð0� 10Þ G
a

:

2. Calculation of the greatest possible values of supplemental errors

Dþ
@1 ¼ cðx1Þðxþ1 � x1nomÞ ¼ 0:5 ð35� 20Þ ¼ 7:5 mV; Dþ

@2 ¼ eþðx2Þ ¼ 10 mV:

3. Top-down analysis of the relative dynamic error of a linear measuring instru-

ment is calculated with the formula

3 The amplitude–frequency characteristic is the ratio, depending on the angular frequency o, of
the amplitude of the output signal of a linear measuring instrument to the amplitude of an input
sinusoidal signal in steady-state mode [18].
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dþdyn ¼ 1� Aðo0Þ
AðoÞ












[18]. Consequently,

dþdyn ¼ 1� 1

AðoÞ










¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þo2T2

p


 


¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð10� 0:005Þ2

q








ffi 0:025:

4. Estimation of the maximum instrumental error in specified conditions of use:

Dinstr ¼ 	ðDo þ D@1 þ D@2 þ ddynWÞ ¼ 	ð20þ 7:5þ 10þ 0:025� 600Þ
¼ 	52:5 MB:

This estimation was derived, in accordance with [18], by arithmetic summation

of components. If one uses the mean-square summation, as recommended by the

international Guide [19], then

Dinstr ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
0 þ D2

@1 þ D2
@2 þ ðddynWÞ2

q
¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
202 þ 7:52 þ 102 þ ð0:025� 600Þ2

q
¼ 	28:0 mV:

2.3.3 Measurement Method Errors

These errors can occur due to imperfection in the selected measurement method,

due to the limited accuracy of empirical formulas used in to describe the phenome-

non positioned as the basis of the measurement, or due to limited precision of the

physical constants used in the equations. One must also include here errors caused

by the mismatch between the measurement model adopted and the actual object,

due to assumptions or simplifications that were taken. In some cases, the effect of

these assumptions on measurement error turns out to be insignificant, but in others it

can be substantial. An example of an error caused by oversimplification of the

measurement method is ignoring the mass of air compressed, according to

Archimedes’ law, using a balance weight or hanging on beam scales. In conducting

working measurements, this is usually ignored. However, in precise measurements,

one needs to consider and introduce an appropriate correction. Another example is

measuring the volumes of bodies whose form is taken to be (in the measurement

model) geometrically straight, by taking an insufficient number of linear

measurements. Hence, a substantial methodological error can result from measur-

ing one length, one width, and one height. For more accurate measurement, one

should measure these parameters along each face at several positions.
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Method errors are inherent in measurement methods that are based on test data

that lack strong theoretical foundation. An example of such methods would be the

various methods of measuring the hardness of metals. One of them (the Rockwell

method) determines hardness by the submerged depth, in the tested metal, of the tip

of a specified form under the effect of a specified force impulse. The foundation of

other methods (Brinnel and Vickers) is the relationship between the hardness and

the size of an impression left by a tip under specified conditions of action. Each of

these methods determines hardness using its own scales, and conversion of the

measurement results of one into another is only approximate. This is explained by

the fact that the specified methods use different phenomena that purportedly

characterize hardness.

Estimates of error in formulas and physical constants are mostly known. When

they are unknown, errors in the empirical formulas are transferred into a series of

random values, using the process of randomization. For this purpose, the same

quantity is measured with several methods, and the test data derived is calculated

using its mean square value.

Analytical measurements differ from the others in the fact that they incorporate a

series of preparatory operations: the selection of a sample of the analyzed object, its

delivery to the measuring laboratory, storage, preparation of the sample for instru-

mental operations (cleaning, drying, transition to another phase state, etc.), prepa-

ration of calibration solutions, and other. These operations are often not considered

with regard to the accuracy characteristics of the measurement method, when

considering the measurement simply as its instrumental component. It is easy to

prove that this position is erroneous. Let us recall that a measurement error is the

deviation of a measurement result from the true value of a measurand. Let us

suppose that it is essential to estimate some quantity that reflects a physical and

chemical property of an object (for example, the density of a product in a batch, or

the concentration of a chemical component in lake water or soil at a settlement).

The true value of this quantity, and not a sample taken from it, must characterize

this object. The user of measurement information is interested specifically in this,

and if there has been distortion of the measurement results, he does not care at what

stage it was introduced. Consequently, error in analytical measurement must also

account for errors in preparatory operations.

The necessity of accounting for such operations is due to the fact that the risk of

introducing systematic errors into the measurement results in these operations is

incomparably higher than in instrumental. In practice, systematic measurement

error can occur in these operations due to the effect of many possible sources, in

particular:

– that the sample extracted from the object may not be representative (not ade-

quately representing the measurand),

– that the sample being measured may have changed since the time that the sample

was taken,

– the effect of non-information parameters (disturbing the sample components),
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– contamination of the sampling unit and laboratory vessels used in preparing the

sample,

– inaccurate measurement of environmental parameters,

– errors in measuring masses and volumes,

– errors in preparing calibration solutions [20].

2.3.4 Systematic Errors Due to Operator’s
Inaccurate Performance

These errors, referred to as subjective, are as a rule the consequence of the person’s

individual traits, caused by his organic properties or by deep-rooted bad habits. For

example, an operator’s invalid actions may lead to a delay in recording a measuring

signal or to an asymmetry in setting an indicator between the guide lines. Reaction

time to a received signal plays an important role in the occurrence of subjective

systematic errors. This is different for different people, but is relatively stable for

each person over a more or less extended period. For example, a person’s reaction

speed to a light signal varies between 0.15 and 0.225 s and to an auditory signal

between 0.08 and 0.2 s. The famous astronomer Bessel compared the accuracy of

the measurements of time during star transit taken by various astronomers and

himself. He established that there were large discrepancies, although stable,

between his data and that of other researchers. Bessel came to the conclusion that

the reason for these systematic errors lay in the different reaction speeds of each of

the astronomers [3].

Currently, in connection with automated recording of measurement information,

which is imposed by the demand for high accuracy, subjective measurement errors

have lost their significance.

2.3.5 Elimination of Systematic Errors

Systematic errors introduce a shift into measurement results. The greatest danger is

in unrecognized systematic errors whose existence is not even suspected. It is

systematic errors that more than once have been the reason for erroneous scientific

conclusions, production breakdown, and irrational economic losses. Hence system-

atic errors must be removed as much as possible by some method. Methods for

removing systematic errors can be divided into the following groups:

– removing the sources of error before commencing the measurements

(prophylaxis);

– excluding systematic errors during the measurement process;

– introducing known corrections to the measurement results.
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The first method is the most rational since it significantly simplifies and speeds up

themeasurement process. The term ‘removal of a source of error’ is understood to be

both its removal (such as removing a heat source) and protection of the object of

measurement and the measurement apparatus from the effect of such sources.

To prevent the appearance of temperature errors, thermostatic control is used –

stabilization of the ambient temperature in a narrow range of values. Both the rooms

where the measurements take place, and the measuring instruments overall and their

constituent parts, are thermostatically controlled. Protecting the measuring instru-

ment from the effect of the Earth’s magnetic field and from magnetic fields induced

by DC and AC circuits is done with magnetic shields. Harmful vibrations are

eliminated by cushioning (dampening vibrations of) the measuring instrument.

Sources of instrumental error that are inherent in the specific instance of a measuring

instrument can be eliminated, before measurements begin, by conducting a calibra-

tion. Likewise, sources of error associated with improper installation of the mea-

surement unit can be eliminated before measurement commences.

During measurements, some instrumental errors can be excluded, being errors

from improper setup and errors from disruptive influences. This will be achieved by

using a number of specialized approaches associated with repeated measurements.

These are the methods of replacement and contraposition. In the replacement

method, the quantity being sought is measured, and with repeated measurement

the object of measurement is replaced with a measure located in the same

conditions as itself. Determining the measurement result from the value of this

measure, exclusions are added for the large number of systematic effects that affect

the equilibrium position of the measurement layout. For example, when measuring

the parameters of an electrical circuit (electrical resistance, capacitance, or induc-

tance), the object is connected to a measurement circuit and put into equilibrium.

After equilibrium is reached, the object of measurement is replaced by a measure of

variable value (store of resistance, capacitance, or inductance) and, varying its

value, resetting of the circuit equilibrium are added. In this case, the replacement

method permits the elimination of residual non-equilibrium of the measuring

circuit, the effect of magnetic and electrical fields on the circuit, mutual effects of

separate elements of the circuit, and leakage and other parasitic effects.

The contraposition method consists of conducting a measurement twice, so that

any cause for error in the first measurement would have opposite effect on the result

of the second. The error is excluded in calculating the results of this joint measure-

ment. For example, when weighing a mass on balance beam scales using Gauss’

method, the result of the first measurement is x ¼ ðl2=l1Þm1, where l2/l1 is the actual
ratio of the arms of the scale and m1 is the mass of the balance weights that match

the measurand. Then the object of measurement is moved to the balance pan where

the weights were, and the weights are moved to where the mass was. The result

of the second measurement is x ¼ ðl1=l2Þm2. Computing the square root of the

product of these equalities, we derive: x ¼ ffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
. It is evident that this method

measurement makes it possible to exclude error from unequal-arm weights.

A particular case of the method of contraposition is the method of error com-

pensation by sign. In this method, two measurements are done such that the errors
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enter the results with opposite sign: x1 ¼ xctr þ D and x2 ¼ xctr � D, where xctr is
the conventional true value of the measurand, and D is the systematic error that

must be eliminated. The error is eliminated in calculating the mean value:

�x ¼ ðx1 þ x2Þ=2 ¼ xctr. A characteristic example of using this method is the elimi-

nation of error caused by the effect of the Earth’s magnetic field. In the first

measurement, the measuring instrument can be located in any position. Before

the second measurement, the measuring instrument is rotated in the horizontal

plane by 180
. Here the Earth’s magnetic field will exert an opposite effect on the

measuring instrument, and the error from magnetization is equal to the error of the

first measurement but with opposite sign.

The most widespread method for eliminating systematic errors is to introduce

corrections to the known components of systematic error in the measurement

results. A correction is the name given to the value of a quantity that is introduced
into the unadjusted result of a measurement for the purpose of eliminating known
components of systematic error (the results of measurements before corrections are
called uncorrected, and afterwards are called corrected). In accordance with the

international Guide [19], the introduction of corrections for known systematic

errors is an obligatory operation, preceding the processing of measurement results.

Usually the algebraic addition of an unadjusted measurement result and a correction

is done (taking account of its sign). In this case, the correction is equal in numerical

value to the absolute systematic error and is opposite to it in sign. In those cases

when the value of an absolute systematic error is proportional to the value of the

measurand, x (	 D ffi 	dx), it is eliminated by multiplying the measurement result

by the correction coefficient K ¼ 1� d. As a rule, information that is needed to

determine and introduce the corrections will be apparent before the measurements.

However, it is possible to determine it even after the measurement, taking account

of the a posteriori (derived after the measurement) measuring information. Such an

approach, in particular, is used in the run up to the acceptance of balance sheets in

enterprises – the consumption of power resources, taking account of errors in the

measurement facilities used for the commercial accounting.

Nevertheless, it is practically impossible to fully eliminate systematic errors.

Primarily, this involves measurement methods whose systematic errors have not

been studied, as well as to systematic errors that it is impossible to estimate with an

actual value. This group includes, for example, measurement errors in calibrating a

measuring instrument and error caused by drift of the parameters of the measuring

instrument after calibration. The second group includes computational errors and

errors in determining the corrections for systematic errors that have been taken into

account.

Hence, after eliminating components of measurement systematic error, their

residuals remain, which are called non-excluded residuals of systematic error

(NRSEs) (see Par. 2.1). Not only can NRSEs not be eliminated, but they also

cannot be experimentally estimated in any manner from information contained

the series of measurement results, since they are present in hidden form in each

result of this series. Hence one must be limited by a theoretical estimation of their

limits (	 y). The value of y is usually established using an approximate calculation
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(for example, taking them as equal limits of allowable errors of the measuring

instrument, if the random components of the measurement errors are small). If there

are several reasons for the NRSEs, then they are estimated separately and then

added. The method of summing the components of an NRSE are standardized

in [21, 22]:

y ¼

Pm
i¼1

yij j; m� 3;

k

ffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

y2i

s
; m� 4;

8>>><
>>>:

(2.33)

where 	 yi are the limits for the NRSE caused by the ith reason, m is the number of

components of the NRSEs, k is the coefficient of dependency of the sum of

component from the selected confidence probability P when they are evenly. For
P ¼ 0.99, k ¼ 1.4, and for P ¼ 0.5, k ¼ 1.1.

In international practice, another method of summing is used, which shall be

examined in the next chapter.
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Chapter 3

Measurement Uncertainty

3.1 Error and Uncertainty

The simple and logical conception of accuracy presented in the previous chapter

began to be subjected to criticism at the end of the last century in a number of

foreign countries. It is the author’s conviction that the fundamental reason for

dissatisfaction was the term “error.” The fact is that, by contrast to the Russian

language, the concepts of “mistake” (i.e., a miscount or invalid action) and “error”

are not differentiated in English and French (“the error” in English, “erreur” in

French). For this reason, metrological terminology came into contradiction with the

philosophy, accepted into general consciousness and used everywhere in the world,

of the quality control of goods and services based on ISO Series 9000 standards. The

essence of this methodology consists of ensuring the conditions for mistake-free

execution of all productive functions and work operations. At the same time, this

ideal picture is spoiled by measurement errors (in the Russian language,

“pogreshnosti,” having an altogether different sense), which are impossible to elimi-

nate since they are unavoidable consequences of the limitations of measuring tech-

nology and accompany every measurement.

A similar issue arose in 1927 for the physicist Werner Heisenberg, when he was

preparing to publish his noted article “On the Visualizable Content of Quantum-

Theoretical Kinematics and Mechanics.” In this work, he introduced into physics

the well-known relationships (1) that establish the lower limits in principle of the

error in measuring momentum Dp and coordinates Dx, energy DE, and impulse Dt:

DpDx� h
2
;

DEDt� h
2
;

(3.1)

in which h ¼ 1:05457266� 10�34 is the Planck’s constant. The author named these

fundamental inequalities the uncertainty relationships, using the term “the uncer-

tainty” as a synonym for the term “error.”

A.E. Fridman, The Quality of Measurements: A Metrological Reference,
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After the publication of this article, the term “uncertainty” began to be widely

used in physics. It was used in the new concept of estimating measurement

accuracy, regulated in the international document “ISO/BIPM Guide to The

Expression of Uncertainty in Measurement” [19] (abbreviated "The GUM", here-

inafter, the Guide). This document was published in 1993 in the name of seven

authoritative international organizations:

• International Bureau of Weights and Measures (IBWM),

• International Electrotechnical Commission (IEC),

• International Federation of Clinical Chemistry (IFCC),

• International Organization for Standardization (ISO),

• International Union of Pure and Applied Chemistry (IUPAC),

• International Union of Pure and Applied Physics (IUPAP),

• International Organization of Legal Metrology (IOLM).

The Guide did in fact achieve the status of an international regulation that is

obligatory for use. It is directed, first, to provide for users complete information on

all components of measurement error results, and second, toward international

unification of the recording of measurements and an estimate of their accuracy,

with the aim of formulating a basis for international comparison of measurement

results. Here it must be kept in mind that worldwide unity in the methods of

estimating measurement accuracy will ensure the proper utilization of measurement

results in all realms of activity.

The uncertainty concept, introduced in the Guide, consists of the following.

The base concepts of the classical theory of accuracy – true value, conventional true

value, and measurement error – are not introduced.1 Instead, the concept of

measurement uncertainty is introduced, understood as doubt, incomplete knowledge
of the value of a measurand after measurements (interpreted in the broad sense),

and as a quantitative description of this incomplete knowledge (interpreted in the

narrow sense). Thereafter, this concept is refined: uncertainty is a parameter
associated with a measurement result and characterizing the spread of values
that can be assigned to the measurand. In mathematical statistics, two types of

parameters are known that characterize the spread of non-correlated random values:

the SD and the confidence interval. They are also employed as characteristics of

uncertainty with the designations standard uncertainty and expanded uncertainty.
Here, as one might expect, it turned out that the standard uncertainty is the complete

analog of the SD of measurement errors, and expanded uncertainty is the complete

analog of the confidence limits of measurement errors. And in this, the specified

concept is linked with the traditional statement of the issue of estimating measure-

ment accuracy.

Hence, in the area of practical applications, the new concept of estimating

measurement accuracy has turned out to be fully identical to the classical one.

1 Here it is implied that a true (conventional true) value of the quantity exists, inasmuch as it is

recognized that the purpose of measurement is to find this value.
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In addition, these concepts are tightly associated with each other and were known in

principle long ago. This becomes evident when turning to the classical work of M.F.

Malikov [1]. In this monograph he presents the relationships between the quantities

used in estimating measurement results. Let us introduce the following designations

for their notation:

X is the unknown true value of a measurand,

Ii are the n results of single measurements of this quantity,

L ¼ 1=n
Pn

i¼1 Iiis themeanof the Ii values, taken as the result of themultiplemeasure-

ments of this quantity,

Di ¼ Ii � X are the n errors of the single measurements,

ni ¼ Ii � L are the n deviations of the results of single measurements from their

mean, reflecting the spread of these observations,

l ¼ L� X is the random error of the result of the multiple measurements.

Table 1 presents the relationships between these quantities.

It is understood that the quantities Di presented in the left section of the table are

measurement errors and that the ni presented in the right section of the table reflect

the spread of observations relative to the measurement result, i.e., the uncertainty of

this result. Complete symmetry is present between these quantities. Here, the values

of the quantities Di are completely unknown to us, while the values ni are known

from the test data. When increasing the number of observations, the mean value

L converges toward the true value X. With that, their difference l converges to zero,
and the quantities ni converge to the corresponding values Di of the errors.

This means that the set of values ni is subject to the same principles as is the set

of values Di.

Hence, one may establish that these concepts are differentiated by the issue of

which quantity pertains to the dispersion that characterizes the spread of observed

values. With the classical approach, this has to do with the true value of a

measurand X, but in the other case to the result L of measurement. But this

distinction does not affect the behavior of the final results, since even in the

classical approach the measurement errors are attributed to the measurement

results. Hence both conceptions are mutually complementary, uniting into a single

concept of estimation of measurement result accuracy. In this regard, following

cause and effect links, it is expedient to establish the following sequence for the

introduction of the basic concepts of the theory of measurement accuracy: true
value of a quantity ) conventional true value of the quantity ) measurement
result ) measurement error ) indeterminacy of the measurement result, as a
characteristic of this error.

Hence the concepts of error and indeterminacy can be used harmoniously

without mutual opposition.

Table 1 Relationships

between quantities

characterizing measurement

error and measurement

uncertainty

X l ¼ L�X L

D1 ¼ I1 � X n1 ¼ D1 � l n1 ¼ I1 � L

Di ¼ Ii � X ni ¼ Di � l ni ¼ Ii � L

Dn ¼ In � X nn ¼ Dn � l nn ¼ In � L
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3.2 Classification of Measurement Uncertainties

Analogous to the errors, measurement uncertainties can be classified according to

several criteria.

1. Based on the method of their expression, they are divided into absolute and

relative.

Absolute measurement indeterminacy is measurement uncertainty expressed in
the units of the measurand.

Relativemeasurement indeterminacy ofmeasurement results is the ration of absolute
indeterminacy to the measurement results.

2. Based on the source of occurrence of measurement uncertainty, one may sepa-

rate them, just as for errors, into instrumental, methodological, and subjective.

3. As follows from Sect. 2.2, based on the nature of the manifestation of error,

they are separated into systematic, random, and gross errors. The Guide has no

classification for uncertainties using this criterion. It is stated, at the very

beginning of this document, that before statistical processing of a series of

measurements, all known systematic errors must be excluded from them.

Hence the separation of uncertainties into systematic and random is not

introduced. In its place is separation of uncertainties into two types, based on

the method of evaluation:

– uncertainty from type A evaluation (type A uncertainty) is uncertainty that is
evaluated by statistical methods,

– uncertainty from type B evaluation (type B uncertainty) is uncertainty that is
evaluated by non-statistical methods.
Correspondingly, two methods of evaluation are presented:

– type A evaluation is the derivation of statistical estimates based on the results
of a series of measurements,

– type B evaluation is the derivation of estimates based on a priori non-statistical
information.

At first glance, it seems that this innovation merely consists of replacing the

existing terms of known concepts with others. Actually, one can evaluate only the

randomerrorwith statisticalmethods, and hence typeA uncertainty iswhatwas earlier

called random error. Analogously, non-statistical random error can be estimated only

on the basis of a priori information, and hence there is likewise a mutually unique

correspondence between type B uncertainty and non-statistical random error.

However, from the author’s point of view, the introduction of these concepts is

altogether reasonable. The fact is that in measurements using complex methods,

including a great number of sequentially executed operations, it is essential to

evaluate and account for the great number of sources of the uncertainty of the

final result. Here, their division into non-statistical random error and random can be

falsely oriented. We shall introduce two examples.

58 3 Measurement Uncertainty



Example 3.1. A substantial part of the uncertainty of an analytical measurement

can consist of the definition of the calibration function of an instrument, which is

non-statistical random error at the time of the measurement. Consequently, it is

necessary to evaluate it based on a priori information using non-statistical methods.

However, in many analytical measurements the basic source of this uncertainty is

random error in the weighing process in preparing the calibration mixture. To

improve measurement accuracy, one may apply multiple weighings of this standard

sample and find an estimate of the error of this weighing process using statistical

methods. This example shows that in some measurement techniques, for the

purpose of improving the accuracy of measurement results, a number of systematic

components of measurement uncertainty can be evaluated by statistical methods,

i.e., they are type A uncertainties.

Example 3.2. For a number of reasons, such as to save on production expenses, the

measurement method may provide for conducting no more than three single

measurements of each quantity. In this case, the measurement result can be defined

as the mean, mode, or median of the values obtained, but statistical methods of

evaluating uncertainty with this sample size will provide only a very coarse

estimate. It is more reasonable to provide an a priori calculation using standardized

indexes of the accuracy of the measurement instrument; i.e., this is a type B

evaluation. Consequently, in this example, by contrast with the preceding one,

the uncertainty of the result of measurements, a significant part of which is caused

by the effect of factors of a random nature, will be type B uncertainty.

Along with this, the traditional division of errors into systematic, non-statistical

random errors, and random also loses meaning since it more precisely reflects other

criteria: the nature of its appearance in the measurement result and the causative

link with effects that are sources of error. Hence, the classification of uncertainties

and errors of measurements are not alternatives, but complement each other.

The Guide also has several other technical innovations. A summary table of

terminological distinctions between the concept of uncertainty and classical theory

of accuracy is presented below (Table 2).

Table 2 Terms and approximate analogs of the concept of uncertainty with the classical theory

of accuracy

Classical theory Concept of uncertainty

Error of a measurement result Uncertainty of a measurement result

Random error Uncertainty evaluated using type A

Non-statistical random error Uncertainty evaluated using type B

SD (standard deviation) of the error of a

measurement result

Standard uncertainty of a measurement result

Confidence limits of a measurement result Extended uncertainty of a measurement result

Confidence probability Coverage probability

Quantile (coefficient) of error distribution Coverage factor
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New terms shown in this table have the following definitions.

1. Standard uncertainty is uncertainty expressed in the form of a standard
deviation;

2. Extended uncertainty is a value specifying the interval about the measurement
result, within which limits, as expected, are found the greatest part of the values
of the distribution that can be ascribed to the measurand with sufficient cause.

1. Notes.

With each value of extended uncertainty is associated the value of its coverage

probability P.
2. An analog of extended uncertainty is the confidence limits of measurement

error.

3. Coverage probability is the probability that, in the opinion of the experimenter,
corresponds with the extended uncertainty of the result of measurements.

1. Notes.

Ananalogof this term is confidence probability, corresponding to the confidence

limits of an error.

2. Coverage probability is selected taking account of information on the type of

distribution law for the uncertainty.

4. A coverage factor is a coefficient that depends on the type of distribution of
uncertainty of the measurement result and of the coverage probability, and is
numerically equal to the ratio of the extended uncertainty corresponding to the
specified probability of coverage, to the standard uncertainty.

5. The number of degrees of freedom is a parameter of the statistical distribution,
equal to the number of independent connections to the statistical sample being
evaluated.

3.3 Procedure for Evaluation of the Uncertainty

of the Measurement Result

Insofar as it pertains to the terminological innovations of the Guide, one must

recognize that its introduction had a huge positive effect and made it possible to

increase confidence in the evaluations of the accuracy of measurement results, as

used in all countries of the world in product certification and in settling mutual

accounts between suppliers and purchasers; and in public health, scientific research,

and other areas of activity. This effect is due to the regulation of a unified method of

evaluating measurement results and their uncertainties, and their mass utilization by

measuring and testing laboratories. Secondly, this effect was caused by the fact that

the methodology regulated by the Guide contains very high requirements for

evaluating accuracy than had been practiced earlier. In this regard, let us examine

in detail this methodology in its current exposition [23].
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Evaluating the result of measurements and its uncertainty takes place as follows:

– a measurement equation is formulated,

– the input values and their standard uncertainties are evaluated,

– the output values and their standard uncertainties are evaluated,

– the uncertainty budget is formulated,

– the extendeduncertainty of ameasurement result is evaluated, and themeasurement

result is presented.

Let us examine these valuation steps.

1. Formulation of a measurement equation.

A measurement equation is understood to be a mathematical relationship
between the measurands X1; . . . ;Xk and the measurement result Y

Y ¼ f ðX1; :::;Xk; Xkþ1; :::;XnÞ; (3.2)

where X1; :::;Xn are quantities influencing Y. This pertains both to the directly

measurable quantities X1; :::;Xk, and to all other influencing values Xkþ1; :::;Xn–

reference data, constants, adjustments, etc. In the methodology being studied,

these are called input quantities (an input quantity of a measurement equation or
of an equation used to evaluate the uncertainty of this measurement). In contrast
to these, a measurement result is called an output quantity (an output quantity
of a measurement equation is a quantity, the value of which is determined
in measurement).

An equation of measurements is formulated as follows. The functional depen-

dence of the measurement result Y on the measurand is written as

Y ¼ f ðX1; :::;XkÞ; (3.3)

which is the mathematical description of a physical effect at the foundation of

the measurement methods.

Then the measurement conditions and other factors that influence the mea-

surement results are analyzed. The quantities that describe these factors are

included in (3.3). One must keep in mind that the factors influencing the

measurement result and its accuracy must be fully accounted for, as much as

possible, in the measurement equation. Hence if, for example, an adjustment is

introduced into the measurement result, the value of which is equal to zero in a

specific case, then this adjustment must nevertheless figure in the measurement

equation as an input quantity, since the uncertainty of its quantity contributes to

the total uncertainty of the measurement.

2. Evaluation of the input quantities and their standard uncertainties.

The mean estimate of the supposed distribution of its values is taken as the value

of the input quantity, and the estimation of the standard deviation of this mean

estimate is taken as its standard uncertainty.

If there are results xi1; :::; xim of the independent measurements of one of the

input quantities Xi; i ¼ 1; :::; n, conducted under the same conditions, the evalu-

ation of type A uncertainty, i.e., statistical estimation, is employed. As follows
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from the preceding chapter, with normal distribution of the measurement results,

the best estimate xi of this quantity is the mean

xi ¼ �xi ¼ 1

m

Xm
j¼1

xij; (3.4)

and the standard uncertainty of this estimate is equal to the SD of the mean

uAðxiÞ ¼ uAð�xiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

mðm� 1Þ
Xm
j¼1

ðxij � �xiÞ2
vuut : (3.5)

Estimates of these quantities with the generalized normal distribution of the

measurement results are presented in 4.2.

The following sources of a priori information are the initial data for type B

evaluation of the quantity and its standard uncertainty:

– data from previous measurements of this quantity contained in measurement

protocols, evidence from calibration and testing, or other documents;

– standards for measurement accuracy as specified in technical documentation

on measurement methods and the measurement instrument;

– values of constants and reference data, and their uncertainties;

– information on the supposed distribution of the values of the quantity,

available in technical reports and bibliographical sources;

– the researcher’s experience or knowledge regarding general principles to

which the properties of applied materials or instruments are subject.

The following cases of type B evaluation are differentiated.

(a) If only one value Xi is known, such as the result of a single measurement,

adjustment, or reference data, then this value is taken as an estimate xi.
An evaluation of the standard uncertainty uBðxiÞ is found as follows:

– if an estimate of the standard uncertainty uðxiÞ is known, then

uBðxiÞ ¼ uðxiÞ;
– if the extended uncertainty UðxiÞ and coverage factor k are known, the

standard uncertainty is calculated from the formula

uB xið Þ ¼ UðxiÞ=k: (3.6)

If the coverage factor is not specified, it will be accepted by taking

account of the current hypothesis regarding the form of the distribution

of the uncertainty of the quantity Xi and the coverage probability, to

which the extended uncertainty UðxiÞ corresponds. Table 3 shows

some typical cases.

(b) If there are assumptions regarding the probability distributions of the

quantity Xi, then the mean and standard deviation of this distribution are

taken as the estimate of xi and its standard uncertainty uBðxiÞ.
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(c) If only the upper aþ and lowera� bounds for the values of the quantityXi can

be estimated, then the equal-probability distribution is accepted. In this case

xi ¼ 1

2
ðaþ þ a�Þ; (3.7)

uBðxiÞ ¼ aþ � a�
2

ffiffiffi
3

p (3.8)

If aþ ¼ �a� ¼ a, then xi ¼ a; uBðxiÞ ¼ a=
ffiffiffi
3

p
.

3. Evaluation of output quantities and their uncertainties

The result y of measurements is calculated by formula (3.2), in which are

substituted the values xi of input values as defined in the preceding stage:

y ¼ f ðx1; :::; xk; xkþ1; :::; xnÞ: (3.9)

Expanding the function y ¼ f ðx1; :::; xnÞ into a Taylor series in the neighbor-

hood of the point ðx1; :::; xnÞ, we derive the dependence of the error Dy of the

result y of measurements on the errors Dxi of the estimates xi of input quantities:

Dy ¼
Xn

i¼1

@f ðx1; . . . ; xnÞ
@xi

Dxi þ oðDxÞ;

where
@f ðx1: :::; xnÞ

@xi
¼ @f ðX1;:::;XnÞ

@Xi
Xs ¼ xs; s ¼ 1; :::; nj is the partial differential of

the function f ðX1; :::;XnÞ for quantity Xi, and is calculated for expected values of

all input quantities.

Consequently, the contribution uiðyÞ of each input quantity Xi to the uncer-

tainty y of the measurement result is defined by the formula

uiðyÞ ¼ ciuðxiÞ; (3.10)

where ci ¼ @f ðxi;:::;xnÞ
@xi

is the coefficient of sensitivity of the output quantity Y to

the input quantity Xi.

Table 3 Coverage factors of distributions of uncertainty of input quantities

Surmised distribution of the

uncertainty of the input quantity

Coverage probability P to which UðxiÞ
corresponds

Coverage

factor k

Equal-probability distribution 0.99–1.0 1.73

" 0.95 1.65

Normal distribution 1 (limit of allowable values) 3.00

" 0.99 (UðxiÞ of primary and secondary

standards)

2.60

" 0.95 (UðxiÞ of operational standards) 2.00

Distribution unknown – 2.00
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Coefficients of sensitivity can be defined in various manners: directly by

formula (3.10), by numerical differentiation of the measurement equation, and

by experimental study.

If the estimates of the input quantities are correlated, then the coefficients of

their mutual effect cij ¼ @2f ðx1;:::;xnÞ
@xi@xj

and correlation coefficients

rðxi; xjÞ ¼ uðxi; xjÞ
uðxiÞuðxjÞ ; (3.11)

are found, where uðxi; xjÞ is the covariance of quantities xi and xj.
The covariance uðxi; xjÞ can be estimated if there are m pairs of results

xis; xjs ðs ¼ 1; :::; nÞ of independent repeated measurements of the two quantities

xi and xj. In this case, this is equal to

uðxi; xjÞ ¼ 1

mðm� 1Þ
Xm
s¼1

ðxis � �xiÞðxjs � �xjÞ: (3.12)

Now all is in readiness to calculate the total standard uncertainty uðyÞ of the
result of measurements. In the general case, with correlated estimates of input

values, this is calculated using the formula

uðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

u2i ðyÞ þ
Xn

i;j¼1; i 6¼j

cijrðxi; xjÞuiðyÞujðyÞ
vuut ; (3.13)

With uncorrelated estimates of input values rðxi; xjÞ ¼ 0, and consequently,

uðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

u2i ðyÞ
s

: (3.14)

It is permissible to consider the correlation of two input values as negligibly

small if:

– these values are mutually independent (for example if they are observed

many times but not at the same time, and in different tests independently of

each other);

– one of these values can be considered to be a constant;

– there are no reasons for correlation between these values.

Nevertheless, ignoring correlation between input values may lead to a

mistaken estimation of the standard uncertainty of a measurand. Hence, if the

degree of correlation between values Xi and Xj is unknown, it is useful to

estimate the maximum effect of this correlation on a measurement result,
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using an estimate of the maximum standard uncertainty of the measurand. This

estimate is equal to

u2ðyÞ� ðjuiðyÞj þ ujðyÞ
�� ��Þ2 þ u2r ðyÞ; (3.15)

where urðyÞ is the contribution to standard uncertainty of the measurand

from the remaining input values that are considered uncorrelated.

1. Notes.

If f ðX1; :::;XnÞ ¼
Pn

i¼1 ’iðXiÞ, then the estimate of the output value is

equal to y ¼ Pn
i¼1 ’iðxiÞ, and its absolute standard uncertainty is

uðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 @’iðxiÞ @xi=ð Þ2u2ðxiÞ
q

. In the special case for

’iðXiÞ ¼ piXi; i ¼ 1; :::; n, we derive uðyÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 p

2
i u

2ðxiÞ
p

:

2. If f ðX1; :::;XnÞ ¼
Qn

i¼1 ’iðXiÞ, then the estimate of the output value is

equal to y ¼ Qn
i¼1 ’iðxiÞ, and its relative standard uncertainty is

urelðyÞ ¼ uðyÞ
y

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

@’iðxiÞ=@xi
’iðxiÞ

� �2

u2ðxiÞ
vuut :

In the special case for ’iðXiÞ ¼ Xpi
i ; i ¼ 1; :::; n we derive urelðyÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 p
2
i u

2
relðxiÞ

p
, where urelðxiÞ ¼ uðxiÞ=xiis the relative standard uncer-

tainty of the value Xi.

4. Formulation of the uncertainty budget.

The term “uncertainty budget” is understood to mean a formalized brief exposition

of the evaluation of a measurement’s uncertainty. (“Uncertainty budget” is the
designation given to a complete list of sources of measurement uncertainty,
specifying its standard uncertainty and contribution to the total standard uncer-
tainty of the result of measurements.).

An uncertainty budget is presented in the form of table (see Table 4).

Column 1 in this table enumerates the input quantities of the measurement

equation, and column 2 the estimates of input quantities as derived either as a

result of measurements or based on other information. Column 3 presents the

values of the standard uncertainties of these estimates. Column 4 indicates the

type of evaluation of the uncertainty. When needed, it also shows the suggested

distribution law of the estimates. For example, if the estimate of the value is

derived from results of many measurements, then as a rule the normal distribu-

tion law of its values and type A evaluation are proposed. Column 5 presents the

coefficients of sensitivity of input quantities ci ¼ @f=@xi, and column 6 shows

the values of the quantities uiðyÞ ¼ @f=@xij j � uðxiÞ for the input values to the

total standard uncertainty uðyÞ (the product of the values from column 3 and the

absolute magnitude of the value from column 5).
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The last row of the table shows the result of measurements y and its standard

uncertainty uðyÞ, equal to the mean square sum of all values presented in column 6.

All values of quantities that are presented in the table include the designations of

the units of these quantities.

5. Defining extended uncertainty. Presenting the result of a measurement

The extended uncertaintyUðyÞ is equal to the product of the standard uncertainty
uðyÞ of the measurement of an output quantity y with the coverage factor k:

UðyÞ ¼ kuðyÞ: (3.16)

The Guide recommends taking the coverage factor to be equal to the quantile of

Student’s distribution with a coverage probability of P ¼ 0.95 and number of

effective degrees of freedom neff :

k ¼ tP¼0:95ðneffÞ; (3.17)

and it is proposed to determine the number of effective degrees of freedom using the

Welch-Satterwaite formula

neff ¼ u4ðyÞPn
i¼1 u

4
i ðyÞ=ni

; (3.18)

in which ni is the number of degrees of freedom of the estimate of the contribution

of the i-th input quantity to the uncertainty of the result of measurements.

Hence the coverage factor is selected from tables of Student’s distribution for a

probability P ¼ 0:95 and number of degrees of freedom equal to neff , rounded down
to the highest integer less than neff . These values are shown in Table 5.

In estimating the contribution of the type A uncertainty of quantity Xi to the

uncertainty of the measurement results, the number of degrees of freedom will be

taken as equal to ni ¼ mi � 1, where mi is the number of repeated measurements of

this quantity.

Table 4 Recommended form for presenting an uncertainty budget

1 2 3 4 5 6

Quantity Estimate

Standard

uncertainty

Type of estimate

(distribution

law)

Coefficient

of sensitivity

Contribution to

total standard

uncertainty

X1 x1 uðx1Þ A (B) c1 ¼ @f
@x1 u1ðyÞ ¼ @f

@x1

��� ��� � uðx1Þ
Xn xn uðxnÞ A (B) cn ¼ @f

@xn unðyÞ ¼ @f
@xn

��� ��� � uðxnÞ

Y y ¼ f ðxiÞ uðyÞ uðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

u2i ðyÞ
s
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In estimating the contribution of the type B uncertainty, which is subject to

uniform distribution, the number of degrees of freedom will be taken as equal to

infinity: ni ¼ 1.

In practice, type A evaluation of the uncertainty is often just for one input

quantity, and the uncertainties of all other input quantities are type-B evaluated in

accordance with their uniform distribution. It is easy to show that in this case, the

formula (3.18) is simplified:

neff ¼ ðm� 1Þ � u4ðyÞ
u4AðyÞ

; (3.19)

where uAðyÞ is the contribution to the total standard uncertainty of the quantity for

which there is type A estimation of uncertainty, and m is the number of repeated

measurements of this quantity.

If there is a basis for assuming a normal distribution for the probabilities of the

measurand y, the coverage factor will be taken as equal to k ¼ 2. Here, the extended

uncertainty of the measurement result approximately corresponds to the covering

probability of 0.95.

In those cases when information is lacking on the form of the distribution of

the uncertainty for the measurand, the Guide recommends for the sake of inter-

national unification that one likewise take this as k ¼ 2, and consider that here the

extended uncertainty of the measurement result will approximately correspond to the

coverage probability of 0.95.

In the records and certificate of measurement, one must indicate the measure-

ment result y, the extended uncertainty UðyÞ associated with it, and the coverage

factor k. For example: "The measurement result of the length of the item is

153.2 mm. The extended uncertainty of the measurement result is � 1.4 mm

with a coverage factor equal to 200.
Another formulation is also possible, in which one shows the interval ðy� UðyÞ;

yþ UðyÞÞ in which the value of the measurand is found, with the corresponding

coverage factor. For example: "Measurements have shown that the length of the item

is in the interval (151.8–154.6) mm with a coverage factor equal to 2".

Example 3.3. Measuring net weight of oil by indirect method

The net weight of oil is measured indirectly in accordance with the measurement

equation

Mn ¼ Vð1� ’wÞg½1� ðxcs þ xsolÞ�T;

Table 5 Coverage factors k for various degrees of freedom neff
neff 1 2 3 4 5 6 7 8 10 20 50 1
k 13.97 4.53 3.31 2.87 2.65 2.52 2.43 2.37 2.28 2.13 2.05 2.00
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in which V is the volume of fluid in m3, ’w is the volume percent of water, g is the

density of dewatered oil in t/m3, and xcs and xsol are the mass shares of chloride salts

and solids.

Measurement results are: V ¼ 1200:0m3, ’w ¼ 0:011, g ¼ 0:81 t=m3, xcs ¼
0:002, xsol ¼ 0:01.

The measurement accuracy of these quantities is characterized by the normal

error distribution and limits of allowable relative error: dV ¼ 0:003, d’w ¼ 0:02;
dg ¼ 0:01; dxcs ¼ 0:03; dxsol ¼ 0:02:

Measurement result:Mn ¼ 1200ð1� 0:011Þ0:81½1� ð0:002þ 0:01Þ� ¼ 949:8 t.
The uncertainty of the measurements of all input quantities is characterized by

the limits of allowable relative error. Consequently, we evaluate them as type B

and, taking account of the assumption of the normal law, we obtain coverage factor

k ¼ 3 in accordance with Table 3. Hence the standard uncertainties of the input

quantities are:

u1:rel ¼ urelðVÞ ¼ 0:001; u2:rel ¼ urelð’BÞ ¼ 0:0067 u3:rel ¼ urelðgÞ ¼ 0:0033;

u4:rel ¼ urelðxx:cÞ ¼ 0:01; u5:rel ¼ urelðxm:nÞ ¼ 0:0067:

Let us find the coefficients of sensitivity of the measurement results to a change

in the input quantities. In accordance with Note 2 of section 3, the relative standard

uncertainty of the measurement results is calculated using the formula

urelðMHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP5

i¼1 P
2
i u

2
i:rel

q
,

where p1 ¼ p3 ¼ 1; p2 ¼ ’w

1�’w
¼ 0:011; p4 ¼ xcs

1�xcs�xsol
¼ 0:002; p5 ¼ xsol=

1� xcs � xsol ¼ 0:0105.
Table 6 shows the uncertainty budget of this measurement.

The extended uncertainty of the measurement results is evaluated by starting

with the normal distribution (since all components were distributed according to

this law) and coverage probability P ¼ 0:95. In this case k ¼ 2 and the relative

extended uncertainty UrelðMnÞ ¼ 2 � 0:00345 ¼ 0:0069 ffi 0:7%.

Table 6 Uncertainty budget for measurements of net weight of oil

1 2 3 4 5 6

Quantity Estimate

Relative

standard

uncertainty

Type of

evaluation

(distribution

law)

Coefficient

of sensitivity

Contribution to

total standard

uncertainty

V 1,200.0 m3 0.001 B

(normal law)

1 0.0010

’w 0.011 0.0067 Same 0.011 0.000074

g 0.81 t/m3 0.0033 � 1 0.00330

xcs 0.002 0.01 � 0.002 0.000020

xsol 0.01 0.0067 � 0.0105 0.000070

Mn 949.8 t urelðMnÞ ¼ 0:00345
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Hence, the result of measuring the net weight of the oil is 949.8 t. The relative

extended uncertainty of this result is 0.7% with a coverage factor of 2,

corresponding to a coverage probability of P ¼ 0:95.

Example 3.4. Calibrating a resistor with a nominal value of 10 kO [23]

The electrical resistance of a four-terminal resistor is measured with a numerical

7.5-digit voltmeter while also measuring the electrical resistance of a reference

four-terminal resistor that has the same nominal electrical resistance. The resistors

are immersed in an oil bath where the temperature is monitored by a glass mercury

thermometer. The nominal temperature of the oil bath is 23
C. Measurements are

done by the substitution method: the four-terminal connectors of each resistor are

connected in order to the terminals of the voltmeter. It has been established that a

current of 100 mA cannot cause any noticeable heating of resistors that have a

nominal value of 10 kO. The effect of external leakage on the measurement results

of electrical resistances can likewise be considered insignificant.

1. Measurement equation:

RX ¼ ðRnE þ dR@E þ dRTEÞrcr � dRTX;

where RX is the electrical resistance of the resistor being calibrated at the

nominal temperature,

RnE is the value of electrical resistance assigned to the reference resistor at its last

calibration,

dR@E is the drift of the electrical resistance of the reference resistor after its last

calibration,

dRTE, dRTX is the change to the reference resistor and the resistor being calibrated,

due to the temperature difference from the nominal temperature,

r ¼ R̂X=R̂E is the ratio of the indicated values of the electrical resistances of the

resistor being calibrated and the reference resistor (R̂X ¼ RX þ dRTX; R̂Э ¼
RnE þ dRdE þ dRTE),

rc is the adjustment for stray voltages and the resolution capability of thevoltmeter.

2. Input quantities and their standard uncertainties

(a) Reference: In the certificate of calibration of the reference resistance, the

value RS ¼ 10; 000:053O� 5 mO (coverage factor k ¼ 2) is presented, at a

reference temperature of 23
C. Hence the standard uncertainty of the

assigned reference value is u1 ¼ uBðREÞ ¼ 5=2 ¼ 2:5 mO.
(b) Drift of the value of a reference resistor after its last calibration: expected

value dRD ¼ �20mO. Uncertainty of this estimate is type-B evaluated and

described by a uniform distribution in the interval � 10 mO. Its standard
uncertainty is calculated by formula (3.8): u2 ¼ uBðdR@EÞ ¼ 10=

ffiffiffi
3

p ¼
5:8mO.

(c) The temperature of the oil bath is monitored with a calibrated thermometer.

Taking account of the metrological characteristics of the thermometer and
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the temperature gradient in the oil bath, it is considered that the temperature

deviations of the resistors from the specified temperature of 23
C do not

exceed �0.055 K. The value of the temperature coefficient (TC) of the

reference resistor, 5 � 10�6K�1, provides a deviation of electrical resis-

tance as no greater than dRTE ¼ �107 � 5 � 10�6 � 0:055 ¼ �2:75mO.
In accordance with the technical documentation on the resistor being

calibrated, its TC is no greater than 10 � 10�6 K�1. Consequently, the

deviation of the resistor being calibrated due to temperature variations

must not exceed dRTX ¼ �5:5 mO. Their standard uncertainties are likewise
type-B evaluated, and described by a uniform distribution with coverage

probability 0.99-1.0 (since the limits of possible deviations are indicated):

u3 ¼ uBðdRTEÞ ¼ 2:75=
ffiffiffi
3

p ¼ 1:6mO, u4 ¼ uAðdRTXÞ ¼ 5:5=
ffiffiffi
3

p ¼ 3:2mO.
(d) Since the same voltmeter is used to measure RiX and RiE, their contributions

to the uncertainty are correlated. Measuring the ratio of resistances reduces

the correlation, since only the relative difference between readings is

brought to attention. In this respect the action of systematic effects (stray

voltages and instrument resolution), which are estimated within the limits

� 0:5 � 10�6 for each reading, is significantly reduced. The resultant

distribution of the ratio rc is equal-probability with mean 1.0000000 and

limits 1.0000000 � 1.0 � 10�6. Hence the standard uncertainty caused by

these factors is equal to

u5 ¼ uBðrcÞ ¼ 1 � 10�6

1:73
¼ 0:58 � 10�6:

(e) Five measurements of the ratio r were taken: 1.0000104; 1.0000107;

1.0000106; 1.0000103; and 1.0000105. The measurement result is

�r ¼ 1:0000100þ 4þ7þ6þ3þ5
5

� 10�7 ¼ 1:0000105, and its standarduncertainty

is u6 ¼ uAðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4�5 ð12 þ 22 þ 12 þ 22 þ 0Þ

q
� 10�7 ¼ 0:071� 10�6:

(f) Coefficients of sensitivity

For the values rc and r the coefficient of sensitivity ci ¼ @RX=@r ffi R̂Erc ffi
10; 000O. For other values, ci ¼ rcr ffi 1:0.

(g) The uncertainty budget is shown in Table 7.

(h) Extended uncertainty:

UðRXÞ ¼ kuðRXÞ ¼ 2 � 9:28 ffi 19mO:

(i) Final results: the result of measurements of the electrical resistance of a

resistor of nominal value 10 kO at 23
C is (10,000.178 � 0.019) O. The
claimed extended uncertainty of the measurement is established as the
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standard uncertainty of the measurement, multiplied by the coverage factor

k ¼ 2, which for a normal distribution corresponds approximately to the

coverage probability 0.95.

Table 7 Uncertainty budget in calibrating a resistor

Parameter

Xi Estimate xi

Standard

uncertainty

ui ¼ uðxiÞ
Probability

distribution

Coefficient of

sensitivity ci

Contribution

uiðRXÞ
RnE 10,000.053 O 2.50 mO Equal probability 1 2.50 mO
dR@E 0.020 O 5.80 mO Same 1 5.80 mO
dRTE 0.000 O 1.60 mO 00 1 1.60 mO
dRTX 0.000 O 3.20 mO " 1 3.20 mO
rc 1.0000000 0.58 � 10�6 00 10,000 O 5.80 mO
r 1.0000105 0.07 � 10�6 normal 10,000 O 0.71 mO
RX 10,000.178 O uðRXÞ ¼ 9.28 mO
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Chapter 4

Methods for Estimation of Measurement
Results and Their Uncertainties

4.1 Elimination of Outliers from the Measurement Series

A set of measurement results x1; :::; xn can have a value that differs strongly from

others. For example, there is some minimum value xmin that is significantly less than

the others, or some maximum value xmax that is significantly greater than the others.

These values might be the result of a low-probability event – a random error subject

to the random error distribution of this measurement process, but significantly

differing in magnitude from the other members of the measurement series. But

they also might be the result of mistakes, as mentioned in Sect. 2.1. In this regard,

the need arises to discover and eliminate the measurement results that are incom-

patible in this sense and could distort the statistical conclusions.

Such measurement results are called sharply divergent results or outliers. In

principle, an outlier in a set of number is taken to be a number that in some well-

defined sense is incompatible with the others [24]. In processing the results of

measurements, this concept is defined more concretely: the word “outlier” is under-
stood to mean a result for which the statistic pertaining to the selected compatibility
criterion exceeds a critical value that corresponds to the 99% confidence interval. The
concept of a quasi-outlier is also introduced. This term is understood to mean a result
for which the statistic pertaining to the selected compatibility criterion exceeds a
critical value that corresponds to the 95% confidence interval, but does not exceed
a critical value that corresponds to the 99% confidence interval.

In mathematical statistics, a great number of compatibility criteria have been

developed. Let us examine the Grubbs test, which is one of the most widely used

criteria in measurement practice. In accordance with this criterion, the measure-

ment results subject to analysis are first arranged in increasing order, forming a

monotonic series fxig; i ¼ 1; :::; n; in which x1 ¼ xmin and xn ¼ xmax are the

extreme values. The Grubbs statistic has the form:

Gn ¼ xn � �x

S
; G1 ¼ �x� x1

S
; (4.1)
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where

�x ¼ 1

n

Xn
i¼1

xi; S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

ðxi � �xÞ2
s

are the mean and standard deviation of the series, respectively. Table 8 presents the

threshold values of the Grubbs statistic. An outlier or quasi-outlier is established

when the values of the Grubbs statistics exceed the values of the 1 and 5% critical

values presented in this table, respectively.

If it turns out in this test that a series of measurements does not have any outliers,

it is advisable to additionally check the two maximum and two minimum results

for outliers. The Grubbs statistic for the joint check of the two maximum results has

the form

G ¼ S2n�1;n

S20
; (4.2)

where S20 ¼
Pn
i¼1

ðxi � �xÞ2; S2n�1;n ¼
Pn�2

i¼1

ðxi � �xn�1;nÞ2; �xn�1;n ¼ 1
n�2

Pn�2

i¼1

xi:

Analogously, the Grubbs statistic for the joint check of the two minimum results

has the form

G ¼ S21;2
S20

; (4.3)

Table 8 Critical values of the Grubbs statistics [25]

n

Single largest or single smallest Two largest or two smallest

Above 1% Above 5% Above 1% Above 5%

3 1.155 1.155 – –

4 1.496 1.481 0.000 0.000

5 1.764 1.715 0.001 0.009

6 1.973 1.887 0.011 0.034

7 2.139 2.020 0.030 0.070

8 2.274 2.126 0.056 0.110

9 2.387 2.215 0.085 0.149

10 2.482 2.290 0.115 0.186

11 2.564 2.355 0.144 0.221

12 2.636 2.412 0.173 0.253

14 2.755 2.507 0.228 0.311

16 2.852 2.585 0.276 0.360

18 2.932 2.651 0.320 0.402

20 3,001 2.709 0.358 0.439

25 3.135 2.822 0.437 0.512

30 3.236 2.908 0.498 0.567

40 3.381 3.036 0.586 0.644
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where S21;2 ¼
Pn
i¼3

ðxi � �x1;2Þ2; �x1;2 ¼ 1
n�2

Pn
i¼3

xi.

An outlier or quasi-outlier is established when the values of the Grubbs statistic

are less than the 1 or 5% critical values shown in Table 8, respectively.

Example 4.1. The results of measurements of the mass fraction of sulfur in coal,

in percentages, are shown as the following monotonic series: x1 ¼ 0:560;
x2 ¼ 0:567; x3 ¼ 0:577; x4 ¼ 0:580; x5 ¼ 0:590; x6 ¼ 0:703; x7 ¼ 0:708;
x8 ¼ 0:733. The mean and standard deviation of the series are:

�x ¼ 1

8

X8
i¼1

xi ¼0:690 %; S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

7

X8
i¼1

ðxi � 0:690Þ2
vuut ¼ 0:024 %:

The Grubbs statistics are equal to

G8 ¼ 0:733� 0:690

0:024
¼ 1:792; G1 ¼ 0:690� 0:660

0:024
¼ 1:25:

Since they are less than the 1 and 5% critical values for n ¼ 8 (2.274 and 2.126,

respectively), the analyzed sample does not contain outliers and quasi-outliers.

We do not conduct the check for outliers of the two largest and two smallest results

because of the small sample size.

4.2 Check of the Hypothesis about the Normal Distribution
of Experimental Data

It is possible to verify the hypothesis that the distribution of the experimental data

does not contradict the theoretical distribution, using a variety of criteria. Below we

shall examine the most well-known of them – the Pearson “chi-square” test. This

test provides good results for experimental data numbering nr50, although it is

often used even for smaller samples sizes. It is good practice to calculate it using the

following procedure.

1. The data are grouped into intervals. Table 9 shows the recommended number of

intervals, l.

Table 9 Recommended number of intervals for grouping

Count of experimental data Recommended number of intervals

25–100 6–9

100–500 8–12

500–1,000 10–16

1,000–10,000 12–22
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In addition, one must keep in mind that the length of a grouping interval,

h ¼ xmax � xmin

l
; (4.4)

where xmax; xmin are the largest and smallest values in the experimental data set,

must be greater than the rounding error in recording this data. The value

h calculated by this formula is rounded. Then the interval midpoints x̂i and the

corresponding empirical frequencies (number of instances in the interval) n̂i.
2. The mean �x and SD S are calculated.

3. For each interval, define

zi ¼ x̂i � �x

S
(4.5)

and the theoretical number of instances of experimental data in the interval

ni ¼ n
h

S
f ðziÞ; (4.6)

where f ðziÞ ¼ 1=
ffiffiffiffiffiffi
2p

p
e�0:5z2i is the density of the standard normal distribution

(with zero mean and SD equal to 1).

4. For each interval, calculate

w2i ¼
ðn̂i � niÞ2

ni
; (4.7)

and then, the statistic

w2 ¼
Xl
i¼1

w2i : (4.8)

5. The number of degrees of freedom is defined as k ¼ l� 3.

6. After selecting a confidence level q for the test, find w2l and w2h from the

w2 distribution tables, satisfying the inequalities Pfw2 > w2l g ¼ 1� 0:5q and

Pfw2 > w2hg ¼ 0:5q. The hypothesis regarding normal distribution is consistent

with the experimental data if

w2l < w2 < w2h: (4.9)

Example 4.2. To determine the density of distilled water at T ¼ 20�C, 23 indepen-
dent measurements were conducted. The results of the measurements came to

ri ¼ ð0:998þ xi � 10�6Þ kg=l, where xi are the values presented in Table 10.

Table 11 presents the test of the hypothesis of normal distribution of the errors of

these measurements.
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As can be seen from the table, w2 statistic is 10.317. The number of degrees of

freedom is k ¼ 6� 3 ¼ 3. Let us take the confidence levels as ql ¼ 97:5% and

qh ¼ 2:5%, which ensures a confidence probability of 0.95. Using these and the

number of degrees of freedom k ¼ 3, we obtain: w2H ¼ 0:216; w2B ¼ 9:348 from

w2 distribution tables. Since w2 > w2B, we come to the conclusion that the hypothesis

of the normal distribution of the measurement errors is not compatible with the test

data. Consequently, it is necessary to test the hypothesis regarding the generalized

distribution of measurement errors. This procedure will be done in Sect. 4.4.

4.3 Direct Multiple Measurements Subject
to Normal Distribution

With multiple measurements, the result is found by statistical analysis of a series of

test data, frequently called parallel measurements. Now, a set of test data y1; :::; yn
is obtained in a measurement. A measurement result yi might contain not only

random error but also systematic error, and hence is called an uncorrected mea-

surement result. An attempt is made to exclude systematic error by using

specialized approaches. If it seems possible to estimate the systematic error Dc,

then an adjustment is made to the test data, equal to the estimate of systematic error

but taken with reverse sign:

xi ¼ yi � Dc:

Table 10 Results of measurements of the density of distilled water

i 1 2 3 4 5 6 7 8 9

xi 205 191 207 208 196 201 191 195 206

i 10 11 12 13 14 15 16 17 18

xi 204 200 203 208 201 205 198 196 191

i 19 20 21 22 23 24 25

xi 193 195 197 192 196 194 198

The mean of this sample comes to �x ¼ 1
25

P25
i¼1

xi ¼ 198:8

Table 11 Testing the hypothesis of the normal error distribution

i Interval n̂i x̂i zi ni w2i
1 190–193 5 191.5 �1.24 2.467 2.602

2 193–196 6 194.5 �0.71 4.163 0.810

3 196–199 3 197.5 �0.17 5.271 0.978

4 199–202 3 200.5 0.36 5.002 0.803

5 202–205 3 203.5 0.90 3.564 0.089

6 205–208 5 206.5 1.44 1.904 5.034

�x ¼ 198:5; S ¼ 5:6 w2 ¼ 10:317
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The values of the xi are called the corrected measurement results. They are

burdened with random error and the residual portion of systematic error (non-excluded

systematic error). Random error is estimated with statistical methods and hence

defines the type A uncertainty of the measurement result. Non-excluded systematic

error, estimated on the basis of a priori information, defines the type B uncertainty.

Statistical analysis is done as follows.

1. The mean of the test data is taken after the measurement result

�x ¼ 1

n

Xn
i¼1

xi; (4.10)

where xi is the uncorrected result of the ith measurement,

n is the number of measurements.

For computational convenience, this formula can be written as

�x ¼ x0 þ 1

n

Xn
i¼1

zi; (4.11)

where x0 is a value close to �x that is convenient for calculation,

zi ¼ xi � x0:

2. The type A standard uncertainty of series of measurements is defined by the

formula

uAðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

ðxi � �xÞ2
s

or uAðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

ðzi � �zÞ2
s

; (4.12)

where

�z ¼ �x� x0 ¼ 1

n

Xn
i¼1

zi:

Dividing the sum in this formula by n�1, and not by n, is linked to the

necessity of obtaining an unbiased estimate of the SD of the dispersal of the test

data relative to the center of the distribution.

This formula can also be written as

uAðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

x2i � nð�xÞ2
" #vuut or uAðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

z2i � nð�zÞ2
" #vuut :

(4.13)
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3. The type A standard uncertainty of the measurement result is determined by the

formula

uAð�xÞ ¼ uAðxÞffiffiffi
n

p : (4.14)

4. All components of the type B uncertainty of the measurement result are

estimated. The jth component (non-excluded systematic error caused by the jth
factor) is estimated in the interval ½�Uj;þUj�. For each component, starting with

assumptions about the form of its distribution and coverage probability P,
the coverage factor kj is determined.

5. All type B standard uncertainties are estimated using the formula

uBjðxÞ ¼ Uj

kj
: (4.15)

If the jth component has an equal probability distribution in the interval

½�Uj;þUj�, then the standard uncertainty is found by the formula uBjðxÞ ¼ Ujffiffi
3

p .

6. The total standard uncertainty of the measurement result is estimated using the

formula

uð�xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Að�xÞ þ

Xm
j¼1

u2BjðxÞ
vuut : (4.16)

7. The extended uncertainty of the measurement result is estimated in the interval

½�Uð�xÞ;þUð�xÞ�, the boundaries of which are calculated from the formula

Uð�xÞ ¼ kPuð�xÞ; (4.17)

in which kP is the coverage factor of the uncertainty distribution, taken as equal

to the quantile of Student’s distribution kP ¼ tPðneffÞ for coverage probability P
and effective number of degrees of freedom of uncertainty distribution neff ,
calculated as

neff ¼ ðn� 1Þ � u4ð�xÞ
u4Að�xÞ

: (4.18)

Example 4.3. Calibrating a state standard reference sample (SSRS) of the mole

fraction of CO in nitrogen in a pressurized vessel.

The nominal value of the SSRS is xSR ¼ 40 ppm. The results of 14

measurements of this value are shown in Table 12.
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Components of standard uncertainty evaluated as type B have the following

estimates: uB1ðxSRÞ ¼ 0:2 ppm; uB2ðxSRÞ ¼ 0:5 ppm; uB3ðxSRÞ ¼ 0:05 ppm;

uB4ðxSRÞ ¼ 0:033 � �xSR ppm:

The measurement result is determined by formula (4.10):

�xSR ¼ 1
14

P14
i¼1

xi ¼ 569:78
14

¼ 40:70 ppm. This value is assigned to the SSRS. Let us

find its uncertainty. The standard uncertainty evaluated as type A is, in accordance

with formulas (4.12) and (4.14), equal to

uAð�xSRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

13� 14

X14
i¼1

ðxi � �xCOÞ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
136:93

13� 14

r
ffi 0:87 ppm:

The total standard uncertainty of the measurement result is, in accordance with

formula (4.16), equal to uð�xSRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:872 þ 0:22 þ 0:52 þ 0:052 þ ð0:02 � 40:7Þ2

q
¼

1:31 ppm:
Let us estimate the extended uncertainty of the measurement result. The effective

number of degrees of freedom is found by using formula (4.18): neff ¼ 13 � 1:314

0:874
¼

66:8: For each value, we find from Table 5 the value of the coverage factor k0:95 ¼
t0:95ð66:8Þ ¼ 2:05: And, finally, by formula (4.17) we calculate the extended uncer-

tainty of the measurement result: Uð�xSRÞ ¼ 2:05 � 1:31 ¼ 2:7 ppm:
Hence, the actual value of the SSRS’s mole fraction of CO in nitrogen is located

in the interval [38.0–43.4] ppm with a coverage probability of 0.95.

Example 4.4. Conducting multiple measurements of the concentration of atmo-

spheric components using a mass spectrometer.1

The mass spectrometer measurement method is based on the most universal

property of matter – the difference in the masses of its component parts, atoms and

molecules. The essence of this method lies in converting the atoms and molecules

of the mixture being analyzed into charged particles – ions; dividing the ions into

separate fractions, in each of which will be represented only ions of the same mass

number M ¼ m=e, where m and e are the mass and charge of the ion, respectively;

and calculating the number of ions in each fraction.

Table 12 Results of measuring the SSRS value of the mole fraction of CO in nitrogen

i 1 2 3 4 5 6 7

xi, ppm 45.00 36.25 42.50 45.00 37.50 38.33 37.50

i 8 9 10 11 12 13 14

xi, ppm 43.33 40.53 36.25 42.50 39.17 45.00 40.83

1 Laboratory work of the Department of Information Systems for Environmental Safety, SPbGPU.
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One measure of the number of ions in one fraction is the value of the constant

electric current excited in the collector circuit. Table 13 shows the results xi of
measuring the collector current.

The mean of this sample is

�x ¼ 1

62

X62
i¼1

xi ¼ 396mA,

and the standard deviation of the set of measurements is

uAðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

61

X62
i¼1

ðxi � 396Þ2
vuut ¼ 22:7mA:

Let us test the set of measurements for the presence of outliers.

xmax ¼ 434MA; xmin ¼ 336 MA. Then

G63 ¼ 434� 396

22:7
¼ 1:674; G1 ¼ 396� 336

22:7
¼ 2:643:

Since these values are less than the threshold value at a significance level q ¼ 0:05,
equal to 3.036 (see Table 6), the set of measurements does not contain outliers.

Let us test the hypothesis regarding normal error distribution of these

measurements. In accordance with Table 7, for n ffi 60 we take l ¼ 7 as the number

of intervals. The width of an interval is h ¼ ð434� 336Þ=7 ffi 14. We establish the

boundaries of the intervals at: 336; 350; 364; 378; 392; 406; 420; and 434 mA.

Further checking is shown in Table 14.

Table 13 Mass spectrometer readings (collector current in mA)

i 1 2 3 4 5 6 7 8 9

xi 390 379 344 422 368 376 368 383 397

i 10 11 12 13 14 15 16 17 18

xi 393 405 407 385 395 415 397 393 371

i 19 20 21 22 23 24 25 26 27

xi 410 384 366 390 378 395 390 431 367

i 28 29 30 31 32 33 3 35 36

xi 405 336 432 405 402 396 412 396 410

i 37 38 39 40 41 42 43 44 45

xi 356 419 412 432 393 390 393 349 432

i 46 47 48 49 50 51 52 53 54

xi 427 398 397 406 410 405 401 415 413

i 55 56 57 58 59 60 61 62

xi 417 363 434 412 357 398 415 419
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The statistic w2 ¼Pl
i¼1 w

2
i ¼ 8:85, and the number of degrees of freedom is

k ¼ l� 3 ¼ 7� 3 ¼ 4. From w2 distribution tables for significance level q ¼ 0

and k ¼ 4 we find w2l ¼ 0:872 and w2h ¼ 16:81. Since 0:872 < 8:85 < 16:81,
the hypothesis of normal distribution is accepted.

The type A standard uncertainty for the result of multiple measurements is equal

to uAð�xÞ ¼ uAðxÞffiffi
n

p ¼ 22:7ffiffiffiffi
62

p ¼ 2:88mA. Since the type B uncertainty is unknown, we

shall consider that the total standard uncertainty is uð�xÞ ¼ uAð�xÞ ¼ 2:88mA. The

extended uncertainty is equal to Uð�xÞ ¼ k � uð�xÞ ¼ 1:96� 2:88 ¼ 5:54, since, in
accordance with Table 5, k ¼ t0:95ðneffÞ ¼ 1:96 for neff ¼ n� 1 ¼ 61.

The final result for the multiple measurements: the ion current of the mass

spectrometer lies within the boundaries ½390� 402�mA with a coverage factor of

k ¼ 1:96, corresponding to Student’s distribution and a coverage probability

P ¼ 0:95.

4.4 Direct Multiple Measurements Subject to Generalized
Normal Distribution

1. The base value of a measurand x0 is, from the formula for the mean,

x0 ¼ 1

n

Xn
i¼1

xi; (4.19)

where xi is the corrected result of the ith measurement,

n is the number of measurements.

If the distribution law for the random measurement error were normal, then

the base value would be the conventional true value for the measurand. Since it

has been established, by testing the hypothesis of normality, that the distribu-

tion law differs from the normal, actions shall be initiated that are directed

toward refining this estimate, based on the generalized normal distribution.

2. From the formula

yi ¼ xi � x0 (4.20)

Table 14 Testing the hypothesis of the normal distribution of the set of measurements

i Interval n̂i x̂i, MA zi ni w2i
1 336–350 3 343 �2.34 0.99 4.095

2 350–364 3 357 �1.72 3.48 0.067

3 364–378 7 371 �1.11 8.25 0.191

4 378–392 8 385 �0.49 3.55 2.274

5 392–406 20 399 0.13 15.15 1.550

6 406–420 14 413 0.75 11.53 0.528

7 420–434 7 427 1.36 6.06 0.146
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the values yi; i ¼ 1; :::; n; of a series are defined, for which a generalized

normal distribution will be selected using a yet unknown parameter p.
Since the generalized normal distribution law for values yi corresponds to

the normal distribution law for values zi ¼ signðyiÞðjyijÞp, statistical analysis of
the measurement results consists of the sequential execution of the following

procedures:

– conversion from the series y1; :::; yn to the series z1; :::; zn;
– calculation of the mean �z of the series z1; :::; zn and its standard and

extended uncertainty, following the rules of statistical analysis of normally

distributed test data;

– reverse conversion of the series z1; :::; zn to the series y1; :::; yn
– calculation of the measurement result and its extended uncertainty.

3. An estimate F̂ of the parameter F is found by the maximum likelihood method,

which ensures the effectiveness of the statistical estimates derived. Determination

of the unknown parameter of the distribution law of the random error for sample

of measurement results y1; :::; yn using the maximum likelihood method consist

in finding a value of this parameter that renders specifically the appearance of

this sample as the one most likely. In other words, the unknown parameter of the

distribution is found using the condition for the maximum of the probability

of obtaining the sample y1; :::; yn. Since all n measurement results are mutually

independent, the likelihood function has the form

Lðy1; :::; ynÞ ¼
Yn
i¼1

f ðyiÞ; (4.21)

where f ðyiÞ is the density of the generalized normal distribution, defined in

(2.20). The condition of the maximum of the likelihood function

Lðp; y1; :::; ynÞ ¼ max is transformed into an equation relative to the

unknown F [15]:

oðFÞ ¼ lnðuAðzÞ
Fj j Þ � F� 1

n

Xn
i¼1

lnð yij jÞ ¼ min; (4.22)

in which

uAðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

ðzi � �zÞ2
s

is the type A standard uncertainty of the set of values zi ¼ signðyiÞðjyijÞF, and

�z ¼ 1

n

Xn
i¼1

zi

is the mean of this set.
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Equation (4.22), as seen from the example for this section, can be easily

solved with numerical methods.

The value F̂ found from this equation is the statistical estimate of the parameter

F. It was shown in [26] that the type A relative standard uncertainty of this

estimate is equal to

urelðF̂Þ ¼ 1

2
ffiffiffi
n

p : (4.23)

The distribution law for the dispersal of the estimate F̂ is unknown, and hence it

is not possible to determine its extended uncertainty. Hence we shall employ

the standard method recommended by the Guide: take the coverage factor

k ¼ 2, corresponding to a coverage probability of 0.95. Then, with a probability

of 0.95, the true value of the parameter F will satisfy the following inequality:

1� 1ffiffiffi
n

p
� �

F̂ � F � 1þ 1ffiffiffi
n

p
� �

F̂:

After F is found, the series zi ¼ signðyiÞðjyijÞF; i ¼ 1; :::; n is formulated.
After this, it is recommended to conduct an additional check of the agreement

of the hypothesis regarding the generalized normal distribution with the test

data. This is done by testing the hypothesis of a normal distribution of the series

zi (see Sect. 4.2).
4. The statistical characteristics of the series z1; :::; zn are calculated, mean

�z ¼ 1
n

Pn
i¼1

zi and standard uncertainty uAðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Pn
i¼1

ðzi � �zÞ2
s

.

5. The measurement result is calculated. This is equal to the base value x0,
refined by introducing an adjustment �y ¼ signð�zÞ � ð �zj jÞ1=F. In this way, the

measurement result is expressed by the formula

x� ¼ x0 þ signð�zÞ � ð �zj jÞ1=F: (4.24)

6. The type A standard uncertainty of the value of �z is determined from the

formula

uAð�zÞ ¼ uAðzÞffiffiffi
n

p : (4.25)

7. All components of the type B extended uncertainty of the measurement results

xi (and consequently of the members of the series yi) are evaluated. The jth
component is evaluated in the interval ½�Uj;þUj�. For each component, the

coverage factor kj is determined, proceeding from suppositions on the form of

its distribution and the coverage probability P.
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8. The boundaries are determined for all components of the type B extended

uncertainty of the series zi, corresponding to the boundaries of the uncertainty

	 Uj of the series yi:

	 UBjðzÞ ¼ 	UF
j : (4.26)

9. The type B standard uncertainties of the series zi are determined. For a distri-

bution law of type B uncertainty for values yi that differs from equal probability,

one may use for this formula (3.6) and other recommendations of Sect. 3.3.

If the type B uncertainty for values yi has the equal probability distribution

fBðxÞ ¼
1
2a ;�a � x � a;
0; x<� a; x>a

�
;

one may derive a precise estimate. We find for this the mean m� and dispersion

D� of the distribution of the type B uncertainty � of the values zi. In accordance
with the rules of probability theory, these characteristics of the distribution of

the random quantity � ¼ gðxÞ ¼ signðxÞ � ð xÞF�� �� are calculated as follows:

m� ¼
ð1
�1

gðxÞ fBðxÞ dx ¼
ða
�a

signðxÞ ð xj jÞF 1

2a
dx

¼
ða
0

xF
1

2a
dxþ �

ð0
a

ð�xFÞ 1

2a
dx

� �
¼ 0;

D� ¼
ð1
�1

gðxÞ � m�

	 
2
fBðxÞdx ¼

ða
�a

signðxÞ ð xj jÞ2F 1

2a
dx

¼ a2Fþ1 � ð�a2Fþ1Þ
2að2Fþ 1Þ ¼ a2F

2Fþ 1
:

In this way, the type B standard uncertainty of the values zi, which is equal to
the SD of this distribution, is expressed by the formula uBðziÞ ¼ aF=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fþ 1

p
:

It follows from this formula that for an equal probability distribution of the jth
component of the uncertainty of the series yi the corresponding standard

uncertainties of the values zi are calculated with the formula

uBjðzÞ ¼ UBjðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fþ 1

p : (4.27)

10. The total standard uncertainty of the value �z is estimated by the formula

uð�zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Að�zÞ þ

Xm
j¼1

u2BjðziÞ
vuut : (4.28)
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The total extended uncertainty of the value �z is estimated as

Uð�zÞ ¼ kP � uð�zÞ; (4.29)

where kP is as in (4.18).

11. Now it is necessary to transition from the limits 	 Uð�zÞ of the value �z to the

lower and upper bounds U�ð�yÞ and Uþð�yÞ of the extended uncertainty of

the adjustment �y. They are equal to

U�ð�yÞ ¼ sign �z� Uð�zÞ½ � �z� Uð�zÞj j½ �1=F;
Uþð�yÞ ¼ sign �zþ Uð�zÞ½ � �zþ Uð�zÞj j½ �1=F:

(4.30)

Adding to these bounds the base value of the quantity, we derive the interval of

uncertainty of the measurement result:

x0 þ sign �z� Uð�zÞ½ � � j�z� Uð�zÞj½ �1=F; x0 þ sign �z� Uð�zÞ½ � � j�z� Uð�zÞj½ �1=F
n o

:

(4.31)

This formula shows that, in contrast with the normal distribution, the interval of

uncertainty is not symmetrical with respect to the measurement result

x� ¼ x0 þ signð�zÞ � ð �zj jÞ1=F.
Example 4.5. Analysis of the test results in determining the density of distilled

water at T ¼ 20�C (see Example 4.2)

The results of 25 independent measurements are presented in the form

ri ¼ ð0:998þ xi � 10�6Þ kg=l, where xi are the values presented in Table 10 and

the first column of Table 15. In the example mentioned, the mean value of

the density r0 ¼ ð0:998þ x0 � 10�6Þ kg=l was found, where x0 ¼ 198:8. The
calculations that were proposed in this example had as a goal the refinement of

this result. With this goal in mind, r0 is taken as the support value of the desired

quantity, and the deviations yi � 10�6kg=l of the measurement results from this

support value are found by formula (4.20). The values of yi are shown in the second
column of Table 15. The statistical check conducted in Sect. 4.2 has shown that the

hypothesis of the normal distribution of the measurement error is rejected, at a

significance level of the criterion at qB ¼ 2:5 %. Let us now check the possibility of

accepting the hypothesis regarding the generalized normal distribution. We find the

value of the parameter F of the distribution of values yi that satisfies the condition of
maximum likelihood, i.e., the condition of the minimum of the function oðFÞ
(4.22). We shall seek this value in the interval from 0.5 to 2.0 with a step of 0.1.

The calculations run on an Excel spreadsheet are presented in Table 15.

The values of oðFÞ are shown in the last line of this table. It is clear

that the minimum of this function is reached at F ¼ 1:5. The extended uncertainty

of this value at a coverage factor of k ¼ 2 is equal to 1� 1ffiffiffiffi
25

p
� �

� 1:6;
h

1þ 1ffiffiffiffi
25

p
� �

� 1:6� ¼ ½1:28; 1:92�. The fact that this interval does not include the
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value F ¼ 1, corresponding to the normal distribution, serves as additional confir-

mation as to the validity of the decision to reject the hypothesis.

In any case, we check with w2 test the hypothesis of the generalized normal

distribution of values yi with parameter F ¼ 1:5. For this, it is sufficient to be

convinced of the normal distribution of values zi ¼ signðyiÞ � ð yij jÞ1:6. We conduct

the test in tabular form, analogous to Example 4.2. As is clear from Table 15,

the minimum value of zi is equal to �27.0, and the maximum value is 34.5. Let us

take zmin ¼ �28; zmax ¼ 35; and number of intervals n ¼ 6: The width of an

interval is h ¼ ð35� ð�28ÞÞ=6 ¼ 10:5. These intervals are shown in the second

column of Table 16. The third column shows the empirical frequencies n̂i of

incidence in the ith interval, the fourth shows the central points zi0 of these intervals,
and the fifth shows the normalized values of these points xi0 ¼ ðzi0 � �zÞ=SðzÞ.

The sixth column shows the theoretical values of the frequencies of incidence in

these intervals, calculated from the formula ni ¼ nðh=SðzÞÞf ðxi0Þ, where f ðxi0Þ is
the normal distribution density with zero mean and SD equal to 1. The last column

shows the values w2i ¼ ðn̂i � niÞ2=ni and their sum, the statistic w2 ¼ 6:845.
As in the preceding example, the number of degrees of freedom k ¼ 3.

As earlier, we take qH ¼ 97:5% and qB ¼ 2:5%. For these and for k ¼ 3 we

obtain from the w2 distribution tables: w2H ¼ 0:216; w2B ¼ 9:348. Since

0:216 < 6:845 < 9:348, we conclude that the hypothesis of the generalized

normal distribution of the random measurement error with parameter F ¼ 1:6 is

in agreement with the test data.

We find the statistical characteristics of the series zi for the elements of the

series, shown in Table 15: mean �z ¼ 0:82 and unbiased standard deviation

SðzÞ ¼ 18:33. The type A standard uncertainty of the value �z is consequently

equal to uAð�zÞ ¼ 18:33ffiffiffiffi
25

p ¼ 3:67.
Let us find the type B standard uncertainty for the series zi. The type B extended

uncertainty of the measurement result for the density of distilled water is due

to the imprecision of adjustment for the density of air and is estimated as

0:75 � 10�6 kg=l. Consequently, UBðyÞ ¼ 0:75. The extended uncertainty of the

values zi is equal to UBðzÞ ¼ 0:751:6 ¼ 0:63, and the standard uncertainty is

uBð�zÞ ¼ 0:63=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:6þ 1

p ¼ 0:31. Taking account of these estimates, the total

standard uncertainty of the value �z is equal to ucð�zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:672 þ 0:312

p
¼ 3:68.

Table 16 Testing the hypothesis regarding the generalized normal distribution of values yi

i Interval of values zi n̂i zi0 xi0 ¼ zi0��z
SðzÞ ni w2i

1 2 3 4 5 6 7

1 �28.0 to (�17.5) 5 �22.75 �1.391 2.396 1.074

2 �17.5 to (�7.0) 6 �12.25 �0.759 4.729 0.112

3 �7.0 to 3.5 3 �1.75 �0.126 6.258 1.202

4 3.5 to 14.0 3 8.75 0.506 5.550 2.271

5 14.0 to 24.5 3 19.25 1.138 3.300 0.027

6 24.5 to 35.0 5 29.75 1.717 1.315 2.159

�z¼0.35; SðzÞ ¼ 16:60 w2 ¼ 6:845
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The effective number of degrees of freedom is equal to

neff ¼ 24� 3:684

3:674
ffi 24:

By Table 5, for this number of degrees of freedom and a coverage probability of

P ¼ 0:95, we find t0:95ð24Þ ¼ 2:12. Consequently, the total extended uncertainty

of �z is Uð�zÞ ¼ 2:12 
 3:68 ¼ 7:80.
Now we can find the measurement result and its extended uncertainty

�y ¼ signð�zÞ � ð �zj jÞ1=F̂ ¼ 0:821=1:6 ¼ 0:9.

r� ¼ r0 þ �y � 10�6 ¼ 0:998þ ðx0 þ �yÞ � 10�6

¼ 0:998þ ð198:8þ 0:9Þ � 10�6 ¼ 0:9981997 kg=l:

The extended uncertainty �y in accordance with (4.30) is equal to

� ½7:80� 0:82�1=1:6; ½7:80þ 0:82�1=1:6 ¼ ½�3:37; 3:84�.
Consequently, the extended uncertainty of the measurement result is:

½r�; rþ� ¼ 0:998þ ð198:8þ ½�3:37; 3:84�Þ � 10�6

¼ 0:9981988þ ½�3:37; 3:84� � 10�6

¼ ½0:9981954; 0:9982026� kg=l:

And so, the measurement result for the density of distilled water at T ¼ 20�C is

�r ¼ 0:9981997 kg=l. It is clear that the statistical analysis of the results of this

experiment, based on the generalized normal distribution, permitted refining the

value of this physical constant by one unit at the sixth decimal place. The estimate

of the uncertainty of this measurement provides evidence that the true value of this

constant is, with coverage probability 0.95, located in the interval [0.9981954;

0.9982026] kg/l.

4.5 Indirect Measurements

When conducting indirect measurements, the value of the quantity being sought is

found by solving the measurement equation

y ¼ f ðx1; :::; xnÞ; (4.32)

which links the value

uA
X4
j¼1

n2j

 !
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4
j¼1 v

2
j

4� 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
0:003

2

r
¼ 0:039V:
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of the measurand Y with the values xi of other quantities X1; :::; Xn, which are

directly measured or known, referred to in 3.3 as input quantities. From the form

of the functional dependence, the indirect measurements are divided into two

kinds – those with linear and those with nonlinear dependencies. The mathematical

apparatus for statistical analysis of indirect measurements of the first type has been

worked out in detail. There is no mathematically rigid method for a nonlinear

dependence. For these kinds of problems, several approximation methods are used,

the basic ones of which are linearization and reduction.

4.5.1 Statistical Manipulation with the Linear Dependence
of Measurement Result on Input Quantities

In this case, the measurement equation has the form

y ¼
Xn
i¼1

aixi; (4.33)

where ai are constant coefficients of the quantities xi, which are arguments of the

equation, and n is the number of arguments.

If the coefficients ai are also determined experimentally, then the measurement

result is found in stages: first each term aixi is evaluated as the result of an indirect

measurement of a quantity that is equal to the product of two other quantities; then

the value �y of the unknown quantity is calculated and its uncertainty is evaluated.

The result �y of an indirect measurement is found as follows. The quantities

X1; :::; Xn are measured, and adjustments for all known systematic errors are

introduced into the results of these measurements. The estimates �x1; :::; �xn of the
measured quantities are determined. If the quantity Xi was measured once,

then �xi ¼ xi1, where xi1 is the result of a single measurement. If this quantity was

measured multiple times, then

�xi ¼ 1

mi

Xmi

j¼1

xij; (4.34)

where mi is the number of measurements of the quantity Xi. Hereafter (4.34) shall

be kept in mind, since the result of a single measurement is a particular case of this.

The result of an indirect measurement is calculated with the formula

�y ¼
Xn
i¼1

ai�xi: (4.35)

At the next stage, the standard uncertainties uðxiÞ; i ¼ 1; :::; n; of the arguments

are calculated. If there are reasons to suppose there is correlation of the measure-

ment results �xi and �xj of all or some of the arguments, then their correlation

coefficients rij are calculated.
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The procedure for estimating standard uncertainties is presented in Sect. 3.3.

The type A standard uncertainty is calculated using the formula for the SD of the

random error of the result of multiple measurements:

uAð�xiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

miðmi � 1Þ
Xmi

j¼1

ðxij � �xiÞ2
vuut : (4.36)

If the estimate of the quantity Y was derived by taking account of the result of

one measurement of the quantity Xi, then another (mi � 1) of its measurements are

brought in to estimate the uncertainty, and based on them uð�xiÞ is calculated using

the formula for the SD of the random error of the result of a single measurement.

uAð�xiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðmi � 1Þ
Xmi

j¼1

ðxij � �xiÞ2
vuut : (4.37)

The input data for evaluating type B standard uncertainty is enumerated in

Sect. 3.3. The uncertainties of this type are usually presented in the form of bounds

	 UBjðxiÞ; j ¼ 1; :::; li; of the extended uncertainty, showing the coverage factor

kij (here li is the number of sources of type B uncertainty of the measurement results

�xi). When the distribution law is unknown, the most widely used method is to

presume an equal probability distribution law within the specified bounds. In this

case, kij ¼
ffiffiffi
3

p
.

The type B standard uncertainties are, in accordance with Sect. 3.3, calculated

from the formula

uBjð�xiÞ ¼ UBjðxiÞ
kij

: (4.38)

The standard uncertainty of the result �xi is equal to the mean square sum of these

estimates:

uð�xiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Að�xiÞ þ

Xli
j¼1

u2Bjð�xiÞ
vuut : (4.39)

Correlation coefficients are estimated according to (3.11) and (3.12). The signif-

icance of correlation links between the estimates of the arguments is analyzed. The

criterion for lack of such link if the following inequality is true:

rðxi; xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ðxi; xjÞ

p
�����

����� < tPðm� 2Þffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

p ; (4.40)
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where tPðm� 2Þ is the coefficient of Student’s distribution for probability P and

ðm� 2Þ degrees of freedom, and

m ¼ minðmi; mjÞ:

The total standard uncertainty uð�yÞ is calculated. For uncorrelated estimates

�x1; :::; �xn, this is determined by the formula

uð�yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

a2i u
2ð�xiÞ

s
; (4.41)

and if there is correlation, by the formula

uð�yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

a2i u
2ð�xiÞ þ

Xn
i; j ¼ 1

i 6¼ j

aiajrðxi; xjÞ�uðxiÞ�uðxjÞ
vuuuut : (4.42)

The extended uncertainty of the measurement result is determined by formula

(3.16), in which the coverage factor k is defined by (3.17), and the effective number

of degrees of freedom neff is calculated using the formula

neff ¼ u4ð�yÞPn
i¼1 a

4
i u

4ð�xiÞ=ni:eff ; (4.43)

in which ni:eff is the effective number of degrees of freedom when the estimate

�xi is determined.

If all type B uncertainties are evaluated as following the equal probability law,

then for each of them ni ¼ 1. Then the effective number of degrees of freedom for

the estimate �xi is equal to

ni;eff ¼ ðmi � 1Þ � u4ð�xiÞ
u4Að�xiÞ

;

where mi is the number of measurements of the quantity uðyÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Að~yÞ þ u2BðyÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0352 þ 0:032

p
¼ 0:046V=ppm:. Substituting this formula

into (4.43), we derive, for this case:

neff ¼ u4ð�yÞPm
i¼1 a

4
i u

4
Að�xiÞ=mi � 1

: (4.44)

Now let us examine a nonlinear dependence y ¼ f ðx1; :::; xnÞ.
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4.5.2 Method of Linearization of Nonlinear Dependence

This method presupposes the expansion of this function into a Taylor series

y ¼ f ðx1; :::; xnÞ ¼ f ð�x1; :::; �xnÞ þ
Xn
i¼1

@f ð�x1; :::; �xnÞ
@xi

Dxi þ R; (4.45)

where @f ð�x1; :::; �xnÞ=@xi is the first derivative of the function f ðx1; :::; xnÞ on xi,
calculated at the point ð�x1; :::; �xnÞ, Dxi ¼ xi � �xi, and

R ¼ 1

2

Xn
i¼1

@2f ð�x1; :::; �xnÞ
@x2i

ðDxiÞ2 þ
Xn

i; k ¼ 1

i 6¼ k

@2f ð�x1; :::; �xnÞ
@xi@xk

DxiDxk

2
66664

3
77775

is the residual term of the expansion.

The linearization method is feasible if the increment of the function

Df ðx1; :::; xnÞ ¼ f ðx1; :::; xnÞ � f ð�x1; :::; �xnÞ can be replaced by its total differ-

ential
Pn

i¼1 ð@f ð�x1; :::; �xnÞ=@xiÞDxi, ignoring the residual term. The condition for

R to be insignificant is:

R<0:8uð�yÞ: (4.46)

In checking this condition, the deviations Dxi must be derived such that they are

actually possible, and that in using them the maximum of the function f ðx1; :::; xnÞ is
reached. Hence, with this method of execution, the solution reduces to a linear

dependence of the measurand on the input quantities. The measurement result is

taken as

�y ¼ f ð�x1; :::; �xnÞ: (4.47)

The second term of formula (4.45) serves to estimate the uncertainty of this

measurement result. The equation

Dy ¼
Xn
i¼1

@f ð�x1; :::; �xnÞ
@xi

Dxi (4.48)

is an equation of the indirect measurements of the absolute measurement error Dy,
which is determined from the known errors Dxi. On the other hand, this equation of
measurements pertains to the linear equations for which the correct solution method

was examined above. Hence setting ai ¼ @f ð�x1; :::; �xnÞ=@xi and taking as its
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quantities the absolute arguments of the measurement errors Dxi, we derive, by

analogy with formulas (4.41) and (4.42) for uncorrelated values of input quantities,

uð�yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

@f ð�x1; :::; �xnÞ
@xi

� �2
u2ð�xiÞ

vuut ; (4.49)

and when there is correlation:

uð�yÞ ¼

i¼1

@f ð�x1; :::; �xnÞ
@xi

� �2
u2ð�xiÞ þ

Xn
i; j ¼ 1

i 6¼ j

@f ð�x1; :::; �xnÞ
@xi

� @f ð�x1; :::; �xnÞ
@xj

rðxi; xjÞ�uðxiÞ�uðxjÞ
vuuuuut

:

(4.50)

The extended uncertainty of a measurement result is defined by formula (3.16),

into which is substituted the coverage factor, determined by taking account of

the effective number of degrees of freedom as calculated by formula (4.43). If all

type B uncertainties are evaluated by the equal probability law, then the effective

number of degrees of freedom is defined, in accordance with formula (4.44), as:

neff ¼ u4ð�yÞPn
i¼1 @f ð�x1; :::; �xnÞ @xi=½ �4u4Að�xiÞ
� �

mi � 1=
: (4.51)

Example 4.6. It is necessary to estimate the result of an indirect measurement of

the density of a hard body, as well as its uncertainty.

We find the density of a hard body using the formula r ¼ M=V, where M is the

mass of the body and V is its volume. For this we perform 11 measurements of

the mass and volume and calculate the measurement results of the input quantities:

mM ¼ mV ¼ m ¼ 11; �M ¼ 252:9120 kg, �V ¼ 195:3798 � 10�3 m3 ;

u2ð �MÞ ¼ 19:4 � 10�14 kg2; u2ð �VÞ ¼ 16:4 � 10�20 m6;

maxð DMj jÞ ¼ 31 � 10�7 kg; maxð DVj jÞ ¼ 32 � 10�10 m3:

The measurement result is equal to

�r ¼
�M
�V
¼ 252:9120

195:3798 � 10�3
¼ 1:294463 � 103

kg

m3
:
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To estimate the uncertainty of this result, we use the linearization method. Let us

find the derivatives.

@rð �M; �VÞ
@M

¼ @rðM; VÞ
@M M¼ �M; V¼ �V

�� ¼ 1

V V¼ �V ¼j 1
�V
;

@rð �M; �VÞ
@V

¼ @rðM; VÞ
@V M¼ �M; V¼ �V ¼�� � M

V2 M¼ �M; V¼ �V ¼�� �
�M

�V
2
¼ � �r

�V
;

@2rð �M; �VÞ
@M2

¼ @2rðM; VÞ
@M2 M¼ �M; V¼ �V ¼ @

@M

1

V

� �� ����� M¼ �M; V¼ �V ¼�� 0;

@2rð �M; �VÞ
@V2

¼ @2rðM; VÞ
@V2 M¼ �M; V¼ �V

�� ¼ @

@V
� M

V2

� �� �
M¼ �M; V¼ �V ¼�� 2

M

V3 M¼ �M; V¼ �V

��
¼ 2

�M

�V
3
¼ 2

�r
�V
2
;

@2rð �M; �VÞ
@M@V

¼ @2rðM; VÞ
@M@V M¼ �M; V¼ �V

�� ¼ @

@V

1

V

� �� �
V¼ �V ¼ � 1

V2

���� V¼ �V ¼ � 1

�V
2

����
The standard uncertainty of the measurement result is equal to

uðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@rð �M; �VÞ

@M

� �2
u2ð �MÞ þ @rð �M; �VÞ

@V

� �2
u2ð �VÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ð �MÞ þ �r2u2ð �VÞ

�V
2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19:4 � 10�14 þ ð1:294463 � 103Þ2 � 16:4 � 10�20

ð195:3798 � 10�3Þ2

vuut ¼ 3:5 � 10�6 kg

m3
:

The residual term of the Taylor series expansion is equal to

R ¼ 1

2

@2rð �M; �VÞ
@M2

ðDMÞ2 þ @2rð �M; �VÞ
@V2

ðDVÞ2 þ 2
@2rð �M; �VÞ
@M@V

DMDV
� �

¼ �rðDVÞ2 � DMDV
�V
2

:

Since the increments DM and DV can be either positive or negative, we estimate

R with the formula:

R ¼ �rðDVÞ2 þ DMDV
�V
2

¼ 1:294463 � 103 � 322 � 10�20 þ 31 � 10�7 � 32 � 10�10

195:37982 � 10�6

¼ 6:07 � 10�11:
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Since condition (4.46) is fulfilled: (6.07 � 10�11 � 0.8
3.5 � 10�6), use of the

linearization method is permissible. Let us find the extended uncertainty of the

measurement result. The effective number of degrees of freedom by formula (4.51)

will be equal to

neff ¼ u4ð�rÞ
@rð �M; �VÞ=@M½ Þ4u4ð �MÞ=mM � 1þ @rð �M; �VÞ=@Vð Þ4u4ð �VÞ=mV � 1

¼ ðm� 1Þ �V4 u4ð�rÞ
u4ð �MÞ þ �r4u4ð �VÞ

¼ 10ð195:3798 � 10�3Þ4 ð3:5 � 10�6Þ4

ð19:4 � 10�14Þ2 þ ð1:294463 � 103Þ4ð16:4 � 10�20Þ2

¼ 10
ð1:953798 � 3:5Þ4

19:42 þ 1:2944634 � 16:42
¼ 10 � 2186:7

376:36þ 755:17
ffi 19:

The coverage factor k, in accordance with Table 5, will be equal to 2.14. The

extended uncertainty of the measurement result is Uð�rÞ ¼ 2:14�
3:5 � 10�6 ¼ 7:5 � 10�6 kg=m3. Consequently, the measurand, with a coverage

factor of 2.14 corresponding to a coverage probability of 0.95, is located in

the interval:

ð1:294463� 7:5� 10�6Þ � ð1:294463þ 7:5� 10�6Þ	 
 kg
m3

¼ 1:294455 � 1:294470ð Þ kg
m3

:

4.5.3 Reduction Method [4]

This method of analyzing the results of indirect measurements is used when the

use of the linearization method does not guarantee the required accuracy of a

measurement result due to not fulfilling condition (4.46). It consists of presenting

the set of values of the indirectly measured quantity in the form of a series of results

of primary measurements. Different combinations of the separate measurement

results xij of the input quantities Xi are substituted into the equation for indirect

measurement (4.32), and the corresponding values ys ðs ¼ 1; :::; mÞ of the

measurand Y are calculated. The series of values ys thus obtained can be studied

as a series of results of primary measurements. The measurement result is calcu-

lated by the formula �y ¼ 1=m
Pm

s¼1 ys, the type A standard uncertainty by

the formula

uAð�yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

mðm� 1Þ
Xm
s¼1

ðys � �yÞ2
s

;
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and the type A extended uncertainty by the formula UAð�yÞ ¼ tPðm� 1ÞuAð�yÞ,
where tPðm� 1Þ is the quantile of Student’s distribution. Estimates of type B

uncertainty and the total uncertainty can also be calculated by the usual method.

However, it is recommended here not to forget that the latter were derived on

the basis of using a series of assumptions that were loosened in practice in this case

[in particular, condition (4.46)], and consequently are very approximate.

4.6 Joint and Aggregate Measurements

In measurement practice, cases are met in which the unknown quantities

cannot be measured directly or represented as explicit functions of directly

measured quantities. In such cases, quantities that are functionally related to the

unknown quantities are measured, and the values of the latter are calculated using

a system of implicit equations

Fjðx1j; x2j; :::; xnj; y1; y2; :::; ykÞ ¼ 0; j ¼ 1; 2; :::; m; (4.52)

where Fj is the symbol for the functional dependence between the quantities in the

jth test, x1j; x2j; :::; xnj are the measurement results of directly measured quantities

X1; X2; :::; Xn in the jth test, y1; y2; :::; yk are the unknown values of the

measurands Y1; Y2; :::; Yk.
If the Y1; Y2; :::; Yk and X1; X2; :::; Xn are values of different nature, then the

measurements described by (4.52), are called joint. If all these quantities are

homogeneous, then the measurements are called aggregate.

After substituting into the initial system of equations the results xij of direct or
indirect measurements, they have the form

Fjðy1; y2; :::; ykÞ ¼ 0; j ¼ 1; 2; :::; m: (4.53)

These equations are not an exact reflection of the true relationship between the

unknown quantities y1; y2; :::; yk, since they are burdened with the errors xij in the

measurements results. Hence they are referred to as conditional. The general

method for solving such systems of equations consists of the following. Among

the infinite set of possible solutions of this system (and the number of solutions

will be infinite for L ¼ 10 � lg10ðI=I0Þ; ) some best solution �y1; �y2; :::; �yk is found.
If this solution is substituted into the conditional equations, then, due to the

uncertainties of the measurement results xij, the right sides of the equations will

differ from the left sides. To obtain identities, it is necessary to write

Fjð�y1; �y2; :::; �ykÞ þ nj ¼ 0; j ¼ 1; 2; :::; m; (4.54)

where nj are the residual errors of the conditional equations and are called residuals.
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In accordance with Legendre’s principle, the equations being solved will have

the most reliable solution if the sum of squares of all residuals is minimal:

Xm
j¼1

v2j ¼ min : (4.55)

The solution of conditional equations using Legendre’s principle is called the

method of least squares. It follows from (4.55) that the complete differential must

equal zero:

d
Xm
j¼1

v2j

 !
¼

@
Pm

j¼1 v
2
j

� �
@�y1

d�y1 þ
@
Pm

j¼1 v
2
j

� �
@�y2

d�y2 þ 
 
 
 þ
@
Pm

j¼1 v
2
j

� �
@�yk

d�yk ¼ 0:

In turn, this equality will be fulfilled for any values of the differentials d�yi only if
the equations are valid:

@
Pm

j¼1 v
2
j

� �
@�yi

¼ 0; i ¼ 1; :::; k: (4.56)

The system (4.56) is called a system of normal equations. It consists of k
equations relative to k unknowns and provides a single solution of the unknown

values �yi of the quantities Yi.
In solving this problem in the general case, with nonlinear conditional equations

and correlation of the results of separate measurements, a series of insurmountable

difficulties arises. Hence, in practice, an attempt is always made, one way or

another, to convert nonlinear conditional equations to linear form. One of the

most widespread methods consists of replacing the unknowns in such a way that

the conditional equations would be linear with respect to the new unknown

quantities. Another method is to expand the nonlinear function into a Taylor series,

eliminating the nonlinear part of the series.

As an example, let us examine the joint measurements of three diverse quantities

– X, Y, and Z – based on a link equation

axþ byþ cz ¼ l; (4.57)

in which a, b, c, and l are values of directly measured quantities (input quantities),

and x, y, and z are the unknown values of the quantities X, Y, and Z
(output quantities).

Substituting into (4.57) the measurement results ai; bi; ci; li, we obtain a series

of conditional equations:

a1xþ b1yþ c1z ¼ l1;

a2xþ b2yþ c2z ¼ l2;

..

.

amxþ bmyþ cmz ¼ lm:
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If the number of equations is less than the number of unknown values,

the problem is unsolvable. If it is equal, a numerical value may be found for each

quantity. However, they will be burdened with unknown errors due to the

uncertainties of the measurements of the quantities aj; bj; cj; lj. Hence, the number

of equations in this system must exceed the number of unknowns. If one takes

account of the measurement error of the input quantities, then this system is written

in this form:

a1xþ b1yþ c1z� l1 þ v1 ¼ 0;

a2xþ b2yþ c2z� l2 þ v2 ¼ 0;

..

.

amxþ bmyþ cmz� lm þ vm ¼ 0;

where v1; v2; . . . ; vm are the residuals of the equations.

To compile normal equations, we consider that

Xm
j¼1

n2j ¼
Xm
j¼1

ðajajx2 þ 2ajbjxyþ 2ajcjxz� 2ajljxþ bjbjy
2 þ 2bjcjyz� 2bjljy

þ cjcjz
2 � 2cjljzþ l2j Þ:

Consequently, the first equation has the form
@
Pm

j¼1
v2j

� �
@x ¼ 2Pm

j¼1

ðajajxþ ajbjyþ ajcjz� ajljÞ ¼ 0, or, in the Gauss notation, (½aa� ¼Pm
j¼1 ajajand so forth): ½aa�xþ ½ab�yþ ½ac�z ¼ ½al�:
We find the remaining equations analogously. Then the system of normal

equations relative to the unknowns x; y; z has the form

½aa�xþ ½ab�yþ ½ac�z ¼ ½al� ½ab�xþ ½bb�yþ ½bc�z ¼ ½bl� ½ac�xþ ½bc�yþ ½cc�z ¼ ½cl�:
(4.58)

Its solution provides the measurement result – the best values of the unknown

quantities using the Legendre criterion:

~x ¼ Da

D
; ~y ¼ Db

D
; ~z ¼ Dc

D
; (4.59)

where D ¼
½aa� ½ab� ½ac�
½ab� ½bb� ½bc�
½ac� ½bc� ½cc�

������
������ is the determinant of system (4.58),

Da ¼
½al� ½ab� ½ac�
½bl� ½bb� ½bc�
½cl� ½bc� ½cc�

������
������, and so forth. To estimate the uncertainties of these
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values, they are substituted into the conditional equations and the residual errors are

calculated:

v1 ¼ a1~xþ b1~yþ c1~z� l1;

v2 ¼ a2~xþ b2~yþ c2~z� l2;

..

.

vm ¼ am~xþ bm~yþ cm~z� lm:

The standard uncertainty of the system of conditional equations is equal to

uA
Xm
j¼1

n2j

 !
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 v

2
j

m� k

s
; (4.60)

where m is the number of conditional equations and k is the number of normal

equations equal to the number of unknowns. In the case under study k ¼ 3.

Thereafter, the type A standard uncertainties of measurement results are

determined:

uAð~xÞ ¼
ffiffiffiffiffiffiffiffi
D11

D

r
uA

Xm
j¼1

n2j

 !
; uAð~yÞ ¼

ffiffiffiffiffiffiffiffi
D22

D

r
uA

Xm
j¼1

n2j

 !
;

uAð~zÞ ¼
ffiffiffiffiffiffiffiffi
D33

D

r
uA

Xm
j¼1

n2j

 !
;

(4.61)

where D11 ¼ ½bb� ½bc�
½bc� ½cc�
����

����, D22 ¼ ½aa� ½ac�
½ac� ½cc�
����

����, D33 ¼ ½aa� ½ab�
½ab� ½bb�
����

����.
After this, using methods studied in Sect. 3.3, the type B standard uncertainties

and the extended uncertainties of the measurement results are found. Here the

number of degrees of freedom is taken as equal to m� k.
As follows from (4.60), the accuracy of measurement results is higher, the

greater the number of conditional equations. If this number is small, or differs little

from the number of unknowns, then the measurement results are determined with

rough approximation. The accuracy of this method also depends significantly on

knowledge of the functional dependence of the conditional equations. Their degree

of approximation sharply distorts the measurement results. If the conditional

equations are rough empirical formulas, then the use of the least squares method

will not give good results, even with very precise test data.

One must note that the method presented is widely used in calibrating measuring

instruments for experimental determination of calibration dependencies. These are

dependencies of the transform function yðxÞ of the measuring instrument, of a linear

form y ¼ axþ b, exponential y ¼ axb, logarithmic y ¼ aþ b ln x, and other. In this
case, the input quantities are the measurement results of the quantities X and Y at

input to and output from the measuring instrument, and the unknown values are the

coefficients a and b of the calibration function.
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Let us examine the examples of using this method in joint and aggregate

measurements.

Example 4.7. Measuring angles at a site (joint measurements)

It is necessary to measure the angles x, y, and z between objects A, B, C, and D at

a site (0 is the observer’s location point), shown in Fig. 11, and estimate

the uncertainty of measurement results, evaluated as type A, with a coverage

probability of P ¼ 0:95:
Six angles are measured:

ffAOB ¼ x ¼ 48:3�; ffAOC ¼ y ¼ 96:8�; ffAOD ¼ z ¼ 152:9�; ffBOC ¼ y� x
¼ 48:5�; ffBOD ¼ z� x ¼ 104:4 �; ffCOD ¼ z� y ¼ 56:1�:

The system of conditional equations is as follows:

1 � xþ 0 � yþ 0 � z ¼ 48:3;
0 � xþ 1 � yþ 0 � z ¼ 96:8;
0 � xþ 0 � yþ 1 � z ¼ 152:9;
ð�1Þ � xþ 1 � yþ 0 � z ¼ 48:5;
ð�1Þ � xþ 0 � yþ 1 � z ¼ 104:4;
0 � xþ ð�1Þ � yþ 1 � z ¼ 56:1:

8>>>>><
>>>>>:

We find the Gauss coefficients:

½aa� ¼ 12 þ 02 þ 02 þ ð�1Þ2 þ ð�1Þ2 þ 02 ¼ 3;

½ab� ¼ 1 � 0þ 0 � 1þ 0 � 0þ ð�1Þ � 1þ ð�1Þ � 0þ 0 � ð�1Þ ¼ �1;

½ac� ¼ 1 � 0þ 0 � 0þ 0 � 1þ ð�1Þ � 0þ ð�1Þ � 1þ 0 � 1 ¼ �1;

1 � xþ 0 � yþ 0 � z ¼
½bb� ¼ 02 þ 12 þ 02 þ 12 þ 02 þ ð�1Þ2 ¼ 3;

½bc� ¼ 0 � 0þ 1 � 0þ 0 � 1þ 1 � 0þ 0 � 1þ ð�1Þ � 1 ¼ �1;

½cc� ¼ 02 þ 02 þ 12 þ 02 þ 12 þ 12 ¼ 3;

½al� ¼ 1 � 48:3þ 0 � 96:8þ 0 � 152:9þ ð�1Þ � 48:5

þð�1Þ � 104:4þ 0 � 56:1 ¼ �104:6;

½bl� ¼ 0 � 48:3þ 1 � 96:8þ 0 � 152:9þ 1 � 48:5þ 0 � 104:4þ ð�1Þ � 56:1 ¼ 89:2;

½cl� ¼ 0 � 48:3þ 0 � 96:8þ 1 � 152:9þ 0 � 48:5þ 1 � 104:4þ 1 � 56:1 ¼ 313:4:

Hence, the system of normal equations (4.58) takes the form:

3x� y� z ¼ �104:6;
�xþ 3y� z ¼ 89:2;
�x� yþ 3z ¼ 313:4:

8<
:

D

C
B

O
A

z

y

x 

Fig. 11 Angle measurement

on site
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The determinants of this system are: D ¼ 16, Da ¼ 773:6; Db ¼ 1549; Dc ¼
2446: We find the best measurement results:

~x ¼ 773:6

16
¼ 48:350�; ~y ¼ 1546

16
¼ 96:813�; ~z ¼ 2446

16
¼ 152:875�:

Now we calculate the residual errors:

v1 ¼ 48:35� 48:3 ¼ 0:05 �;
n2 ¼ 96:813� 96:8 ¼ 0:013 �;
n3 ¼ 152:875� 152:9 ¼ �0:025 �;
n4 ¼ �48:35þ 96:813� 48:5 ¼ �0:037 �;
n5 ¼ �48:35þ 152:875� 104:4 ¼ 0:125 �;
n6 ¼ �96:813þ 152:875� 56:1 ¼ �0:038 �:

The standard uncertainty of the system of conditional equations is equal to

uA
X6
j¼1

n2j

 !
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP6
j¼1 v

2
j

6� 3

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
0:022

3

r
¼ 0:086�:

Further, in formulas (4.61) D11 ¼ D22 ¼ D33 ¼ 3 �1

�1 3

����
���� ¼ 8; and the type A

standard uncertainties of the measurements results will be as follows:

uAð~xÞ ¼ uAð~yÞ ¼ uAð~zÞ ¼
ffiffiffiffiffi
8

16

r
� 0:086 ¼ 0:061�:

In accordancewithTable 5 the coverage factor, forP ¼ 0:95 andnumberofdegrees

of freedom n ¼ 3, is equal to k ¼ 3:31.Hence the extendeduncertainty of the results of
measuring the angles is UAð~xÞ ¼ UAð~yÞ ¼ UAð~zÞ ¼ 3:31 
 0:061¼ 0:202 �:

Hence, with a coverage probability of 0.95, the measured angles are

within the following bounds: x ¼ ð48:350	 0:2Þ �; y ¼ ð96:813	 0:2Þ �;
z ¼ ð152:875	 0:2Þ �:
Example 4.8. Calibration of a gas analyzer (joint measurements)

Table 17 shows measurement results produced in calibrating a gas analyzer.

Find the linear calibration characteristics of the instrument W ¼ xþ Cy and its

Table 17 Measurements for calibrating a gas analyzer

Index i of measurement Volume share C, ppm Output signal of instrument W, V

1 0.5 0.5

2 1.0 3.2

3 1.5 5.9

4 2.0 8.5
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extended uncertainty at a coverage probability of P ¼ 0:95. The type B relative

extended uncertainty, due to uncertainty in the attributed values of unit prototype, is

UB:relðCÞ ¼ 0:05 for P ¼ 0:95. Estimate also the uncertainty of the calibration

characteristics in operation. Instability of the additive and of the multipli-

cative errors of the gas analyzer are estimated by the extended uncertainties

UBðxÞ ¼ 0:1V and UBðyÞ ¼ 0:05V=ppm for P ¼ 0:95.
The system of conditional equations will be as follows:

1xþ 0:5y ¼ 0:5;
1xþ 1:0y ¼ 3:2;
1xþ 1:5y ¼ 5:9;
1xþ 2:0y ¼ 8:5:

8>><
>>:

Gauss coefficients: ½aa� ¼ 12 þ 12 þ 12 þ 12 ¼ 4;

½ab� ¼ 1 � 0:5þ 1 � 1:0þ 1 � 1:5þ 1 � 2:0 ¼ 5:0;

½bb� ¼ 0:52 þ 1:02 þ 1:52 þ 2:02 ¼ 7:5;

½al� ¼ 1 � 0:5þ 1 � 3:2þ 1 � 5:9þ 1 � 8:5 ¼ 18:1;

½bl� ¼ 0:5 � 0:5þ 1:0 � 3:2þ 1:5 � 5:9þ 2:0 � 8:5 ¼ 29:30:

The system of normal equations has the form:

4xþ 5y ¼ 18:1;
5xþ 7:5y ¼ 29:30:

�

Determinants of this system: D ¼ 5:0; Da ¼ �10:75; Db ¼ 26:70: The best

measurement results are: ~x ¼ �10:75=5 ¼ �2:15V, ~y ¼ 26:70=5 ¼ 5:34V/ppm.

Now we calculate the residuals (residual errors):

n1 ¼ �2:15þ 0:55 � 5:34� 0:5 ¼ 0:02V;

n2 ¼ �2:15þ 1:0 � 5:34� 3:2 ¼ �0:01V;

n3 ¼ �2:15þ 1:5 � 5:34� 5:9 ¼ �0:04V;

n4 ¼ �2:15þ 2:0 � 5:34� 8:5 ¼ 0:03V:

The standard uncertainty of the system of conditional equations is equal to

uA
X4
j¼1

n2j

 !
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4
j¼1 v

2
j

4� 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
0:003

2

r
¼ 0:039V:

Further, in formulas (4.61) D11 ¼ 7:5; D22 ¼ 4; and the type A standard

uncertainties of the measurement results will be as follows: uAð~xÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
7:5=5

p � 0:039 ¼ 0:048V, uAð~yÞ ¼
ffiffiffiffiffiffiffiffi
4=5

p � 0:039 ¼ 0:035V/ppm.
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In accordance with Table 5, the coverage coefficient for P ¼ 0:95 and number of

degrees of freedom n ¼ 2 equals k ¼ 4:53.
Let us find the estimates of the extended uncertainty of the calibration results. By

the conditions of the task, the uncertainty at the beginning point of the scale is

caused only by type A uncertainty. Hence UðxÞ ¼ UAðxÞ ¼ kuAðxÞ ¼
4:53 � 0:048 ¼ 0:22V. Uncertainty of the calibration coefficient is caused by

type A uncertainty, estimated as at least (uAð~yÞ ¼ 0:035V=ppm), and by uncer-

tainty of the attributed values of the prototype. The standard uncertainty caused by

the latter source is estimated, with equal probability distribution and P ¼ 0:95, with
a value uBðyÞ ¼ 0:05

1:65 ¼ 0:03V=ppm. The total standard uncertainty is equal to

uðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Að~yÞ þ u2BðyÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0352 þ 0:032

p
¼ 0:046V=ppm:

The effective number of degrees of freedom by formula (3.18) equates to

neff ¼ 0:0464

0:0354=2þ 0:034=1 ¼ 6:0:

In accordance with Table 5, this value corresponds to a coverage factor of k ¼
2:52: With this, UðyÞ ¼ 2:52� 0:046 ¼ 0:116V=ppm. Since the distributions of

the uncertainty of values of x and y are mutually independent, one may estimate the

extended uncertainty of the calibration characteristics at point C of the range of

measurements by their mean square sum: Ucal½WðCÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:222 þ ð0:116CÞ2

q
.

Figure 12 shows the graphs of the calibration function WðCÞ ¼ � ¼
ð�2:15þ 5:34CÞV, and their bounds WminðCÞ ¼ WðCÞ � U½WðCÞ�; WmaxðCÞ
¼ WðCÞ þ U½WðCÞ�, corresponding to a coverage probability of 0.95.

Fig. 12 Calibration

characteristic of a gas

analyzer and its bounds,

corresponding to a coverage

probability of 0.95
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Now let us estimate the instability of the calibration characteristic. The standard

uncertainties due to the instability of the additive and of the multiplicative errors of

the gas analyzer are equal to uBðxÞ ¼ 0:1=1:65 ¼ 0:06V and

~x ¼ n
Pn

i¼1 aili �
Pn

i¼1 ai
Pn

i¼1 li

n
Pn

i¼1 a
2
i �

Pn
i¼1 ai

 �2 ;

~y ¼ 1

b

Pn
i¼1 a

2
i

Pn
i¼1 li �

Pn
i¼1 ai

Pn
i¼1 aili

n
Pn

i¼1 a
2
i �

Pn
i¼1 ai

 �2 V/ppm:

The total standard uncertainties of these values are equal to uðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0482 þ 0:062

p
¼ 0:077 V and uðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0462 þ 0:032

p
¼ 0:055 V=ppm. The

effective number of their degrees of freedom are, by formula (3.18), equal to

neffðxÞ ¼ 0:0774

0:0484=2þ 0:064=1 ¼ 13:2

and

neffðyÞ ¼ 0:0554

0:0354=2þ 2� 0:034=1 ¼ 12:2:

In accordance with Table 5, these correspond to coverage factors of kðxÞ ¼ 2:23
and kðyÞ ¼ 2:25: With this, UðxÞ ¼ 2:23 � 0:077 ¼ 0:172 V and

UðyÞ ¼ 2:25 � 0:055 ¼ 0:124 V=ppm. The extended uncertainty of the calibra-

tion characteristic at point C of the range of measurements equates to

Uoper:½WðCÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1722 þ ð0:124CÞ2

q
.

Example 4.9. Environmental appraisal of occupational noise (joint measurements)2

Occupational noise is the name given to undesirable and irregular set of sounds

that impact negatively on the worker’s state of health. Sounds differing in

frequency and intensity spread out as longitudinal vibrations in the air. The

human ear hears sounds in the range of frequencies from 16–20 Hz to 20,000 Hz,

reacting not to the absolute value of sound pressure, but to its relative change. And

since there exists an approximately logarithmic relationship between the energy of

excitation and sound perception, for convenience a value has been introduced for

sound measurement – the level L of the sound intensity in dB, which is defined by

the formula

L ¼ 10 � lg10
I

I0

� �
; (4.62)

2 Laboratory work of the Department of Information Systems for Environmental Safety, SPbGPU.
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where I is the sound intensity in W/m2 and I0 ¼ 1� 10�12W=m2 is the threshold

sound intensity.

The presence of a great number of reflecting surfaces in the room substantially

increases the level of sound intensity. The sound intensity in such a room is

estimated by the formula

I ¼ N
1

4pr2
þ 4ð1� ameanÞ

ameanS

� �
; (4.63)

where N is the power of the sound source in Watts, r is the distance to the sound

source in meters, S is the total area of enclosing surfaces in m2, and amean is the

mean coefficient of source absorption in the room.

In the process of studying occupational noise in a room, it is possible to measure

S, the distance to the source of noise at ri different points of the room, and the sound

intensity Ii at these points. From this data, the power N of the source of noise is

measured, along with the public health characteristic of the room – its mean factor

amean of sound absorption.

From the metrological point of view, these are joint measurements. However,

the dependence between the unknown quantities and the measurand is not linear.

Hence we transform it by the method of replacing variables. Let us introduce the

following notation:

a ¼ 1

4pr2
; b ¼ 4

S
; x ¼ N; y ¼ N � 1� amean

amean

; l ¼ I ¼ I0 � 10L=10:

Above all, it is essential tomeasure the constant quantity b. The result ofmeasuring

the area of enclosing surfaces is S ¼ ð90:5þ 0:5ÞM2 (the uncertainty is distributed by

the equal probability law). Hence b ¼ 4=S ¼ 0:0442 M�2. Then points i are selected
in the room, at which measurements are taken of the distances ri to the sound source,
and with the aid of a sound meter, the level of sound intensity Li. Results of these
measurements are shown in columns 2 and 4 of Table 18. From the values ri; Li,
the quantities ai; li are calculated and shown in columns 3 and 5 of this table.

Table 18 Test record sheet

Index i of
measurement

Distance ri,
m ai, 1/m2

Level Li,
dB

Sound intensity li,
W/m2

Residual ni,
W/m2

1 2 3 4 5 6

1 1 0.0796 111.5 0.01412 �0.00628

2 2 0.0199 108.0 0.010631 �0.00081

3 3 0.0088 105.0 0.00316 �0.00042

4 4 0.0050 102.0 0.00158 0.00020

5 5 0.0032 98.0 0.00063 0.00070

6 6 0.0022 91.0 0.00013 0.00096

7 7 0.0016 87.0 0.00005 0.00089

8 8 0.0012 83.0 0.00002 0.00083
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The system of conditional equations in this case has the form:

a1xþ by ¼ l1;
a2xþ by ¼ l2;

..

.

a8xþ by ¼ l8:

8>>><
>>>:

Using the method described above, this system is transformed in a system of

normal equations

½aa�xþ ½ab�y ¼ ½al�;
½ab�xþ ½bb�y ¼ ½bl�;

�

where

½aa� ¼
Xn
i¼1

a2i ; ½ab� ¼
Xn
i¼1

aib ¼ b
Xn
i¼1

ai; ½bb� ¼
Xn
i¼1

b2 ¼ nb2;

½al� ¼
Xn
i¼1

aili; ½bl� ¼
Xn
i¼1

bli ¼ b
Xn
i¼1

li:

The solution of this system of equations is ~x ¼ Da=D; ~y ¼ Db=D, where the

main determinant is

D ¼ ½aa� ½ab�
½ab� ½bb�

����
���� ¼ b2 n

Xn
i¼1

a2i �
Xn
i¼1

ai

 !2
2
4

3
5;

Da ¼
½al� ½ab�
½bl� ½bb�

����
���� ¼ b2 n

Xn
i¼1

aili �
Xn
i¼1

ai
Xn
i¼1

li

" #
;

Db ¼
½aa� ½al�
½ab� ½bl�

����
���� ¼ b

Xn
i¼1

a2i
Xn
i¼1

li �
Xn
i¼1

ai
Xn
i¼1

aili

" #
:

Hence,

~x ¼ n
Pn

i¼1 aili �
Pn

i¼1 ai
Pn

i¼1 li

n
Pn

i¼1 a
2
i �

Pn
i¼1 ai

 �2 ;

~y ¼ 1

b

Pn
i¼1 a

2
i

Pn
i¼1 li �

Pn
i¼1 ai

Pn
i¼1 aili

n
Pn

i¼1 a
2
i �

Pn
i¼1 ai

 �2 : (4.64)
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Substituting into these equations b ¼ 0:0442 m�2, n ¼ 8;
P8

i¼1 ai ¼ 0:1216�
1=m2;

P8
i¼1 a

2
i ¼ 0:00686 � 1=m4,

P8
i¼1 li ¼ 0:026W=m2,

P8
i¼1 aili ¼ 0:00129

W=m4, we derive ~x ¼ 0:25W, and ~y ¼ 0:012W.

For estimation of the uncertainty of these values, the residuals of the conditional

equations, as presented in column 6 of Table 18, are calculated. The standard

uncertainty of the system of conditional equations is, in accordance with (4.60),

equal to

uA
X8
i¼1

n2i

 !
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP8
i¼1 v

2
i

8� 2
¼

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:3� 10�5

6

s
¼ 0:00268 W=m2:

D11 ¼ ½bb� ¼ nb2; D22 ¼ ½aa� ¼
Xn
i¼1

a2i ;

uAð~xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D11

D
�

r
uA

X8

i¼1
n2i

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

8
P8

i¼1 a
2
i �

P8
i¼1 ai

� �2
vuut uA

X8

i¼1
n2i

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

8� 0:00686� 0:12162
�

r
0:00268

¼ 0:038 W

and

uAð~yÞ ¼
ffiffiffiffiffiffiffiffi
D22

D

r
� uA

Xn
i¼1

n2i

 !
¼ 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 a

2
i

	 

n
Pn

i¼1 a
2
i �

Pn
i¼1 ai

 �2
vuut � uA

Xn
i¼1

n2i

 !

¼ 1

0:0442
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00686

8� 0:00686� 0:12162

r
� 0:00268 ¼ 0:025 W:

Let us now turn to the measurand. Making an inverse replacement of variables,

we obtain the values of the measurand: ~N ¼ ~x ¼ 0:25W, and

~y~amean ¼ ~xð1� ~ameanÞ, from which ~amean ¼ ~x
~xþ~y ¼ 0:25

0:25þ0:012 ¼ 0:95. We calculate

the standard uncertainties of the values ~N and ~amean. uAð ~NÞ ¼ uAð~xÞ ¼ 0:038W. To

estimate the uncertainty ~amean we expand the function amean ¼ f ðx; yÞ ¼ x
xþy into a

Taylor series about the value ~amean ¼ ~x
~xþ~y , limiting it just to its linear part. Then,

considering that

Df ðx; yÞ ¼ f ð~x; ~yÞ � f ðx; yÞ ¼ @f ðx; yÞ
@x

x¼~x; y¼~yDxþ @f ðx; yÞ
@y

���� x¼~x; y¼~yDy
�� ;
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where

@f ðx; yÞ
@x

¼ y

ðxþ yÞ2 ;

and

@f ðx; yÞ
@y

¼ � x

ðxþ yÞ2 ;

as well as the fact that the quantities x and y are not correlated, we derive:

uAð~ameanÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~y2u2Að~xÞ þ ~x2u2Að~yÞ

q
ð~xþ ~yÞ2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:04422 � 0:0382 þ 0:252 � 0:0252

p
ð0:0442þ 0:25Þ2 ¼ 0:075:

The standard uncertainty of the result of measuring the area of the enclosing

surfaces is uBðSÞ ¼ 0:5
1:73 ¼ 0:3m2. Consequently, the standard uncertainty of the

quantity b is equal to uBðbÞ ¼ @b
@S

�� ��� uBðSÞ ¼ b� uBðSÞ
S ¼

0:0442� 0:3
90

ffi 0:00015 m�2. Formulas (4.64) show that this affects only the

measurement results acp. uBð~ameanÞ ¼ @amean

@y

��� ���� @y
@b

��� ���� uBðbÞ ¼ ~x
ð~xþ~yÞ2 �

~y
b � uBðbÞ ¼

0:25�0:012
ð0:25þ0:12Þ2�0:0442

� 0:00015 ffi 0:00015 is insignificant by comparison with

uAð~ameanÞ ¼ 0:075:
Hence, uð ~NÞ ¼ uAð ~NÞ ¼ 0:038W, and uð~ameanÞ ffi uAð~ameanÞ ¼ 0:075:
The extended uncertainty is determined by formulas (3.16) and (3.17), in which

neffð ~NÞ ¼ n� 2 ¼ 6; and, by formula (3.18),

neffð~ameanÞ ¼ ðn� 2Þ ð~xþ ~yÞ8u4ð~ameanÞ
~y4u4Að~xÞ þ ~x4u4Að~yÞ

¼ 6� 0:2628 � 0:0754

0:0124 � 0:0384 þ 0:254 � 0:0254
¼ 6� 0:46 ¼ 2:76:

In accordance with Table 5, coverage factors of kð ~NÞ ¼ 2:52; kð~ameanÞ ¼ 3:0
correspond to these values. Hence Uð ~NÞ ¼ 2:52� 0:038 ¼ 0:1W and Uð~ameanÞ ¼
3:0� 0:075 ¼ 0:225.

So, the intensity of the noise source is N ¼ ð0:25	 0:1ÞW, the expected value

of the mean coefficient of sound absorption of the room is ~amean ¼ 0:95, and the

extended uncertainty of this quantity is within the limits amean ¼ ½0:725� 1�.
The estimates presented for extended uncertainty were derived under the assum-

ption of their correspondence to Student’s distribution and a coverage probability of

P ¼ 0:95.
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Chapter 5

The International System of Units: SI

5.1 Systems of Units and the Principles of Their Formation

Unity of measurements is understood as consistency on the dimensions of the units

of all quantities. This is evident when recalling the possibility of measuring one and

the same quantity by direct and indirect measurements. Such consistency is

achieved by the creation of a system of units. But, although the advantages of a

system of units were recognized long ago, the first system of units appeared only at

the end of the eighteenth century. This was the celebrated metric system (meter,

kilogram, second), authorized March 26, 1791 by the Constituent Assembly of

France. The first scientifically based system of units, as a set of arbitrary base units

and dependent units derived from them, was presented in 1832 by Carl Gauss.

He constructed a system of units, called absolute units, at the base of which were

three arbitrary and mutually independent units: millimeter, milligram, and second.

A further development of Gauss’ system was the CGS system (centimeter, gram,

second) that appeared in 1881 and was convenient for use in electromagnetic

measurements, as well as various modifications to it.

Development of industry and trade in the era of the first industrial revolution

required unification of units on an international scale. The beginning of this process

was set May 20, 1875 with the signing by 17 countries (including Russia, Germany,

the USA, France, and England) of theMetric Convention, whichmany other countries

joined later. International cooperation in the area of metrology was established in

accordance with this Convention. The International Bureau ofWeights and Measures

(BIPM) was created at Sèvres, a suburb of Paris, for the purpose of conducting

international metrological research and storing international standard samples. The

International Committee for Weights and Measures was founded to direct the BIPM,

and includes consultative committees on the units and series of forms of

measurements. To resolve the most important issues of international metrological

cooperation, international conferences called General Conferences on Weights and

Measures (CGPM) began to be conducted regularly. All countries that subscribed to

the Metric Convention received prototypes of the international standard samples of

A.E. Fridman, The Quality of Measurements: A Metrological Reference,
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length (the meter) and mass (the kilogram). Periodic comparisons of these national

standard samples with the international standard samples stored at BIPM were also

organized. In this way the metrical system of units first obtained international

recognition. However, after the signing of the Metric Convention, systems of units

for other realms of measurements were developed – CGS, CGS electrostatic,

CGS electromagnetic, meter-ton-second, meter-kilogram-second, meter-kilogram-

force-second. Again the issue of unity of measurements arose, this time between the

different realms of measurement. Both in 1954 at the 10th CGPM in preliminary

form, and in 1961 at the 11th CGPM conclusively, the International System of Units

(SI) was adopted, and has been operative with insignificant modifications until the

present. Several times modifications and supplements have been introduced into it at

succeeding sessions of the CGPM. Currently, the SI System of Units is regulated by

ISO Standard 31 [27] and in essence is an international regulationmandatory for use.

In Russia, ISO Standard 31 was confirmed as State Standard GOST 8.417–02 [28].

The SI System of Units was formed in accordance with the general principle of

forming a system of units as proposed by Carl Gauss in 1832. In accordance with

this, all physical quantities are divided into two groups: quantities accepted as

independent from other quantities, which are called base quantities; all other

quantities, called derived, which are expressed through the base quantities and

already-defined derived quantities using physical equations. From this follows

also the classification of units: the units of base quantities are the based units of

the system, and the units of derived quantities are derived units.

And so, there is first formulated a system of quantities – a set of quantities that is
formulated in accordance with the principle wherein some quantities are accepted
as independent and others are functions of the independent quantities A quantity
entering the system of quantities and conventionally taken as independent of
other quantities of this system is called a base quantity. A quantity entering the
system of quantities and defined through base quantities and already-defined
derived quantities is called a derived quantity.

The unit of a base quantity is called a base unit. A derived unit is the unit of a
derived quantity of the given system of units, formulated in accordance with an
equation linking it with the base units, or with the base units and already-defined
derived units.

In this manner is formed the system of units of quantities – a set of base and
derived units of the specified system of quantities.

5.2 Base Units of the SI

The minimum number of base units is determined as follows. Let there be, between

the numerical values ofN diverse physical quantities, n coupling equations into which
known physical laws enter. Each equation has its own coefficient of proportionality

to which one may assign any value, and in particular may equate it to unity.

Hence, these coefficients are known numbers, but the quantities are unknowns.
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The number of quantities is always greater than the number of coupling equations:

N>n. In order to find the values of these N quantities from the existing system of n
equations, it is necessary to add to this system another N � n equations, i.e., add the
values of N � n quantities. Consequently, these values must be units independent of

the other quantities.

Hence theminimum number of base quantities is equal toN � n. Such a system of

quantities is called theoretically optimal. In practice, the number of base quantities is

greater: N � nþ p. In this case, the number of unknowns in a system consisting of n
equations is less than n, since it is equal toN � ðN � nþ pÞ ¼ n� p. Consequently,
this system of equations is over-determined and has an infinite number of solutions.

In order to ensure a unique solution, it is necessary to add p equations. Hence once

must take p coefficients as equal not to one, but to some numbers determined as a

result of solving this system of equations. These coefficients are called the funda-

mental physical constants. Examples of such constants are the gravitational con-

stant, and the Planck and Boltzmann constants.

Which units should be chosen as the base units of the system, out of the total

set? There is no unambiguous answer to this question. Resolution of this issue is

guided by practical expediency, taking into account the various arguments

such as:

• the selection as base units of the minimum number of quantities that reflect the

most common properties of matter,

• the clearest reflection of the mutual interaction of the base quantities that belong

to different realms of physics,

• the high accuracy of the reproduction of units and the transfer of their

dimensions,

• the ease of formation of derived quantities and units,

• the continuity of the units; i.e., the preservation of their dimensions and

designations when introducing modifications into the system of units.

These criteria often come into contradiction with each other. Hence the selection

of a decisive version is the subject of agreement strengthened by decision of the

CGPM.

Let us examine how this has been implemented in the SI system. Inmeasurements

of space and time, the foundation is the equation of motion v ¼ Kðdl=dtÞ, where v is
velocity, l is distance, t is time, and K is an arbitrarily selected coefficient whose

value depends on the selection of units. Addition of other quantities (area, volume,

acceleration, etc.) is accompanied by the addition of a corresponding coupling

equation, and hence changes basically nothing. So N ¼ 3 and n ¼ 1, and conse-

quently N � n ¼ 2. Hence two base quantities are accepted: distance l and time

t and, correspondingly, two base units: the meter and the second. In 1983, the speed

of light in vacuum, the true value of which is in principle unknown, was assigned an

exact value by agreement: 299,792,458 m/s. Here the unit of distance – the meter –
was defined as the distance through which light passes in vacuum in 1/299,792,458
of a second.With this definition of a meter, the coefficient of proportionalityK in the

equation of motion remained equal to 1. If the old definition of a meter had been
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preserved, and at the same time the constancy of the speed of light had been

postulated, it would not have been possible to take K as equal to 1, and it would

have been a fundamental physical constant.
In accordance with its theoretical definition, the meter is reproduced by measuring

the wavelength of the ultra-stable helium–neon and argon lasers. The relative

uncertainty of its reproduction does not exceed 1 � 10�9. Another base unit – the

second – is defined as the time equal to 9,192,631,770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the ground state
of the Cesium-133 atom. It is reproduced by measuring the frequency of radiation of

Cesium-133 atoms with a relative uncertainty not exceeding 1 � 10�13. It is evident

that the uncertainty in measuring the meter is four orders of magnitude higher than

the uncertainty in defining the second. Comparison of the standards for distance and

frequency is theoretically possible, based on the well-known relationship L ¼ h/n
for wavelength L and frequency n (where h is the Planck constant). This will be

feasible in practice when the leading metrological centers of the world are equipped

with advanced comparators suitable for comparing samples of frequencies at the

junction of the optical range and the radio frequency range (the so-called ROFBs, or

radio-frequency optical bridges). Hence it is completely likely that the prospects are

that, with the goal of refining the accuracy of measurements of distance, its unit will

be rendered by combining it with the standards for frequency. In that event, distance

will in fact be a derived quantity, dependent on time. But, most likely, the meter will

formally remain, as before, a base unit in the SI.

In the transition to mechanical measurements, the equation of motion is fulfilled

byNewton’s LawF ¼ K1ma (F is force,m is mass, and a is acceleration) and the law
of universal gravitation F ¼ K2ðm1m2Þ=r2 (r is the distance between the bodies). If
we set K1 ¼ K2 ¼ 1, then two quantities (F and m) and two coupling equations are

added. Consequently, it is theoretically possible not to introduce additional inde-

pendent quantities, but consider the mass as a derived quantity. For example, with

m ¼ m1 ¼ m2 it follows from these equations that m ¼ ar2. If we render this

equation, the unit of mass will be the mass of a material point that transmits a unit

acceleration to another material point located at unit distance. However, the accu-

racy of reproducing such a unit would be very low. Hence a third base unit is

introduced – the unit of mass (the kilogram), which is the mass of the international
prototype kilogram located at the BIPM.Here, in order to preserve the uniqueness of
the solution of the system of quantities, it was necessary to introduce into the law of

universal gravitation a coefficient of proportionality that differs from unity: the

gravitational constant g ¼ ð6:670� 0:041Þ � 10�11 ðN�m2Þ=kg2. g is a funda-

mental physical constant.

The unit of mass has remained until the present the only base unit that is

reproduced not on the basis of a physical effect but by an artificially created measure

(a material prototype). B.N. Taylor (NIST) already noted in 1977 five basic

problems with this definition of the unit: there is the possibility of damage or even

loss; the prototype accumulates impurities and cannot easily be cleaned of them; the

prototype deteriorates in an unknown manner; it is not possible to use it often

because of the fear of wearing it down; and it is accessible only in one laboratory.
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In addition, to the accuracy of the prototype (relative uncertainty to the degree of

1 � 10�7) are already attached the requirements for accuracy of a number of

measurement techniques that use the measurement of mass. Hence at the current

time, work is proceeding to search for an optimal method of over-defining the unit of

mass on the basis of some physical phenomenon. In 2005 the CGPM adopted

Recommendation № 1 (CI–2005) “Preparative steps towards new definitions of

the kilogram, the Ampere, the Kelvin and the mole in terms of fundamental

constants”. [29]. Hence the day is not far off whenmass will be reproducible through

other quantities of the SI, formally, openly, and remaining a base quantity.

In thermodynamics, four coupling equations define the same quantity, the

thermodynamic temperature T:

• the Mendeleev-Clapeyron law pv ¼ m
M RT ( p is pressure,M is molar weight, and

R is the universal gas constant);

• the equation of the average kinetic energy of the forward motion of a molecule of

ideal gas W ¼ 1:5kBT (kB is the Boltzmann constant);

• the Stefan-Boltzmann law WR ¼ sT4 (s is the Stefan-Boltzmann constant),

linking the volumetric density of electromagnetic radiationWR with temperature;

• Wien’s displacement law lm ¼ b=T (b is the Wien constant), linking wavelength

of the maximum radiation lm with temperature.

In doing so, one quantity (temperature) and four equation coefficients are added.

From the theoretical point of view of these equations, it is sufficient to define

temperature as a derived quantity. However, the historical development of science

and the exceptional position held by temperature have made it expedient to accept it

as a base quantity. The selection of temperature as among the base quantities

resulted in the regulation of a new fundamental physical constant – the Boltzmann

constant kB and the definition of the other constants of this area of measurements (R,
s, and b), using it and other constants.

The unit of thermodynamic temperature – the kelvin (К) – is 1/273.16 part of
the thermodynamic temperature of the triple point of water. Measuring

temperatures in the thermodynamic scale is complex and laborious and requires

unique and expensive equipment. In addition, random measurement errors signif-

icantly increase the random errors of the platinum resistance thermometers.

Hence practical temperature scales are used in measurements, made by

interpolating the greater number of reference points including triple points,

melting points and solidifying points of various pure substances. At the present

time, the ITS-90 International Temperature Scale, adopted at the 17th Session of

the Consultative Committee for Thermometry in 1989, is operative as the closest

possible to the thermodynamic scale. In accordance with [29], the definition of the

kelvin will likewise be refined.

In electromagnetism, two equationsmust be added to the equations of mechanics:

Coulomb’s law F ¼ Kðq1q2=r2Þ (q is electrical charge) and themutual interaction of

current I with electrical charge I ¼ q=t. In these two equations, three new quantities

q, I, and K are introduced. All other units of electrical quantities are defined by the
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laws of electrostatics and electrodynamics. Consequently, N � n ¼ 1: Hence in the
SI system a new base unit is introduced: the unit of current, the ampere (A). Then the

charge is expressed by the relationship q ¼ It. The coefficient of proportionality in

Coulomb’s law takes the form K ¼ 1=4pe0, where e0 is a fundamental physical

constant that has received the name “electrical permittivity of vacuum”. With this,

Coulomb’s law is expressed as F ¼ q1q2=4pe0r2.
An ampere is defined as the force of an unchanging current which, in passing

through two parallel wires of infinite length and vanishingly small circular cross-
sectional area placed in a vacuum 1 m apart, would cause on each 1-meter segment
of each conductor an electrodynamic force of 2 � 10�7 N. Reproduction of this

unit based on the given definition is possible using specialized measurement

instruments called Ampere balances. However, the accuracy of these instruments

that has been achieved to date is not very high: the relative standard uncertainty is at

least 4 � 10�6. In that regard, the ampere is reproduced using standard samples of

volt and ohm with relative standard uncertainty no greater than 1 � 10�8. Hence at

present there is a contradictory situation in electrical measurements: theoretically

the ampere is considered a base unit of the SI, and the volt is a derived unit. In

practice, the volt is reproduced based on the Josephson effect independently of

other units. The ampere, on the other hand, depends on the volt and in fact is a

derived unit. Consequently, the units of electrical quantities used currently are

outside the SI. In accordance with [29], this situation will be corrected in the next

few years.

There is an unambiguous mutual link between energy and luminous quantities

and, strictly speaking, no base unit needs to be introduced to measure luminous

quantities. However, considering the historically existing number of base units,

a decision was rendered to introduce a unit of the power of light – the candela (cd).

In accordance with the now operative definition, the candela is the power of
light emitted in a specified direction of the source, of monochromatic radiation at
540 � 1012 Hz, the luminous power of which is 1/683 W/sr in this direction.

The mole was the last among the base units of the SI to be included in 1971, by

decision of the 14th CGPM. The unit of amount of a substance – the mole – is the
amount of the substance in a system containing as many structural elements as
there are in 0.012 kg of Carbon-12. Structural elements can be atoms, molecules,
ions, electrons and other particles, and other groups of particles. Standard samples

of a mole have never been created and never will be created, since the physical

quantity which it represents (the number of structural components) is in its essence

a countable quantity. Hence the mole also is a countable quantity, equal to the

Avogadro number, 6.02214199(47) � 1023 particles. The mole is referenced to the

number of base units, in connection with the fact that it helps form the most important

derived units of physical chemistry: molar concentration and molar fraction of a

component. However, these derived units cannot be reproduced with measuring

instruments that preserve moles, since there simply do not exist such instruments.

They are reproduced by relying on other base units – the meter and kilogram – by the

gravimetric method using the known values of the molar weights of the components.

It is not possible to explain its inclusion into the list of SI base units by any other reason
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than convenience in using the mole in chemical measurement tasks [6]. Hence the

advisability of this decision remains until now under discussion.

And so the units listed in Table 19 are taken as the base units in the SI.

The discussion presented above has shown that the basic principle for

constructing a system of units is its convenience of use. It is predominantly such

concepts that serve as a guide in determining the number of base units, selecting

base units, and selecting their dimensions. All other principles are turned away from

being used as base principles. Predominantly for this reason, in many cases the

habituation of specialists and the population to a traditional system of quantities and

units is a stronger argument than is the possibility of selecting as a base unit one that

is reproduced with the highest accuracy. This is also underlined by the fact that in a

number of countries a system of units differing from the SI is used. So for example,

English-speaking countries tenaciously continue to use their own archaic systems

of units (inch, yard, foot, mile, pound, degrees Fahrenheit, etc.), which are banned

by the ISO 31 standard. There are also more valid cases – the application of units
outside the system, which is permitted by the ISO 31 standard. These include units

of the atomic system of units, which are more convenient in solving nuclear physics

problems, as well as astronomical units of length and such units as the ton, hour,

day, and hectare.

5.3 Derived Units of SI. Dimension of Quantities
and Units. Multiple and Submultiple Units

In accordance with Carl Gauss’ principle, the derived units must be reproduced by

the method of indirect measurements using the materialization of the corresponding

coupling equation between units of mutually linked units. In the SI, which is a

coherent system of quantities, derived quantities are formed with the aid of coupling

equations between quantities in which the numerical coefficients are equal to 1.

(A coherent system of units is a system of units in which all derived units are linked to

Table 19 Base SI units

Quantity Unit

Designation Dimension

Recommended

symbol Designation Symbol

Length L l Meter m

Mass M m Kilogram kg

Time T t Second s

Power of electrical current T I Ampere A

Thermodynamic

temperature

y T Kelvin K

Light power J J Candela cd

Amount of substance N n Mole mol
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other units of the system by equations in which the numerical coefficients are taken
as equal to 1. For example, to define the derived unit of pressure, the coupling

equation between quantities P ¼ F/S is used, where P is pressure caused by force F,
equally distributed over the surface; and S is the area of the surface located

perpendicular to the force. Let us write this equation in the form of an equation

between units: ½p� ¼ ½F�=½S�. Substituting into this equation the units of force, 1 N,

and area, 1 m2, we derive: [P] ¼ 1 N : 1 m2 ¼ 1 N/m2. This derived unit is assigned

the designation of “pascal” (Pa). Table 20 shows the derived SI units that have

special names.

An important concept of systems of units is the dimensionality of the quantity

(and, correspondingly, the units of this quantity). The dimensionality of a derived

unit indicates to what number of degrees this unit changes with specified changes in

the base units. If, when a base unit is changed by a factor of n, the derived unit

changes by a factor of np, it is stated that the derived unit has dimensionality of

p relative to the base unit. For example, area has dimensionality of two relative to

length, and acceleration has dimensionality of negative two relative to time.

Table 20 Derived SI units that have special designations

Quantity Unit

Designation Dimensionality Designation Symbol

Expression in terms of

base units of the SI

Planar angle None Radian rad –

Solid body angle “ Steradian sr –

Frequency T�1 Hertz Hz s�1

Force LMT�2 Newton N m kg s�2

Pressure L�1MT�2 Pascal Pa m�1 kg s�2

Energy, work, heat,

quantity of heat
L2MT�2 Joule J m2 kg s�2

Power L2MT�3 Watt W m2 kg s�3

Amount of electricity TI Coulomb C sA

Electrical voltage,

potential, EMF
L2MT�3I�1 Volt V m2 kg s�3 A�1

Electrical capacity L�2M�1T4I2 Farad F m�2 kg�1 s4 A2

Electrical resistance L2MT�3I�2 Ohm O m2 kg s�3 A�2

Electrical conductivity L�2M�1T3I2 Siemens Sm m�2 kg�1 s3 A2

Magnetic induction flux L2MT�2I�1 Weber Wb m2 kg s�2 A�1

Magnetic induction MT�2I�1 Tesla T kg s�2 A�1

Inductance L2MT�2I�2 Henry H m2 kg s�2 A�2

Luminous flux J Lumen lm cd sr

Luminous power L�2J Lux lx m�2 cd sr

Radionuclide activity T�1 Becquerel Bq s�1

Absorbed dose of

ionizing radiation
L2T�2 Gray Gy m2 s�2

Equivalent radiation dose L2T�2 Sievert S m2 s�2

118 5 The International System of Units: SI



Hence, a formula for the dimensionality of a quantity is an expression in the form of
a power term that is the product of the symbols of base quantities at various powers
that reflect the link between this quantity and the base quantities. Let the symbols of

base quantities be: L – length, T – time, M – mass, y – temperature, I – force of

electrical current, J – luminous power, and N – amount of substance. Then in the

example discussed above, the dimensionality of force is equal to LM=T2, and conse-

quently the dimensionality of pressure is equal to LM=T2L2 ¼ M=T2L.
Let us note the following properties of dimensionality:

1. We designate the dimensionality of a quantity A as A
$
. Then the following

properties of dimensionality are evident:

• if C ¼ AB, then C
$ ¼ A

$ � B$;
• if C ¼ A=B, then C

$ ¼ A
$
=B

$
;

• if C ¼ An, then C
$ ¼ ½A$�n.

2. Dimensionality does not depend on the coefficients in equations coupling

the quantities. For example, the dimensionality of the area of a circle,

S
$
cir ¼ p=4ðd$Þ2 ¼ L

$2

, is the same as for the area of a square.

3. Dimensionality reflects the deep links between quantities, which are more

general than the links describing physical equations. The same dimensionality

can be inherent in quantities with different nature. For example, the work of a

force F over a distance l is equal to A ¼ Fl. The kinetic energy of a body of mass

m moving at velocity v is equal to B ¼ 0:5mv2. The dimensionality of these

qualitatively different quantities is identical: A
$ ¼ B

$ ¼ ML2=T2.

As applied to this property, all quantities are subdivided into dimensional and

dimensionless. A quantity, in the dimensionality formula of which the symbol of
even one base quantity is represented with a non-zero exponent, is called a
dimensional quantity. Consequently, force and pressure are dimensional quantities.

A quantity, in the dimensionality formula of which all base quantities have zero
exponent, is called a dimensionless quantity. For example, the molar fraction of a

component is a dimensionless quantity, since the numerator and denominator in the

formula for determining its dimensionality cancel each other.

Hence the value of a dimensional quantity will always be written with a concrete

number, and the value of a dimensionless one with an absolute number (a number
with the designation of its constituent units is called a concrete number). However,
this does not mean that a dimensionless number is not a full-valued physical

quantity existing in the physical world but is just a number, a mathematical

abstraction. In the definition of a quantity it is stated that a quantity is one of the

properties of a physical object. This fully corresponds also to the content of the

understanding of a dimensionless quantity. Further, a unit of any dimensionless

quantity can be materialized. For example, the molar fraction of a component B is

defined by the expression xB ¼ nB=n, where nB is the amount of the substance of

component B, and n is the amount of substance of the system. Consequently, in
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order to reproduce the unit of the molar fraction of component B, it is necessary to

obtain the pure, unadulterated substance of this component. In fact, in this sub-

stance n ¼ nB and consequently xB ¼ 1.

The SI system also contains multiple and submultiple units. A unit of a quantity
that is a whole number of times greater than the system unit is called a multiple unit.
For example, a unit of length 1 km ¼ 103 m is a multiple of a meter. A unit of a
quantity that is a whole number of times less than the system unit is called
a submultiple unit. For example, a unit of length 1 nm (nanometer) ¼ 10�9 m is

a submultiple of a meter. For ease of use, all multiple and submultiple SI units are

formed in accordance with the decimal number system; they are equated to the

system unit multiplied by a factor equal to 10K , where the exponent K is a positive

number for multiple units and negative for submultiple units. The exponents K and

the corresponding prefixes are shown in Table 21.

5.4 Quantities and Units of Physical–Chemical
Measurements

Special examinationof the quantities andunits of physical and chemicalmeasurements

in a general course in metrology makes sense, since these measurements are remark-

ably widely distributed throughout modern society, and they have definite specificity.

The most widespread quantities and units of this area of measurements are shown in

Table 22.

As seen in Table 22, there is a broad group of various physical quantities that

reflect the composition of substances. The convenience of presenting materials in

scientific publications, standards documents, and technical reports evoked the need

for a generalized designation for the quantities of this group. Thus there appeared the

concept of the component percentage, by which is understood the generalized name
of a group of quantities that reflect the composition of the substances. Using the term
“concentration of the component” along with it as a generalized concept is imper-

missible, since a more narrow definition of this concept was compiled long ago.

Table 21 Prefixes for multiple and submultiple SI units

Exponent K Prefix

Prefix designation

Exponent K Prefix

Prefix designation

International Russian International Russian

18 Exa E Э �1 Deci d д
15 Peta P П �2 Centi c c

12 Tera T T �3 Milli m м
9 Giga G Г �6 Micro m мк
6 Mega M M �9 Nano n н
3 Kilo k к �12 Pico p п
2 Hecto h г �15 Femto f ф
1 Deca da дa �18 Atto a a

120 5 The International System of Units: SI



In L.A. Sena’s foundational monograph “Units of Physical Quantities and Their

Dimensions” [30] was written: “referring the number of units to the unit of volume,

we derive a quantity which is called concentration”. This principle was implemented

in ISO Standard 31, and in other standards documents: the term “concentration” is

generic for physical quantities, characterizing the content of the component per unit

of volume. Actually, let us turn to Table 22. It is clear from it that the concepts,

except for two specific ones, are divided into two groups: quantities that define the

content of a component per unit of volume, and relative quantities. For the first group

the concept of “concentration” is the generic concept, and for the second group it is

“fraction”. The generalized name of all these concepts – content of the component –

is not repeated by any of the subordinate concepts. This eliminates the possibility of

ambiguous interpretation. If one uses the term “concentration” as a synonym for the

concept of “content”, then it will turn out that two different concepts, the generalized

and the subordinate, will have the same terms. Recognizing the danger in such a

confusion of concepts, L.R. Stotsky wrote, in his reference book on physical

quantities and units [31]: “Fraction is a dimensionless relative quantity – in no

circumstances may one call it concentration”.

Let us turn again to the quantities shown in Table 22. It strikes one immediately

that for a specific chemical composition and specified test conditions, there is a

mutually unambiguous relationship between these quantities, and hence it is

Table 22 The most widespread quantities and units of physical and chemical measurements

Designation of

quantity Defining equation Unit

Mass component of

component B

rB ¼ mB

V , where mB is the mass of component B

in the system and V is the volume of the

system

kg/m3

Molar concentration

of component B

cB ¼ nB
V , where nB is the amount of substance of

component B in the system

mol/m3

mol/dm3

Molecular (atomic)

concentration of

component B

CB ¼ NB

V , where NB is the number of molecules

(atoms) of component B in the system

1/m3

1/dm3

Mass ratio of

component B

wB ¼ mB

m , where m is the mass of the system %

Molar ratio of

component B

xB ¼ nB
n , where n is the amount of substance of

the system

%, ‰ ppm, ppb

Volume ratio of

component B
’B ¼ VBP

xAV�
m;A

, where VB is the volume of

component B in the system, and V�
m;A are the

molar volumes of the individual substances

%, ppm, ppb

Mass ratio of

component B

RB ¼ mB

m�mB
%

Molarity of

component B

bB ¼ nB
mA

, where mA is the mass of the solvent mol/kg

Partial pressure of

component B

PB ¼ xBP, where P is the pressure of the gas

mixture

Pa
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possible to execute the conversion of one quantity into the other. For example, one

may write a chain of equalities:

mB

V
¼ mB

m

m

V
¼ nB

V

mB

nB
¼ VB

V

mB

VB

Sincem=V ¼ g andmB=VB ¼ gB are the density of the system and of component

B, but mB=nB ¼ MB is the molar weight of component B, there follow from these

equalities the relationships between mass concentration rB, mass fraction oB,

molar concentration cB and volumetric fraction fB of component B:

rB ¼ oBg ¼ cBMB ¼ fBgB:

The interconversion of these quantities is widely used in physical and chemical

measurements. This practice can lead to the opinion that in chemical analysis there

is only one quantity that characterizes the composition of an object – namely the

composition itself – and that the quantities presented in Table 22 are just different

ways of expressing this quantity [32]. However, these are different concepts.

Composition is the aggregate of some elements entering some chemical compound
or substance as constituent parts, and a property is a quality or attribute
constituting the distinguishing features of something [33]. The difference between

these two concepts is obvious. The same composition of an object has different

distinguishing attributes, and is characterized by different properties and, conse-

quently, quantities. For example, the mass fraction characterizes the ratio of the

mass of the component and of the object, and the volumetric fraction characterizes

the ratio of their volumes. It is clear that this is not the same ting, especially

considering that the former does not change when the temperature of the object

changes, while the latter does change.

From the metrological point of view, non-homogeneous quantities can be

considered identical if the unit of any of these quantities can be derived computa-

tionally from the unit of another quantity without increasing the uncertainty.

Writing a quantity in any of the multiple or submultiple units satisfies this require-

ment. If, in converting one unit into another, the values of other quantities such as

fundamental physical constants are used, then the uncertainties of these values are

added to the uncertainty of the first unit. In doing so, the uncertainty of the second

unit becomes larger than the uncertainty of the initial unit. Consequently, these

units are not identical, and as a result of the conversion we have transitioned to a

different quantity.

Let us introduce the example of wavelength and frequency. These quantities

are not identical, since their interconversion is based on a fundamental physical

constant – the Planck constant, known with some uncertainty. Hence they are

dissimilar quantities. Precisely the same way, the various properties that reflect

the chemical composition of substances are dissimilar quantities.
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Chapter 6

Measurement Assurance

6.1 Uniformity and Traceability of Measurement

Measurements have significant meaning in any area of human activity. But in order

for measurements to be effectively used in practical activity, one must be convinced

that their results remain unchanged (within the desired accuracy) when using

another instrument and measurement method, and when changing the operator,

time, and place of completion of measurements, and other components of measure-

ment processes. This property of measurements is called uniformity of

measurements in Russia and other Commonwealth of Independent States (CIS)

countries.

To understand the significance of uniformity of measurements, let us look at an

example of one type of measurement. Let us suppose that the state’s unified time

service ceased to function, and all enterprises and citizens of the country began to

relay upon their own watches, not calibrating them by accurate time signals. After a

short time there would be many problems associated with beginning the workday,

with the traffic schedule of various kinds of transport, and with the operating time of

stores and enterprises providing the population’s utility services. For example, a

passenger goes into a train station, and they tell him “your train has already left.”

In time, the number of similar cases would abruptly rise, and in the end would lead

to the collapse of the entire transport system of the country. Untimely delivery of

equipment, raw materials and component parts, feed and other products would lead

to disorganization of the work of enterprises and to the well-founded refusal of

customers to pay for such deliveries, leading in the end to a crisis in the financial

system of the country. Without knowledge of a unified time, the operation of

communications and navigational systems, health and education agencies, etc.,

would be impossible. It is clear that the functioning of a state service for unified

time is a necessary condition for the existence of any state.

The very same thing can be said about other forms of measurement. Uniformity

is the main and determining mark of measurements, which in principle

differentiates them from other kinds of experimental evaluation. If uniformity is

A.E. Fridman, The Quality of Measurements: A Metrological Reference,
DOI 10.1007/978-1-4614-1478-0_6, # Springer Science+Business Media, LLC 2012

123



ensured, then this means that the process of experimental evaluation being studied

can pertain to measurements. If it is not ensured, then this suggests the unsuitability

of this process as measurement, which it consequently is not. In this case, it is some

other process of recognition – observation, organoleptic evaluation, indication, and

so forth – but not measurement. Hence by virtue of its importance, measurement

assurance is the chief goal and foundational content of the theoretical and practical

work of metrologists.

What is understood by the term “uniformity of measurement”? In accordance

with the classical definition provided in [9], uniformity of measurement is the state
of measurement in which all results are expressed in authorized units, and all errors
are known with a specified probability. This definition, formulated in the 1960s by

Prof. K.P. Shirokov, has become significantly obsolete. First, the condition that “all

results are expressed in authorized units” was included in the definition according to

considerations of the time, since at that time the inculcation of the SI International

System of Units was the most pressing task of Russian metrologists. By now, issues

regarding the introduction of the SI have long been fully resolved in our country and

in many others. In that same regard, the experience of the USA and other English-

speaking countries has demonstrated that mass usage in home, trade, and industry

of traditional (for these countries) units that are forbidden by the SI (pound, foot,

degrees Fahrenheit, etc.) does not have serious negative consequences.

The second condition that “all errors are known with a specified probability,”

corresponding in sense to the interpretation of uniformity of measurement but not

being specific, was formulated otherwise in the succeeding terminological

standards document [34]. However, even the new terminology that “measurement

error shall not exceed established bounds” is a declaration, expressing the goal of

metrology but in practice unachievable (as the true value of a quantity is unknown).

Since, due to the random nature of measurement error in any measuring technology,

the probability of a measurement defect is greater than zero, there will always be

found a measurement, even if just one, whose error exceeds the established bounds.

Consequently, if we interpret this definition literally, uniformity of measurement

never was and never will be.

So what sense ought we to imbue the concept of “uniformity of measurement”? In

answering this question let us consider that in order for measurement results not to

depend on the selection of measuring instruments [MIs], the MI equipment must

satisfy the following condition: all measuring systems of the same quantity must
preserve the same unit size. A natural way of fulfilling this condition consists of

reproducing a unit with one reference standard and subsequent transfer of this unit size

to all other measuring systems for that quantity. From this comes another

term accepted in international practice, reflecting the concept under study –

measurement traceability. This is understood to mean the fact that a measurement
result is obtained by comparing the size of a measurand with the size of a unit,
reproduced using a reference standard of that quantity (literally: a measurement

result is traced to the reference standard). This signifies that they are done as if by

reference to one MI – the reference standard. It is evident that uniformity of measure-

ment is a consequence of their traceability, and this provides the basis for considering
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the terms as synonyms. In this regard, the new definition is better than the classical one

and clarifies the essence of the concept “uniformity of measurement.” Hereafter we

shall use the more convenient term – uniformity of measurement.

6.2 Measurement Assurance

The task of ensuring uniformity of measurement has stood since time immemorial,

since the necessity for doing so arose simultaneously with the need for

measurements. With that, to the extent that science and industry developed, the

level of requirements for uniformity of measurement also grew continuously. This

is reflected comprehensively:

• it encompasses an ever greater number of areas and kinds of measurement, and

the ranges of measurement continuously increase;

• all spheres of application of measuring technology are encompassed (trade,

various sectors of industry and agriculture, warfare, science, health care, trans-

port, communications, environmental protection, and so forth);

• the level of measurement accuracy and the requirements for measurement

accuracy are constantly increasing;

• the ground covered by uniformity of measurement is broadening – in the Middle

Ages a separate market or enterprise, later a settled point, then a region, the state,

and finally the entire world;

• the significance of uniformity of measurement is increasing and, consequently,

the material, financial and labor resources selected to ensure it.

Towards the end of the twentieth century, the system built up over the ages

(we call it the classical system) to ensure uniformity of measurement was defini-

tively formulated. At its base lies the definition of traceability as presented in

Sect. 1. To ensure uniformity in any form of measurement, it is essential to:

• develop in a collegial manner, and authorize, a theoretical definition of this

quantity,

• reproduce this unit by some defined standard as a reference, with the highest

accuracy possible,

• regularly, and with a periodicity necessitated by the instability of the MI, transfer

the unit size, as preserved by the reference standard, to all MIs for this quantity,

likewise with the highest accuracy possible.

To resolve the first issue, the most authoritative physical and metrological

laboratories of the world conduct scientific research directed toward recognizing

new physical governing laws and refining the fundamental physical constants.

Based on the results of these studies, the highest collegial body of the world

metrological community – the General Conference on Weights and Measures

(CGPM) – periodically authorizes new theoretical definitions of the units of physi-

cal quantities.
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To resolve the remaining issues, hierarchical systems are created:

• standard samples, in which all except the reference standards are subordinated to

other, more accurate standard samples,

• metrological documents that regulate the reproduction of units and the transfer

of their dimensions,

• metrological services performing these operations.

In Russia, the first of these named systems is called the technical base of the

measurement assurance system, the second is called the standards base, and the

third is called the technical base.

In industrially developed states, the hierarchical systems of standards for the

majority of the types of measurement form centralized systems for reproducing

units and transferring their dimensions. These systems include reference standards

for the country, called national standards, and hierarchical chains of subordinate

standards, which execute the transfer of unit size from the national standard to all

MIs for that quantity that are used in the country. By way of exception, in a number

of types of measurements, there are found decentralized systems of measurement

assurance in which there are no national standards. In this case, the unit is

reproduced in one of two ways:

• using several reference standards located in various laboratories, where the unit

size is transferred to the reference standards in foreign metrological centers;

• by the method of indirect measurement, directly in measurement laboratories.

The centralized system is capable of ensuring the highest level of uniformity of

measurement. Hence as a rule the decentralized systems are used at the initial stages

of developing a form of measurement. The completion of any type of measurement

proceeds by developing methods and instruments for comparative measurements

and creating standard samples, based on which hierarchical chains of standards

arise. The natural endpoint of this process is the creation of a national standard and

a centralized system of reproducing a unit and transferring its dimension.

6.3 Standards of Units

It follows from Sect. 2 that in Russia and many other countries of the world,

uniformity of measurement is ensured by the functioning of centralized systems of

reproducing units of quantities and transferring their dimensions, which are hierar-

chical chains of standards of various accuracy. A standard is a measuring system (or
set of measuring systems) designed to reproduce and (or) preserve a unit and
transfer its size to other measuring systems. Standards are subdivided into primary,

secondary and operational according to their position in this hierarchical chain.

A standard that reproduces a unit and transfers its size to other standards is
called a primary standard. A primary standard executes the task of reproducing a

unit of a quantity for use in all measurements of that quantity. It is evident that the
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levels of accuracy of the most authoritative metrological and operational

measurements are determined by the accuracies of the primary standards. Hence

in the creation of primary standards, the attempt is always made to ensure the

highest accuracy that can be achieved at this stage of development of science and

technology. After reproduction of a unit, its size is transferred to each standard

following the hierarchical chain.

Figure 13 illustrates this process. It is clear from the figure that transfer of the unit

size occurs in two ways: not just from the most accurate standards to the least

accurate but also by broadening the ranges of the quantity and conditions of

measurement. Here, since the result of each measurement is burdened with some

uncertainty, the uncertainty of this unit continuously increases in the system of

transferring the unit size. The primary standard transfers the unit size to the second-

ary standards, which function in a wider range of measurements but are less

accurate. The secondary standards transfer the unit size to the operating standards

[measuring instrument standard references (hereafter SI references)], and these to

less accurate working standards.

The number of steps in the transfer is determined by the requirements for accuracy

of the working measuring instruments, and hence cannot be very large. In many types

of measurement, an increase in the ranges of the quantity and the conditions of

measurement (frequency, temperature, etc.) has made it impossible to ensure the

transfer of the unit sizewith the required accuracy from the operative primary standard

to all measuring instruments of this type. In these cases, several primary reference

standards of one unit are created, differing by the ranges ofmeasurement or conditions

of measurement. For example, in Russia, the unit of pressure is reproduced by seven

different primary reference standards, six of which are kept at the D.I. Mendeleev

VNIIM [All-Russian Scientific Research Institute for Metrology] and one at the

VNIIFTRI [All-Russian Scientific Research Institute for Physico-Technical and

Radio Measurements]. Another example: the unit of specified heat capacity is

Low-order working stand-
ards (MI references)

High-order working standards
(MI references)

Ranges of measurand and conditions of measurement

Uncertainty of
dimension of unit

Primary standard

Secondary standards

Fig. 13 Framework for reproducing a unit and transferring its size to standards
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reproduced from four primary standard references kept at the D.I.Mendeleev VNIIM,

UNIIM [Urals Scientific Research Institute for Metrology], NPO [Scientific Design

Organization] Dal’standart, and VNIIFTRI. This group of primary standards is, in

fact, a collective standard designed to reproduce the unit throughout the whole range

of measurements. In this, one of these standards in Russia receives the designation of

“primary standard.” The other standards of this set are called special primary standards

(short form: “special standards”). In the examples given, the designation of primary

standards is given to state reference standards stored at theD.I.MendeleevVNIIM, for

units of pressure in the range from 0.05 to 10MPa and specific heat capacity between

273.15 and 700 K. To ensure uniformity of measurements, the unit sizes reproduced

by these standards are made to conform at the boundary regions of the values.

All other standards do not take part in the reproduction of units. They preserve

the dimensions of units obtained from more accurate standards, and (or) transfer

them to less accurate standards and working MIs. Figure 14 illustrates the transfer

of dimensions of units from standards to working MIs. Secondary standards receive
the unit sizes from primary standards and transfer them to working standards.
Working standards are designed for verification and calibration of working MIs.
When necessary they are subdivided into orders: first, second, third, etc. In this

case, the first-order working standards likewise transfer the unit sizes to second-

order working standards, and second-order working standards likewise transfer the

unit sizes to third-order working standards, and so forth.

Fig. 14 Transfer of dimensions of unit from reference samples to ordinary MI
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The designations introduced above correspond to the international classification

of standards that is recognized throughout the world, including Russia. At the same

time, the classification adopted in Russia differs somewhat from the international.

The working standards in the international classification were called MI reference

standards in our country [Russia] until the last decade. These terms are in fact

synonyms: in its own time the French word “etalon” [reference standard] was

transferred into Russian. But in Russia, there were always substantive differences

in the status of primary and secondary standards (the combination of which is called

the standards base of the country), and the OSI and the differences caused by it in

the financing and the system of metrological service. After the transition to the

international classification, the status of the OSI (including serially issued OSIs for

lower orders) was as though compared with the status of primary and secondary

standards, with all the resulting consequences of a negative nature for the latter.

To reestablish the former position and at the same time not contradict the interna-

tional classification of standards, a decision has currently been adopted to use both

terms (“working standard” and “OSI”) as being equally valid.

The standards include:

• means of reproducing a unit (primary measuring transducers, measurement

installations);

• means of preserving unit dimensions (measures);

• means of transferring unit dimensions (comparators, comparison standards);

• means of preserving and transferring unit dimensions (measuring instruments);

• other MIs and technical facilities (means of monitoring measurement conditions,

computational facilities, power grid, measuring equipment accessories, and

other).

In design, the standards and OSI can be formulated as measuring installations,

called verification installations in this case. The basic metrological requirements for

standards and OSI must ensure high accuracy of measurement results when

reproducing a unit and preserving and (or) transferring its dimension. The most

important requirement is high stability enabling one to ensure the fixed nature of the

unit dimension. It is exactly this that explains the transition that took place at the

beginning of the twenty-first century toward reproduction of the base and many

derived units by implementation of high-stability quantum physical effects. High

sensitivity and small random error of the standard are also necessary, as well as its

low sensitivity to change in the measurement conditions.

Automation of measuring and computational operations is the way to improve

measurement accuracy at the standard and to reduce personal operator error. At the

same time, the extent of the range of measurement conditions is not a significant

characteristic since, for the purpose of improving the accuracy of standards

measurements, the standards are as a rule used in fixed (most commonly normalized)

measurement conditions.

Individual standards, group standards, and collective standards are differentiated

based on the number of similar MIs in the standard.
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An individual standard consists of one MI. Another form of standards, the group

standard, is a set of individual standards with differing nominal values, which permits

broadening the range of reproduced, preserved, and (or) transferred dimensions of

units. For example, the state primary standard of the unit of temperature (GPE) is a

group standard. It consists of two standards, one of which, kept at VNIIFTRI,

reproduces the unit of temperature for the range 0.3–273.16 K, and another, kept at

the D.I. Mendeleev VNIIM, does so for the range 0–3,000�C. Each of these standards
is likewise a group standard, since it consists of a set of facilities to reproduce the

reference points of the ITS-90 International Temperature Scale and a set of

thermometers and pyrometers for measuring the temperatures at these points [35].

A collective standard is a group of standard reference MIs (most commonly the

measures of one nominal value), united with the goal of improving the stability and

accuracy of the standard. The effect of creating a collective standard is explained as

follows. One may present as the following sum the value xi of the ith standards

measure at moment t, calculating from the time of the last calibration of this standard:

xi ¼ _xi þ xAi þ xB þ niðtÞ; (6.1)

where _xi ¼ _xþ Dxi is the actual value of the ith measure ( _x is the nominal measure

of the collective standard,

Dxi is the error in preparation of the ith measure),

xAi; xB are the measurement uncertainties in calibration (transfer of the unit size)

of the ith measure of types A and B, respectively (€xi ¼ _xi þ xAi þ xB is the value

assigned to the measure upon calibration), and

niðtÞ is the change, over time t after calibration, of the actual value of the _xi of the
ith measure.

If this measure is applied as an individual standard, its uncertainty will be

defined as the sum of three terms (xAi þ xB þ niðtÞ). The standard uncertainty of

such a standard will be equal to

ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2A þ u2B þ u2nðtÞ

q
; (6.2)

where uA; uB are the standard uncertainties of the results of measuring the value of

a measure at calibration, and evaluated as type A and B; and

unðtÞ is the standard uncertainty of the change in value of the measure over time t.
Now, let us join into one collective standard n such measures having the same

nominal value _x. The value of this standard is the mean of the values of all n
measures:

�x ¼ 1

n

Xn
i¼1

xi ¼ _xþ �Dxþ �xA þ xB þ �nðtÞ; (6.3)

where Dx ¼ 1=n
Pn

i¼1 Dxi is the mean manufacturing error for the measures of the

collective standard,
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�xA ¼ 1=n
Pn

i¼1 xAi is the mean uncertainty of the results of measuring the values

of the measures at calibration of the collective standard, evaluated as type A, and

�nðtÞ ¼ 1=n
Pn

i¼1 niðtÞ is the change in value of the collective standard over time t,
equal to the mean change over that time of the values of the measures included in

this standard.

With that, the actual value of the collective standard is equal to
�_x ¼ 1=n

Pn
i¼1 _xi ¼ _xþ Dx, the value assigned to the collective standard at calibra-

tion is �€x ¼ 1=n
Pn

i¼1 €xi ¼ �_xþ �xA þ xB, and the value of the collective standard at

time t after calibration is �x ¼ 1=n
Pn

i¼1 xi ¼ �€xþ �nðtÞ.
Usually measures of one type are collected into the collective standard. With that

being the case, changes over time t of the values of the measures incorporated into

the collective standard are individually distributed mutually independent random

quantities. Due to this, the standard uncertainty of the instability of the collective

standard, as the standard deviation of the mean, is equal to

u½�nðtÞ� ¼ unðtÞffiffiffi
n

p :

Hence, the stability of the collective standard, including nmeasures on one type,

exceed by a factor of
ffiffiffi
n

p
the stability of any one measure of this standard. The

accuracy of the collective standard will also be higher: the standard uncertainty of

its value at time t is equal to

uG: �¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2A
n
þ u2B þ

u2vðtÞ
n

r
: (6.4)

Comparison with formula (6.2) illustrates the effect of using collective standards

in systems for transferring dimensions of units.

A centralized system of measurement assurance can be organized in the metro-

logical services of diverse level: at a separate enterprise, in a department, and in the

country as a whole. Here, the one most accurate standard will be at the head of this

hierarchical chain of transfer of the unit size to all MIs of this type of measurement

that are used in this metrological service. This standard is called the reference

standard (of the enterprise, department, or country). Hence traceability is ensured

for all measurements performed at the enterprise or department back to its reference

standards, and through them to the country’s reference standards.

The reference standards of a country in international metrological practice are
called national standards, and in our country [Russia] they are called state
standards. National standards, being more accurate than the MIs of their own

countries, greatly determine their scientific and technical capabilities. They are

usually preserved and used in national metrological institutes (NMIs). There are

three different methods for creating them [36].

In accordance with the first method, an NMI creates a primary standard which

performs the reproduction of a unit in precise correspondence with its definition.
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This is the most fundamental approach, which ensures a strong link between the

definition of a unit and its physical embodiment in the primary standard. However,

it is the most difficult and expensive approach.

The second method likewise calls for the creation of a primary standard,

although not by means of the physical implementation of a theoretical definition,

but based on quantum physical effects the use of which makes it possible to

implement a unit size that corresponds with its definition. Such an approach

facilitates creation of standards with a high degree of reproducibility. Examples

are the use of frequency-stabilized lasers to create the meter standard, the Josephson

effect for the volt, and the Hall effect for the ohm.

The third method involves the use, for the national standard, of a secondary

standard to which the unit size is transferred by periodic comparison with the

national standard of some other NMI.

The largest and most scientifically and technologically developed countries,

including Russia, having the need for the highest possible level of accuracy in all

types of measurement, use the first and second methods. Hence, the national

standards of these states, as a rule, are primary standards. Small countries, not

having the full spectrum of modern sectors of industry and hence not sensing the

need for high accuracy in a number of types of measurement, are often required

to use the third method to create national standards, as being less expensive.

In considering this, the BIPM has established that each NMI shall have the right,

in creating its national standard, to independently select the method of its creation.

6.4 Verification and Calibration of Measuring Equipment

The procedure for transferring a unit size from a standard to a less accurate MI can

be done in two different forms – calibration and verification.

Calibration is the simplest form and includes just the transfer of unit size.

Calibration is the name given to the set of operations that establish a relationship
between the value of the quantity obtained using the given MI, and the
corresponding value of the quantity determined using the standard. It follows
from this definition that in calibration there is a transfer of the quantity’s unit

size, reproduced or preserved by the standard, to a less accurate MI by means of

determining the ratio between the values of the quantity preserved by the standard

and the corresponding indicators of the MI being calibrated. In the preceding, when

using the MI for its purpose, this ratio is used to transform MI indicators into

measurement results. In the process of calibration, the measures are evaluated and

assigned new values, and the measuring instruments are assigned new calibration

characteristics (a calibration characteristic is a dependence between the output
signal y of the measuring instrument and the measurand x). The value of the

measure, determined in calibration, is indicated by the assigned value or by an

additive correction equal to the deviation of this value from the value assigned to the

measure at the original or succeeding calibration. The calibration characteristic of the
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measuring instrument or measuring transducer, determined at calibration, is shown in

the form of a new function x ¼ f ðyÞ or y ¼ f ðxÞ (by a function, table, or graph). If the
calibration characteristic is linear (y ¼ Aþ Kx), the new characteristic can be

indicated by the corrections (additive and multiplicative) to the assigned calibration

characteristic. A correction not dependent on the measurand is called an additive
correction, and a correction directly proportional to the measurand is called a
multiplicative correction. It is evident that an additive correction indicates the new

value of A, and a multiplicative correction the new value of K. If the design of a

measuring instrument being calibrated permits resetting to zero before use, then one

may consider that A ¼ 0. In this case, the calibration characteristic is provided as a

calibration coefficient K, which is constant for all points of the range (or part of the

range) of a measuring instrument. It is evident that in the calibration process the

systematic errors of the MI that have accumulated to this time will generally be

eliminated, no matter how significant, and the MI will be reestablished with its initial

metrological characteristics. Hence an MI cannot be rejected at calibration in princi-

ple. The purpose of calibration is not to evaluate the compliance of the MI with the

established technical requirements. That question is resolved with verification.

Verification is the establishment, by an agency of the state metrological service, of
the suitability of theMI for use, on the basis of test analysis of its errors. It is clear from
this definition that verification consists of two different procedures: technical and

directional. The technical procedure consists of experimental evaluation of the MI’s

errors. Since in measuring the values x of the quantity the error of the MI is equal to

DðxÞ ¼ x̂� x, where x̂ is the result ofmeasuring this quantity by theMI being verified,

and x is the value of the measurand determined with the aid of the standard, it is

understood that the technical procedure is in principle analogous to the procedure of

calibrating the MI. The directional procedure consists of rendering a decision on the

compliance of the MI being verified with the set of requirements, expressed in

the form of bounds of allowable error values � D@ðxiÞ, and the formulation of a

document as to the allowance or disallowance of the MI for further use. When the

condition � D@ðxiÞ�DðxiÞ�D@ðxiÞ is satisfied at all control points xi of the range of
measurements, the verifying agency shall issue to the owner of the MI a certificate

permitting the further use of the MI, but if this condition is violated at even one point

xi, use is forbidden. It is interesting that in some countries this separation of functions

has led to its logical conclusion – the specified procedures are executed by different

services: the experimental evaluation of errors by calibration laboratories, and the

rendering of a decision on compliance, called a verification, by state verification

agencies, based on the certificate of the calibration laboratory.

This fact underscores the distinction between the legal status of calibration and

verification. Verification is one of the forms of state metrological control, which is

extended to measurements performed for: defense of human life and health, environ-

mental protection, and execution of trade operations and mutual accounts between

buyer and seller. The list ofMIs subject to verification is confirmedby theGovernment

of the Russian Federation. Hence there are a series of strict requirements:

• inadmissability of the use, for measurements subject to state metrological control

and supervision, of MIs not verified or that are overdue for the next verification;
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• verifications to be conducted exclusively by agencies of state metrological

control and supervision or by organizations fully authorized by these agencies;

• strict observance of the requirements of the verification methodology confirmed

at the state level and of the established intervals between verifications.

All other MIs are subject to calibration. In contrast with verification, calibration

is not obligatory. It is performed at the wish of an organization that used an MI,

using its own resources or specialized calibration laboratories on a commercial

basis, and employing a calibration method agreed upon with the organization that is

using the MI. The fact that there are no essential requirements for calibration

controlled by the state is logical, since any harm from invalid measurements of

such MIs would be primarily borne by the organizations using them. At the same

time, in the conditions of the globalization of the modern market for products and

services, an essential requirement for production is documentary confirmation of

the traceability of measurements performed in the production process. This confir-

mation will provide calibration certificates issued by calibration laboratories that

are accredited in the European and Russian system of calibration. Hence enterprises

using MIs will, as a rule, prefer to ensure a high quality of calibration, performing it

in accredited calibration laboratories and with confirmed methods, observe the set

interval between calibrations, and preserve the properly completed certificates of

the calibrations.

Calibration ensures higher accuracy of measurements than usual verification,

since reestablishment of the initial accuracy of the MI is performed. With usual

verification, this is not done – an MI recognized as suitable will be sent out for

further use with all the errors that it had when delivered to the verification labora-

tory. This simplified algorithm of verification is approved for trade weights and

balances, control panel electrical measuring devices, and many other MIs of lower

accuracy that were calibrated at the initial verification at the manufacturer, since

this makes verification and use of the MI significantly easier. If MIs subject to

verification are used for high-accuracy measurements, then their verification, while

preserving all inherent legal features (performance by agencies of state metrologi-

cal control and supervision, necessity of observing intra-verification interval, etc.)

is conducted with the reestablishment of the original accuracy, i.e., using the

calibration method.

6.5 Increase of Uncertainty of the Unit Size During
its Transfer to a Measuring Instrument
Under Calibration or Verification

As was shown in Sect 2, in the hierarchical chain of standards for any form of

transfer of unit size, both in calibration and in verification, the uncertainty of unit

size increases. But this happens in different ways.
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A calibration result will be burdened not just with the uncertainty of the unit size

preserved by the standard, but also by many other components. The standard

uncertainty of the value of a unit received by an MI in calibration with uncorrelated

components will be expressed by the formula

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�þ u2A þ

Xn

i¼1
u2Bi

q
; (6.5)

where us is the standard uncertainty of the value of the unit, reproduced or

preserved by the higher-ranking standard used in calibration,

uA is the standard uncertainty of measurements, and is evaluated as type A, the

source of which are random errors of the standard, the MI being verified, and the

method of measurement,

uBi is the standard uncertainty of measurements, and is evaluated as type B, due

to the ith source of error in transferring unit size; and

n is the number of sources of transfer error.

For example, in calibrating a measuring instrument by the direct measurements

method, the calibration characteristics are determined based on the results of

multiple measurements, by the instrument being calibrated, of quantities

reproduced by standard measures. The sources of uncertainty of the calibration

characteristics are, first, uncertainties of standards measures due to instability of

these measures and to the uncertainties of the results of their calibration. But in

addition, one should add to these sources of uncertainty: random error of the

measuring instrument being calibrated; the nature of influencing values that deter-

mine the conditions of measurement in calibration (temperature, pressure, humid-

ity, etc.), from their nominal values; error in formation of calibration characteristics

by the least squares method; rounding of measurement results, and so forth. Hence

always u>us, i.e., the accuracy of any MI after calibration is always lower than the

accuracy of the standard used in calibrating this MI.

The mechanism by which uncertainty of the unit size increases during certifica-

tion is totally different. Since verification is in essence a procedure for checking the

MI for compliance with the acceptance tolerance D, a troublesome occurrence such

as statistical errors is significant.1 Let us return to the theory of statistical errors in

verifying an MI. We shall designate as x the error of the MI being verified, and by y
the measurement error in verification. As a consequence of measurement error, the

result of measurement error in verifying the MI will be equal to xþ y. The MI is

suitable when the condition � D� x� D is satisfied, where D is the bound of

allowable error of the MI being verified. But in verification, the MI will be

recognized as suitable when the condition � D� xþ y� D is satisfied, which

1 These errors are called statistical to differentiate them from errors caused by violation of the

measurement method or operator failure. By contrast with those, statistical errors cannot be

assigned to the fault of the operator since they are an objective consequence of measurement

uncertainty in verification.
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one may rewrite as � D� y� x� D� y. Verification errors are caused by the

differences in these conditions. For y>0, a suitable MI will be erroneously rejected

(first-order error) if D� y<x� D, and a defective MI will be erroneously

accepted as suitable (second-order error) if � D� y<x� � D. For y<0, con-

versely, the first-order error will be when � D� x<� D� y, and the second-

order error for D� x< D� y.
Figure 15 presents an illustration of this effect. It shows the probability density

f ðxÞ of MI error in the set of MIs of one type that are in use, and the intervals of

values of the error x at which statistical errors of verification occur. Since the

probability is always greater than zero that in this set there are some MIs for which

the probability of error lies in these intervals, the occurrence of statistical errors of

verification is unavoidable. It is not possible to completely eradicate them, and one

can only strive to decrease their share of the total mass of verification results.

Hence, a first-order statistical error consists of the fact that an actually suitable
MI is erroneously rejected due to measurement error in verification. A second-
order statistical error consists of the fact that a defective MI is erroneously
accepted as suitable due to measurement error in verification.

Let us estimate the first-order P1 and second-order P2 probabilities of statistical

error of verification of when verifying MIs, the random error of which are insignifi-

cant in comparison with systematic error. Let f ðxÞ be the probability density of error
x of the MI being verified in the set of MIs of this type, and gðy=xÞ the conditional
probability density of measurement error when verifying y.

A first-order error occurs when the conditions � D� x� D, and y<� D� x
or y> D� x, are simultaneously satisfied. In accordance with the formula for the

complete probability, we express P1 with the following integral

P1 ¼
ðD
�D

ð�D�x

�1
f ðxÞgðy=xÞdydxþ

ðD
�D

ð1
D�x

f ðxÞgðy=xÞdydx: (6.6)

Fig. 15 Regions of values of MI error at which statistical verification errors occur, for y > 0
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A second-order error occurs when the conditions: x<� D or x> D, and

� D� x� y�D� x, are simultaneously satisfied. Hence the probability of a

second-order error is equal to

P2 ¼
ð�D

�1

ðD�x

�D�x

f ðxÞg y

x

� �
dydxþ

ð1
D

ðD�x

�D�x

f ðxÞg y

x

� �
dydx: (6.7)

Measurement error during verification does not depend on the systematic error

of the MI being verified. Hence gðy=xÞ ¼ gðyÞ does not depend on x, and formulas

(6.6) and (6.7) are simplified:

P1 ¼
ðD
�D

f ðxÞ½Gð�D�xÞþ1�GðD�xÞ�dx;

P2 ¼
ð�D

�1
f ðxÞ½GðD�xÞ�Gð�D�xÞ�dxþ

ð1
D

f ðxÞ½GðD�xÞ�Gð�D�xÞ�dx; (6.8)

where GðzÞ ¼ Ðz
�1

gðyÞ dy is the distribution function of measurement error when

verifying.

Usually in estimating statistical errors of verification, it is accepted that the

distribution of systematic errors of an MI in a set of MIs of one type is subject to the

normal law with zero mean:

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffi
2ps

p e�x2=2s2 ;

where s is the standard deviation of this distribution. Likewise it is accepted that the

distribution of measurement error in verification is subject to the normal law.

Further, let us examine two different ways of posing the problem.

1. Estimate of statistical errors of verification when using a material standard. In

this case the measurement error is y ¼ mþ x, where m is the systematic mea-

surement error and x is the random measurement error. For standard uncertainty

u, estimated as type A, the probability density y is equal to

gðyÞ ¼ 1ffiffiffiffiffiffi
2p

p
u
e�ðy�mÞ2=2u2 :

Further,

GðzÞ ¼ 1ffiffiffiffiffiffi
2p

p
u

ðz
�1

e� ðy� mÞ2
2u2

dy ¼ 1ffiffiffiffiffiffi
2p

p
ðz�m
u

�1
e�t2=2 dt ¼ F

ðz� mÞ
u

;
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where FðzÞ ¼ 1ffiffiffiffi
2p

p
Ð z
�1 e�t2=2 dt is the distribution function of a standardized

normal quantity (tabulated function); i.e. a quantity whose probability density

is equal to ’ðtÞ ¼ 1=
ffiffiffiffiffiffi
2p

p
e�t2=2. Substituting these expressions into (6.8),

we derive:

P1 ¼
ðD
�D

f ðxÞ F �Dþ xþ m

u

� �
þ 1� F

D� x� m

u

� �� �
dx

¼
ðD=s

�D=s

’ðtÞ F �Dþ tsþ m

u

� �
þ 1� F

D� ts� m

u

� �� �
dt

¼
ðk
�k

’ðtÞ F � k þ tþ m
a

� �
þ 1� F

k � t� m
a

� �� �
dt

¼
ðkð1þbÞ

�kð1þbÞ

’ðs� bkÞ F � k þ s

a

� �
þ 1� F

k � s

a

� �� �
ds; (6.9)

P2 ¼
ð�D

�1
f ðxÞ F

D� x� m

u

� �
� F

Dþ xþ m

u

� �� �
dx

þ
ð1
D

f ðxÞ F
D� x� m

u

� �
� F �Dþ xþ m

u

� �� �
dx

¼
ð�D=s

�1
’ðtÞ F

D� ts� m

u

� �
� F �Dþ tsþ m

u

� �� �
dt

þ
ð1

D=s

’ðtÞ F
D� ts� m

u

� �
� F �Dþ tsþ m

u

� �� �
dt

¼
ð�k

�1
’ðtÞ F

k � t� m
a

� �
� F � k þ tþ m

a

� �� �
dt

þ
ð1
k

’ðtÞ F
k � t� m

a

� �
� F � k þ tþ m

a

� �� �
dt

ð�kð1�bÞ

�1
’ðs� bkÞ F

k � s

a

� �
� F � k þ s

a

� �� �
ds

þ
ð1

kð1þbÞ

’ðs� bkÞ F
k � s

a

� �
� F � k þ s

a

� �� �
ds; (6.10)
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where k ¼ D=s, a ¼ u=s, m ¼ m=s ¼ ðm= D)k, b ¼ m=k ¼ m= D.
Substituting into formulas (6.9) and (6.10) the known parameters: the characteristic

k of serial suitability2 of the type of MIs subject to verification and the standard

uncertainty u of measurements at this standard, evaluated as type A, one may estimate

the probabilities of verification errors for various values of systematic error m of

measurements. Further, proceeding from the established bounds P1 and P2 of allow-

able values, the critical (maximum allowable) value of systematic error m@ of

measurements is determined. The value m@ is a guide to metrological servicing of

this standard, such as when setting up inter-calibration intervals, developing a method

of statistical regulation of accuracy, and so forth.

Example 6.1. A verification unit has the following accuracy characteristics:

k ¼ D=s ¼ 3, a ¼ u=s ¼ 1=3. The task is to determine the bound m* of systematic

measurement error so as to provide that the mean percentage of erroneous recogni-

tion of suitable MIs as unsuitable is no more than 5%.

Substituting k ¼ 3 and a ¼ 1=3 into (6.9) and (6.10), we find the curves P1ðbÞ
and P2ðbÞ. They are presented in Figure 16. The figure shows that for these values of
k and a, increasing m does not lead to increase in P2ðbÞ (the maximum value of this

probability is 0.00135). At the same time, P1ðbÞ is very significant, and for m ¼ D
is 0.5. Substituting P1ðbÞ ¼ 0:05, we obtain b ¼ 0.4 and m* ¼ 0.4D. Hence the

systematic measurement error must not exceed 40% of the limit of allowable error of

the MI being verified.

2. In developing standardized documents for state measurement chains and methods

of verifying, it is essential to base the requirements for measurement accuracy,

Fig. 16 Probability curve of statistical verification errors versus b¼m/D – ratio of the systematic

measurement error m to the limit D of the allowable error of MI being verified

2 The characteristic of serial suitability of items, which is equal to the ratio of the allowance for the

control parameter to the standard distribution of the values of this parameter throughout the set of

items of this type, defines the probability of recognizing as suitable items of this type when under

measurement monitoring. For successful passing this monitoring, it must be no less than three.
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in verifying any samples of MIs of one accuracy class, on any standard of the

specified type. Here it is natural to assume that the error distribution of the

standards of this type is subject to the normal law with zero mean and standard

deviation u characterizing the dispersal of error among the set of standards of the

indicated type. In this case, the probabilities of statistical verification errors are

defined by formulas (6.9) and (6.10), in which b ¼ 0, i.e. by the expressions

P1¼
ðk
�k

’ðsÞ F �kþ s

a

� �
þ1�F

k� s

a

� �� �
ds;

P2¼
ð�k

�1
’ðsÞ F

k� s

a

� �
�F �kþ s

a

� �� �
dsþ

ð1
k

’ðsÞ F
k� s

a

� �
�F �kþ s

a

� �� �
ds:

(6.11)

Table 23 presents the values of these probabilities, calculated for a series of

values a and k using formula (6.11).

The table shows that in order to ensure a percentage of verification errors at the

level of 1–2%, it is necessary to take a� 1=3. Proceeding from this, a widespread

rule in metrology is: the limit of allowable error of an MI being verified must be at

least 3 times larger than the limit of allowable error of the standard. This also

involves the mechanism of improving the uncertainty of a transferred unit size

when verifying an MI.

Hence, the overall framework for improving the uncertainty in the system of

reproduction and transfer of unit size is presented as follows.

At the first l steps of the system, counting from the primary standard, the transfer is

done by the calibration method. Increase in uncertainty is described by formula (6.5).

In connection with this, the standard uncertainty of the standard at the l-th step is

expressed by the formula

ul ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ

Xl�1

k¼1
½u2Ak þ

Xnk

i¼1
u2Bki�

r
; (6.12)

where u1 is the standard uncertainty of the unit size reproduced by the primary

standard,

Table 23 Probabilities of statistical verification errors

a K P1 P2 K P1 P2

1
1

2 0.128 0.0170 3 0.032 0.0011

1
1;5

2 0.065 0.0140 3 0.011 0.0010

1
2

2 0.0410 0.0120 3 0.0054 0.0008

1
3

2 0.0220 0.0100 3 0.0024 0.0007

1
5

2 0.0110 0.0070 3 0.0010 0.0005
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uAk is the standard uncertainty of measurements when transferring unit size from

the standard at the k-th step, evaluated as type A,

uBki is the standard uncertainty of measurements when transferring unit size

from the standard at the k-th step, caused by the i-th source of error, and evaluated

as type B.

Further transfer of unit size proceeds by the verification method. Hence the

standard uncertainty um of unit size preserved by the standard at the m-th step, is

calculated by the formula

um ¼ ul
alalþ1 . . . am�1

; (6.13)

where al; . . . am�1 is the ratio of standard uncertainties of unit sizes preserved by

l standards, at the (m – 1)-th step, to those preserved by standards (working MIs)

being verified by them.

6.6 Measurement Chains

Documents that establish the order of transfer of unit sizes are called measurement
chains. A measurement chain was first proposed in the 1930s by Professor L.V.

Zalutsky for linear measurements. Thereafter they began to be developed to describe

the coordination of reference standards and referenceMIs in all types ofmeasurement.

Measurement chains are created both in other countries and by international metro-

logical organizations.3 In Russia, the content and construction of measurement chains

is regulated by a state standard [37]. State and local measurement chains differ. A state

measurement chain is foundational. It is distributed to all MIs of a given quantity that

are verified and calibrated in the country. For MIs subject to verification, this docu-

ment establishes the essential metrological requirements for instruments and the

methods of verifying them. For MIs subject to calibration, these requirements are

recommended. Local measurement chains, compiled on the basis of state measure-

ment chains, are extended to MIs used in a separate department or in an enterprise.

Local measurement chains define concretely the regulations of the state measurement

chain by taking account of the specifics of their own measurements. Their develop-

ment should be guided by the following principle: the accuracy of verification in

compliance with a local measurement chain must be no less than that in a state

measurement chain. Thismeans, for example, verification of eachMI using a standard

of the same or higher area of themeasurement chain; establishing that the ratio a of the
bounds of allowable error of the standard to that of theMI being verified are no greater

than the ratios indicated in the state measurement chain, and so forth.

3 They are called calibrations chains in other countries and in international practice.
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Measurement chains are formulated as a diagram (state measurement chains also

contain a textual part, the explanations of the diagram). Figure 17 presents an example

of a diagram of a state measurement chain. It consists of several horizontal bands,

called the measurement chain fields. Each field corresponds to one level of transfer of

the unit size. The following fields are distinguished: state reference standard, second-

ary standards, working standards (standard reference MIs) of the corresponding order

(a separate field for each order), standards (standard reference MIs) borrowed from

other state measurement chains, and working MIs. Rectangles are placed in the fields

to show the names of the groups of MIs, the nominal values or ranges of values of the

quantity and its error characteristics. These rectangles are joined by vertical lines

corresponding to the recommended order of transfer of the unit size.
On the broken lines it is permissible to place ovals indicating the method of

transferring the unit size, the error using this method, and additional information.

Five methods of transfer are differentiated:

• direct comparison, used when comparing measuring instruments;

• comparison with the aid of a transfer standard, which is used in comparing

measuring instruments that it is impossible to directly compare with each other;

• comparison with the aid of a comparator, used when comparing measures;

Fig. 17 Example of the configuration of a state (interstate) verification hierarchy schemes. 1 –

state standard; 2 – verification method; 3 – secondary standard; 4 – transfer standard; 5–7 –

working standards for corresponding orders; 8 – working standards borrowed from other state

verification hierarchy schemes; and 9 – working MI
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• direct measurements, used in verification and calibration of measures with

regard to a reference standard measuring instrument, or of a measuring instru-

ment with regard to a set of standard measures;

• indirect measurements (reproduction of a unit by the method of indirect

measurements).

It follows from this description that information on the method of transferring

the unit size is redundant, since the method is uniquely determined by the type of

groups of MIs indicated in the rectangles. Hence, it is possible not to show but to

collapse the ovals when there is no need for supplemental information.

It was shown in the preceding section that the uncertainty of the transferred unit

size increases at all steps of the transfer of the unit size using the stages of the state

measurement chain, from the state standard to the working MIs. Each superfluous

step in the transfer of the unit size degrades the quality of verification and calibra-

tion of the working MIs at the end of this chain. Hence the number of fields of the

state measurement chain must be the minimum necessary, fulfilling the condition

that there be complete satisfaction of the need for verification and calibration of the

working MIs used in the country.

Example 6.2. State measurement chain for an MI for the component percentage in

gaseous media.

The state measurement chain for an MI for the component percentage in gaseous

media is regulated by GOST 8.578–2008 [38]. It establishes the order and basic

requirements for the transfer of the dimensions of the units of molar fraction (%)

and mass concentration (mg/m3) from the state primary standard with the aid of

working standards, to the working MIs for component percentage in gaseous media.

The state primary standard of units of molar fraction and mass concentration of

components in gaseous media is at the head of this chain, and this standard includes

unit assemblies of analytical and gas-mixing apparatus, transfer standards, and a set

of specialized vessels. The standards units of equipment include:

• analytical unit for reproducing the unit of molar fraction of components in

ranges from 2 � 10–8 to 5 � 10–5% (for components of mixtures) and from

99.5 to 99.99995% (for a basic component);

• a gas-mixture gravimetric unit for reproducing the unit of molar fraction of inert,

permanent, and chemically active gases, hydrocarbon components (methane,

ethane, and others including liquefied hydrocarbons) and Freon, at intermediate

scale points in a range from 1 � 10–4 to 99.5%;

• a gravimetric unit for reproducing the unit of mass concentration of chemically

active gases and hydrocarbons in a range of yields from 2 � 10–2 to 50.0 mg/min;

• a unit of dynamic and volumetric large-scale conversion for reproduction of the

unit of molar fraction of components in the range from 5 � 10–7 to 5% and the

units of mass concentration of components in a range from 8.0 � 10–3 to

1.5 � 103 mg/m3;

• a unit for reproduction and transfer of the unit size of molar fraction of ozone in a

range from 5 � 10–8 to 1 � 10–3%;
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• analytical units for attestation of the transfer standards – pure gases and gas

mixtures in pressurized vessels, in a range from 2 � 10–8 to 99.99995%,

• analytical units for attestation of the transfer standards – sources of microstreams

of gases and vapors in a range of mass concentrations from 8.0 � 10–3 to

1.5 � 103 mg/m3.

Fig. 18 State verification hierarchy scheme for substance ratio measurements in gaseous media

(GOST 8.578-2008)
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Pure gases and gas mixtures in pressurized vessels are used as transfer standards

in a range of molar fraction from 2 � 10–8 to 99.99995%, and sources of

microstreams of gases and vapors in a range of yields from 0.02 to 50 mg/min.

The state primary standard is used for transfer of the dimensions of a unit of

molar fraction and mass concentration of components to working standards of the

0th and first orders, and to working high-accuracy MIs by the methods of direct

measurement and comparison using a comparator or transfer standards.

Units of analytical and gas mixer installations and reference standards of the

composition of gas mixtures in pressurized vessels are used as 0th-order working

standards. They are used to transfer the unit size of the molar fraction to first-order

working standards and working high-accuracy MIs using methods of direct

measurement and comparison with the aid of a comparator or standard references.

Units of analytical and gas mixer installations, generators of gas mixtures and

pure gases, standard specimens of the composition of pure gases and gas mixtures

in pressurized vessels, and sources of microstreams of gases and vapors are used as

first-order working standards. They are used to transfer the unit size of the molar

fraction to medium-accuracy and low-accuracy working standards, using methods

of direct measurement and comparison with the aid of a comparator or standard

references; and to transfer units of mass concentration to second-order working

standards by indirect measurement methods.

Units of analytical and gas mixer installations, generators of gas mixtures and

pure gases, and standard specimens of the composition of pure gases and gas

mixtures in pressurized vessels are used as second-order working standards. They

are used to transfer the unit sizes of the molar fraction and mass concentration to

low-accuracy working MIs, using methods of direct measurement and comparison

with the aid of standard specimens of the composition of pure gases and gas

mixtures of the second-order in pressurized vessels.

Specialized and universal gas analyzer MIs (gas analyzers, gas analysis stations

and posts for monitoring atmospheric pollution, mass spectrometers, and other

types of gas analysis equipment) are used as working MIs. These pertain to one

of three levels of accuracy: high, medium, and low. Figure 18 shows the metrologi-

cal characteristics of the standards and working MIs.

6.7 Organizational Basis of Measurement Assurance

Management of a system of measurement assurance in a country is a most important

governmental function. Analysis of the experience of foreign countries has shown

that even here this activity is in the sphere of state management. In the USA, this

function is assigned to the Department of Commerce, under which is the National

Institute of Standards and Technology (NIST). In England, it is the Secretary of State

for Trade and Industry, which conducts the National Physical Laboratory, and in

Germany, it is the Department of Economics, to which the Physico-technical
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Institute (PTB) is subordinated [39]. Since May 20, 2004, this function has been

performed in Russia by the Federal Agency for Technical Regulation andMetrology

(Rostekhregulirovaniye), which is within the system of federal executive agencies of

the Russian Federation and is located under the RF Ministry of Industry and

Energy.4 In the realm of metrology, Rostekhregulirovaniye executes the functions

of state metrology monitoring and supervision. The RF law “On Measurement

Assurance,” adopted in 1993, established the following types of state metrology

control:

• approval of the type of MI,

• verification of MIs, including reference standards,

• licensing the activity of legal entities and persons to the right to manufacture,

repair, sell, and lease MIs.

• The types of state metrological supervision are:

– supervision over the condition and use of MIs, methods of performing

measurements, and observation of other metrological rules and regulations,

– supervision over the quantity of packaged goods in any type of packing at

their unpacking, sale, and import,

– supervision over the quantity of goods disposed of at the completion of trade

operations, as well as regarding the condition and usage of gaming machines

with monetary payout, and their software.

Rostekhregulirovaniye organizes and coordinates activity on measurement

assurance in Russia, including activity subordinate metrological organizations,

which include:

– Eight scientific research institutes [NIIs] that perform the functions of Russia’s

NMIs – D.I. Mendeleev VNIIM, VNIIMS, VNIIFTRI, VNIIOFI, VNIIR, VS

VNIIFTRI, VNIIFI Dal’standart, and VNIITsSMV;

– State time and frequency service and determination of the parameters of the

Earth’s rotation;

– State service for standard reference data on physical constants and the properties

of substances and materials;

– State service for standard specimens of the composition and properties of

substances and materials;

– 86 Centers for Standardization, Metrology, and Certification (SMS) which

perform the functions of state metrological control (verification of MIs and

other types of metrological monitoring enumerated above);

4 Beginning in 1954 when the Committee on Standards, Measures and Measuring Instruments

under SM SSSR was first organized on the basis of the Guidance on Standardization under Gosplan

SSSR and the D.I. Mendeleev VNIIM, the agency of state administration of metrology, with

different names but analogous functions, has always been within the federal executive agencies.
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– territorial agencies of state supervision in all autonomous republics, regions, and

oblasts of the country, which perform the functions of state metrological control.

In addition, Rostekhregulirovaniye participates in the activity of international

organizations on metrology, directly and through the subordinate NMIs, and is an

official representative of the Russian Federation in these organizations.

The basic task of Russia’s NMIs is the conduct of fundamental research in the

area of metrology; creation, improvement, preservation, and use of state standards;

and participation in international work in the area of metrology. The NMIs repro-

duce on their own state standards the units of physical quantities and transfer their

dimensions to the SMSs; i.e., to secondary and working standards that are the

reference standards of these organizations. Further, the SMSs transfer the unit sizes

to the reference standards of metrological services of executive agencies and legal

entities, with the help of which working MIs are verified and calibrated. Hence an

organizational system for the reproduction of a unit and transfer of its size has been

set up, analogous to the technical system studied in Sect. 3. Figure 18 shows the

block diagram of this system.

6.8 Measurement Assurance in the World on the Basis
of the Arrangement Between the Directors
of the National Metrology Institutes

After the Metric Convention was signed in 1875, the degree of uniformity of

measurement on a planetary scale gradually increased. This activity is headed by

the CGPM and its agencies, a diagram of which is shown in Figure 19. The CIPM

and BIPM coordinate work in the area of uniformity of measurement of regional

metrological organizations (RMOs), a list of which is presented in Table 24.

Enterprise metrological service

NMI

SMS Center

Reference standard (service of legal
metrology)

MI MI MI
Fig. 19 Organizational

system for reproducing a unit

and transferring its size
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In recent decades, this process has proceeded at significantly faster tempos. This is

explained by the immense changes that accumulated toward the end of the second

millennium and are characterized by the term “globalization.” Above all, this pertains

to the development of international productive cooperation and trade based on inter-

national standardization, international unification of transport systems, elimination of

all barriers between national economies, leading to their actual unification into a

unified world economic system. This is also the creation of a unified information

space and continually broadening international cooperation in various areas – science,

education, medicine, ecology, meteorology, agriculture, and other. As a consequence

of globalization there has arisen the problem of the recognition, by all countries of the

world, of the results of measurements and tests conducted in each country. For

example, trade agreements between states require this from all parties signing a

contract. Uniformity of measurements is also a necessary condition for successful

performance of international scientific programs and the solution ofmany other issues.

Thus, at the present time, the BIPM is initiating the task of creating a worldwide

system to ensure uniformity of clinical medical analyses [40].

The resolution of this issue is linked to the creation of a system for accreditation

of measurement and test laboratories. But all MIs of these laboratories are subject to

calibration or verification. Hence it is necessary also to create a system for accredi-

tation of calibration and verification laboratories, and this provides a mechanism for

international recognition of certificates of calibration and verification. And finally,

since these laboratories receive the unit sizes from national measurement standards

kept at NMIs, coordination of the dimensions of these units is required.

The necessity for coordination comes from the fact that centralized systems of

measurement assurance are limited by the scope of the separate states. As a result,

the dimensions of a unit reproduced or preserved by the national standards of

different countries may significantly differ from each other. Figure 20 shows a

framework illustrating the described cause and effect relationships.

The traditional method of conformity consists of creating a primary standard,

from which the unit size is transferred to all national standards. However, on a

planetary scale, this is a very expensive and technically hardly feasible path to

achieve the stated goal. Hence an international system currently being actively

developed for confirming the metrological equivalence of national standards is

resolving this issue (“metrological equivalence” of standards is understood to be

Table 24 Regional metrological organizations

No. Designation

Notation

English Russian

1. Asian-Pacific Metrological Program APMP AПMП
2. Euro-Asian Cooperation of National Metrology Institutions COOMET КOOMET

3. European Association of National Metrological Institutes EURAMET EBPAMET

4. Inter-American Metrology System SIM CИM

5. South African Development Community Cooperation in

Measurement Traceability

SADCMET CAДКMET
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the correspondence of the degrees of accuracy of the units reproduced and (or)
preserved by them).

The beginning of the system of international recognition of national standards

was set in place by CIPM, which on October 14, 1999 opened up for signing by the

directors of the NMIs a document entitled “Mutual Recognition Arrangement

[MRA]. Mutual Recognition of the National Measurement Standard and Calibration

and Measurement Certificates Issued by the National Metrology Institutes” (herein-

after “DVP”) [41]. In this, the following goals were proclaimed:

– establishment of the degree of metrological equivalence of national standards,

– ensuring mutual recognition of calibration and measurement certificates issued

by the NMIs,

– ensuring a reliable technical base for broader arrangements in the area of

international trade, commercial activity, and standardization; in particular,

arrangements on mutual recognition of calibration, measurement, and testing

certificates issued by accredited laboratories of other countries.

Metric Convention
1875

General Conference on Weights
and Measures (CGPM)

(meets once each 4 years)

International Committee on Weights
and Measures (CIPM)

(meets annually)
includes 18 members, selected by CGPM

10 Consultative
Committees (CC)

of the CIPM

National
Metrological

Institutes (NMI)

International Bureau
of Weights and

Measures BIPM 

Fig. 20 Structure of the agencies of the CGPM
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Key comparisons produced by the CIPM and RMO Consultative Committees for

types of measurements were set as the foundation of this system. In addition, the

DVPs require also the fulfillment of the following conditions:

– a functioning quality control system in each NMI and confirmation of the

competence of the NMI,

– successful participation of each NMI in subsequent comparisons.

This process is concluded by the publication of announcements regarding the

measuring capabilities of each NMI, to be incorporated into the BIPM database and

published on the Internet at the BIPM website.

Key comparisons consist of the measurement by all participants of the value of a

quantity preserved by a standard of comparison or other highly stable measure, and

then comparing the results of these measurements. Key comparisons for the CIPM

are done by the Consultative Committees (CCs) of types of measurements. The CC

at each session studies the need for comparisons and decides, taking account of the

opinions of the RMOs, which comparisons need to be initiated. Laboratories

(NMIs) that participate in the CCs, and other laboratories that have the highest

technical competence and experience in the given type of measurement, are invited

to participate in the key comparisons by the CIPM. To organize and conduct the

comparison, a pilot laboratory and 2–3 laboratories to assist the pilot laboratory are

designated. The pilot laboratory, together with the designated assisting ones,

compiles a detailed technical protocol (a technical reference manual that describes

in detail the procedure for conducting the comparison) and a schedule for the

comparisons. Then the pilot laboratory prepares and studies a standard of compari-

son and organizes its shipment to the participants according to the schedule of

comparisons. The laboratories that are participants in the comparison will, inde-

pendently of each other and in strict compliance with the technical protocol,

conduct measurements of the measure that was sent. Based on these measurements,

they determine the value of the measure and its uncertainty. Then they present these

results with the necessary supplemental information to the pilot laboratory. The

pilot laboratory analyzes and processes the obtained results and determines the

reference value and its extended uncertainty [42].

The reference value is understood to be the value of the quantity, the measure-
ment uncertainty of which is recognized by all to be sufficiently insignificant that it
may serve as a basis of comparison for values of quantities of the same type.
It follows from this definition that the reference value of a quantity is an analogue

of the true value of a quantity. For example, in measuring mass, where the mass of

an international prototype of the kilogram is by definition the unit, the reference

value of the unit is the value assigned to this prototype. In other types of

measurements, there is no such prototype, and hence what is accepted as the

reference value of a unit is the mean weighted arithmetic average of a number of

its values reproduced by the most accurate national standards that are preserved by

the NMI participants in the key comparison for the CIPM:

xCIPM ¼
Xn
i¼1

xipi; (6.14)
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where xi is the result of measuring the value of the standard of comparison at the ith
national standard,

pi ¼ 1=u2iPn
i¼1 1=u

2
i

is the “weight” of the measurement result xi, ui is the standard uncertainty of this

measurement result, n is the number of NMIs participating in the comparison.

The standard uncertainty of the reference value with independent values xi is
equal to

uðxCIPMÞ ¼ 1Pn
i¼1 1=u

2
i

: (6.15)

The CIPM key comparison reference value is the initial one in the system of

comparisons. It is taken as a reference point in determining the RMO key comparison

reference values, which in turn fulfill the function of a reference point in conducting

supplemental comparisons. Overall, a hierarchical chain of comparisons of national

standards has been built up, being an analogue of the hierarchical chain “primary

standard – secondary standard – working standard”. In essence, the idea of a

centralized system of measurement assurance in the world has been implemented

in the system of comparing national standards.

The CIPM key comparison reference value is the initial value not just in the system

of comparisons, but also generally in the worldwide system of ensuring measurement

uniformity of a given type. Through the system of comparisons, this value is trans-

ferred to national standards and from them, through national systems for transferring

dimensions of units, to all MIs that are calibrated in this unit (see Fig. 21). If one

represents that the national standards participating in the CIPM key comparisons are a

unified collective standard confirmed as a worldwide primary standard, then the

reference value will be the value of a unit reproduced by this world standard.

But the CIPM key comparison reference value has also another important function:

it serves to evaluate the degree of equivalence of national standards. By definition, the
degree of equivalence of a national standard is that degree to which the value of a
standard corresponds to the CIPM key comparison reference value [11]. Hence it is
expressed quantitatively as a deviation from the reference value

di ¼ xi � xCIPM (6.16)

in conjunction with the standard uncertainty of this deviation, calculated by the

formula

uðdiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðxiÞ þ u2ðxCIPMÞ � 2covðxi; xCIPMÞ

p
; (6.17)

where covðxi; xCIPMÞ is the covariance of the value xi and the reference value.
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The claimed accuracy of a national standard is confirmed with probability 0.95 if

this inequality is satisfied:

dij j<2uðdiÞ; (6.18)

If this condition is not fulfilled for any national standard, that would provide

evidence that the accuracy claimed by the NMI was not confirmed by comparison.

Consequently, the obligatory condition of international recognition of calibration

and measurement certificates, issued to the given NMI, would turn out to be

unfulfilled. This circumstance can lead to serious consequences for the NMI and

the country that it represents since, as seen in Fig. 20, a refusal to recognize

calibration and measurement certificates in some type of measurement that were

issued by the NMI will automatically lead to the legal invalidity of the certificates

of conformity of all measurements results of that type that were conducted in that

country. In order not to reach that point, there are frequently inspections directed

toward increasing the estimate of uncertainty of this standard, and information

about its measuring capabilities is published by the BIPM with its enhanced

estimate of uncertainty.

RMO key comparisons are conducted using a similar setup. Their goal is the

dissemination of metrological equivalence to the national standards of the RMO

countries that do not take part in the CIPM key comparisons. All national standards

of member-nations of the RMO that did not participate in the CIPM key

comparisons are invited to take part in these key comparisons. Besides these,

System for international recognition of national
standards and calibration and measurement
certificates issued by the NMI 

System of international recognition of certificates
of compliance issued by calibration and
verification laboratories 

System of international recognition of
certificates of compliance issued by measurement
and testing laboratories 

System of international recognition of
certificates of compliance for goods and services

Fig. 21 Hierarchical structure of the systems for international recognition of certificates of

conformity

152 6 Measurement Assurance



one or several national standards that have participated in the CIPM key

comparisons are invited. These are called binding standards. The binding national

standards in the RMO key comparisons do not confirm their own equivalence, since

this was done in the CIPM key comparisons. They fulfill the function of transferring

the CIPM’s key comparison reference value to the RMO.

Director of TK COOMET “Key Comparisons” A.G. Chukovkina [43, 44]

developed the methodology for conducting RMO key comparisons and statistical

A B C D E

National
reference
samples

Group of reference standards participating in CIPM comparisons

CA CB C CD CE

Transferring
dimension of
unit

National
reference
samples

National system
for conveying
dimensions of
units from na-
tional standard
reference of a

system of
quantities

to working MIs

CBb CBc

CBab

CBaab

CBaa

CBaaa

CBa

CBba

Group of reference standards participating in
regional metrological organizations

Fig. 22 Structure of worldwide system of ensuring uniformity of measurements based on Key

Comparisons
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analysis of their results. These are done as follows. After the formation of a group of

participants and the design of a technical protocol and schedule of comparisons,

the pilot laboratory sends the standard of comparison to the participants in the

comparisons. All participants conduct measurements of the value of the standard of

comparison and derive the measurement results ~xi and an estimate of their standard

uncertainty uð~xiÞ.
After completion of the measurements, it is necessary to reduce their results ~xito

the CIPM’s key comparisons reference value. With that goal, the pilot laboratory

does the following.

1. Based on the measurement results of the binding standards, it calculates the

additive correction D to the measurement results ~xi and the estimate of standard

uncertainty uð DÞ of this correction:

D ¼
Pl

i¼1 Di=S
2
iPl

i¼1 1=S
2
i

; (6.19)

uðDÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Pl
i¼1 1=S

2
i

s
; (6.20)

where Di ¼ x�i � ~x�i ,
x�i ; ~x�i are the measurement results of the binding standard in the CIPM and RMO

key comparisons, respectively,

l is the number of binding standards;

2. It determines the transformed (reduced to the CIPM key comparisons reference
value) measurement results of all laboratories that are participating, and their

uncertainties, using the formulas

~x�i ¼ ~xi þ D; i ¼ 1; :::; n; (6.21)

uð~x�i Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ð~xiÞ þ u2ðDÞ

p
; (6.22)

where n is the number of standards participating in comparisons.

Further, the degree of equivalence is calculated for all national standards

participating in the comparison other than the binding standards

di ¼ ~xi þ D� xCIPM (6.23)

and its standard uncertainty

uðdiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðxiÞ þ u2ðxCIPMÞ þ u2ðDÞ½1� u2ðxCIPMÞ

Xl

j¼1

1

u2ðx�i Þ
�

vuut : (6.24)

154 6 Measurement Assurance



Then they verify the equivalence of these standards. If inequality (6.18) is

fulfilled, then the estimates of uncertainty of results, claimed by the NMI, agree

with a probability of 0.95 with the data of the comparisons. This is verification of

the claimed accuracy of the national standard. In this case, the claim of the

measuring capabilities of the NMI is entered into the BIPM database and published

on the Internet at the BIPM website. If inequality (6.18) is not fulfilled, then this

provides evidence that the accuracy claimed by the NMI for the national standard

was not confirmed. Then they reexamine on the side of increasing the estimate of

uncertainty of this standard, and information about its measuring capabilities is

published with its enhanced estimate of uncertainty.

They determine the actual values of the units x̂i, kept by the national standards,

and the estimates uðx̂iÞ of their uncertainty:

x̂i ¼ QRMOð~xi � diÞ; (6.25)

uðx̂iÞ ¼ @QRMO

@x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ð~xiÞ þ u2ðdiÞ � 2covð~xi; diÞ

p
; (6.26)

where QRMO is a known function of the link between the value of the unit and the

value of the standard of comparison used in the MRO key comparisons.

Further, they estimate the RMO key comparisons reference value and its stan-

dard uncertainty:

xRMO ¼
Xn
i¼1

~xi=u
2ð~xiÞPn

i¼1 1=u
2ð~xiÞ þ D; (6.27)

uðxRMOÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1Pn
i¼1 1=u

2ð~xiÞ þ u2ðDÞ
s

: (6.28)

There is a significant difference between the CIPM and RMO key comparisons

reference values: the reference value xRMO does not reflect an actual value of a unit

transferred to the national standards of the countries of this region, and hence is not

involved in the system of transferring the unit size. Its function is different: xRMO

serves to define the mean degree of equivalence of the group of these standards. It is

equal to

dRMO ¼ xRMO � xCIPM; (6.29)

and the estimate of its uncertainty is

uðdRMOÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðxRMOÞ þ u2ðxCIPMÞ � 2covðxRMO; xCIPMÞ

p
: (6.30)
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dRMO and u(dRMO) are generalized characteristics of the accuracy of national

standards and high-accuracy measurements in this region. They can serve as criteria

for the relative evaluation of different RMOs as to the degree of accuracy of

measurements in the NMIs.

At present, the system for confirming the measuring capabilities of NMIs using

key comparisons of national standards is being actively developed. Hence by the

beginning of 2007, there were 356 of just the CIPM key comparisons registered in

the BIPM database [45]. The positive effect of these comparisons on the degree of

uniformity of measurements has been noticed by all specialists. It has become

evident that opening up the DVP for signing by the NMIS was the greatest step in

ensuring uniformity of measurement in the world, comparable in significance to the

signing of the Metric Convention.
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Chapter 7

Verification and Calibration Intervals
of Measuring Instruments

7.1 Basic Concepts

It was shown in Sect. 6.2 that among the basic elements of a system for metrological

assurance are periodic verifications and calibrations of MIs, in which there is

monitoring of the compliance of metrological characteristics of MIs to the

established requirements, or of their behavior in compliance with these

requirements. The verification or calibration interval (VCI) is the most important

parameter of metrological maintenance of the MI, directly affecting the level of

uniformity of measurement. The lower the VCI, the higher this level is. On the other

hand, the lower the VCI, the greater the financial expenses to conduct verifications

and (or) calibrations of MIs, as well as production cost associated with removing

the MI from the place of use. Hence there is an opposition, which must be resolved

by determining the optimal value of the VCI.

The most natural criterion for optimality of a VCI is the economic criterion – the

conditional minimum of the economic costs of using the MI, which accumulate

from losses due to insufficient accuracy in measurements and of expenses

associated with performing verifications, calibration, and repairs of MIs that were

rejected in verification.

Figure 23 presents a graphic illustration of this approach to determine the

calibration interval. It is clear that the mean annual total costs incurred for one

MI, accumulated due to losses from measurement defects and recalibration

expenses, are lowest in the range [0.6–1.2] years. Consequently, it is advisable to

take VCI as 1 year.

Methods for substantiating aVCIweredevelopedwithin the scientific specialization

of theoreticalmetrology, which has received the designation of “theory ofmetrological

reliability of measuring instrument” [46–48].

The basic concepts and definitions of theoretical metrology are regulated in

[34, 49, 50]. Their interrelationship is illustrated in Fig. 24, which shows the

A.E. Fridman, The Quality of Measurements: A Metrological Reference,
DOI 10.1007/978-1-4614-1478-0_7, # Springer Science+Business Media, LLC 2012
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Fig. 23 Determining the optimal VCI using economic criteria

Fig. 24 Change in metrological characteristics of an MI over time
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trajectories of the random process of changing the metrological characteristics (MC)

of one type of MI (such as the systematic component of base error, the SD of the

random component of base error, or other MC defined in accordance with [17]).

The intersection of the trajectories of the bounds “�D” of the allowable values of
the MC is a metrological failure and a break in the trajectory is a failure

of functioning. The indicators of accuracy, stability, and metrological reliability of

theMI correspond to various functionals constructed on these trajectories. Accuracy

of the MI is evaluated by the value of the MC at an instant in time being examined,

and for a set of MIs, by the distribution of these values (the MC distributions after

initial calibration and the time of verification are shown). The stability of an MI,
reflecting the invariability of its properties in time, is estimated by the distribution of

the increments of the MC over the specified time.Metrological reliability of the MI
is defined as reliability of the MI in regard to preservation of metrological service-
ability; i.e., the state in which all MCs correspond to the established norms.
Consequently, it is evaluated by the distribution of times that metrological failures

occurred. It is clear that themetrological reliability of theMI depends on its stability,

but in addition on the established guidelines and conditions of operation of the

MI – the bounds of the allowable values of the MC, calibration method, VCI, and

others. Hence by comparison with stability, it is as though it were an “external”

property of the MI. From this ensues the following statement of principle: the

evaluation of metrological reliability of an MI is possible only after examining its

stability.

Below are the basic terms of the theory of metrological reliability, with their

definitions.

1. Metrological serviceability of an MI – the state of an MI, determined by the
compliance of its normalized MCs with established requirements.

2. Metrological reliability of an MI – reliability of an MI in regard to preserving its
metrological serviceability.

3. Metrological failure of an MI – failure of an MI consisting of the loss of
metrological serviceability.

4. Stability of an MI – a qualitative characteristic of an MI, reflecting the invari-
ability of its MC over time.

5. Instability of an MI’s MC – change in an MI’s MC over a set interval of time.

Note: If the stability of an MI is evaluated on one of its MCs, the term “instability of
the MI” may be used instead of this term.

6. Mean instability of an MI’s MC – an indicator of the instability of an MI’s MC,
equal to the mean of the instability of this characteristic, over a group of MIs of
one type or over a set of periods of use of one MI.

7. Standard deviation of instability of an MI’s MC – an indicator of the instability
of an MI’s MC, reflecting the dispersal of the instability over a group of MIs of
one type or over a set of periods of use of one MI, and equal to the square root of
the dispersion.
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Note: The term “standard uncertainty of instability of the MC” may be used instead

of this term.

8. Confidence limits of the instability of an MI’s MC – the upper and lower bounds
of the interval that encompass the instability of an MI’s MC with some confi-
dence probability.

Note: The term “extended uncertainty of the instability of the MC” may be used

instead of this term.

9. The probability of the metrological serviceability of an MI – an indicator of the
metrological reliability of an MI, equal to the probability that at the specified
instant the MI is metrologically serviceable.

10. The probability of operation of the MI without metrological failures (the proba-
bility of failure-free operation) – an indicator of the metrological reliability of an
MI, equal to the probability that there is no metrological failure of the MI in the
course of a specified running time or a specified operational time.

11. Metrological serviceability coefficient of an MI – an indicator of the metrolog-
ical reliability of an MI, equal to the average percentage of the VCI in which
the MI is in a metrologically serviceable state.

12. Verification (calibration) interval – the span of time or running time of an MI
between two consecutive verifications (calibrations).

7.2 Basic Concepts of the Theory of Metrological Reliability

7.2.1 Mathematical Model of Metrological
Characteristics Drift

For simplicity of presentation, we shall examine the MCs of an MI that are

characterized by one numerical value throughout the range of measurements.

This includes the transform coefficient of a measuring transducer, the basic error

of a single measure, the standard deviation of the random component of the base

error of the MI, the characteristics of the additive and multiplicative errors with a

linear transform function, its dynamic errors, and others. This limitation is not

based on principle, since in [51] it was shown that the obtained results are easily

extended to MCs, the values of which are used on the MI’s scale.

Let us examine one of these MCs. In the set of MIs of one type, its values are

random quantities with the same distribution, but their changes over time are

random trajectories. Hence the mathematical model of the drift process of this

MC is a non-stationary random process. The following hypothesis is assumed in

order to make this model more concrete:

The trajectory of the drift of an MI’s MC at any instant is continuously
differentiable with probability 1.
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This signifies that step-function changes in the rate of drift of the MC are of low

probability.1 In other words, almost every trajectory of the drift process at any

instant t has a bounded first derivativex0ðtÞ, the values of which on both left and

right are equal to (x�
0ðtÞ ¼ xþ

0ðtÞ).
One example of this process is the non-random function of random arguments

xðtÞ ¼ f ðt; a1; :::; anÞ, where ai ði ¼ 1; :::; nÞ are random quantities, and are gener-

ally correlated.

This kind of hypothesis corresponds fully to current descriptions of the processes

of aging and wear and to the method of presenting the initial data on MC drift (mean

instability mðtÞ and standard deviation of instabilitysðtÞ are provided as smooth

curves in time). In addition, this model accounts for the possibility of gathering the

test material on the instability of the MI, since the values of MC are monitored

through defined intervals of time, and consequently, it is not possible to record

instantaneous jumps in the drift speed when conducting a test. An advantage of this

model is also that it does not present a monotonic change in MC that does not

correspond to actual concepts on the instability of many types of MIs.

7.2.2 Basic Instability Equation and Its Solution

Based on this hypothesis and using strict mathematical transformations, a differen-

tial equation with respect to the unknown function Pðt; x; yÞ has been derived, equal
to the probability that the instability xðtÞ of the MC over time t lies between

arbitrary bounds x and у:

@P t; x; yð Þ
@t

þ m t; xð Þ @P t; x; yð Þ
@x

þ m t; yð Þ @P t; x; yð Þ
@y

¼ 0; (7.1)

where t is the interval of time or running time of the MI from the beginning of

operation until the examined instant,

m t; xð Þ is the conditional expectation of the speed v(t) of MC drift at time t under
the condition that MC instability at time t equals xðtÞ ¼ x.

In probability theory, the conditional expectation ofquantityYon the condition, that
quantity X has a specific value, is called regression of Y on X. Hence m t; xð Þ is called
regression of the instantaneous speed v(t) of MC drift on instability xðtÞ at time t.

Equation (7.1) is called the fundamental equation of instability.

Considering that mðt; xÞ is continuous on t and x, we shall find the solution of

equation (7.1) at the natural initial conditions x t¼0 ¼ x; yj jt¼0 ¼ y;P t; x; yð Þjt¼0 ¼
Pð0; x; yÞ ¼ Ð y

x ’0ðxÞ dx, where ’0ðxÞ is the probability density x at the initial

1 To understand the model, it is important to keep in mind that what is modeled is not the change of

error measurements defined by the MI’s MC, but the change in these MCs; measurement error,

including the random component, naturally, can change by a step function at any instant.
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instant of time. It is easy to show that this always exists, and is unique. The solution

is the function

Pðt; x; yÞ ¼
ðy
x

’0 Cðt; xÞ½ � @Cðt; xÞ
@x

dx; (7.2)

where Cðt; xÞ is the solution of the differential equation of regression

dx
dt

¼ mðt; xÞ (7.3)

in the form Cðt; xÞ ¼ C with initial condition Cð0; xÞ ¼ x (hereafter, we shall call

this the regression function).

It follows from (7.2) that the probability distribution of MC instability at an

arbitrary instant t is equal to

’tðxÞ ¼ ’0½Cðt; xÞ� @Cðt; xÞ
@x

: (7.4)

Hence, the probability distribution of MC instability at an arbitrary instant is

equal to its initial probability density, multiplied by an appropriate normalizing

multiplier, into which the regression function is substituted as a variable.

It may be proven that the regression function has the following properties:

1. Cðt; xÞ is a monotonic function of x.
2. Ctðt; xÞ has the property of reproducibility:

Cz½t;Czþtðt; xÞ� ¼ Czðtþ t; xÞ:

3.
@Cðt;xÞ

@t ¼ � @Cðt;xÞ
@x mðt; xÞ:

Onemayalso prove that’0ðxÞ is the normal probability density.2 Formulas (7.3) and

(7.4) make it possible to substantiate the possible types of distribution laws of MC

instability.

7.2.3 Instability Distribution Laws

In technical appendices, it often turns out to be sufficient to approximate the

regression with a linear mean square function. A linear mean square regression of

the rate of MC drift on its change over time t is expressed by the function

2 The development of equation (7.1), its solution, and the mathematically strict substantiation of

other results of this chapter are presented in Chapter 9 of the composite monograph “Theory of

Metrological Reliability of Measuring Equipment” [47].
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mðt; xÞ ¼ m0ðtÞ þ r1ðtÞ½x� mðtÞ�; (7.5)

where mðtÞ is the mean of the distribution ’tðxÞ,
r1ðtÞ ¼ s0ðtÞ

sðtÞ is the coefficient of regression, and

sðtÞ is the standard deviation of the distribution ’tðxÞ.
In this expression, the derivative nature of the MC drift is manifested in a simpler

and more natural manner: at any instant the deviation of the rate of MC drift of a

specific MI from the average rate of MC drift is directly proportional to the

deviation of the value of the instability of the MC of this MI for the preceding

period from the mean instability of MC for the same period.

Substituting the specified function into (7.3) and solving it, we derive the

regression function

Cðt; xÞ ¼ Gðt; xÞsð0Þ þ mð0Þ: (7.6)

where Gðt; xÞ ¼ x�mðtÞ
sðtÞ is the drift function.

With this, the initial form of the MC instability distribution is preserved, and

only its mean m(t) and SD sðtÞ are modified:

’tðxÞ ¼ ’0 ðx� mðtÞÞ sð0Þ
sðtÞ þ mð0Þ

� �
sð0Þ
sðtÞ :

Hence, with a linear mean square regression of the rate of MC drift on its

instability, the probability density of its instability is subject to the normal law:

’tðxÞ ¼
1ffiffiffiffiffiffi

2p
p

sðtÞ exp � ½x� mðtÞ�2
2s2ðtÞ

( )
: (7.7)

More general concepts are based on accounting for the regularity of the course of

the physical and chemical processes that cause aging and wear on the MI. In the first

approximation, the equation for the rate vðtÞ of any process of deterioration may be

presented as a non-random function with random arguments

nðtÞ ¼ s0ðtÞ ¼ Q½T; a1; ::: ; an�s1�FðtÞ; (7.8)

where Q½T; a1; :::; an� is the coefficient of proportionality depending on tempera-

ture T and n random parameters ai; i ¼ 1; ::: ; n, that characterize the chemical

composition and properties of materials, surface properties of materials, configura-

tion of the item, the environment, loads imposed, and other similar factors,

sðtÞ is the value of the defining parameter of the process at time t,
F is the level indicator, different for different processes, but having a defined

value for each specific process.
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Let us compare (7.8) with the expression for the linear regression of vðtÞ on sðtÞ.
For F ¼ 1 m0ðtÞ ¼ M½Q� and mðtÞ ¼ M½Q�t, where M½Q� is the mean of

Q½T; a1; :::; an�. For a specific trajectory, we have xi
0ðtÞ ¼ Qi and xi ¼ Qit.

Hence xi
0ðtÞ ¼ Qi ¼ M½Q� þ ðQi �M½Q�Þ ¼ m0ðtÞ þ r1ðtÞ½xi � mðtÞ�, since

r1ðtÞ ¼ s0ðtÞ
sðtÞ ¼ s½Q�

s½Q�t ¼
1

t
:

Hence, for F ¼ 1 the linear mean square regression of vðtÞ on sðtÞ coincides with
the precise function of this regression, and the approximation error mðt; xÞ becomes

equal to zero. From this, it follows:

the normal distribution law precisely describes instability in those cases
when the mean rate of drift at any instant does not depend on the object’s
instability for the preceding period.

As a rule, rates of corrosion, linear surface erosion, and certain other processes of

deterioration that occur from the effect of mechanical loads correspond to this

condition [52]. In all other cases, the use of a model of linear mean square

regression of vðtÞ on sðtÞ will lead to additional methodological error. However,

this can be eliminated by simple transformations.

For example, a whole series of chemical processes of aging, such as recrystalli-

zation, diffusion, chemosorption, and other heterogeneous 1st-order reactions, as

well as some processes of mechanical damage (such as development of cracks) are

characterized by F ¼ 0 [52]. For this case, let us divide the left and rights sides of

equation (7.8) by s. Then the equation is written as:

½ln jsðtÞj�0 ¼ Q½T; a1; ::: ; an�:

Since the derivative of the logarithm of jsðtÞj depends only on Q, a linear model

will be a precise description of its regression on ln sðtÞj j. Hence we obtain, by

analogy with the preceding,

mðt; ln jxjÞ ¼ m0
lnðtÞ þ r1ðtÞ½ln jxj � mlnðtÞ�;

where r1ðtÞ ¼ s0lnðtÞ=slnðtÞ, and mlnðtÞ and slnðtÞ are the mean and standard devia-

tion of the function ln sðtÞj j, defined by the formulas

mlnðtÞ ¼
ð1

�1
signx � ln jxj � ’tðxÞ dx;

slnðtÞ ¼
ð1

�1
signx� ln jxj � mlnðtÞ�2 � ’tðxÞ dx

� �8<
:

9=
;

0:5

:
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From the obvious equality x0 ¼ xðln jxjÞ0 it follows that mðt; xÞ ¼ xmðt; ln jxjÞ.
This signifies that for drift intensity in (7.1) and (7.3) is derived the expression

mðt; xÞ ¼ xfm0
lnðtÞ þ r1ðtÞ½x� mlnðtÞ�g: (7.9)

From this, for the initial condition Cð0; xÞ ¼ signx� ln jxj:

Cðt; xÞ ¼ Gðt; xÞslnð0Þ þ mlnð0Þ;

where

Gðt; xÞ ¼ signx� ln jxj � mlnðtÞ
slnðtÞ ;

and

’tðxÞ ¼
1ffiffiffiffiffiffi

2p
p

slnðtÞx
exp � signx� ln jxj � mlnðtÞ½ �2

2s2lnðtÞ

( )
: (7.10)

Hence, for processes of aging and wear that satisfy the condition F ¼ 0, the

instability is subject to the logarithmic normal distribution.

In practice, one often comes across values of F that are not equal to 1 or 0. For

example, F>1 is characteristic of processes with internal resistance to deterioration

(elastic components, systems with feedback), and F<0 for heterogeneous n-th order
chemical reactions [52]. Transforming (7.8) to the form ½sFðtÞ�0 ¼ ð1=FÞQ
½T; a1; :::; an�, we derive, by analogy with the preceding,

mðt; jxjFÞ ¼ 1

F
m0

FðtÞ þ r1ðtÞ jxjF � mFðtÞ
h in o

;

where r1ðtÞ ¼ s0FðtÞ=sFðtÞ, mFðtÞ ¼
Ð1

�1
signxjxjF’tðxÞ dx,

sFðtÞ ¼
ð1

�1
signxjxjF � mFðtÞ
h i2

’tðxÞ dx
2
4

3
5
0:5

:

Consequently, for the drift intensity in equations (7.1) and (7.3) is obtained

mðt; xÞ ¼ 1

F
signxðjxjÞ1�F m0

FðtÞ þ r1ðtÞ signxjxjF � mFðtÞ
h in o

: (7.11)

From this, we derive for initial condition Cð0; xÞ ¼ signxjxjF:
Cðt; xÞ ¼ Gðt; xÞsFð0Þ þ mFð0Þ, where Gðt; xÞ ¼ signxjxjF�mFðtÞ

sFðtÞ ; and
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’tðxÞ ¼
jFjðjxjÞF�1ffiffiffiffiffiffi

2p
p

sFðtÞ
exp � ½signxðjxjÞF � mFðtÞ�2

2s2FðtÞ

( )
: (7.12)

This distribution, called the generalized normal distribution, is described in

section 2.2.3. Analyzing this and the results obtained earlier in this section, one

may conclude as follows:

the instability of an MI’s MC is subject to the generalized normal distribu-
tion. Particular cases of this distribution are the normal distribution resulting
when F ¼ 1 and the logarithmic normal distribution when F ¼ 0.

In principle, one may also substantiate other, more complex, modifications of the

generalized normal distribution law if in equation (7.8) the factor s1�FðtÞ is replaced
by a function f ½sðtÞ� of a different type (this is characteristic, for example, of

processes of moistening material or of wear on the supports of measuring

instruments [52]).

7.3 Criteria for Setting the Verification
and Calibration Intervals

The following indicators of metrological reliability are used as criteria for setting

VCIs:

– probability of metrological serviceability of an MI at a specific instant t: PmsðtÞ;
– coefficient of metrological serviceability KmsðtÞ,
– probability of failure-free operation over a specified time t: P(t).

7.3.1 Probability of Metrological Serviceability

1. When an MI is being calibrated (or verified by a calibration method) the initial

values of the MC are reestablished. Hence the error probability distribution of the

MI over the set of MIs of one type after calibration has been done is equal to the

initial density’0ðxÞ, and after a run time (time) t after calibration is’tðxÞ, defined
by formula (7.4). It follows from this that the probability of metrological service-

ability at moment t for MIs subject to calibration is expressed by the formula

PMuðtÞ ¼ Pðt;�D;DÞ ¼
ðD
�D

’tðxÞ dx ¼
ðD
�D

’0½Gðt; xÞ�
@Gðt; xÞ

@x
dx

¼ F½Gðt;DÞ� � F½Gðt;�DÞ� ¼ F
DF � mFðTÞ

sFðTÞ
� �

� F
�DF � mFðTÞ

sFðTÞ
� �

;

(7.13)
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where FðxÞ ¼ 1=
ffiffiffiffiffiffi
2p

p Ð x
�1 e�0:5y2 dy is the integral function of the normal distri-

bution, Gðt; xÞ is the drift function of the MI’s MC, D is the bound for allowable

values of the MC.

2. During MI verification, the goal of which is to determine the fitness for use using

the criterion of accuracy D, only those specimens whose error exceeds this norm

are rejected and replaced by new or repaired units. Other specimens are not

subject to calibration and leave the verification laboratory with the same error

that they had when sent for verification. Hence the set of MIs sent to a verifica-

tion laboratory at each instant will include specimens with a different run time

since the last calibration: those that have been in operation one time interval t,
two intervals 2t, three intervals 3t, and so forth. Evaluation of the metrological

reliability of this set of MIs is possible within a model of the process of operation

that has been set, characterized by the following conditions:

– the duration of the process of using MIs of the given type (if specimens that

have operated to the end of their term of service are replaced with newMIs) is

not limited;

– the average age of the set of MIs sent for verification, as well as the average

indicators of accuracy and metrological reliability of this set, remain

constant.

It was shown in [53] that for such a process to exist, it is necessary that,

beginning at some instant, the number of new MIs entering this set be a constant

quantity.

The maximum number n of verifications of one MI is ½Tsl=T�, if Tsl is evenly
divisible by T, and ½Tsl=T� þ 1 otherwise (Tsl is the service life of an MI, T is the

VCI, [x] is the integral part of x (the integral part of a number closest to it from

below)). We find the probability QmsðTÞ of metrological serviceability of the MIs

sent for verification after VCI T and with a limited service life Tcp, using the

formula for average probability:

QmsðTÞ ¼
Xn
s¼1

Qrej½ðn� sÞT�QsðTÞ; (7.14)

where Qrej½ðn� sÞT� ¼ 1� Qms½ðn� sÞT� is the probability of rejecting an MI and

replacing it with a new one at the ðn� sÞ-th verification after its launch into service,
QsðTÞ ¼

Ð D
�D ’sTðxÞ dx is the probability of metrological serviceability at the

1st, 2nd, . . .s-th verifications, including MIs that have a limited service life of Tsl.
Substituting the function ’sTðxÞ into this formula, we obtain:

QsðTÞ ¼ maxfF½BsðTÞ� � F½�AsðTÞ�; 0g;
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where

A1ðTÞ ¼ DF þ mFðTÞ
sFðTÞ ;

B1ðTÞ ¼ DF � mFðTÞ
sFðTÞ ;

and the other terms are recursively calculated by the formulas

AiðTÞ ¼ min
DF þ mFðiTÞ

sFðiTiÞ ; Ai�1ðTÞ
� �

;

BiðTÞ ¼ min
DF � mFðiTÞ

sFðiTÞ ; Bi�1ðTÞ
� �

; i ¼ 2; 3; :::; s:

During the established process of operating the set of MIs, Qms½ðn� sÞT� ¼
const ¼ QmsðTÞ. We substitute this function into (7.14):

QmsðTÞ ¼ ½1� QmsðTÞ�
Xn
s¼1

QsðTÞ:

Transferring to the left side of the equation the terms containingQmsðTÞ; we derive

QmsðTÞ ¼
Pn

s¼1 QsðTÞ
1þPn

s¼1 QsðTÞ :

On the other hand, as the unconditional probability of metrological serviceability of

MIs with a limited service life of Tsl, it is equal to
QmsðTÞ ¼ PmsðTÞRðTslÞ; where PmsðTÞ is the conditional probability of the

metrological serviceability of an MI under the condition that the run time of the

MI is limited to Tsl, and RðTslÞ is the probability of this condition. Hence

PmsðTÞ ¼ 1

RðTslÞ �
Pn

s¼1 QsðTÞ
1þPn

s¼1 QsðTÞ : (7.15)

The probability RðTslÞ is a constant that is the same for any values of QsðTÞ:
Hence we set QsðTÞ ¼ 1 for s ¼ 1; 2; ::: ; n: Since in doing so there is no metro-

logical failure in the set of MIs, then also PmsðTÞ ¼ 1. Substituting these values into

(7.15), we derive:

1 ¼ 1

RðTslÞ �
n

1þ n
;
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from which RðTslÞ ¼ n=ðnþ 1Þ. Hence, we finally have:

PmsðTÞ ¼ nþ 1

n
�

Pn
s¼1 QsðTÞ

1þPn
s¼1 QsðTÞ ; (7.16)

where

n ¼
Tsl
T

h i
; if this number is an integer,

Tsl
T

h i
þ 1; if this number is not an integer:

8><
>:

QsðTÞ ¼ maxfF½BsðTÞ� � F½�AsðTÞ�; 0g;

A1ðTÞ ¼ DF þ mFðTÞ
sFðTÞ ; B1ðTÞ ¼ DF � mFðTÞ

sFðTÞ ;

and the remaining terms are recursively calculated by the formulas

AiðTÞ ¼ min
DF þ mFðiTÞ

sFðiTÞ ; Ai�1ðTÞ
� �

;

BiðTÞ ¼ min
DF � mFðiTÞ

sFðiTÞ ; Bi�1ðTÞ
� �

; i ¼ 2; 3; :::; s:

If the service life of the MIs is not limited, then we take Tcp ¼ 1. In this case

PmsðTÞ ¼
P1

s¼1 QsðTÞ
1þP1

s¼1 QsðTÞ : (7.17)

7.3.2 Metrological Serviceability Coefficient

The metrological serviceability coefficient KmsðtÞ is equal to the mean percentage

of time in the interval ð0; tÞ during which the MI is in a metrologically serviceable

state. In accordance with this definition,, KmsðtÞ is computed using the formula

KmsðTÞ ¼ 1

T

ðT
0

PmsðtÞ dt: (7.18)
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7.3.3 Probability of Operation Without Metrological
Failures (Probability of Failure-Free Operation)

Calculating the probability of failure-free operation is a much more complex task

than predicting metrological reliability. It is usually estimated using the formula

PðtÞ ¼
F½Gðt;DÞ� � F½Gðt;�DÞ�
F½Gð0;DÞ� � F½Gð0;�DÞ� ; or

F½Gðt;DÞ�
F½Gð0;DÞ� with the hypothesis of unilateral drift:

8><
>: (7.19)

However, this expression is not precise, since it estimates not the probability of

failure-free operation in the interval ½0; T�, but the probability of metrological

serviceability of the MI at the terminal moment of this interval. Hence it can

serve to estimate PðtÞ only for those drift processes in which the trajectories are

all monotonic functions. This is assumed by default, although most often is not

especially referred to. The justification of such an approach is that the task of

estimating the probability of outliers of non-stationary random processes beyond

the specified limits (which in essence is the definition of P(t)) does not have an

analytical solution in the general case.

At the same time, it turns out to be possible to find a solution to this problem for

random processes with trajectories that are continuously differentiable with proba-

bility 1. A strict mathematical derivation of the unknown expression is rather

complex.3 Hence we shall limit ourselves to presenting an idea of the proof. It

consists of the following.

We divide the interval of time ½0; T� into n ¼ 2k ðk ¼ 0; 1; 2; :::Þ equal parts equal
to tðkÞ ¼ T=2k. Let us suppose that themetrological serviceability of anMI is checked

at moments of time ti ¼ i� T=2k (i ¼ 0.1,. . ., n).The probabilityPmsðtiÞ ofmetrolog-

ical serviceability at each of the moments ti is defined by (7.19). An occurrence

consisting of the fact that the MI is metrologically serviceable at all these instants,

taken together, is the intersection of the indicated occurrences4:

‘‘metrological serviceability at t0; ti; :::; tn¼
\n

i¼0
fmetrological serviceability at tig:’’

Consequently, the probability that the MI is metrologically serviceable at all

these instants with the condition that it was metrologically serviceable at the

initial moment, as the probability of the intersection of these occurrences, is

equal to

3 This derivation is presented in Chap. 9 of [47].
4 The intersection of sets A and B is the set that is common to both A and B.
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Pmsðt0; ti; :::; tnÞ ¼ P
\n
i¼0

fmetr: serv:at ti=metr: serv: at t0 ¼ 0g
" #

¼
F½ min

i¼0;:::;n
Gðti;DÞ� � F½ max

i¼0;:::;n
Gðti;�DÞ�

F½Gð0;DÞ� � F½Gð0;�DÞ� :

Now let us take k to infinity. Here, since tðkÞ ! 0, the points ti will gradually fill
the interval ½0; T�, and if the passage to the limit is valid, then the probability of

failure-free operation is defined as the limit as k ! 1 of the probability of

metrological serviceability of the MI at all 2k points of this interval:

PðtÞ ¼ lim
k¼1

Pmsð0; t1; :::; t2kÞ ¼
F½BðtÞ� � F½AðtÞ�

F½Gð0;DÞ� � F½Gð0;�DÞ� ; (7.20)

where AðtÞ ¼ max
t2½0;t�

½Gðt;�DÞ�; BðtÞ ¼ min
t2½0;t�

½Gðt;DÞ�:

Example 7.1. The limits of allowable systematic error of an MI are � D ¼ �1%.

The initial error of the MI is determined by the calibration error and is characterized

by m(0) ¼ 0 and s(0) ¼ 0.3%. The instability distribution of systematic error is

Fig. 25 Graphic illustration of curves to determine PmsðTÞ and PðtÞ. (a) Functions Gðt;�DÞ and
Gðt; DÞ and their extreme values AðtÞ and BðtÞ. (b) Graphs of PmsðTÞ and PðtÞ
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subject to the normal law with mðtÞ ¼ ð0:25t� 0:03t2Þ %/month and sðtÞ ¼ sð0Þ
e0:01t%. PmsðtÞ and PðtÞ are to be determined.

Figure 25a shows the curves of the functions G(t,-D), G(t,D) and their extreme

A(t) and B(t). They reflect the non-monotonic nature of the drift of the systematic

error of this type of MI. It is clear that in the interval 0–5 months, metrological

failures occur only with intersection of the upper boundary of the region of allowable

values, in the interval 10–15 months only with intersection of the lower boundary,

and in the interval 5–10 months there were no metrological failures. The curves for

PmsðtÞ and PðtÞ, shown in Fig. 25b, behave correspondingly. In particular, it is clear
that PmsðtÞ increases in the interval 4–8 months, which is convincing evidence that it

is not possible to estimate probability of failure-free operation using formula (7.19).

The maximum difference between PðtÞ and PmsðtÞ is 0.05 (Pð9months:Þ ¼ 0:95,
while at the same time Pmsð9monthsÞ ¼ 1).

7.4 Substantiation of Primary Verification
and Calibration Intervals

When designating a primary VCI for new types of MIs released for use, the

following types of sources of information on MI instability area possible: tests on

the MIs or their separate units; data on instability of components of an MI;

reliability indicators for the MI; data on the VCI for units that are analogous to

the MI, as confirmed by experience using them.

The most preferable source, from the point of view of substantiating the VCI, is

to test batches of the MIs for the purpose of evaluating their instability. These tests

can be specially conducted (either in normal or in forced operational mode), and

then combined with controlled reliability tests, or else introduced by monitored use

of a setup batch. The procedure for conducting these tests, as regulated in [49, 50],

is presented below.

A batch of MIs for conducting tests is formed. The volume N of the batch must

be at least 30. The selected batch is subjected to tests in the usual or in accelerated

mode (with a known acceleration factor). After several intervals of operating or

running time Dt, the control parameters are measured.

The quantity Dtmust be such that the increment yjðiDtÞ ¼ xjðiDtÞ � xj½ði� 1ÞDt�
in the MC can be measured with acceptable accuracy. This means that the yjðDtÞ
must be significant against the background of random measurement error. For the

simplest, linear model of forecasting, the least squares method requires at least

three groups of multiple measurements. Hence the duration of the tests must be at

least 2Dt.
Using the results of measurements of instability yjðiDtÞ; j ¼ 1; . . . ; N the

sampling characteristics of the instability distribution of the MIs for the intervals

Dt; 2Dt; 3Dt; . . . ; nDt are evaluated as follows.
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1. Parameters Fi; i ¼ 1; 2; . . . of the generalized normal distribution law for the

MC xjðiDtÞ (or of MC instability yjðiDtÞ) are found, to which information on the

results of testing an MI of a given type corresponds, with the highest level of

significance. The algorithm for statistical determination of this parameter:

a. A matrix of values of F from 0 to +4 with step 0.1 is provided. For each value

of this matrix and each iDt are found:

– values xFi ¼ sign xj xj
		 		F; j ¼ 1; . . . ;N;

– sampling mean mF ¼ 1=N
PN

j¼1 x
F
j ;

– sampling standard deviation

sF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼1 ðxFj � mFÞ2
N � 1

s
;

– value of the quantile of thew2- distribution

w2F ¼
XN

j¼1

ð1� 6sF � f ðxFj ÞÞ2
6sF � f ðxFj Þ

:

b. The value min
F

w2F is found. For Fi ¼ FðiDtÞis taken the value that corresponds
to this minimum.

In accordance with the least squares method, this will be the best approxima-

tion of the sampling distribution of the MC (instability of the MCs) at instant

iDt using the generalized normal distribution.

2. Sampling characteristics of the generalized normal distribution:

– average value of parameter F ¼ 1=N
PN

i¼1 Fi,

– average value of xF � mFðiDtÞ ¼ 1=N
PN

j¼1 signðxjÞð xjðiDtÞ
		 		ÞF; i ¼ 1; 2; . . .

– standard deviation

sFðiDtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðN � 1ÞPN

i¼1 ½signðxjÞð xjðiDtÞ
		 		ÞF � mFðiDtÞ�

2
q

3. Using these values, approximating polynomials are selected by the least squares

method for functions

mFðtÞ ¼ ma þ mbt; s2FðtÞ ¼ s2a þ s2bt: (7.21)

4. The VCI is calculated using successive approximations from members of the

series (0.25; 0.5; 1; 2; 3; 4; 5; б; 7; 8; 9; 10; 11; 12; 15; 18; 21; 24; 30) months,

and so forth, over 6 months. The order of calculation consists of the following:

– the value of the VCI’s T1 is selected, equal to the actual value of the VCI’s T;
– the value of a criterion RðT1Þ, established for each MI, is calculated in

accordance with the formulas shown in Sect. 7.3 (for example, probability

of metrological serviceability Pm5ðT1Þ);
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– RðT1Þ is compared with the normalized value of criterion R�. Metrological

reliability of the MI is shown as higher than required if RðT1Þ>R�. In this

case, the value of a VCI with T2>T1, closest to T1 from above, is selected

from members of the series shown in step 4. If the metrological reliability of

the MI turns out to be lower than required (RðT1Þ<R�), then the value T2<T1,
closest to T1 from below is selected;

– RðT2Þ is calculated, and then RðT2Þ and RðT1Þ are compared with R�. If R� is
located between the values of RðT2Þ and RðT1Þ, then the approximation is

finished and the VCI is taken as T ¼ minðT1; T2Þ;
– if this condition is not satisfied, a value T3 closest to T2 is selected, and the

operations indicated above are repeated. If it turns out that R� is located

between the values RðT2Þ and RðT3Þ, then the VCI is taken as equal to

T ¼ minðT2; T3Þ. Otherwise, T4 closest to T3, is selected, and so forth;

– the approximations continue until R� ends up between RðTi¼1Þ and RðTiÞ.
Then T ¼ minðTi�1; TiÞ is accepted.

7.5 Correction of Verification and Calibration Intervals
in the Process of Operation of Measuring Equipment

The modes and conditions of operation (intensity of use, the predominant ranges of

the measurand, frequency, and other non-information parameters of the input

signal, measurements conditions, quality of technical and metrological mainte-

nance, and so forth) of MIs of one type that are used on various objects can differ

substantially from each other. In this regard, their metrological reliability can also

diverge significantly, objective information about which is shown by the results of

verifications and calibrations that are conducted. Hence the basic standards

documents that regulate the manner of specifying the assignment of the VCI [49,

50] foresee the possibility of correcting the VCIs of particular specimens or groups

of MIs during service, taking into account the results of their previous verifications

and calibrations.

The correction procedure is defined in the form of information on the verification

results.

7.5.1 Correction of Verification Intervals of a Group of MIs,
with the Error Values of Each Specimen Recorded
During Verification

First, the verification results are grouped by the index order of the verifications

conducted after release of theMI from production or repair: the 1st group are theMIs

that have had their first verification since manufacture or repair, the 2nd group are
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the MIs that have had their second verification since manufacture or repair, and so

on. In each ith group there are Ni results of measuring the error of the MI (or its

instability over the preceding VCI) xj; j ¼ 1; :::; Ni. If the results of all verifications

are known, Ni ¼ N, although generally Ni 6¼ const:
Statistical analysis of the grouped verification results follows, and determination

of the VCI according to the procedure presented in Sect. 7.3.

7.5.2 Correction of Verification Intervals of a Group of MIs
with the Alternative Marker (Whether the MI Is
Serviceable or Not), and the Error Sign of Each
MI Recognized as Non-serviceable, Recorded
During Verification

In this case, the boundedness of the input data does not permit obtaining an estimate

of the VCI based on the generalized normal distribution. Hence the normal distri-

bution of MI error is suggested. The calculations proceed as follows.

First, the verification results are grouped the same way as in Sect. 7.5.1.

Then statistical analysis of grouped verification results is conducted in the

following manner.

1. Statistical probabilities are computed:

p1i ¼ �PfxðiTÞ� � Dg; p2i ¼ �PfxðiTÞ>Dg; (7.22)

where D is the limit of allowable MI error, and the quantiles of the normal

distribution, l1i and l2i, corresponding to them are defined by the equation �l ¼
F�1ð�pÞ; where Fð�lÞ ¼ 1ffiffiffiffi

2p
p

Ð �l
�1 e�t2=2 dt ¼ �p is the standardized normal distri-

bution function.

2. Statistical estimates of error are found: the average value mðiTÞ and standard

deviation sðiTÞ

�mðiTÞ ¼ D
l1i þ l2i
l1i � l2i

; �sðiTÞ ¼ 2D

l2i � l1i
; i ¼ 1:2; . . . (7.23)

3. From the values of mðiTÞ and sðiTÞ, analogously to (7.21) an approximating

polynomial is calculated for the functions m(t) and s2ðtÞ of the normal distribu-

tion (where F ¼ 1 is taken).
Thereafter, calculation of the VCI is done using the procedure set out in Sect. 7.4.
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7.5.3 Correction of Verification Intervals of a Group of MIs
with Just the Alternative Marker Regarding Serviceability
of the MI Recorded During Verification

Likewise in this case, the normal distribution of MI error is suggested. Calculations

proceeds as follows.

Verification results are grouped the same way as in Sect. 7.5.1.

Then the statistical probabilities pi of recognizing the MI as serviceable are

calculated from the results of the i-th verification.

A hypothesis is proposed regarding the “non-linear” random process of change

of the MI error over time, characterized by the parameters

mðtÞ ¼ 0; s2ðtÞ ¼ s2a þ s2bt: (7.24)

The first estimate T1 of the VCI is calculated in the following manner.

1. Statistical estimates of the error drift parameters are found using this hypothesis

mðiTÞ ¼ 0; sðiTÞ ¼ D
�l0:5ð1þpiÞ

; i ¼ 1; 2 . . . ;

where �l0:5ð1þpiÞ is the quantile of the normal distribution corresponding to the

probability 0:5ð1þ �piÞ:
2. From the values of sðiTÞ an approximating polynomial (7.24) is calculated using

the least squares method for the functions s2ðtÞ.
3. The value T1. of the VCI is calculated.

Then a hypothesis is formed regarding a linear random process of the change of

MI error over time, characterized by the parameters

mðtÞ ¼ ma þ mbt; sðtÞ ¼ s0: (7.25)

A second estimate T2 for the VCI is calculated as follows.

1. Statistical estimates of the error drift parameters are found using this hypothesis

mðiTÞ ¼ D� �l�pis0; �sðiTÞ ¼ s0;

where s0 is the SD of the calibration error of the MI (if this in unknown, it is

taken as s0 ¼ D=3).
2. From the values of mðiTÞ an approximating polynomial (7.25) is calculated

using the least squares method for the functions mðtÞ.
3. The value T2 for the VCI is determined.
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The lesser value of these derived estimates is taken as the VCI:

T ¼ min½T1; T2�: (7.26)

Example 7.2. Verification of Sapfir 22DA instruments includes checking the

correspondence of their error with the limit D ¼ �0:5% of allowable error. The

service life of the instruments is Tsl ¼ 20 years. Operation of 60 specimens of this

type of MIs on an object with VCI at T ¼ 1:5 years showed the following: one

instrument each was rejected at the first, second, and fifth verifications, and two

instruments each at the third and fourth verifications. We need to find the VCI

corresponding to P�
ms ¼ 0:95:

First we estimate the statistical probabilities �pi of recognizing as serviceable the

MIs at the ith verification with �pi ¼ ni=n0, where n0 ¼ 60 is the total number of MIs

delivered for use, and ni is the number of MIs recognized as serviceable at the ith
verification. In this regard, the MIs brought into operation to replace the rejected ones

were not considered. Thenwefind the quantiles �l0:5ð1þ�piÞ and
�l�pi and the parameters of

the non-linear and linear drift models. Table 25 show the results of the calculations.

For the hypothesis of a non-linear random process, we assume �mðiTÞ ¼ 0. For the

hypothesis of a linear random process, we assume sðiTÞ ¼ D=3.
Using the least squares method, we find the parameters of the drift models.

For the linear model mðtÞ ¼ m0 þ m1t, the system of normal equations has the form

5ma þ T
P5
i¼1

imb ¼
P5
i¼1

�mðiTÞ;

T
P5
i¼1

ima þ T2
P5
i¼1

i2mb ¼ T
P5
i¼1

i �mðiTÞ;

8>><
>>:

where T ¼ 1:5 years is the effective VCI, T
P5

i¼1 i ¼ 1:5� 15 ¼ 22:5;

T2
X5
i¼1

i2 ¼ 1:52 � 55 ¼ 123:75;
X5
i¼1

�mðiTÞ ¼0:905; T
X5
i¼1

i �mðiTÞ ¼4:606:

Table 25 Sample estimates of parameters of model drift for the Sapfir 22DA measuring

instrument

Index I of
verification

Number n of

serviceable MIs �pi 0; 5ð1þ �piÞ

Non-linear random

process

Linear

random

process

�l0;5ð1þ�piÞ �sðiTÞ �s2ðiTÞ �l�pi �mðiTÞ
0 60 1 1 3 0.167 0.028 3 0

1 59 0.983 0.992 2.394 0.209 0.044 2.128 0.101

2 58 0.967 0.983 2.128 0.235 0.055 1.834 0.145

3 56 0.933 0.967 1.834 0.273 0.074 1.501 0.194

4 54 0.900 0.950 1.645 0.304 0.092 1.282 0.226

5 53 0.883 0.942 1.569 0.319 0.102 1.192 0.239

7.5 Correction of Verification and Calibration Intervals. . . 177



Hence, the system of normal equations has the form:

5ma þ 22:5mb ¼ 0:905;
22:5ma þ 123:75mb ¼ 4:606:




Its solution is: ma ¼ 0:074 %; mb ¼ 0:024 %=year:
For the non-linear model s2ðtÞ ¼ s2a þ s2bt, we have an analogous system of

normal equations:

5s2a þ 22:5s2b ¼ 0:367;
22:5s2a þ 123:75s2b ¼ 1:882:




Its solution is: s2a ¼ 0:0275 ð%Þ2; s2b ¼ 0:0102 ð%Þ2=year.
By formula (7.17) and aided by the MathCAD system, we find the probabilities

of metrological serviceability of the MI for these two drift models. For the non-

linear model,

m1ðiTÞ ¼ 0; s1ðiTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0275þ 0:0102� i� T

p
;

Qs1ðTÞ ¼ F
0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0275þ 0:0102� s� T
p

� �
� F � 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0275þ 0:0102� s� T
p

� �
:

For the linear model, m2ðiTÞ ¼ 0:074þ 0:024� i� T; s2ðiTÞ ¼ D=3 ¼
0:167;

Qs2ðTÞ ¼ F
0:5� ð0:074þ 0:024� i� TÞ

0:167

� �
� F½�3�

ffi F½2:55� 0:143� i� T�:

Thereafter, we select values T according to Sect. 7.4 and estimate with formula

(7.16) the values of the probability of metrological serviceability from the non-

linear drift model, Pms1ðTÞ, and from the linear model, Pms2ðTÞ. Table 26 shows the
results of the calculations. They demonstrate that the optimal time for the VCI using

the P�
ms ¼ 0:95 criterion is T ¼ 3 years.

Table 26 Calculation of VCI

for measuring instrument

Sapfir 22DA

VCI T,
years Pms1(T) Pms2(T)

min{Pms1(T),
Pms2(T)}

1.50 0.986 0.978 0.978

1.75 0.984 0.975 0.975

2.00 0.982 0.973 0.973

2.50 0.977 0.966 0.966

3.00 0.972 0.955 0.955

3.50 0.968 0.947 0.947
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Chapter 8

Assurance of Measurement Accuracy
in Compliance with ISO 5725 Standards

8.1 Basic Concepts

This chapter expounds upon the methodology of assurance of measurement accuracy,

which is receiving ever greater dissemination in the country and in the world of

metrology, and which is regulated by ISO 5725 international standards (which in

Russia are adopted by state standards GOST R ISO 5725–1 through GOST R

ISO 5725–6 [54]).

In accordance with the classical approach presented in Chap. 2, measurement

accuracy is defined as the degree of closeness of a measurement result to the true

(conventional) value of the measurand, wherein its value, determined with the aid

of a primary standard, is taken as the conventional value of the quantity. But this

approach is not applicable to many measurement tasks for which standards either

are absent currently or cannot exist in principle. Such tasks include measurements

of many elements of the chemical composition of substances and materials and

objects of the natural environment; measurements of production quality indicators

(such as in the petrochemical and food sectors of industry); and measurements in

biology, medicine, and many others. In this case, the conventional value of a quantity

in international and domestic practice is usually taken as the most probable value

determined from the aggregated results of authoritative scientific or engineering

studies. This value is called the accepted reference value of the quantity. It is defined

as follows: an accepted reference value is the value agreed upon for comparison and
obtained as:

1. a theoretical or established value based on scientific principles;
2. an attributed or certified value based on experimental work of some national or

international organization;
3. an agreed or certified value based on combined or experimental work under the

guidance of a scientific or engineering group;
4. an expected value, i.e., the average value of a specified set of measurement

results (but only if a), b), and c) are inaccessible).

A.E. Fridman, The Quality of Measurements: A Metrological Reference,
DOI 10.1007/978-1-4614-1478-0_8, # Springer Science+Business Media, LLC 2012
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This definition shows that a reference value of a key comparison, as studied in

the preceding chapter, is formulated in complete compliance with the methodology

of ISO 5725 standards.

As a result of this definition, the definition of measurement accuracy provided in
Chapter 2 changes somewhat: it is understood as the degree of proximity of
measurement results to the true value (or if this is unavailable, to the accepted
reference value). In turn, measurement accuracy results from two different

properties of measurements: correctness and precision. Correctness is the degree
of proximity of the average value obtained, based on a large series of measurement
results, to the accepted reference value. This is characterized by systematic error,
which is defined as the difference between the expected value of the measurement
results and the true value (or if this is unavailable, to the accepted reference value).
Precision is the degree of proximity of independent measurement results to each
other, obtained in specific regulated conditions. It follows from this definition that

precision has no relationship to the true or reference value of the measurand, but

depends only on random measurement error.

The following statistical model is placed at the foundation of the methodology of

the estimation of measurement accuracy. Measurements of some quantity are

conducted in a group of measurement or test laboratories using the very same

standardized method (for example, according to a standardized procedure of

measurements (PM)). The result yi of each measurement (here i ¼ 1; :::; n is the

index number of the laboratory) represents the following sum:

yi ¼ mþ Bi þ ei ¼ mþ �Dþ Bi þ ei; (8.1)

where m ¼ 1=n
Pn

i¼1 yi ¼ mþ �D is the general average of the results of all

measurements, which is the sum of the true (or accepted reference) value m of the

measurand and systematic error Dm, calculated on the set of all measurements of

this value;

Bi is the systematic measurement error in the i-th laboratory due to the systematic

errors of the MIs, deviation of measurement conditions from normal conditions,

and other factors that depend on the technical state of the laboratory equipment and

the staff’s quality of work;

ei is the random component of measurement error in the i-th laboratory.

The sum of systematic errors Di ¼ Dm þ Bi is the systematic error in the ith
laboratory. Hence it is called systematic error of the laboratory. In accordance with
the general definition of systematic error, the systematic error of the laboratory
(when executing a specific method) is the difference between the expected value of
measurement results in a particular laboratory and the true (or if this is unavailable,
the accepted reference) value of this quantity.

The systematic error Dm ¼ �D ¼ 1=n
Pn

i¼1 Di is the same for all laboratories. It

is caused by deficiencies of the selected measurements method that are common to

all. Hence it is called systematic error of the measurement method. By definition,
systematic error of the measurement method is the difference between the expected
value of the measurement results obtained at all laboratories that used this method,
and the true (or if this is unavailable, the accepted reference) value of this quantity.
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By contrast, the value Bi of systematic error depends on the selection of laboratory.

Hence it is called the laboratory component of systematic error of measurement. By

definition, the laboratory component of systematic error of measurement is the
difference between the laboratory’s systematic error when executing a specific
method of measurement and the systematic error of the method of measurement.

The spread of errors is estimated by the dispersion. The dispersion s2w of the

random component ei has the name intra-laboratory dispersion. It characterizes the
spread of measurement results for the same conditions of measurement. These

measurements are called measurements in conditions of repeatability (conditions
of repeatability are conditions in which independent measurement results are
obtained by the same method, in the same laboratory, by the same operator,
using the same equipment, within a short interval of time). The dispersion s2L of

systematic error Bi reflects the differences between laboratories. Hence it is

called inter-laboratory dispersion. The dispersion of the sum Bi þ ei of errors

characterizes the spread of measurement results in all laboratories relative to the

average measurement result m. Such measurements are called measurements in

conditions of reproducibility (conditions of reproducibility are conditions in which
independent measurement results are obtained by the same method, in different
laboratories, by different operators, using different equipment).

Conditions of repeatability and reproducibility reflect two basic situations

provided for in ISO 5725 standards. They define two different properties that

characterize measurement precision: repeatability and reproducibility. Repeatabil-
ity is precision in conditions of repeatability, and reproducibility is precision in
conditions of reproducibility. Quantitatively, these properties are reflected in the

standard (mean square) deviations and confidence intervals. The standard deviation
sr of repeatability is the standard deviation of results obtained in conditions of
repeatability, and the standard deviation sR of reproducibility is the standard
deviation of results obtained in conditions of reproducibility. The limits are also

defined analogously: the repeatability limit r is the value that, with a confidence
probability of 0.95, is not exceeded by the absolute value of the difference between
two measurements results obtained in conditions of repeatability; the reproducibility
limit R is the value that, with a confidence probability of 0.95, is not exceeded by the
absolute value of the difference between two measurements results obtained in
conditions of reproducibility.

These indicators characterize measurement precision in the entire set of

laboratories being examined. Hence they must be average estimations. These are

introduced as follows. The standard deviations of repeatability and reproducibility

are equal to the square root of their respective dispersions s2r and s
2
R. The dispersion

of repeatability is equal to the expected value of intra-laboratory dispersion in the

set of all laboratories: s2r ¼ Mðs2wÞ (here M is the symbol for expected value). The

dispersion of reproducibility is equal to the expected value of the dispersion that

characterizes the spread of laboratory systematic errors, over the set of laboratories.

Hence it is equal to the sum of the dispersion of repeatability and the inter-

laboratory dispersion:

s2R ¼ Mðs2w þ s2LÞ ¼ s2r þ s2L: (8.2)
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From this follows the relationship between the standard deviations of repeatability

and reproducibility:

sR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2r þ s2L

q
: (8.3)

Table 27 shows the framework for the concepts introduced in this section.

8.2 Basic Method for Estimation of the Measurement Method
Precision

Experimental evaluation of the precision of a measurement method proceeds

as follows. A set of measures, representing q different levels of the quantity

(for example, a set of q specimens of the same mixture of substances), is sent to

p laboratories. Each i-th laboratory performs nij measurements at each level j under
conditions of repeatability. The following requirements are imposed on

measurements conducted in the laboratories:

– each group of measurements must be done in observance of the conditions of

repeatability;

– the mutual independence of the nij parallel measurements must be preserved;

Table 27 Interrelationship of the basic concepts of ISO Series 5725 standards

Measurement

properties

Accuracy

Correctness

Precision

Reproducibility Repeatability

Measurement

errors

Systematic error of the laboratory

Di ¼ Dm þ Bi

Random measurement

error ei

Systematic error of

the measurement

method Di

Laboratory

component of

systematic error Bi

Estimates of

measurement

errors

Dm ¼ �D ¼ 1
n

Pn
i¼1

Di
Inter-laboratory

dispersion

s2L

1. Dispersion of

repeatabilitys2r ¼ intra-

laboratory dispersion.

2. Standard deviation of

repeatability sr .
3. Repeatability limit r.

1. Dispersion of reproducibility s2R ¼ s2r þ s2L.
2. Standard deviation of reproducibility sR.
3. Reproducibility limit R.
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– each series of the nij parallel measurements must be conducted in a short interval

of time;

– measurements for all q levels of the quantity must be done by the same operator,

and on the same equipment for each level;

– the time interval for performance of all measurements must be specified.

When planning the experiment, greater value is placed in the selection of the

number n of parallel measurements and number p of laboratories, which define the

scale of the experiment and the accuracy of the derived estimates. To substantiate

the selection of these indicators, the extended uncertainty is estimated for the result

of estimating the standard deviations sr of the repeatability and sR of the reproduc-

ibility. It is defined by the formula

Pf�As < s� s < Asg ¼ P; (8.4)

where s is the standard deviation of the measurement results in the sample.

For a probability of P ¼ 0:95, the following estimates of the deviation s� s are

presented in the standard:

– for standard deviation of repeatability

Arsr ¼ 1:96sr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pðn� 1Þ

s
; (8.5)

– for standard deviation of reproducibility

ARsR ¼ 1:96sR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p½1þ nðg2 � 1Þ� þ ðn� 1Þðp� 1Þ

2g4n2pðp� 1Þ

s
; (8.6)

where g ¼ sR=sr.
After constructing a database of the measurement results yijk (k ¼ 1; :::; nij

is the index of the measurement) it is analyzed for the purpose of excluding outliers.

The procedure for checking for outliers using the Grubbs criterion is presented in

section 4.1. Then the average values of the measurement results in the base

elements are determined (a base element is the combination of level of quantity

and laboratory)

�yij ¼ 1

nij

Xnij
k¼1

yijk (8.7,)

and the standard deviation of the sample of a base element is

sij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nij � 1

Xnij
k¼1

ðyijk � �yijÞ2
vuut : (8.8)
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If the base element contains only two measurement results, then it is taken as

sij ¼ yij1 � yij2ffiffiffi
2

p : (8.9)

The sample estimates are then calculated:

– overall average value

m̂ ¼ ��yj ¼
Pp

i¼1 nij�yijPp
i¼1 nij

; (8.10)

– dispersion of repeatability

s2rj ¼
Pp

i¼1 ðnij � 1Þs2ijPp
i¼1 ðnij � 1Þ ; (8.11)

– inter-laboratory dispersions

s2Lj ¼
s2dj � s2rj

��nj
; (8.12)

where

s2dj ¼
1

p� 1

Xp
i¼1

nijð�yij � ��yjÞ2; (8.13)

��nj ¼ 1

p� 1

Xp
i¼1

nij �
Pp

i¼1 n
2
ijPp

i¼1 nij

" #
; (8.14)

– dispersion of reproducibility

s2Rj ¼ s2rj þ s2Lj: (8.15)

In the particular case when all nij ¼ n, formulas (8.10-8.15) are simplified:

m̂ ¼ 1

p

Xp
i¼1

�yij; s2rj ¼
1

p

Xp
i¼1

s2ij; ��nj ¼ n; s2dj ¼
n

p� 1

Xp
i¼1

ð�yij � ��yjÞ2; (8.16)

s2Rj ¼
1

p� 1

Xp
i¼1

ð�yij � ��yjÞ2 þ 1� 1

n

� �
s2rj: (8.17)

The values of the standard deviations sr of repeatability and sR of reproducibility

are taken to be their sample estimates sr and sR.
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8.3 Basic Method for Estimation of the Measurement Method
Correctness

ISO Standard 5725–4 describes the basic methods of estimating measurement

correctness. Estimation of measurement correctness is possible only when the

accepted reference value m of a quantity (see the error model at (8.1)) can be

established experimentally as its conventional value, such as when using standards

or standard specimens. These can be used as standard specimens:

– certified standard specimens,

– materials with known properties,

– materials whose properties were determined by an alternative method of

measurement, for which its systematic error is known to be negligible.

In accordance with 8.1, the systematic error is a characteristic of measurement

correctness. The standard treats two indicators of correctness: system error Dm

of the measurement method and systematic error Di of the laboratory.

8.3.1 Estimation of the Systematic Error of the Measurement
Method

The purpose of the inter-laboratory test is not just to estimate the systematic error of

the measurement method, but also to establish the fact of the statistical significance

of this error. If it is established that the systematic error is not statistically signifi-

cant, then it is necessary to find a maximum value for the systematic error for which

it may remain undetected in this test.

The same requirements are presented for the tests as for estimating precision.

The program for this test differs from the program for the test to estimate precision

only by other criteria for the selection of the number p of laboratories and the

number n of parallel measurements.1 Since the extended uncertainty of the estimate

of systematic error of the measurement method is equal to

1:96sR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðg2 � 1Þ þ 1

g2pn

s
;

for a confidence probability of P ¼ 0:95 for the results of the test, the minimum

values of p and n must satisfy the inequality

1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðg2 � 1Þ þ 1

g2pn
sR � D�

M

1:84

s
; (8.18)

1 The standard treats the method of estimating systematic error of the measurements of a quantity

at one level. Hence, the index j is dropped in the formulas presented.
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where D�
m is the specified (critical) value of the systematic error Dm of the

measurement method at which it is considered significant.

Verification of precision, conducted at the first stage of an experiment,

is accomplished by calculating the sample dispersion of repeatability s2r and

reproducibility s2R from formulas (8.16–8.17), in which the index j is dropped

and then these values are compared with values previously established and accepted

for the true dispersions of repeatability s2r and reproducibility s2R.
If sr was not defined previously, then sr is considered to be its best estimate.

Otherwise the statistic is defined:

C ¼ s2r
s2r

; (8.19)

which is compared with the critical value Ccrit ¼
w2ð1�aÞðvÞ

n (and w2ð1�aÞðnÞ is under-
stood to be the (1�a%)-th quantile2 of the w2 distribution, with number of degrees

of freedom n ¼ pðn� 1Þ). Usually a ¼ 0:05 is taken.

If C � Ccrit, then it is not statistically significant if s2r exceeds the value of the

dispersion of repeatability s2r . Hence the standard deviation of repeatability sr is
used to estimate the systematic error of the method. If C>Ccrit, then the occurrence

s2r > s2r is statistically significant. In this case it is essential to study the reasons for
exceeding this value. As a result, it may turn out to be necessary to rerun the test.

Estimation of reproducibility proceeds analogously. If the standard deviation of

reproducibility sR was not defined previously, then sR will be considered to be its

best estimate. If sR and sr were defined previously, the statistic is calculated:

C0 ¼ s2R � ððn� 1Þ=nÞs2r
s2R � ððn� 1Þ=nÞs2r

; (8.20,)

which is compared with the critical value C0
crit ¼

w2ð1�aÞðnÞ
n . If C0 � C0

crit, the numera-

tor of (8.20) exceeding its denominator is statistically insignificant. Here, sR and sr
can be used to estimate measurement correctness. If C0 > C0

crit, this exceedance is

statistically significant. In this case, a careful study of the conditions of

measurements in each laboratory, for the purpose of finding the reasons for the

divergence, must be conducted before estimating the systematic error of the method

of measurement. As a result, it may turn out to be necessary to rerun the test.

The estimate of the systematic error of the measurement method is found by the

formula

D̂M ¼ m̂� m; (8.21)

where m̂ ¼ ��y is calculated by formula (8.10),

m is the accepted reference value of the quantity.

2 The value of a centered (with mean 0) and normalized (with standard deviation 1) random

quantity, corresponding to the value of the ð1� aÞ distribution function
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The uncertainty of this estimate is expressed by the standard deviation

sd̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2R�ð1�1=nÞs2r

p

q
; if sR; sr are unknown;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2R�ð1�1=nÞs2r
p

q
; if they are unknown:

8<
: (8.22)

The extended uncertainty of the systematic error Dm for a probability coverage

of 0.95 can be approximately calculated by the formula

D̂M � AsR � DM � D̂M þ AsR; (8.23)

where A ¼ 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðg2�1Þþ1

g2pn

q
.

If this interval includes the value of zero, the systemic error is statistically

insignificant at the a ¼ 0:05 significance level. Otherwise, a conclusion is drawn

as to the existence of systematic error with average value D̂m.

8.3.2 Estimation of the Systematic Error of the Laboratory

An intra-laboratory test, performed for the purpose of estimating the systematic

error Di of the laboratory, must strictly correspond to the standard for measurement

procedure, and the measurements must be performed in conditions of repeatability.

Before an estimation of correctness, it is necessary to verify measurement precision

by comparing the intra-laboratory standard deviation with the established standard

deviation sr of the method. The test program includes measurements performed in

one laboratory in a test to estimate precision. An additional requirement is the use of

an accepted reference value m.
The n of measurement results must satisfy the inequality

1:96srffiffiffi
n

p � D�
i

1:84
; (8.24)

where D�
i is the specified (critical) value of the systematic error of the laboratory at

which it is considered significant.

In analyzing measurements results, the mean �yw and standard deviation sw are

first calculated by formulas (7) and (8), in which the indices i and j are dropped.

The measurement results must be studied for the presence of outliers using the

Grubbs criterion (see section 4.1). Then the statistic is calculated

C00 ¼ s2w
s2r

(8.25)
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and compared with the critical value C00
crit ¼ w2ð1�aÞðnÞ=n, where n ¼ n� 1. If

C00 � C00
crit, then the estimate s2w exceeding the value of the dispersion of repeatability

s2r is statistically insignificant. Hence the standard deviation of repeatability sr is

used to estimate systematic error of the laboratory. If C00 > C00
crit, then the occurrence

s2w > s2r is statistically significant. In this case, it is necessary to study the question

of repeating the test, with confirmation at all stages that the measurement method

is being executed by the appropriate method.

Then the systematic error of the laboratory is calculated using the formula

D̂i ¼ �yw � m: (8.26)

The uncertainty of this estimate is expressed by the standard deviation

sd̂ ¼
srffiffi
n

p ; if sr is known,
srffiffi
n

p ; if it is not known:

(
(8.27)

The extended uncertainty of the systematic error of the laboratory Di with

coverage probability 0.95 is calculated by the formula

D̂i � Awsr � Di � D̂i þ Awsr; (8.28)

where

Aw ¼ 1:96ffiffiffi
n

p : (8.29)

If this interval includes the zero value, the systematic error of the laboratory is

statistically insignificant at the a ¼ 0:05 significance level. Otherwise, it must be

considered significant.

8.4 Application of the Repeatability and Reproducibility Limits

In accordance with 8.1, the repeatability limit r is the value that, with confidence

probability of 0.95, is not exceeded by the absolute value of the difference yij � yik
�� ��

of two measurement results yij; yik obtained in conditions of repeatability. Analo-

gously, the reproducibility limit R is the value that, with confidence probability of

0.95, is not exceeded by the absolute value of the difference yij � ykl
�� �� of two

measurement results yij; ykl obtained in conditions of reproducibility. Since the

dispersion of the difference of two random values is the sum of their dispersions,

the standard deviation of the difference between two measurements in conditions of

repeatability is equal to s ¼ ffiffiffi
2

p
sr, where sr is the standard deviation of repeatability.

For a normal distribution, by which random measurement errors are generally
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governed, the quantile l ¼ 1:96 corresponds to a confidence probability of 0.95.

Hence the repeatability limit is equal to

r ¼ ls ¼ 1:96 �
ffiffiffi
2

p
sr ¼ 2:77sr ffi 2:8sr: (8.30)

Analogously, the reproducibility limit is R ¼ 2:8sR. Consequently, the critical

(i.e., maximum) value of the difference y1 � y2j j between two results of

measurements performed in one laboratory is equal to

CD ¼ r ¼ 2:8sr; (8.31)

and in different laboratories is

CD ¼ R ¼ 2:8sR: (8.32)

If two groups of measurements are performed in conditions of repeatability:

n1 measurements with average value �y1 and n2 measurements with average value

�y2, then the dispersion of the difference ð�y1 � �y2Þis

s2 ¼ s2r
1

n1
þ 1

n2

� �
:

Consequently, the critical difference of the two results of multiple measurements

�y1 � �y2j j in conditions of repeatability will be equal to

CD ¼ 1:96 �
ffiffiffi
2

p
sr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2n1
þ 1

2n2

r
¼ 2:8sr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2n1
þ 1

2n2

r
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2n1
þ 1

2n2

r
: (8.33)

Substituting n1 ¼ n2 ¼ 1 into this formula, we derive expression (8.30).

Current quality control systems for goods and services involve constant moni-

toring of the stability of the production process (including monitoring accuracy of

measurements) for the purpose of timely detection of moments of degradation of its

quality and elimination of the reasons for such degradation. Monitoring the stability

is based on function (8.33): if for two successive measurements of the monitored

quality indicator the results �yi and �yiþ1 from multiple measurements (with measure-

ment indices ni and niþ1) satisfy the condition

�yiþ1 � �yi
�� �� � r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2niþ1

þ 1

2ni

s
; (8.34)

then this divergence between them may be caused by random measurement errors.

Hence it is presumed that the quality indicator being monitored has not changed in

value. If condition (8.34) is not fulfilled, then it is necessary to do a new adjustment

of the equipment or else take other measures to correct the production process.
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If groups of measurements of the same quantity are done in different

laboratories, and in each laboratory under conditions of repeatability, then the

dispersion of the difference �y1 � �y2 will be equal to

s2 ¼ s2L þ
s2r
n1

� �
þ s2L þ

s2r
n2

� �
¼ 2s2L þ s2r

1

n1
þ 1

n2

� �

¼ 2ðs2L þ s2r Þ � 2s2r 1� 1

2n1
� 1

2n2

� �
:

Considering formula (8.30) and the identity s2L þ s2r ¼ s2R, we derive, for the

critical difference of the two results of multiple measurements �y1 � �y2j j in

conditions of reproducibility,

CD ¼ 1:96�
ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2R � s2r 1� 1

2n1
� 1

2n2

� �s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2 1� 1

2n1
� 1

2n2

� �s
: (8.35)

It is evident that formula (8.31) is a particular case of this formula for

n1 ¼ n2 ¼ 1.

These functions are used in practice in the resolution of disputes between

suppliers and buyers regarding the quality of delivered production. If the result �y1
of the supplier’s measuring a quality indicator y and the result �y2 of its measurement

by the buyer satisfy the inequality

�y2 � �y1j j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2 1� 1

2n1
� 1

2n2

� �s
; (8.36)

then these measurement results do not contradict each other. In this case, their

average y ¼ ð�y1 þ �y2Þ=2 is taken as the quality indicator, and the calculation regard-
ing production proceeds using this value. If condition (8.36) is not fulfilled, then that

provides evidence of systematic measurement error by the supplier or (and) buyer of

production. In this case it is usual to bring in an arbitration laboratory to resolve the

dispute. The arbitration laboratory will conduct a measurement of the quality

indicator, the result of which, �y3, is compared with �y1 and �y2. If, for example, the

pair of values �y3 and �y1 satisfy condition (8.36), but �y3 and �y2 do not satisfy it, then
the average y ¼ ð�y1 þ �y3Þ=2 is used for the conventional value y of the indicator.

If an accepted reference value m0 of the quantity is known, it is possible to estimate

the systematic measurement error. Its definition consists of comparing the result �y of
multiple measurements with the accepted reference value m0 of the quantity, which
by definition has no error. Hence, if the systematic error of the laboratory is estimated

as ð�y� m0Þ, then its dispersion is equal to

s2ð�yÞ ¼ s2L þ
s2r
n

¼ 2ðs2L þ s2r Þ � 2s2r ð1� ð1=hÞÞ
2

¼ 1

2
2s2R � 2s2r

n� 1

n

� �
:
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Consequently, the critical difference for this estimate is equal to

CD ¼ 1:96� 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2R � 2s2r

n� 1

n

r
¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n� 1

n
r2

r
: (8.37)

If this condition is satisfied:

�y� moj j � 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n� 1

n
r2

r
; (8.38)

then this means that the systematic measurement error is not significant and one

may presume that there is none. If (8.38) is not satisfied, then this provides evidence

that the difference ð�y� m0Þ is statistically significant. Then this value is taken as the
estimate of the systematic error of the laboratory.

Precisely the same is estimating the systematic error of the method. In this case,

the overall average ��y ¼ 1=p
Pp

i¼1 �yi, obtained at p laboratories, is compared with

the reference value (here �yi ¼ 1=ni
Pni

j¼1 yij is the result of multiple measurements

of the quantity at the ith laboratory). The dispersion of the value of ��y is

s2ð��yÞ ¼ 1

p2

Xp
i¼1

s2ð�yiÞ ¼
1

p2
ps2L þ s2r

Xp
i¼1

Xni
j¼1

1

n2i

 !
¼ 1

p
s2L þ

1

p2
s2r
Xp
i¼1

1

ni

¼ 1

2p
2ðs2L þ s2r Þ � 2s2r þ

2s2r
p

Xp
i¼1

1

ni

" #
¼ 1

2p
2s2R � 2s2r 1� 1

p

Xp
i¼1

1

ni

 !" #
:

Consequently, the critical difference of the value ��y� mo is equal to

CD ¼ 1:96sð��yÞ ¼ 1ffiffiffiffiffi
2p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2 1� 1

p

Xp
i¼1

1

ni

 !vuut : (8.39)

Further estimation proceeds in a manner analogous to the estimation of the

systematic error of a laboratory.

8.5 Method for Testing the Acceptability of Measurement
Results

Current quality systems in calibration and testing laboratories prescribe the use

of various methods to increase the reliability of measurement information that

is obtained. One of these methods is to conduct repeated measurements and

compare the obtained results. In doing so, the measurement results are considered

acceptable if they do not contradict each other, since the deviation between them is

caused only by random measurement error. The preceding section presented

the calculated functions for determining the allowable limits of these deviations,
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the CDs or critical differences. This section presents typical procedures used in

such verification, and rules for determining the final measurement result.

Let us suppose that in one laboratory with conditions of repeatability, two results

y1 and y2 of single measurements of one value are obtained. If this condition is

satisfied:

y1 � y2j j � r; (8.40)

then both results are recognized as acceptable and the final measurement result is

indicated as their average: �y ¼ ðy1 þ y2Þ=2. If condition (8.40) is not satisfied,

then the procedure is as follows.

1. If it does not cost much to obtain results, then two more measurements y3 and y4
are completed. The range Dð4Þ ¼ ðymax � yminÞ of the sample is found from the

4 measurement results found. Then from Table 24, the value f ð4Þ ¼ 3:6 of the

coefficient of critical range3 f ðnÞ is found for number of measurements n ¼ 4.

The measurements results are considered acceptable if this condition is

satisfied:

DðnÞ � CR0:95ðnÞ; (8.41)

which suggests that the deviations between them are caused by random measure-

ment error, which is subject to the normal distribution with zero mean and

dispersion s2r . Consequently, if Dð4Þ � 3:6sr, the results of the 4 measurements

are considered acceptable. In this case, their average �y ¼ ðy1 þ y2 þ y3 þ y4Þ=4 is
taken as the final measurement result. If this condition is not satisfied, the

measurements results are not consonant with this hypothesis. In this case, the

medianMe ¼ ðyð2Þ þ yð3ÞÞ=2 is taken as the final measurement result (yð2Þ and yð3Þ
are the second and third results of this ordered series), since for distribution laws

different from the normal law, the median is the best estimate (Table 28).

The critical range values for a confidence probability of 0.95 and sample size

n is defined by the formula

CR0;95ðnÞ ¼ f ðnÞsr: (8.42)

Hence the critical range value is CR0:95ð4Þ ¼ 3:6sr.
2. If an obtained measurement is costly (for example, it takes several days, or it is

involved with using expensive equipment and expenditures for costly standard

specimens and reagents), just one more measurement y3 is completed, and the

range Dð3Þ ¼ ðymax � yminÞ of the sample from the 3 measurements results

3 The coefficient of critical range f ðnÞ is the 95% quantile of the distribution of the range of the
sample and values subject to the normal distribution with mean equal to 0 and standard deviation
equal to 1.
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obtained is found. Then the value f ð3Þ ¼ 3:3 and the critical range value

CR0:95ð3Þ ¼ 3:3sr is found from Table 28. If Dð3Þ � 3:3sr, the results of the 3
measurements are considered acceptable, and their average value

�y ¼ ðy1 þ y2 þ y3Þ=3 is taken as the final measurements result. For

Dð3Þ > 3:3sr and it is not possible to conduct yet another measurement, the

median Me ¼ yð2Þ is taken as the final measurements result (here yð2Þ is the

second result in the ordered series); if there is a possibility of conducting one

more measurement, then the final measurements result is obtained in accordance

with option 1.

Example 8.1. Determining the Content of Gold in a Copper Concentrate Using an

Assay [54].

The standard deviation of repeatability is sr ¼ 0:12 g=t, and the repeatability limit

is r ¼ 2:8 � 0:12 ¼ 0:34 g=t. Measurements results y1 ¼ 11:0 g=t, y2 ¼ 10:5 g=t
were obtained. Since y1 � y2j j ¼ 11:0� 10:5 ¼ 05 g=t > r ¼ 0:34 g=t, a third

measurement is conducted. The result y3 ¼ 11:0 g=t is obtained. Since

Dð3Þ ¼ ðymax � yminÞ ¼ 0:5 g=t > CR0:95ð3Þ ¼ 3:3� 0:12 ¼ 0:40g=t, the measure-

ment results are considered unacceptable. In connectionwith the fact that it is possible

to conduct one more measurement, the result y4 ¼ 10:8 g=t was obtained. In the order
series (10.5; 10.8; 11.0; 11.0) g/t, ymax ¼ 11:0 g=t, ymin ¼ 10:5g=t, average

�y ¼ ð10:5þ 10:8þ 11:0þ 11:0Þ=4 ¼ 10:8g=t, and median Me ¼ ð10:8þ 11:0Þ=2
¼ 10:9g=t. Since Dð4Þ ¼ ðymax � yminÞ ¼ 0:5g=t > CR0:95ð4Þ ¼ 3:6� 0:12 ¼
0:43g=t, the measurement results are considered unacceptable. Hence Me ¼ 10:9g=t
is taken as the final measurement result.

Table 28 Critical range coefficients f ðnÞ
n f(n) n f(n) n f(n)

2 2.8 17 4.9 32 5.3

3 3.3 18 4.9 33 5.4

4 3.6 19 5.0 34 5.4

5 3.9 20 5.0 35 5.4

6 4.0 21 5.0 36 5.4

7 4.2 22 5.1 37 5.4

8 4.3 23 5.1 38 5.5

9 4.4 24 5.1 39 5.5

10 4.5 25 5.2 40 5.5

11 4.6 26 5.2 45 5.6

12 4.6 27 5.2 50 5.6

13 4.7 28 5.3 60 5.8

14 4.7 29 5.3 70 5.9

15 4.8 30 5.3 85 6.0

16 4.8 31 5.3 100 6.1
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8.6 Applicability of the Repeatability Indices During Approval
of Measurement Procedures

One of the manifestations of scientific and technical progress is the development of

new measurement techniques based on physical principles not used earlier for this

purpose. As a result, new measurement procedures are created, that are more

complete by comparison with widely used methods that are regulated by measure-

ment procedures (MPs) that were confirmed (standardized) earlier. With this in

mind, in order that the introduction of a new method into practice not disturb the

unity of this type of measurements, it is essential to make its scale correspond with

the scale of measurements of the standardized MP. In other words, to introduce a

new measurement method into practice, one must transfer to it the unit size or scale

being used in this type of measurement. If the measurements of this type of are

relative, i.e., implemented with the aid of MIs that are calibrated in the specified

unit, the task is easily resolved – by including the MI that performs the developed

measurement method into the system of transferring the size of this unit. But if, as

often happens in analytical measurements, no such system has been constructed or

there are generally no MIs, but the measurements are done by performing

procedures described in an MP, then the simplest and soundest method of transfer-

ring a unit size or scale to the new measurement method is to certify it using the

standardized MP. This certification is done as follows.

1. In one laboratory, n measurements are done in conditions of repeatability, in

accordance with the certifiable and standardized MP at several points of the

range of measurements. Usually these points are taken at 20%, 50%, and 80% of

the upper limit of measurements. Two series of results are obtained for the n-fold
measurements:

�x1 ¼ 1

n

Xn
j¼1

x1j; :::; �xl ¼ 1

n

Xn
j¼1

xlj

for the certifiable MP, and analogously �x01; :::; �x0l for the standardized MP.

2. The differences Di ¼ �xi � �x0i in the measurement results are calculated and their

significance in comparison to random errors of the certifiable and standardized

MPs is analyzed. The indicators of repeatability are used for this purpose.

If Dij j �
ffiffiffiffiffiffiffiffiffi
r2þr2

0

2n

q
, where r, r0 are the limits of repeatability of the certifiable

and standardized MPS, then the systematic deviations in the measurement

results obtained by the comparative methods are insignificant, and one may

bypass considering them inestimating the uncertainty of the certifiable MP.

If Dij j>
ffiffiffiffiffiffiffiffiffi
r2þr2

0

2n

q
, then these deviations are statistically significant. In this case,

the systematic error of the certifiable MPO is evaluated. For this purpose,

the dependence of the values of the absolute measurement error Di or relative

error di ¼ Di=x0i on the measurand is analyzed. If one of these dependencies is
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approximately constant, then an appropriate correction Dx ¼Pl
i¼1 Di=l or

dx ¼Pl
i¼1 di=l is introduced along the entire range of measurements.

If a monotonic change Di or di is noticed in the range of measurements, then

this correction is determined using a linear or piecewise-linear approximation.

These corrections are introduced to the results of measurements conducted using

the certifiable MP. The corrected differences of measurement results are equal to
~Di ¼ �xi � �x0i � Dx (or ~Di ¼ �xi � �x0ið1þ dxÞ).

3. The type A standard uncertainties of the differences ~Di are estimated:

uA ¼ 1

l� 1

Xl
i¼1

~Di � ~D
� �2

; (8.43)

where ~D ¼ 1=k
Pk

i¼1
~Di.

4. The extended uncertainty of the measurement result on the certifiable MP is

estimated using the formula

U ¼ ku; (8.44)

where u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2A þ u20

p
is the standard uncertainty of the measurement result on

the certifiable MP,

u0 ¼ U0=k0 is the standard uncertainty of the measurement result on the

standardized MP,

U0 and k0 is the extended uncertainty of the measurement result on the

standardized MP and its coverage factor,

k is the coverage factor of the extended uncertainty of the measurement result on

the certifiable MP with coverage probability 0.95.
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measurements in, 11

Average value, 184

Avogadro number, 116

B

Barographs, 20

Base element, 183, 184

Base quantities, 112

Base units, 112–117

Bessel, 51

Bias, 26

Bimodal distribution, 30

Binding standards, 153

Boltzmann constant, 113, 115

Borda’s method, 13

Boxes of measures, 18

C

Calibration, 8–10, 13, 15–19, 21, 25, 42–44, 46,

50, 52, 53, 59, 62, 69, 100, 102–105,

130–141, 143, 152, 157–178, 191

of measuring equipment, 132–134

using measurement standards, 26

Calibration and Measurement Certificates, 149

Calibration gas mixtures (CGMs), 18

Calibrations chains, 141

Candela (cd), 116

CCs. See Consultative Committees (CCs)

Certifiable measurement procedure, 194

CGMs. See Calibration gas mixtures (CGMs)

CGPM. See General Conference on Weights

and Measures (CGPM)
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CGS (centimeter, gram, second) system, 111

electromagnetic system, 112

electrostatic system, 112

Chain of equalities, 122

w2 distribution, 38–39
Chukovkina A.G., 153

CIPM. See International Committee on

Weights and Measures (CIPM)

Closed series, measurements in, 10

CLTE. See Coefficient of linear thermal

expansion (CLTE)

CODATA. See Committee on Data for Science

and Technology (CODATA)

Coefficient of linear thermal expansion

(CLTE), 10

Coefficients of sensitivity, 64, 68, 70

Coherent system of units, 117–118

Coincidence method, 12–14

Collective standards, 129–131

Colorimetry, 3

Combined measurements, 10

Committee on Data for Science and

Technology (CODATA), 19

Comparator(s), 20, 142

Comparison measuring device, 20

Comparison method against measure, 12

Compatibility criteria, 73

Complementary error, 25

Component percentage, 120

Composition, 122

Composition–composition MTs, 17

Composition–property MT, 17

Concentration, 120, 121

Concrete number, 119

Conditional equation(s), 97–98, 100–101,

103, 107, 108

Conditions of repeatability, measurements

in, 181

Conditions of reproducibility, measurements

in, 181

Confidence interval(s), 24, 40, 56, 181

Confidence limits, 34

of measurement result, 24, 59

MI, instability of, 160

Confidence probability, 41, 54, 59, 60, 77,

160, 181, 185, 188, 189, 192

Consistent statistical valuation, 35

Constituent Assembly of France, 111

Consultative Committee for Thermometry, 115

Consultative Committees (CCs), 150

Contact measurement method, 12

Content, 121

Contraposition method, 52

Conventional true value, 24, 56, 57

Corrected measurement result, 78

Correction, 53

additive, 133

multiplicative, 133

Correction procedure, of VCIs, 174

with alternative marker

and error sign of each MI, 175

regarding serviceability of MI, 176–178

with error values of each specimen,

174–175

Correctness, 180

estimation, 185

laboratory, systematic error

of, 187–188

measurement method, systematic

error of, 185–187

Correlation coefficients, 91

Coulomb’s law, 115, 116

Coverage factor(s), 59, 62, 66, 79, 96, 195

definition, 60

uncertainty of input quantities,

distributions of, 63

for various degrees of freedom, 67

Coverage probability, 59, 60, 62

Critical range coefficients, 193

Cumulative integral distribution function,

27, 28, 33

D

DC current, 45, 52

Definite integral function, 33

Degree of equivalence, of national standards,

152, 153

Degrees of freedom, 39, 40, 66, 79, 89

coverage factor for, 67

definition, 60

Department of Commerce, 145

Department of Economics, 145

Derived quantities, 112

Derived units, of SI, 112, 117–118

dimensionality, 118–119

special designations, 118

Difference scale. See Interval scale
Differentiable distribution function, 27, 28

Differential equation, 32, 161, 162

Differential method, 12, 13

Digital-analog transformation, 16

Digital devices, 20

Digital measurement methods, 12

Digital voltmeters, 20

D.I. Mendeleev VNIIM, 127, 128, 130
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Dimensionality

properties, 119

of quantity, 118, 119

Dimensional quantity, 119

Dimensionless quantity, 119

Direct-action measuring device, 20

Direct comparison, 142

Direct estimation method, 12

Directional procedure, for verification, 133

Direct (multiple) measurements, 10, 143

procedure, 15–16

structural diagram, 15

subject to generalized normal

distribution, 82–89

subject to normal distribution, 77–82

Dispersion, 30, 32, 181, 191

inter-laboratory, 181, 184

intra-laboratory, 181

of random variable, 29

of repeatability, 181, 184, 186, 188

of reproducibility, 181, 184, 186

Display devices, 20

Distilled water density

determination, 76–77

test results, 86–89

Distribution, 27–41, 75–89, 162–166

w2, 38–39, 41, 82, 88, 173, 186
Fisher’s, 41

function, 27, 28, 38, 137, 138, 175

cumulative integral, 27, 28

differential, 27, 28

of measurement error, 137

Gaussian, 33

Student’s, 39–41, 66, 79, 82, 92, 97, 109

Distribution law, of random values, 31

Dynamic errors, 45

Dynamic measurement, 8, 12

E

Efficient statistical valuation, 35

Electrical measurements, 11, 12, 19

Electrical permittivity of vacuum, 116

Electrical resistance

of four-terminal resistor, 69–71

measurement, 11

Electrical voltage, measurement of, 11

Electrodynamic measurements,

equation of, 34

Electromagnetic field (EMF), 11

Electromagnetism, 115

EMF. See Electromagnetic field (EMF)

Energy and luminous quantities, 116

Environmental appraisal, of occupational

noise, 105–109

Equal accuracy, measurements of, 7

Equation of motion, 114

Equipment, measuring, 2, 4, 6, 41–49, 129,

132–134, 174–178

Error compensation method, 52

Errors of measurement, 23–54. See also
Measurement error

absolute, 24–25

complementary, 25

fiducial, 25

gross, 26–27, 58

instrumental, 25–26, 41, 42, 46, 49, 52

intrinsic, 25–27, 44, 47

methodological, 25–26, 49, 164

random, 13, 20, 26–27, 31, 36, 47,

57–59, 73, 77, 78, 83, 91, 115, 129,

135, 136, 194

relative, 24–25

subjective, 25–26, 51, 58

systematic, 13, 20, 26–27, 41–54,

58, 59, 77–79, 90, 133, 136, 137,

139, 171, 180–181, 185–188,

190, 191

Estimated quantities, 2–3

Estimation procedures, 24

Estimation process, 2

Euler, L., 7

Expanded uncertainty, 56

Extended uncertainty, 62, 66–68, 70, 71,

79, 80, 86, 92, 94, 96, 109, 183, 185

definition, 60

MC, instability of, 160

of measurement result, 59, 195

of systematic error, 187, 188

F

Failure-free operation, probability

of, 170–172

Federal Agency for Technical Regulation

and Metrology, 19, 146

Fiducial error, of measuring instrument, 25

First-order statistical error, 136

First-order working standards, 128

Fisher goodness-of-fit test, 7

Fisher, R.A., 41

Fisher’s distribution, 41

Four-terminal resistor, electrical

resistance of, 69–71

FPCs. See Fundamental physical constants

(FPCs)
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Fraction, 121

Fridlender, I.G., 36

Functional transformation, 16

Fundamental equation, of instability, 161

Fundamental measurement, 9

Fundamental measurement error, 44

Fundamental physical constants (FPCs),

23, 113, 122

G

Gas analyzer, calibration of, 102–105

Gases and vapors, microscopic flows of, 17

Gauss, Carl, 23, 31, 34, 36, 111, 112, 117

axiomatic development, 35–36

Gauss coefficients, 101, 103

Gaussian distribution, 33

General Conference on Weights and

Measures (CGPM), 111–113, 115,

125, 147, 149

Generalized normal distribution, 34–38, 166

coefficient of skewness and kurtosis, 36, 38

density graphs, 37

multiple measurements, 82–89

parameters, 173

sampling characteristics, 173

General set, 30

Geometric mean, 31

Globalization, 148

Gold content in copper concentrate,

determination of, 193

Gosset, W.S., 40

Gravitational constant, 113

Gross measurement error, 26, 58

Group standards, 129, 130

Grubbs criterion, 183, 187

Grubbs statistics, 73

critical values, 74

for joint check of two maximum

results, 74

for joint check of two minimum results, 74

Grubbs test, 73

H

Hall effect, 132

Hard body density, indirect measurement

of, 94–96

Harmonic mean, 31

Heisenberg, Werner, 55

Hierarchical systems, 126

Homogeneous quantities, 3, 5, 10, 11, 13, 16

Homogeneous standard samples, 18

I

IBWM. See International Bureau of Weights

and Measures (IBWM)

Ideal quantities, 1

IEC. See International Electrotechnical
Commission (IEC)

IFCC. See International Federation of

Clinical Chemistry (IFCC)

Implicit equation(s), 97

Inaccuracy, 25, 51

Indeterminacy, of measurement result, 57

absolute measurement, 58

relative measurement, 58

Indirect measurements, 10, 89, 143

linear dependence, of measurement

result, 90–92

nonlinear dependence, linearization

method of, 93–96

reduction method, 96–97

Individual standards, 129, 130

Information-bearing parameter, 16, 17

Input quantity, 61

evaluation, 61–62

four-terminal resistor, electrical

resistance of, 69

linear dependence, of measurement

result, 90–92

Instability distribution laws, 162–166

Instability equation and solution, 161–162

Instability, of measuring instrument, 159

Instrumental measurement error, 25,

41–42, 48, 58

Instruments, measuring, 2, 6–10, 12, 14–21,

23–26, 34, 42–48, 52–54, 100, 116,

124, 127, 132–143, 157–178

See alsoMeasuring instruments (MIs)

Integrating devices, 20

Inter-laboratory dispersion, 181, 184

Intermediate MTs, 16

International Bureau of Weights and

Measures (IBWM), 56, 111,

112, 114, 132, 147, 148, 150,

152, 154, 155

International Committee on Weights and

Measures (CIPM), 147, 149–155

International Electrotechnical

Commission (IEC), 56

International Federation of Clinical

Chemistry (IFCC), 56

International Organization for

Standardization (ISO), 56

International Organization of Legal

Metrology (IOLM), 56
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International recognition of certificates

of conformity, 151

International system of units (SI), 111–122

base units, 112–117

derived units, 117–118

dimension of quantities and units,

118–119

multiple unit, 120

physical–chemical measurements,

quantities and units of, 120–122

principles, 111–112

submultiple unit, 120

International Union of Pure and Applied

Chemistry (IUPAC), 56

International Union of Pure and Applied

Physics (IUPAP), 56

Interval estimate of error, 24

Intervals, 5, 24, 26, 28, 35, 38, 40, 67,

69, 75–77, 79–81, 84, 86, 88, 89,

134, 136, 157–178, 183, 187, 188

Interval scale, 5

Intra-laboratory dispersion, 181

Intrinsic error, 25, 44

IOLM. See International Organization
of Legal Metrology (IOLM)

ISO. See International Organization for

Standardization (ISO)

“ISO/BIPM Guide to The Expression of

Uncertainty in Measurement,” 56

ISO Standard 31, 112, 117, 121

ISO 5725 standards, measurement

accuracy in compliance with,

179–195

ITS–90 International Temperature Scale,

115, 130

IUPAC. See International Union of Pure and

Applied Chemistry (IUPAC)

IUPAP. See International Union of Pure and

Applied Physics (IUPAP)

J

Joint measurement, 97

angle measurement, 101–102

gas analyzer, calibration of, 102–105

occupational noise, environmental

appraisal of, 105–109

Josephson effect, 116, 132

K

Kelvin (K), 115

Kilogram, 114, 115

L

Laboratory, systematic error of, 180, 181,

187–188, 191

Laplace integral function, 33

Law of universal gravitation, 114

Least squares method, 177

Legendre criterion, 99

Legendre’s principle, 98

Length measurements, 11

Limits, definition of, 181

Linear dependence, of measurement result,

90–92

Linearization method, of nonlinear

dependence, 93–96

Linear mean square regression, 162–164

Linear measurements, 141

Linear model, 164, 177, 178

Line standard meter, 17

Local measurement chains, 141

Logarithmic normal distribution, 166

Luminous quantities, and energy, 116

M

Magnetic induction, measurement of, 11

Magnetic measurements, 11, 12

Magnitude, of quantity, 3

Malikov, M.F., 57

Mass fraction, 122

Mass spectrometer measurement method,

80–81

MathCAD system, 178

Maximum likelihood method, 83

MC. See Metrological characteristics (MC)

Mean, 31, 32

computation, 35

measuring instrument, instability of, 159

of random variable, 29

Mean square (MS), 30, 31

Measured quantities, 2–3

Measurement(s), 6–11

aggregate, 97–109

assurance, 179–195

based on dimensions of units, 9–10

based on measurement results

obtained, 10–11

based on nature of quantity, 8

based on purpose of measurement, 8–9

in closed series, 10

definition, 3, 4, 6, 7

fundamental equation, 3

indirect, 2, 10, 89–97, 111, 117, 126,

143, 145
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Measurement(s) (cont.)
joint, 97–109

precision, 23, 49, 182

in terms of number of measurements,

7–8

in terms of trait of accuracy, 7

traceability, 3, 9, 10, 123–125, 131, 134

traits, 6

uncertainty (see Uncertainty)
uniformity, 123–126, 128, 147, 148,

152, 155, 157

Measurement accuracy, 6

in compliance with ISO 5725 standards,

179–195

concepts, 179–182

measurement method correctness,

estimation of, 185–188

measurement method, precision

of, 182–184

measurement results, acceptability

of, 191–193

repeatability and reproducibility

limits, application of, 188–191

repeatability indices, applicability

of, 194–195

definition, 179–180

theory, 57

Measurement assurance, 123, 125–126

calibration of measuring equipment,

132–134

measurement chains, 141–145

organizational basis, 145–147

standards of units, 126–132

traceability of measurement, 124–125

uncertainty of unit size, increase in,

134–141

uniformity of measurement, 123–126

verification of measuring equipment,

133–134

in the World, 147–155

Measurement chain fields, 142

Measurement chains, 141–145

Measurement equation, 61, 89, 90

four-terminal resistor, electrical

resistance of, 69

net weight of oil, measurements of, 67

Measurement error, 23, 55, 57, 135

classification, 23–27

definition, 24

distribution function, 137

interval estimate, 24

laws of random measurement error

distribution

generalized normal distribution

law, 34–38

normal distribution law, 30–34

probability theory, 27–30

statistical distributions, 38–41

vs. mistake, 55

for probability, 24

systematic measurement errors, 41

due to operator’s inaccurate

performance, 51

due to properties of measurement

equipment and conditions, 41–45

elimination, 51–54

measurement method errors, 49–51

metrological characteristics of

measuring equipment, 45–49

and uncertainty, 55–57

during verification, 137

Measurement field, 6, 11

Measurement method

acoustic, 11, 12

analog methods, 12

coincidence method, 12, 13

comparison method against measure, 12

contact method, 12

correctness (see Correctness)
definition, 12

differential method, 12, 13

digital methods, 12

direct estimation method, 12

dynamic, 8, 12

electrical, 11, 12

errors, 49–51

magnetic, 11, 12

mechanical, 11, 12

metrological classification, 13

non-contact method, 12

optical, 11, 12

precision, 182–184

static, 8, 12

substitution method, 12, 13

supplementation method, 12, 13

systematic error, 185–187

zero-measurement method, 13

Measurement principle, 12

Measurement Procedures (MPs), 7, 14,

194–195

metrological MPs vs. ordinary MPs, 15

standardization, 15

Measurement result(s), 34, 57

acceptability, 191–193

base element, 184

certainty, 23
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characterization, 30–31

confidence limits, 24, 59

conventional true value, 24

error, 59

extended uncertainty, 59, 195

indeterminacy, 57

linear dependence, 90–92

nonlinear dependence, 93–96

probability, 31

probability density, 32

quantities in, 57

SD error, 59

standard uncertainty, 59, 94, 195

statistical distributions, 38–41

true value, 24

and uncertainties, 59, 73

generalized normal distribution,

direct multiple measurements,

82–89

indirect measurements, 89–97

joint and aggregate measurements,

97–109

normal distribution, direct multiple

measurements, 77–82

normal distribution of experimental

data, 75–77

outliers, elimination of, 73–75

procedure for evaluation, 60–71

Measurement standards, 15, 26

Measures, 2, 10, 13, 17–19, 21, 106,

129–132, 135, 142, 143, 182, 190

Measuring devices, 19–20

Measuring equipment, verification and

calibration of, 132–134

Measuring installation, 21

Measuring instruments (MIs), 6, 124

accuracy, 159

confidence limits of instability, 160

definition, 15

error, 136

failure-free operation, probability

of, 160

fiducial error, 25

instability, 159

mean instability, 159

measures, 17–19

measuring devices, 19–20

measuring installation, 21

measuring system, 21

measuring transducers, 16–17

metrological, 15

metrological failure, 159

metrological reliability, 159

metrological serviceability, 159

coefficient, 160

probability, 160

reference standards, 129, 130

stability, 159

standard deviation of instability, 159

verification and calibration intervals,

157, 160

basic concepts, 157–160

correction procedure, 174–178

criteria for, 166–172

metrological reliability, theory of,

160–166

substantiation, 172–174

Measuring machines, 21

Measuring system, 21

Measuring transducers (MT)

definition, 16

types, 17

Mechanical measurements, 11, 12, 19

Median, 30

Mendeleev-Clapeyron law, 115

Meter, definition of, 113–114

Meter-kilogram-force-second system, 112

Meter-kilogram-second system, 112

Meter standard, 132

Meter-ton-second system, 112

Method of least squares, 98

Methodological measurement error, 25, 58

Methods, 3, 7–14, 20, 49–51, 73–109, 173,

182–188, 191–193

Metric Convention, 111–112, 147, 155

Metric system, 111

Metrological characteristics (MC), 159

drift process, mathematical model of,

160–161

extended uncertainty of instability, 160

of measuring equipment, 45–49

of MI over time, 158

standard uncertainty of instability, 160

Metrological characteristics drift,

mathematical model of, 160–161

“Metrological equivalence” of standards,

148–149, 152

Metrological failure, of MI, 159

Metrological measurement, 9

Metrological MIs, 15

Metrological MPs vs. ordinary MPs, 15

Metrological properties, 45

Metrological reliability

instability distribution laws, 162–166

instability equation and solution,

161–162
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Metrological reliability (cont.)
of measuring instrument, 159–160

metrological characteristics drift,

mathematical model of, 160–161

Metrological serviceability

coefficient, 160, 169

of measuring instrument, 159, 160

probability, 166–169

Metrology, 1–21, 39, 46, 111, 120, 124,

140, 146–155, 157, 179

history, 2–3

magnitude and value of quantity, 3

measurement, 6–11

measurement method and procedure,

11–15

measuring instruments (MIs), 15

measures, 17–19

measuring devices, 19–20

measuring installation and measuring

system, 21

measuring transducers, 16–17

properties and quantities, 1–3

reference scales for quantities, 3–6

units of measurement for quantities, 3

Micrometers, 20

Mineral hardness, 4

MIs. See Measuring instruments (MIs)

Mistake vs. error, 55
Mode, 31

Models, 25, 46, 49, 160–161, 164, 167,

172, 177, 178, 180

Mohs scale, 4

Molar concentration, of component, 116

Molar fraction, of component, 116, 119

Mole, 115–117

MPs. See Measurement Procedures (MPs)

MRA. See Mutual Recognition Arrangement

(MRA)

MS. See Mean square (MS)

MT. See Measuring transducers (MT)

Multiple measurement(s), 7–8

subject to generalized normal

distribution, 82–89

subject to normal distribution, 77–82

Multiple unit, 120

Multiplicative correction, 133

Multi-valued measures, 18

Mutual interaction of current with electrical

charge, 115

Mutual Recognition Arrangement

(MRA), 149

Mutual Recognition of the National

Measurement Standard, 149

N

Name scales, 4

National Institute of Standards and

Technology (NIST), 19, 145

National Metrology Institutes (NMIs), 131,

147–149, 155

National Physical Laboratory, 145

National standards, 126, 131, 132, 152

Net weight of oil, measurement of, 67–68

NIISSD. See Scientific Research Institute for

Standard Reference Data (NIISSD)

NIST. See National Institute of Standards
and Technology (NIST)

NMIs. See National Metrology Institutes

(NMIs)

Non-contact measurement method, 12

Non-excluded residuals of systematic error

(NRSEs), 53–54

Non-excluded systematic error, 78, 79

Non-homogeneous quantities, 122

Non-information-bearing parameters, 17

Nonlinear conditional equations, 98

Nonlinear dependence, linearization method

of, 93–96

Non-linear model, 178

Non-physical quantities, 1–2, 6

Non-statistical random error, 58, 59

Normal distribution, 30–34, 164

of experimental data, 75–77

multiple measurements, 77–82

Normal element, 17

Normal equations, system of, 101, 103, 107

NPO (Scientific Design Organization)

Dal’standart, 128

NRSEs. See Non-excluded residuals of

systematic error (NRSEs)

Numerical value of quantity, 3

O

Occupational noise, environmental appraisal

of, 105–109

Ohm, 116, 132

“On Measurement Assurance,” 146

“On the Motion of Celestial Bodies,” 31

“On the Visualizable Content of Quantum-

Theoretical Kinematics and

Mechanics,” 55

Operational standard, 126, 127

Operator’s inaccurate performance,

errors due to, 51

Optical measurements, 11, 12, 19

Order scale, 4
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Ordinary MPs vs. metrological MPs, 15

OSI, 129

Outlier(s), 81, 170, 183, 187

definition, 73

elimination, 73–75

Output quantity, evaluation of, 61, 63–65

P

Parallel measurement, 77

Pearson “chi-square” test, 75

Personal measurement error. See Subjective
measurement error

Physical–chemical measurements, quantities

and units of, 120–122

Physical constants, 9, 49, 50, 89, 113–116,

122, 125, 146

Physical quantity, 1–2, 6, 16, 23, 112

Physico-technical Institute (PTB), 145–146

Planck’s constant, 55, 113, 114, 122

Power mean, 31

Precision, 180

angle measurement, 19

estimation, 185

of measurements, 23

verification, 186

Primary MTs, 16

Primary standard, 126–128, 132

Probability

confidence probability, 59

coverage probability, 59

density, 29, 31, 39–41, 137, 138

of measurement results, 32

properties, 33

of random variable, 28, 30

of failure-free operation, 160, 170–172

measurement error for, 24

of metrological serviceability, 166–169

of random variable, 28

Probability moments, 29

Probability theory, 27–30

Property, 1

Property–input signal type, MT of, 17

Pseudonym distribution (Gosset), 40

PTB. See Physico-technical Institute (PTB)

Q

Quantiles, 30, 34, 41, 59, 66, 79, 97, 173,

175–177, 186, 189

Quantity(ies), 1, 11, 17–19

base, 112

derived, 112

dimensional, 118, 119

dimensionless, 119

estimated, 2–3

homogeneous, 3, 5, 10, 11, 13, 16

ideal, 1

magnitude, 3

measured, 2–3

non-homogeneous, 122

non-physical, 1–2

numerical value, 3

physical, 1–2, 23

real, 1–2

reference scales, 4–6

system, 112

true value, 23

units of measurement, 3

value, 3

Quantity-value scale, 4

Quartz oscillator, 17

Quasi-outlier, 73–75

R

Radio-frequency optical bridges

(ROFBs), 114

Random measurement error, 20, 26–27, 31,

58, 59, 78, 115, 137, 189, 191, 192

distribution, 33

generalized normal distribution law,

34–38

normal distribution law, 30–34

probability theory, 27–30

statistical distributions, 38–41

distribution mean, 31

main source, 34

Random values, distribution law of, 31

Random variable

dispersion, 29

mean, 29

probability, 28, 30

probability density, 28

Rank scale. See Order scale
Ratio scale, 5

RB. See Residual bias (RB)
Real quantities, 1–2

Recording devices, 20

Reduction method, 96–97

Reference data, 9, 19, 61, 62, 146

Reference scales for quantities, 3–6

Reference standard, 131

Reference value, 150

Regional metrological organizations

(RMOs), 147, 148, 152, 154
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Regression

differential equation, 161, 162

properties, 162

Relative measurement, 9–10

Relative measurement error, 24–25

Relative measurement indeterminacy, 58

Reliability, 157, 159–167, 170, 172, 174, 191

Repeatability

definition, 181

dispersion, 184, 186

standard deviation, 181, 183, 193

Repeatability indices, applicability of, 194–195

Repeatability limit, 181

application, 188–191

standard deviation, 193

Reproducibility

definition, 181

dispersion, 184, 186

estimation, 186

standard deviation, 181, 183

Reproducibility limit, 181, 188–191

Reproducing distribution, 33

Residual bias (RB), 26

Residuals, 97–100, 102, 103, 107

RF Ministry of Industry and Energy, 146

RMO Consultative Committees, 150

RMOs. See Regional metrological

organizations (RMOs)

ROFBs. See Radio-frequency optical bridges

(ROFBs)

Rostekhregulirovaniye. See Federal Agency for

Technical Regulation and Metrology

S

Salinity measurements, 3

Sampling units/sample preparation units, 17

Sapfir22DAinstruments,verificationof,177–178

Scale and time transformation, 16

Scale transformation (linear/non-linear), 16

Scientific Research Institute for Standard

Reference Data (NIISSD), 19

SD. See Standard deviation (SD)

Secondary standards, 126–128

Second, definition of, 114

Second-order statistical error, 136, 137

Second-order working standards, 128

Secretary of State for Trade and Industry, 145

Sena, L.A., 121

Sensor, 16

Sets of measures, 18

Sharply divergent results/outliers, 73

Shirokov, K.P., 6, 124

SI. See International system of units (SI)

Single measurement, 7–8

Single-valued measures, 18

Skewness, 36, 38

Special standards, 128

SSRS. See State standard reference
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