
Anthony Gray

 Swift
Pocket
Reference
PROGRAMMING FOR iOS AND OS X

2nd Edition

Covers Swift 2.1

Anthony Gray

Swift Pocket Reference
SECOND EDITION

978-1-491-94007-5

[M]

Swift Pocket Reference
by Anthony Gray

Copyright © 2016 Anthony Gray. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://safaribook‐
sonline.com). For more information, contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Colleen Lobner
Proofreader: Christina Edwards
Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

December 2014: First Edition
November 2015: Second Edition

Revision History for the Second Edition
2015-11-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491940075 for release
details.

While the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellec‐
tual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491940075

Table of Contents

Introduction 1
Conventions Used in This Book 2
Using Code Examples 2
Safari® Books Online 3
How to Contact Us 4
Acknowledgments 5
Getting Started with Swift 2 5
A Taste of Swift 12
Basic Language Features 14
Types 18
Variables and Constants 23
Tuples 27
Operators 30
Strings and Characters 39
Arrays 48
Dictionaries 57
Sets 62
Functions 68
Closures 75
Optionals 81

iii

Program Flow 88
Classes 106
Structures 139
Enumerations 144
Access Control 151
Extensions 155
Checking and Casting Types 158
Protocols 162
Memory Management 187
Generics 193
Operator Overloading 201
Ranges, Intervals, and Strides 206
Global Functions 210
Changes From Swift 1.0 215
Index 217

iv | Table of Contents

Swift Pocket Reference

Introduction
Swift is an exciting new language from Apple, first announced
at the Apple Worldwide Developers Conference (WWDC)
in June 2014. The language started life as the brainchild
of Chris Lattner, director of Apple’s Developer Tools depart‐
ment, and is the next step in the evolution of Apple’s software
development ecosystem.

Swift brings with it many modern language features, including
type safety, generics, type inference, closures, tuples, protocols,
automatic memory management, and support for Unicode (for
character and string values as well as for identifiers). You can
use a mixture of Swift and Objective-C in a single project, and
either language can call APIs implemented in the other.

The challenge for anyone learning or writing about Swift is that
the language is still evolving. When they introduced it, Apple
stated that the language specification was not final, and that the
syntax and feature set would change. Since the initial release,
there have been two significant updates (versions 1.2 and 2.0),
both of which introduced new features, and in some cases
changed existing features. Fortunately, Xcode can detect most
of the cases where your code is using an older syntax or feature,
and offers hints at what to change to address this.

1

Despite the uncertainty of a changing language, Swift continues
to show great promise. It follows on from the company’s other
major developer tools initiatives (all led by Lattner) including
LLVM, Clang, LLDB, ARC, and a series of extensions to
Objective-C, and it’s clear that Apple sees it as the future lan‐
guage of choice for iOS and OS X software development.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state‐
ments, and keywords.

Constant width bold

Shows commands or other text that should be typed liter‐
ally by the user.

Constant width italic

Shows text that should be replaced with user-supplied val‐
ues or by values determined by context.

NOTE

This element signifies a general note.

Using Code Examples
You can download code samples that accompany this book at
https://github.com/adgray/SwiftPocketReference2ndEd.

2 | Swift Pocket Reference

https://github.com/adgray/SwiftPocketReference2ndEd/

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing
this book and quoting example code does not require permis‐
sion. Incorporating a significant amount of example code from
this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For
example: “Swift Pocket Reference by Anthony Gray (O’Reilly).
Copyright 2016 Anthony Gray, 978-1-491-94007-5.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at permis‐
sions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand
digital library that delivers expert
content in both book and video form

from the world’s leading authors in technology and busi‐
ness.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books
Online as their primary resource for research, problem solving,
learning, and certification training.

Safari Books Online offers a range of plans and pricing for
enterprise, government, education, and individuals.

Safari® Books Online | 3

mailto:permissions@oreilly.com
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Members have access to thousands of books, training videos,
and prepublication manuscripts in one fully searchable data‐
base from publishers like O’Reilly Media, Prentice Hall Profes‐
sional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley &
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and
hundreds more. For more information about Safari Books
Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam‐
ples, and any additional information. You can access this page
at http://bit.ly/swift_pocket_ref_2e.

To comment or ask technical questions about this book, send
email to bookquestions@oreilly.com.

For more information about our books, courses, conferences,
and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

4 | Swift Pocket Reference

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/swift_pocket_ref_2e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank fellow O’Reilly author Paris Buttfield-
Addison for urging me (repeatedly) to write this book. He and
his partner-in-crime, Jon Manning, suffer from boundless opti‐
mism and seem to regard “no” as a challenge rather than as a
defeat. I’d also like to thank Rachel Roumeliotis and the other
fine folk at O’Reilly for having faith in me and for shepherding
the project (and the update) through to completion. Special
thanks also go to the readers of the early release editions, who
took the time to provide feedback and suggestions for improve‐
ment, for which I’m deeply grateful.

Getting Started with Swift 2
To code in Swift 2, you should be using Xcode 7 or later (avail‐
able for free on the Mac App Store), which runs on either OS X
10.10 (Yosemite) or OS X 10.11 (El Capitan). You might also
consider signing up as a registered Apple developer (with free
and paid tiers) to gain access to a wealth of documentation and
other developer resources at https://developer.apple.com.

You can use the version of Swift built into Xcode 7 to compile
programs that will run on OS X 10.9 or higher, and on iOS 7
or higher.

After you have downloaded and installed Xcode 7, go ahead
and run it and allow it to install the various tools it comes bun‐
dled with. When installation is complete, there are a number of
ways you can get started with Swift:

• Click File → New Project to create a new Xcode project.
The project wizard opens and offers you the choice
of using Swift or Objective-C as the language for the
project.

• Click File → New Playground to create a new playground
document. Playgrounds are single-window dynamic
environments in which you can experiment with Swift

Acknowledgments | 5

https://developer.apple.com

language features and see results instantly alongside the
code you enter.

• Create a Swift script and run it from the command line in
the OS X terminal.

• Use the Swift Read-Evaluate-Print-Loop (REPL) in the
OS X terminal.

Let’s look at the REPL, Swift scripting, and playgrounds in
more detail.

NOTE

As of this writing, some features of Swift and Xcode 7 are
still unstable, but the situation improves with each release.
Occasionally, you might need to quit and restart Xcode to
get it back to a sensible state.

The Swift REPL
The Swift REPL provides command-line access to Swift and
behaves like an interpreter. You can declare variables and con‐
stants, define functions, evaluate expressions, and use most
other language features; they will be compiled and executed
immediately.

Multiple Xcode installations
If you have more than one installation of Xcode on your com‐
puter, you will need to use the xcode-select command to
choose the Xcode 7 environment as the active developer direc‐
tory. In the terminal, type the following command:

sudo xcode-select -s /Applications/Xcode.app

When prompted, provide your administrator username and
password. If you have installed Xcode in a different location or

6 | Swift Pocket Reference

changed its name, replace the path in the command with the
location and name of your installed release.

Starting the REPL
To start the REPL so you can test Swift language features, use
the following command:

xcrun swift

If you’ve never used Xcode before, you might see an authenti‐
cation prompt from a process called Developer Tools Access (see
Figure 1), prompting you for a username and password. You
will need to enter an administrator username and password to
continue. After you enter these, you might see the following
error message:

error: failed to launch REPL process: process
exited with status -1 (lost connection)

At this point, type the xcrun swift command again. This time,
the REPL should start normally.

Figure 1. The Developer Tools Access prompt

When the REPL starts, you will see the following output:
Welcome to Swift! Type :help for assistance.
 1>

Getting Started with Swift 2 | 7

You’re now ready to try your first code in Swift. Try the
print function:

 1> print ("Hello, World")
Hello, World
 2>

The REPL is a great way to test Swift features and experiment
with the language.

Swift as a Scripting Language
You can use Swift as a scripting language, much like Perl,
Python, or Ruby. To use Swift in this manner, ensure the first
line of the script contains the path to the Swift “interpreter.” If
you want to try using Swift this way, type the following into a
text file named hello.swift:

#!/usr/bin/swift

print ("Hello, World")

Next, ensure the script is marked as executable with a chmod
command:

chmod u+x hello.swift

Now, run the script as follows:
./hello.swift

Swift will compile your program, and assuming there are no
syntax errors, will execute it.

Swift Playgrounds
To explore Swift in a playground, on the Xcode menu bar, click
File → New Playground, or click the “Get started with a play‐
ground” option in the Welcome to Xcode window.

You are then prompted to enter a playground name (which
becomes the saved document’s name) and a platform (iOS or
OS X), as demonstrated in Figure 2.

8 | Swift Pocket Reference

Figure 2. Creating a Swift playground

Once you’ve entered your playground name and selected your
platform, click Next. You will then be prompted to select a loca‐
tion to which to save the file. When the file has been saved, you
see the initial playground window, as shown in Figure 3.

Figure 3. The initial playground window

The playground template imports either the Cocoa or UIKit
Framework, depending on whether you selected OS X or iOS
as your playground platform. This means you can experiment
not just with basic Swift language features, but also with many

Getting Started with Swift 2 | 9

of the features provided by the framework, such as drawing
views and images, and even implementing basic animations.

The playground also displays a line of code:
var str = "Hello, playground"

To the right of that code is the value “Hello, playground.” This
demonstrates one of the most useful features of the play‐
ground: the result of every expression displays alongside it in
the results sidebar.

Below the existing text, type the following:
for var i=0; i<10; i++ {
 print (i)
}

The results sidebar now displays the text “(10 times)” to con‐
firm the number of executions of the loop.

If you hover the pointer over the entries in the results sidebar
(Figure 4), you’ll see two symbols. The eye-like symbol pro‐
vides a Quick Look view of the value (this includes viewers for
complex data such as strings, arrays, dictionaries, images,
views, URLs, and more). The button symbol opens a Result
view in line with the Swift code that generated it (Figure 5).

Figure 4. Accessing Quick Look and the Result view from the
results sidebar

10 | Swift Pocket Reference

Figure 5. Showing a Results view in line with Swift code

Note that a Results view generally only shows the last result
that was generated (9, in the case of the for loop). If you right-
click in a Results view you’ll expose a menu that allows you to
choose between the latest value and the value history.

The Debug Area (Figure 6) shows you console output (e.g., text
output by the print function). To show the Debug Area, click
the small upward-pointing triangle inside the square box at the
lower-left of the Playground window.

Figure 6. The Debug area showing console output

You can also open the Debug Area by going to the Xcode menu
bar and clicking View → Debug Area → Show Debug Area, or
you can use the keyboard shortcut Command-Shift-Y.

Getting Started with Swift 2 | 11

NOTE

For an excellent introduction to playgrounds, see the
recording of session 408 (Swift Playgrounds) from the
2014 Worldwide Developers Conference, and session 405
(Authoring Rich Playgrounds) from the 2015 Worldwide
Developers Conference.

A Taste of Swift
Let’s dive right in. What follows is a simple program written in
Swift. Work through carefully to get a sense of some of the fea‐
tures of the language.

The first thing the program does is define a pair of arrays: one
named users, and another named ages for those users. This is
meant to represent raw input of disassociated data that needs to
be merged and then used as the basis of a report:

// some raw data to process
var users = ["xavier", "ryan", "brenda", "james", "sarah"]
var ages = [32, 28, 24, 41, 19]

The next section of code is a pair of extensions to the String
type. Swift has built-in support for Unicode strings, but it also
has a very flexible extension mechanism with which you can
add new features to the language—even to built-in types. The
extension adds two new member functions to the String type
that can take a string and return a copy that is padded with
leading or trailing spaces to a specified width:

// add some extensions to the String type
extension String
{
 func leadingSpaces(width: Int) -> String
 {
 var s = String(self)
 for i in s.characters.count..<width {
 s = " " + s
 }
 return s
 }

12 | Swift Pocket Reference

http://bit.ly/2014_wwdc
http://bit.ly/2015_wwdc
http://bit.ly/2015_wwdc

 func trailingSpaces (width: Int) -> String
 {
 var s = String(self)
 for i in s.characters.count..<width {
 s = s + " "
 }
 return s
 }
}

Next, a dictionary merged is declared. This is an associative
array of key/value pairs to store each user’s name and age. The
variable totalAge is also declared, to store the sum of all of the
ages so that later the average age of all users can be calculated:

// a dictionary to store merged input
var merged = [String: Int]()
var totalAge = 0.0

With the dictionary defined, the next step is to iterate over the
two input arrays, merging them into the merged dictionary. The
dictionary utilizes the user’s name as the key and the user’s age
as the value:

// merge the two arrays into a dictionary
for var i=0; i < ages.count; i++ {
 merged[users[i]] = ages[i]
}

At this point the dictionary contains all of the raw input, and
it’s time to generate a report. We want to list the users in sorted
order, and print each user’s age along with their name using
trailing and leading spaces so the names are left-aligned under
one another and the ages are right-aligned:

// interate over the dictionary in sorted order
// and generate a report
for user in merged.keys.sort() {
 let age = merged[user]!
 totalAge += Double(age)
 let paddedUser = user.trailingSpaces(10)
 let paddedAge = "\(age)".leadingSpaces(3)
 print ("\(paddedUser) \(paddedAge)")
 }

A Taste of Swift | 13

print (merged.count, "users")
print ("average age:", totalAge / Double(merged.count))

The output of the program looks like this:
brenda 24
james 41
ryan 28
sarah 19
xavier 32

5 users
average age: 28.8

If you’ve followed along, you should have a good sense of some
of the language’s capabilities. You’ve already been exposed to
comments, arrays and dictionaries, various loop types, type
conversion, function calls, extensions, string interpolation, and
console output.

The remainder of this book will take you on a tour of these top‐
ics and all of the major aspects of the Swift language. Generally,
the intention is to cover basic features before more advanced
features, but at times it is necessary to dip into advanced topics
early on. When this happens, we’ll try to warn you in advance
and point to where you can find more coverage.

Finally, note that this book is about the Swift language, not
about iOS or OS X development. O’Reilly has some excellent
titles that cover using Swift in those broader contexts, but the
examples and discussion you’ll find here are deliberately limi‐
ted to pure Swift as much as possible.

Basic Language Features
Before delving into the specifics of the language such as data
types or program flow, let’s take a look at some of the more
general aspects of Swift source code.

14 | Swift Pocket Reference

Comments
Swift supports C-style comments. Comments that extend to the
end of the current line begin at a double forward-slash, as illus‐
trated here:

// this is a comment
print ("Hello, world") // really?

For multiline comments, you enclose them between a forward-
slash followed by an asterisk at the beginning and end them
with an asterisk followed by a forward-slash, as shown in
the following:

/*you could be excused when looking at this comment
for thinking that it was written in C! */

Unlike C, Swift supports multiline comment nesting. Swift
treats the following as a nested comment block, whereas tradi‐
tional C compilers will report an error at the last */:

/*
/* Original comment here */
*/

Multiline comment nesting makes it possible for you to define
blocks of commented code using the /* and */ comment mark‐
ers without having to first check whether an inner multiline
comment block exists.

Semicolons
Semicolons in Swift are only required when you need to sepa‐
rate multiple statements on a single line. They are not required
at the end of a statement if that is the last statement on the line
(but it is not an error to use them):

var a = 45; // semicolons are optional
var b = 55

Whitespace
Swift uses whitespace to separate tokens, but whitespace has no
other intrinsic meaning. Whitespace include spaces, tabs, line

Basic Language Features | 15

feeds, carriage returns, vertical and horizontal tabs, and the
null character.

Because whitespace is ignored, you can use line breaks to split
long lines at token boundaries. Thus, the following two state‐
ments are equivalent:

var a = 45

var a
=
45

There is no formal way to split a long string over multiple lines
as there is in C or Objective-C, but strings can be concatenated
by using the + operator. So, you could split a long string
like this:

let longstr = "Hello there this is a very " +
 "long string split over two lines"

Naming Conventions
There are some conventions in relation to naming entities you
are strongly urged to follow. The principal conventions are:

• Names for classes, structures, enumerations, protocols,
and types should begin with an uppercase letter, and use
camel case for the remainder of the name.

• Names for functions, methods, variables, and constants
should begin with a lowercase letter, and use camel case
for the remainder of the name.

Importing Code from Other Modules
In C-like languages, the usual way to use code from other parts
of a project or from libraries or frameworks is by using the
#include directive. When placed in a source file, this directive
instructs the compiler to read a header file into the compilation
process.

16 | Swift Pocket Reference

The header file declares what classes, methods, functions, and
external variables are provided by the external code, and are
therefore valid to call or access in the source file that hosts the
#include directive. The feature provided by the code, or links
to it, are linked into the executable file at the last stage of the
compilation process by a program called a linker.

Swift does away with header files and the need to include them.
Instead, Swift uses the import command, which imports the
definitions made available by another module.

The basic syntax is as follows:
import ModuleName
import Cocoa

Used in this way, everything that ModuleName makes public is
imported.

If a module provides submodules, you can import a specific
submodule, with this syntax:

import ModuleName.SubmoduleName
import Foundation.NSDate

If you only want to import a single feature from a module, use
this syntax:

import Feature ModuleName.SymbolName
import func Darwin.sqrt

This last directive imports just the sqrt function from the
Darwin module. Feature describes the type of the entity to be
imported; the type can be one of the following: class, enum,
func, protocol, struct, typealias, or var (all of which are
described throughout the remainder of this book).

You can import most of the standard OS X and iOS frame‐
works into a Swift project, including, for example, AppKit,
Cocoa, CoreData, Darwin, Foundation, UIKit, and WebKit.
Refer to Apple’s documentation on OS X and iOS for
more information on these and other frameworks at https://
developer.apple.com.

Basic Language Features | 17

https://developer.apple.com
https://developer.apple.com

In most applications, you’ll only need to import Cocoa (for OS
X applications) or UIKit (for iOS applications), because they in
turn import most other modules that are normally required for
these application types.

If you are using the Xcode editor, you can see what additional
submodules these modules import or make available by hold‐
ing down Command-Option and simultaneously clicking the
module name in the line that imports that module.

Types
Swift supports the standard data types you would expect in a
modern programming language. These are listed in Table 1.

Table 1. Supported data types in Swift

Data Type Description

Bool Boolean value (true, false)

Int Signed integer value

UInt Unsigned integer value

Double Double-precision (64-bit) floating-point value

Float Single-precision (32-bit) floating-point value

Character A single Unicode character

String An ordered collection of characters

Specific Integer Types
Int and UInt are 32- or 64-bit values, as determined by the
underlying platform. Swift also supports integer types of spe‐
cific size (and hence numeric range). Table 2 shows the range
of values for each type.

18 | Swift Pocket Reference

Table 2. Specific integer types and their value ranges

Name Type Range

Int8 Signed 8-bit integer –128 to 127

UInt8 Unsigned 8-bit integer 0 to 255

Int16 Signed 16-bit integer –32,768 to 32,767

UInt16 Unsigned 16-bit integer 0 to 65,535

Int32 Signed 32-bit integer –2,147,483,648 to 2,147,483,647

UInt32 Unsigned 32-bit integer 0 to 4,294,967,295

Int64 Signed 64-bit integer –263 to 263–1

UInt64 Unsigned 64-bit integer 0 to 264–1

You can determine the maximum and minimum values that
can be stored by each integer type by using the max and min
properties, as demonstrated in the following example:

UInt8.max // returns 255
Int16.min // returns -32768

Numeric Literals
Numeric literals can be expressed in decimal, binary, octal, or
hexadecimal, as presented in Table 3.

Table 3. Expressing numeric literals

Prefix Base Example(s)

None Decimal 17, 1024, 2.767, 2.5e2

0b Binary 0b10001011

0o Octal 0o213

0x Hexadecimal 0x8C, 0x4.8p2

When using numeric literals, also note the following:

• Floating-point literals may be followed by an optional
exponent, which is expressed with an e for decimal

Types | 19

floating-point literals, or a p for hexadecimal
floating-point literals, which is in turn followed by the
exponent itself, in decimal. For example, e3 represents a
decimal exponent that multiplies the mantissa by 103,
and p4 represents a hexadecimal exponent that multiplies
the mantissa by 24. Examples include 2.7e4, which equa‐
tes to 2.7 x 104, and 0x10.4p2, which equates to 0x10.4 x
22 (the decimal equivalent being 16.25 x 22).

• To be inferred as a floating-point value, a literal without
an exponent must have a decimal point with digits on
either side. The presence of an exponent removes the
requirement for a decimal point if it is not needed (e.g.,
5e2 evaluates to 5.0 x 102).

• Numeric literals can include underscores (but not com‐
mas) to aid readability. 1_000_000 and 1_00_00_00 are the
same as 1000000.

• Floating-point literals are treated as Double values, unless
they are used in a Float context.

Character and String Literals
Character literals are single characters surrounded by double
quotes (unlike C-based languages, in which single quotes are
used), as shown here:

"A"
"B"
"!"

String literals are character sequences surrounded by double
quotes:

"Hello, World"

The compiler cannot distinguish between a character literal
and a single-character string literal. Literals enclosed in double
quotes are treated by the compiler as strings, unless they appear
in a character context, such as in assignment:

20 | Swift Pocket Reference

let someChar: Character = "C"
// "C" is treated as a character literal
var c: Character
c = "A"
// "A" is treated as a character literal

Type Aliases
The typealias keyword defines an alternative name for an
existing type. The following example equates the identifier Byte
with the type UInt8:

typealias Byte = UInt8

After this declaration, Byte can then be used as a type anywhere
that UInt8 can be used, such as in the following example:

var acc: Byte = 64

Aliases can be created for any type, including for example,
function types:

typealias DoubleInDoubleOut = (Double) -> Double

This creates a type alias for a function that takes one parameter
of type Double, and returns a result of type Double. This alias
can be used anywhere this function signature would normally
be written, as in the following example:

var f: DoubleInDoubleOut = {
 return $0 * $0
}
f(12.0)
// returns 144.0

See also the sections “Tuples” on page 27, “Functions” on page
68, and “Protocols” on page 162 for related examples of type
aliases.

Nested Types
Swift supports the definition of types within types, as shown in
this example:

class A
{

Types | 21

 class B
 {
 var i = 0
 }
 var j = B()
 var k = 0
}

Although you can use such nested definitions to provide utility
classes, structures, or enumerations to support the implementa‐
tion of the outer class, the nested type definitions are visible
outside the class as well. For the preceding definition, you can
create instances of A and B as follows:

var a = A()
var b = A.B()
a.j.i = 2
b.i = 5

If a class contains a nested enumeration, as follows:
class C
{
 enum TravelClass
 {
 case First, Business, Economy
 }

 // rest of class definition
}

then the enumeration can be accessed outside the class by spec‐
ifying the “path” to the enumeration values, as follows:

var t = C.TravelClass.First

Other Types
In addition to the types already discussed, you can use many
other Swift language elements in a type context, or they can
behave as types. These include classes, structures, enumera‐
tions, functions, and protocols. These topics are covered in
later sections of this book.

22 | Swift Pocket Reference

Variables and Constants
Variables and constants must be declared before you use them.

You declare variables by using the var keyword, followed by
the variable’s name, a colon, and then its type, as shown here:

var name: Type
var anInt: Int
var aStr: String
var aChar: Character

You can assign values to variables at the same time you declare
them:

var anotherInt: Int = 45
var anotherStr: String = "Frodo"

Swift uses type inferencing, which means you don’t need to
specify a variable’s type if you assign that variable a value when
you declare it:

var someInt = 45
var someDouble = 23.0, someStr = "Strings too"

You declare constants by using the let keyword. They look like
variables because of the way they are created and used, but they
are immutable—meaning they cannot be changed. Because a
constant cannot be changed, it must be assigned a value when
it is declared (the exception is for constant properties in classes
and structures, which can have their value assigned during ini‐
tialization—see “Classes” on page 106 and “Structures” on page
139 for more information):

let name: Type = expr
let constFloat: Float = 23.1
let constStr: String = "Bilbo"

As with variables, the type of a constant will be inferred from
the value you assign to it, so in most circumstances, you do not
need to specify the type:

let someConstFloat = 23.1
let someConstStr = "Bilbo"

Variables and Constants | 23

You can declare the type explicitly for circumstances in which
the inferred type is not desired. This is useful when you want to
declare a Character type where String might otherwise be
inferred, or a Float type where a Double might be inferred, as
illustrated here:

let c: Character = "A"
// "A" is otherwise inferred to be a String
let f: Float = 3.14159
// 3.14149 is otherwise inferred to be a Double

The names of variables and constants can contain most Uni‐
code and other characters. They cannot begin with a number.

Some keywords are reserved for specific language features, and
you cannot use them as identifiers for variables and constants.
Examples include class, func, let, var, and so on. However, if
you enclose a keyword with backticks, you can use it as an
identifier, like this:

var func = 4 // not allowed – func is reserved
var `func` = 4 // allowed

Despite this, you should be wary of using backticks as a means
of using keywords as identifiers. A best practice is to avoid
using reserved keywords at all.

Computed Variables
A computed variable is not a variable in the usual sense—it is
not a value that is stored in memory and read whenever it is
referenced in an expression or during assignment. Instead,
computed variables are functions that look like variables.

A computed variable contains two functions: a getter (identified
with the keyword get, which returns the computed value) and
a setter (identified with the keyword set, which might initialize
the conditions that affect the value returned by the getter). The
declaration looks as follows:

var variableName: someType {
 get {
 // code that computes and returns
 // a value of someType

24 | Swift Pocket Reference

 }
 set(valueName) {
 // code that sets up conditions
 // using valueName
 }
}

The valueName is optional; you use it inside the code that
implements the setter to refer to the value passed into the set
method. If you omit it, the parameter can be referred to using
the default name of newValue.

The setter is optional, and for most practical uses, you would
not use it. If you don’t use the setter, the get clause is not
required, and all that is required is code to compute and return
a value.

var variableName: someType {
 // code that computes and returns a value
}

When a computed variable is defined, it is used exactly like any
other variable. If its name is used in an expression, the getter is
called. If it is assigned a value, the setter is called:

var badPi: Float {
 return 22.0/7.0
}

let radius: Float = 1.5
let circumference = 2.0 * badPi * radius

As global or local variables, computed variables would appear
to be of limited use, but the same syntax can also be used for
properties in structures and classes. In this context, as compu‐
ted properties, the feature becomes more useful. For more
information about computed properties, see the section “Prop‐
erties” on page 110.

Variable Observers
Variable observers are functions (or methods) you can attach to
variables and that are called when the value of the variable is
about to change (identified with the willSet keyword) or after

Variables and Constants | 25

it has changed (identified with the didSet keyword). The decla‐
ration looks as follows:

var variableName: someType = expression {
 willSet(valueName) {
 // code called before the value is changed
 }
 didSet(valueName) {
 // code called after the value is changed
 }
}

When variable observers are used with global and local vari‐
ables, the type annotation is required, as is the expression used
to initialize the variable.

Both valueName identifiers (and their enclosing parentheses)
are optional.

The willSet function is called immediately before the value of
the variable is about to be changed. The new value is visible
inside willSet as either valueName or newValue if valueName was
not specified. The function is unable to prevent the assignment
from happening and unable to change the value that will be
stored in the variable.

The didSet function is called immediately after the value of the
variable has been changed (except for after the initial assign‐
ment). The old value of the variable is visible inside didSet as
either valueName or oldValue if valueName was not specified:

var watcher: Int = 0 {
 willSet {
 print("watcher will be changed to", newValue)
 }
 didSet {
 print("watcher was changed from", oldValue)
 }
}

The didSet function can modify the value of the observed vari‐
able without willSet or didSet being called recursively, so you
can use didSet to act as a guard or validator of values stored in

26 | Swift Pocket Reference

the variable. Here is an example of using didSet to ensure an
integer variable can only have an even value:

var onlyEven: Int = 0 {
 didSet {
 if ((onlyEven & 1) == 1) { onlyEven++ }
 }
}

It is not necessary to define both didSet and willSet functions
if only one of them is required.

You can use the same syntax that is used for variable observers
for properties in structures and classes, creating property
observers. See “Properties” on page 110 for more details.

Tuples
A tuple is a group of values you can treat as a single entity.
Tuples are enclosed in parentheses, with each element separa‐
ted by a comma. Table 4 provides a few examples.

Table 4. Tuple examples

Tuple Description

(4, 5) A tuple with two integer parts

(2.0, 4) A tuple with a double-precision floating-point part and
an integer part

("Hello", 2, 1) A tuple with a string part and two integer parts

The collection of types of each component of the tuple, in
order, is considered to be the type of the tuple.

The type of each tuple in Table 4 is as follows:
(Int, Int)
(Double, Int)
(String, Int, Int)

You can store a tuple in a variable or constant of that tuple’s
type, or pass it to or from functions for which that tuple’s type
is acceptable.

Tuples | 27

NOTE

Although they are useful for storing temporary or related
values in a single container, tuples are not an appropriate
method for storing structured, complex, or persistent data.
For such cases, consider using dictionaries, classes, or
structures instead.

Tuple Variables and Constants
To create a variable or constant that stores a tuple, you list the
tuple’s component types inside parentheses where you would
usually specify the type, as shown in the following:

var a: (String, Int) = ("Age", 6)
let fullName: (String, String) = ("Bill", "Jackson")

Because Swift uses type inferencing, the tuple type can be infer‐
red if the variable or constant is initialized when it is declared.
In the following example, there is no need to specify that the
tuple’s type is (String, Int, String), because it is inferred by
the compiler:

var loco = ("Flying Scotsman", 4472, "4-6-2")

Extracting Tuple Components
Much like arrays, you can access tuple components by position,
with the first component having an index of 0:

var loco = ("Flying Scotsman", 4472, "4-6-2")
let name = loco.0 // assigns "Flying Scotsman"
let number = loco.1 // assigns 4472

Naming Tuple Components
You can name tuple components and then access them by those
names. This example names the first component of the tuple
name and the second component age:

var person: (name: String, age: Int)
person.name = "Fred"

28 | Swift Pocket Reference

person.age = 21
let c = person.age

let result = (errCode: 56, errMessage:"file not found")
var s = result.errMessage
// s is now the string "file not found"

Using Type Aliases with Tuples
You can use type aliases to associate a type identifier with a
tuple type, and that alias can then be used to create new instan‐
ces of that tuple type:

typealias locoDetail =
 (name: String, number: Int, configuration: String)
var thomas: locoDetail = ("Thomas", 1, "0-6-0")

Or a function could return a tuple of that type (see also “Func‐
tions” on page 68), as demonstrated here:

func getNextLoco() -> locoDetail
{
 // do something then return a value of type locoDetail
}

Type inferencing works with type aliases, so in
var anEngine = getNextLoco()

the variable anEngine will also be of type locoDetail.

Tuples as Return Types
Tuples are a convenient way to return more than one value
from a function or method call.

Consider a function that, on each successive call, returns the
next line of text from a file. At some point, the end of the file
will be reached, and this needs to be communicated to the
caller. The end-of-file state needs to be returned separately to
the line of text itself, and this is a natural fit for a tuple:

func readLine () -> (Bool, String)
{
 …
}

Tuples | 29

The function could even name the tuple parameters, as is
done here:

func readLine () -> (eof: Bool, readLine: String)
{
 …
}

Using tuples in this way produces a more natural expression
and avoids more opaque techniques to test if the end-of-file
was reached.

Operators
Operators are symbols that represent some operation to be
applied to values (usually expressed as literals, variables, con‐
stants, or expressions). Examples of well-known operators
include the plus sign (+), which normally represents addition
(or, in the case of strings, concatenation), and the minus sign
(–), which represents subtraction.

Operators are often characterized as unary (which operate on a
single value), binary (which operate on two values), or ternary
(which operate on three values).

The Swift language supports operator overloading, so it is
important to remember that the actual operation performed by
an operator will be determined by the type of data to which it is
applied. The descriptions that follow relate to the default
behavior. (See also “Operator Overloading” on page 201.)

No Implicit Type Conversion
Before considering the specific operators supported by Swift,
you should note that Swift does not do implicit type conver‐
sion. This means the following will not compile, because the
operands f and i are of different types (one is a Double, one is
an Int):

var i = 2
var f = 45.0
let errResult = (f / i) // error

30 | Swift Pocket Reference

Unlike C-based languages, Swift will not do implicit type
conversion in expressions—you must explicitly convert
operands to the desired type. For numeric types, that means
treating the type as a function, and the operand to be converted
as its argument:

let result = (f / Double(i))

It is also important to note that Swift’s type inference rules
will treat a floating-point literal as a Double, unless it is used to
initialize a variable of type Float. In the preceding example, f is
inferred to be a Double, not a Float, so i must be cast to a
Double.

Arithmetic Operators
The standard binary arithmetic operators in Swift are the same
as in other languages:

+
Addition (or string concatenation, if both operands are
strings)

-
Subtraction

*
Multiplication

/
Division

%
Remainder

NOTE

Unlike other languages, Swift does not allow an overflow
or underflow using these operators. If such an overflow or
underflow occurs, the program will terminate (or the issue
will be flagged ahead of time by the compiler, if possible).
For more information about this, see the section “Overflow
Operators” on page 35.

Operators | 31

++
Pre- or post-increment

--
Pre- or post-decrement

As with C, these last two unary operators will increment or
decrement a variable of Int, Float, or Double type. They also
return a value. When you use them as a prefix (the operator
appears to the left of the operand), they return the new (incre‐
mented or decremented) value. When you use them as a post‐
fix (the operator appears to the right of the operand), they
return the original (pre-increment or pre-decrement) value.

Bitwise Operators
The following operators are used with integer data types and
permit bit-level manipulation:

~ (~A)
Bitwise NOT; inverts all bits in a number

& (A & B)
Bitwise AND of A and B

| (A | B)
Bitwise OR of A and B

^ (A ^ B)
Bitwise XOR of A and B

<< (A << B)
Bitwise left-shift of A by B bits

>> (A >> B)
Bitwise right-shift of A by B bits

When the left operand is an unsigned type, the left-shift and
right-shift operators always shift in new bit values of zero.

When the left operand is a signed type, the left-shift and right-
shift operators preserve the sign bit at all times. The left-shift
operator always shifts in new bit values of zero, whereas the
right-shift operator always shifts in new bits with the same
value as the sign bit.

32 | Swift Pocket Reference

Assignment Operators
Other than the regular assignment operator (=), all of the other
operators described here are compound assignment opera‐
tors (i.e., they combine another operation, such as addition or
subtraction, with an assignment):

=
Assignment

+=

Add and assign (a += n is equivalent to a = a + n)
-=

Subtract and assign (a -= n is equivalent to a = a - n)
*=

Multiply and assign (a *= n is equivalent to a = a * n)
/=

Divide and assign (a /= n is equivalent to a = a / n)
%=

Remainder and assign (a %= n is equivalent to a = a % n)
<<=

Bitwise left-shift and assign (a <<= n is equivalent to
a = a << n)

>>=

Bitwise right-shift and assign (a >>= n is equivalent to a =
a >> n)

&=

Bitwise AND and assign (a &= n is equivalent to
a = a & n)

|=

Bitwise OR and assign (a |= n is equivalent to a = a | n)
^=

Bitwise XOR and assign (a ^= n is equivalent to
a = a ^ n)

Operators | 33

NOTE

Unlike C-based languages, assignment operators do not
return a value. This prevents a potentially serious error
whereby you accidentally type an = operator in an if state‐
ment when you meant to use == and end up with code that
makes an assignment instead of testing a condition.

Comparison Operators
The comparison operators return a Boolean value that repre‐
sents whether the comparison is true or false. Equality refers to
whether the left and right operands have the same value. Identi‐
cality refers to whether the operands reference the same object:

== (A == B)
Test equality (same values)

!= (A != B)
Test inequality

=== (A === B)
Test identitcality (same objects)

!== (A !== B)
Test unidentitcality

< (A < B)
Test less than

<= (A <= B)
Test less than or equal to

> (A > B)
Test greater than

>= (A >= B)
Test greater than or equal to

~= (A ~= B)
Pattern match—used indirectly in the case labels of
switch statements.

34 | Swift Pocket Reference

Logical Operators
In Swift, non-Boolean values (such as Int) cannot be silently
cast to Boolean values. The following logical operators can only
be used on Bool values:

! (!A)
Logical NOT; returns the logical opposite of the operand

&& (A && B)
Logical AND; returns true if both operands are true

|| (A || B)
Logical OR; returns true if either operand is true

Overflow Operators
The overflow operators only accept integer operands; they do
not cause an error if an arithmetic overflow occurs:

&+
Overflow addition

&-
Overflow subtraction

&*
Overflow multiplication

If you need to know whether an overflow actually occurred, the
integer types implement function equivalents of these operators
that return a tuple containing the result and a Boolean value
indicating overflow state. These functions are:

• addWithOverflow()

• subtractWithOverflow()

• multiplyWithOverflow()

• divideWithOverflow()

• remainderWithOverflow()

For example, the function to perform overflow addition for the
Int type is defined as:

Int.addWithOverflow(Int, Int) -> (Int, Bool)

Operators | 35

and could be called as follows:
let (result, overflow) = Int.addWithOverflow(someInt, someInt)

Following this assignment, result would contain the integer
result of the addition and overflow would contain a Boolean
value of true if an overflow occurred.

Type Casting Operators
is

Checks whether an instance is of a specific subclass type,
or an instance conforms to a protocol.

as

Casts an instance reference to another type, when it is
known that the cast will always succeed. Used for upcast‐
ing (treating an instance as its supertype) and for bridging
(e.g., casting an NSString to a String type, or vice versa).

as!

Forcibly casts an instance reference to a specific subclass
type, or an instance reference to a specific protocol type.
Causes a runtime error if the cast fails.

as?

Optionally casts an instance reference to a specific sub‐
class type, or an instance reference to a specific protocol
type. Returns an optional value or nil if the cast fails.

See also the sections “Checking and Casting Types” on page 158
and “Protocols” on page 162.

Range Operators
The closed range operator (x...y) represents all integer values
starting at x and ending at y. x must be less than or equal to y.
This operator can be used in a loop, as in the following:

for i in 1...5 {
 // i will successively take values from 1 through 5
}

36 | Swift Pocket Reference

The half-open range operator (x..<y) represents all integer val‐
ues starting at x and ending at y – 1. The value for x must be
less than or equal to y – 1:

for i in 0..<5 {
 // i will successively take values from 0 through 4
}

See also the section “Ranges, Intervals, and Strides” on page
206 for more information.

Ternary Conditional Operator
Swift’s ternary conditional operator performs the same function
as its syntactic counterpart in C. The basic format is as follows:

expr1 ? expr2 : expr3

If expr1 evaluates to true, the operator returns expr2. Other‐
wise, it returns expr3.

This operator provides a shorthand equivalent of:
var a: Int
if (someCondition) {
 a = 6
} else {
 a = 9
}

reducing it to the following:
var a: Int = someCondition ? 6 : 9

Operator Precedence
When evaluating expressions that consist of more than a single
operator, and where there are no parentheses to control evalua‐
tion order, Swift uses a simple set of rules to determine the
order of evaluation. Let’s look at the following expression:

4 * 5 + 3

By convention, the multiplication is treated as a higher priority
operation than the addition, and so the expression is evaluated
to 23 and not 32.

Operators | 37

Swift classifies the built-in operators as belonging to one of 11
groups and uses numeric precedence levels to determine overall
evaluation order. Operators at higher levels are evaluated
before operators at lower levels.

In addition, when two operators with the same precedence
level are being evaluated, Swift uses predefined associativity val‐
ues to determine which to evaluate first. Associativity values
are declared as none, left, and right:

• A value of left means the lefthand subexpression will be
evaluated first.

• A value of right means the righthand subexpression will
be evaluated first.

• A value of none means that operators at this precedence
level cannot be adjacent to each other.

Table 5 shows the precedence and associativity values for the
built-in operators.

Table 5. Built-in operator precedence and associativity values

Precedence Associativity Operators

255 Left ~>

160 None <<, >>

150 Left *, /, %, &*, &

140 Left +, -, &+, &-, |, ^

135 None ..<, ...

131 Right ??

130 None <, <=, >, >=, ==, !=, ===, !==, ~=

120 Left &&

110 Left ||

90 Right *=, /=, %=, +=, -=, <<=,>>=, &=, ^=, |=

38 | Swift Pocket Reference

Using Table 5, you can see that in
4 << 5 * 4

the left-shift operator (<<) will be evaluated first because it has a
higher precedence level than the multiply operator (*).

For an expression in which operands have the same prece‐
dence, the associativity values are applied. Consider the follow‐
ing expression:

4 + 3 &- 88

Both the addition operator (+) and the overflow subtraction
operator (&-) are precedence level 140, but they are left associa‐
tive, which means the lefthand subexpression is evaluated first,
causing the expression to be interpreted as follows:

(4 + 3) &- 88

Strings and Characters
A String is an ordered collection of characters. The Character
type is Unicode-compliant, so strings are also fully Unicode-
compliant.

Empty string and character variables are declared as follows:

var astring: String
var achar: Character

Or they can be initialized by using a string literal value:
var astring: String = "Hello"
var achar: Character = "A"

Like String literals, Character literals are enclosed in double
quotes. (Swift does not permit characters to be enclosed in sin‐
gle quotes, which might confuse C programmers.)

Because Swift can infer types, it is not necessary to include the
String keyword when assigning a value, so you can also write
the previous examples as follows:

var astring = "Hello"
var achar: Character = "A"

Strings and Characters | 39

You can concatenate String types by using the + operator to
create a new String:

let newString = "Hello" + " Bill"

Or you can append a String to an existing String by using the
+= operator:

var welcome = "Hello"
welcome += " there"

String is a value type and instances are copied when assigned
or passed to a function or method (unlike NSString, which is
passed by reference).

String Properties
You can use the following features to check string length and
get alternate views of the string in different character formats.
See also “Character-Level Access in Strings” on page 43 for
information on accessing the characters that make up the
string.

someString.isEmpty

Boolean; true if the string contains no characters.
 someString.characters

A view of the string’s Character storage that provides
access to individual characters and iteration support via
the String.Index type.

 someString.characters.count
The number of characters in the string. Because Swift
strings are Unicode-compliant, the number of characters
might not be the same as the length of the string in bytes.

someString.lowercaseString

Returns the lowercase version of someString.
someString.uppercaseString

Returns the uppercase version of someString.

40 | Swift Pocket Reference

someString.utf8

A view of the string in UTF-8 format (of type
String.UTF8View), for iterating over the string’s characters
in 8-bit format.

someString.utf16

A view of the string in UTF-16 format (of type
String.UTF16View), for iterating over the string’s charac‐
ters in 16-bit format.

someString.unicodeScalars

A view of the string in UnicodeScalar format (of type
UnicodeScalarView), for iterating over the string’s charac‐
ters in UnicodeScalar format.

Comparing Strings
You can compare strings and substrings by using the following
comparison operators and methods:

==

Returns true if two strings contain the same sequence of
characters.

!=

Returns true if two strings contain different sequences of
characters.

<

Returns true if the string to the left of the operator sorts
lexically before the string to the right of the operator.

<=

Returns true if the string to the left of the operator sorts
lexically before or is equal to the string to the right of the
operator.

>

Returns true if the string to the left of the operator sorts
lexically after the string to the right of the operator.

>=

Returns true if the string to the left of the operator sorts
lexically after or is equal to the string to the right of the
operator.

Strings and Characters | 41

someString.hasPrefix(prefixString)

Returns true if the sequence of characters in prefixString
matches the start of someString.

someString.hasSuffix(suffixString)

Returns true if the sequence of characters in suffixString
matches the end of someString.

NOTE

Note that Swift string and character comparisons are not
locale-sensitive, but sort according to Unicode values (e.g.,
all uppercase letters sort before their lowercase variants).
For locale-sensitive comparison and sorting, import Foun‐
dation and use locale-sensitive NSString methods.

Escaped Characters in Strings
To use certain special characters in string literals, use a back‐
slash escape sequence:

\0
Null character

\\
Backslash

\t
Tab

\n
Line feed

\r
Carriage return

\"
Double quote

\'
Single quote

\u{n}

Arbitrary Unicode scalar; n is from 1 to 8 hex digits

42 | Swift Pocket Reference

String Interpolation
Expressions can be evaluated and the result substituted in a
string literal using the escape sequence:

\(expr)

For example:
let costOfMeal = 56.80
let advice = "Consider tipping around \(costOfMeal * 0.20)"

String interpolation is not restricted to numeric values:
let a = "Hi"
let b = "there"
let c = "\(a) \(b)" // c is now "Hi there"

Numeric types can also be converted to strings by using
the String() initializer, as in the following example:

let valueAsString = String(52.56)
// valueAsString now holds the string "52.56"

Converting Strings to Numeric Types
Strings that are meant to represent numeric values can be con‐
verted to numeric types using the same syntax that you would
use when converting one numeric type to another—i.e., by
treating the numeric type as a function, and using the string as
an operand, as in the following examples:

let i = Int("45")
let d = Double("23.7")

Since the string may contain invalid characters that prevent its
conversion to the desired type, the actual result is wrapped in
an optional. See “Optionals” on page 81 for more information.

Character-Level Access in Strings
In Swift, a Character is a single extended grapheme cluster—a
sequence of one or more Unicode scalars that combine to rep‐
resent a single character.

Strings and Characters | 43

For example, the Unicode character U+308 (COMBINING
DIAERESIS, or the umlaut) can be combined (in German) with
the vowels “a,” “o,” or “u” to indicate a change in the way those
vowels are pronounced, and also how they are displayed (as ä,
ö, and ü).

The use of Unicode-combining characters can give rise to some
apparent anomalies. Consider this sequence:

let aWithUmlaut: Character = "a\u{308}"

While it appears that two characters are being assigned to the
character variable (which would not be possible) the combin‐
ing feature of Unicode character U+308 means it and the char‐
acter it combines with are treated as a single character, even
though it is represented by multiple bytes.

Unicode characters aren’t fixed-length entities, so character-
level access to a string is not as simple as accessing bytes in an
array, but access to each component of a string is still possible
using a view of the string and its matching index type. Views
are accessed as properties. To illustrate, consider this string
assignment:

var uString = "a\u{308}"

• The characters view of this string provides access to
each component of the string as an extended grapheme
cluster (or Character type). In the preceding example,
that is the single character ä.

• The utf8 view provides access to each component of the
string as a UTF-8 code unit. In this view, commonly used
Roman characters are represented by a single byte,
whereas multibyte sequences are used to represent com‐
bining characters and characters from non-Roman
alphabets. In the preceding example, the character
a would be represented by the 8-bit value 0x61, and the
umlaut would be represented by the 8-bit value 0xCC fol‐
lowed by the 8-bit value 0x88.

44 | Swift Pocket Reference

• The utf16 view provides access to each component of the
string as a UTF-16 code unit. In this view, commonly
used Roman characters are represented by a double-byte
(16-bit) value. Combining characters and characters
from non-Roman alphabets can be represented by a sin‐
gle 16-bit value, rather than multibyte values. In the pre‐
ceding example, the character a would be represented by
the 16-bit value 0x0061, and the umlaut would be repre‐
sented by the 16-bit value 0x0308.

• The unicodeScalars view provides access to each compo‐
nent of the string as a unicode scalar value. In this view,
combining characters are presented as separate compo‐
nents, and are not combined with the preceding charac‐
ter. In the preceding example, the scalars would consist
of the character a represented by the 16-bit value 0x0061,
and the umlaut would be represented by the 16-bit value
0x0308.

Each view has a count property that indicates how many com‐
ponents comprise that view. For the preceding example, the
count property returns the following values for each of the
views of the string:

uString.characters.count // 1 (ä)
uString.utf8.count // 3 (0x61, 0xCC, 0x08)
uString.utf16.count // 2 (0x0061, 0x0308)
uString.unicodeScalars.count // 2 (0x0061, 0x0308)

To iterate over all characters of a string, use a for-in loop. In
the following example, the variable i will be of type Character,
and will successively take on the value of each character from
the string’s characters view:

let str = "Swift"
for i in str.characters {
 print (i)
}

Strings and Characters | 45

Individual components of any view can also be accessed using
an appropriate index type as a subscript on that view:

• The startIndex property represents the position of the
first element of the view. If the string is empty, this value
is identical to the endIndex property.

• The endIndex property represents the “past the end” posi‐
tion of the view. This value cannot be used as a subscript
on the view, but can be used in comparisons with other
index values of the same type.

To iterate over the components of a specific view of a string,
use an index and the successor(), predecessor(), or
advancedBy() methods to modify that index. For example, this
code iterates over the utf8 view of the string, accessing each
character as an 8-bit value:

let str = "Swift"
var idx = str.utf8.startIndex
while (idx != str.utf8.endIndex) {
 print (str.utf8[idx])
 idx = idx.successor()
}
// prints: 83, 119, 105, 102, 116,

To search the characters view for a specific character, use the
indexOf() function, which returns an optional integer repre‐
senting the position of the character, as follows:

let sought = Character("Y")
if let foundAt = "New York".characters.indexOf(sought) {
 print (sought, "found at position", foundAt)
}
// prints: Y found at position 4

 See “Optionals” on page 81 for more information.

String Inherited Functionality
Strings inherit from many standard Swift protocols, some of
which include Comparable, Equatable, Hashable, Streamable,
OutputStream Type, StringInterpolationConvertible, and

46 | Swift Pocket Reference

StringLiteralConvertible (see “Built-In Protocols” on page
175).

This provides them with many additional capabilities, includ‐
ing the following:

someString.append(character)

Appends character to someString.

 someString.append(UnicodeScalar)
Appends UnicodeScalar to someString.

someString.appendContentsOf(anotherString)

Appends anotherString to someString.

someString.removeAll([keepCapacity: Bool])

Removes all characters from the string. The keepCapacity
argument is optional and defaults to false. If set to true,
the capacity of the string will remain unchanged.

someString.removeAtIndex(someIndex)

Removes and returns the item at the position indicated
by someIndex. Will terminate with a runtime error if some
Index is not a valid index in the string’s characters view.

someString.removeRange(someRange)

Removes the items indicated by the range someRange. Will
terminate with a runtime error if someRange is not a valid
range within the string’s characters view.

someString.reserveCapacity(someInt)

If necessary, resizes the storage allocated to someString so
it can store at least someInt characters.

Programs developed on iOS and OS X often implicitly import
the Foundation framework, which provides additional exten‐
sions, such a bridging the String type to the NSString class.
This means that much of the capability of NSString becomes
available to String types. For example:

import Foundation
let message = "Hi there %name%, welcome to the party!"

Strings and Characters | 47

let tag = "%name%"
let guest = "Lisa"
let greeting = message.stringByReplacingOccurrencesOfString(
 tag, withString: guest)

NOTE

The Foundation framework opens Swift up to a significant
and substantial library of additional functionality. In addi‐
tion to bridging String to NSString, Foundation bridges
Array to NSArray, Dictionary to NSDictionary, and Set
to NSSet. However, documenting Foundation is beyond
the scope of this book.

Arrays
An array is a collection of items of the same type, be it a simple
type (such as Int, Double, or String) or a more complex type
(such as a class or structure).

The type of an array is formally specified as Array<Type>,
although the more frequently used shorthand equivalent is
[Type]. Thus, if you see the term [String], you can conclude
that it means an array of type String.

You declare arrays in a similar way as variables and constants.
You create empty arrays as follows:

var arrayName = [Type]()
var daysOfWeek = [String]()

You can declare arrays with a specified number of pre-
initialized entries:

var vertex = [Double](count: 10, repeatedValue: 0.0)

Or you can initialize them by using an array literal:
var locos: [String] = ["Puffing Billy", "Thomas"]
let daysPerMonth: [Int] =
 [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 31, 31]
var primes = [1, 3, 5, 7, 11]

48 | Swift Pocket Reference

You can use the + operator to create an array that combines
existing arrays of the same type, as shown here:

let vowels = ["A", "E", "I", "O", "U"]
let consonants = ["B", "C", "D", "F", "G", "H", "J" ...]
var allLetters = vowels + consonants

Here are some more characteristics of arrays in Swift:

• An array’s type does not need to be specified if it is
initialized from an array literal, because the type can be
inferred.

• All entries in an array must be the same type (unlike
Objective-C’s NSArray class, which can store a collection
of arbitrary objects).

• Array is a value type and instances are copied when
assigned or passed to a function or method (unlike
NSArray, which is passed by reference).

Accessing Array Elements
You access specific array elements by using C-style subscript
syntax. The first element in an array has an index of 0:

let days = daysPerMonth[5]

You can access a subset of an array’s elements by using a range.
This operation returns a new slice (see “Slices” on page 56 for
more information):

let daysPerNorthernSummerMonth = daysPerMonth[5...7]

If you attempt to access an element beyond the end of the array,
a runtime error will occur.

arrayName.first

Returns the first element in the array.
arrayName.last

Returns the last element in the array.
arrayName.maxElement()

Returns the maximum element in the array.

Arrays | 49

arrayName.minElement()

Returns the minimum element in the array.

Array Properties
To examine the properties of an array, use the following
features:

arrayName.capacity

Integer: the number of elements the array can store
without it being relocated in memory.

arrayName.count

Integer: the number of elements in the array.
arrayName.isEmpty

Boolean: true, if the array has no elements.

Modifying a Mutable Array
You can modify mutable arrays in the following ways:

arrayName.append(value)

Adds a new element to the end of the array.
arrayName += array

Appends (copies) one array to the end of another.
arrayName[n] = value

Stores a value in element n, replacing the existing value
there. A runtime error will occur if you attempt to write
beyond the end of the array. To “grow” the array (i.e., add
more entries), use the append method.

arrayName[range] = array
Replace a range of elements with an array of the same
type. Ranges are specified as [start...end]. All elements
from [start] to [end] are removed and replaced with
copies of the elements in array. The size of the range does
not have to be the same as the size of the array replacing it;
the array will expand or contract to hold the replacement.

arrayName.insert(value, atIndex: n)
Insert a new value in front of element n.

50 | Swift Pocket Reference

arrayName.removeAll([keepCapacity: Bool])
Removes all elements from the array. The keepCapacity
argument is optional and defaults to false. If set to true,
the capacity of the array will remain unchanged.

arrayName.removeAtIndex(n)

Remove (and return) element n from the array.
arrayName.removeLast()

Remove (and return) the last element of the array.
arrayName.reserveCapacity(n)

Ensures the array has sufficient capacity to store n ele‐
ments without further relocation, by relocating it if neces‐
sary.

arrayName.sortInPlace()

Sorts an array in place. Can be used with an optional trail‐
ing closure to define how two elements sort with respect
to each other (e.g., names.sortInPlace() { $1<$0 }). (See
also the section “Closures” on page 75.)

Iterating Over Arrays
To iterate over all elements in an array, use a for-in loop:

for item in arrayName {
 …
}

Let’s take a closer look at how this works:

• The code in the braces is executed once for each item in
the array.

• For each execution, item takes on the value of the next
element, starting at the first element.

• item is a constant—although its value changes with each
iteration, it cannot be modified in the loop.

To use both the position and value of items from the array, use
the enumerate() method, as shown here:

Arrays | 51

for (index, item) in arrayName.enumerate() {
 …
}

The enumerate() method returns a tuple consisting of the inte‐
ger index and value of each item in the array.

Array Inherited Functionality
Arrays inherit from a number of standard Swift protocols,
some of which include ArrayLiteralConvertible, Mutable
Sliceable, CustomStringConvertible, CollectionType, Mutable
CollectionType, Indexable, RangeReplaceableCollectionType,
and SequenceType (see “Built-In Protocols” on page 175). This
provides them with many additional capabilities, some exam‐
ples of which are provided here.

Much of the inherited functionality you can apply to arrays
uses closures. These are anonymous functions that perform
some operation on one or two elements of the array (such as a
transform, or comparison). See the section “Closures” on page
75 for more information.

The examples that follow are demonstrated using this array
of strings:

var names = ["John", "Zoe", "Laura", "albert", "Allen"]

arrayName.contains()

Returns a Bool value that indicates if a specific value is
contained in the array.

names.contains("John") // returns true
names.contains("Lisa") // returns false

arrayName.dropFirst([i])

Returns an array slice that contains all but the first i ele‐
ments of arrayName. If i is omitted, it defaults to 1.
See “Slices” on page 56.

names.dropFirst(2)
// returns ["Laura", "albert", "Allen"] as a slice

52 | Swift Pocket Reference

arrayName.dropLast([i])

Returns an array slice that contains all but the last i ele‐
ments of arrayName. If i is omitted, it defaults to 1.
See “Slices” on page 56.

names.dropLast(2)
// returns ["John", "Zoe", "Laura"] as a slice

arrayName.elementsEqual()

Returns a Bool value that indicates if two arrays contain
equal values in the same order.

let namesCopy = names
names.elementsEqual(namesCopy) // returns true
names.elementsEqual(namesCopy.sort()) // returns false

arrayName.filter()

Returns a new array that contains only the elements that
match some condition, which is defined by using a
closure. This example filters names longer than four char‐
acters:

names.filter { $0.characters.count > 4 }
// returns ["Laura", "albert", "Allen"]

arrayName.flatMap()

Returns a new array that is dimensionally flatter than
arrayName, in which each element has been transformed
by a mapping function that is defined by using a closure.
This example returns an array in which all strings from
the original array of arrays have been converted to upper‐
case characters:

let arrOfArrays = [["Bill", "Fred"], ["Mary"]]
let flatArray = arrOfArrays.flatMap()
 {$0.map{$0.uppercaseString}}
// flatArray holds ["BILL", "FRED", "MARY"]

arrayName.forEach()

Calls the body of the closure on each element of the array,
producing similar functionality to for i in arrayName
{ ... }.

names.forEach { print($0) }

Arrays | 53

 arrayName.indexOf(someValue)
Returns an optional integer representing the position of
someValue in the array, or nil if the value is not present.

names.indexOf("John") // returns 4?

 arrayName.joinWithSeparator(someString)
For an array of strings, returns a new string comprising
the elements of arrayName interposed with someString.

names.joinWithSeparator("; ")
// returns "John; Zoe; Laura; albert; Allen"

arrayName.map()

Returns a new array in which each element has been
transformed by a mapping function, which is defined by
using a closure. This example returns an array in which
any string from the original array that does not start with
an uppercase “A” is prefixed with an asterisk (*):

names.map { $0.hasPrefix("A") ? $0 : "*" + $0 }
// returns:
// ["*John", "*Zoe", "*Laura", "*albert", "Allen"]

arrayName.prefix(i)

Returns an array slice that contains up to the first i ele‐
ments of arrayName. See also “Slices” on page 56.

names.prefix(2)
// returns ["John", "Zoe"] as a slice

arrayName.reduce()

Returns a single value (of the type stored in the array)
derived by recursively applying a reduction filter (defined
by using a closure) to each element of the array and the
output of the previous recursion. This example seeds the
recursion with an empty string ($0) and concatenates each
element of the array ($1) to the output of the previous
recursion ($0):

names.reduce("") { $0 + $1 }
// returns "JohnZoeLauraalbertAllen"

54 | Swift Pocket Reference

arrayName.reverse()

Returns a new item of type ReverseRandomAccessCollec
tion<T> that contains the elements of arrayName in reverse
order. You can cast this back to an array with as Array:

names.reverse() as Array
// returns ["Allen", "albert", "Laura", "Zoe", "John"]

arrayName.sort()

Returns a new array that contains the elements of
arrayName in sorted order. Use with an optional closure to
define how two elements sort with respect to each other.
For example:

names.sort() { $0<$1 }
// returns ["Allen", "John", "Laura", "Zoe", "albert"]

arrayName.split(separator: [, maxSplit:][, allowEmpty

Slices:])

Returns an array of array slices formed from the elements
of arrayName, split at each occurrence of separator.
maxSplit is optional, and defaults to Int.max. It specifies
the maximum number of splits that will take place. Any
remaining unsplit content will be included in the last slice.
allowEmptySlices is optional and defaults to false. If set
to true, an empty slice will be included in the returned
array for each pair of consecutive elements that match
separator.

let intArray = [5, 2, 0, 4, 5, 6, 0, 9, 0]
let aa7 = intArray.split(0, maxSplit: 1)
// returns [[5, 2], [4, 5, 6, 0, 9, 0]]

arrayName.startsWith(anotherArray)

Returns a Bool value that indicates if arrayName begins
with the same elements as anotherArray, in the same
order. For example:

names.startsWith(["John", "Zoe"]) // returns true
names.startsWith(["Allen"]) // returns false

Arrays | 55

arrayName.suffix(i)

Returns an array slice that contains up to the last i ele‐
ments of arrayName. See also the next section, “Slices” on
page 56.

names.suffix(2)
// returns ["albert", "Allen"] as a slice

Slices
A slice is a view into a subset of the elements of another collec‐
tion (such as an array). Slices are space and time efficient—they
do not initially copy the original collection’s elements, but refer
to them in-situ. Copies will be made, however, of elements that
are mutated.

You can create a slice from an array using a range operator, as
in this example:

var names = ["John", "Zoe", "Laura", "albert", "Allen"]
var someNames = names[1...3]
// someNames is ["Zoe", "Laura", "albert"]

The new slice someNames is of type ArraySlice<String> and has
the following characteristics:

• The startIndex property of the slice is 1, and the
endIndex property is 4, since the slice is a view into the
elements of the original array, in their positions in that
array.

• If the source array is mutable, its elements can be modi‐
fied and this will not affect the contents of the slice (this
includes inserting and removing elements, not just
mutating those from which the slice was initially con‐
structed).

• If the slice is mutable, its elements can be updated and
this will not affect the contents of the source array (this
includes inserting and removing elements).

56 | Swift Pocket Reference

• So long as both the source array and slice are not muta‐
ted, indices of the slice and the source array can be used
interchangeably.

• A slice is a view onto the elements of another collection,
and will keep references to those elements even after
the original collection goes out of scope, prolonging their
life.

Dictionaries
Much like arrays, dictionaries store a collection of values, but
whereas array elements are referenced via position, dictionary
elements are referenced via unique keys.

A dictionary’s type is formally specified as Dictionary<Key
Type, ValueType>, although [KeyType:ValueType] is the prefer‐
red shorthand equivalent. Thus, if you see the term
[String:Int], you can assume it means a dictionary whose key
type is String and whose value type is Int.

Dictionaries are declared in a similar way to variables and con‐
stants. You can create empty dictionaries like so:

var dictionaryName = [Type: Type]()
var cpus = [String: String]()

Or you can initialize them upon declaration by using a dictio‐
nary literal, as demonstrated here:

var cpus: [String:String] =
 ["BBC Model B":"6502", "Lisa":"68000", "TRS-80":"Z80"]

The type of both the key and the value can be inferred when
initialized with a dictionary literal, so the previous example can
be reduced to the following:

var cpus =
 ["BBC Model B":"6502", "Lisa":"68000", "TRS-80":"Z80"]

Dictionaries | 57

If you’re not initializing a dictionary with a literal value, you
can specify a minimum capacity by using the following:

var dictionaryName = [Type: Type](minimumCapacity: Int)
var cpus = [String: String](minimumCapacity: 5)

Specifying a minimum capacity could be useful for improving
the performance of dictionaries that are frequently mutated.
Unlike arrays, you cannot determine the capacity of a dictio‐
nary, and you cannot reserve additional capacity after creation
to improve performance.

Here are some more characteristics of dictionaries in Swift:

• All keys in a dictionary must be the same type.
• All values in a dictionary must be the same type.
• The contents of a dictionary are stored in arbitrary order.
• Dictionary is a value type and instances are copied when

assigned or passed to a function or method (unlike
NSDictionary, which is passed by reference).

• The key type used in a dictionary must conform to the
Hashable protocol, which includes all of Swift’s basic
types such as Int, String, and Double. See “Protocols” on
page 162 for more information.

Accessing Dictionary Elements
To access dictionary values, you use the key as a subscript, as
illustrated here:

let cpu = cpus["BBC Model B"]

Dictionary Properties
You can use the following features to access various properties
of a dictionary:

dictionaryName.count

Integer: the number of key-value pairs in the dictionary.

58 | Swift Pocket Reference

dictionaryName.isEmpty

Boolean: true, if the dictionary has no elements.

dictionaryName.keys

Returns an array of all keys in the dictionary, which you
can use for iterating over those keys (see “Iterating Over
Dictionaries” on page 60). To use this in an array context,
copy it to a new array. For example:

let newArrayName = [Type](dictionaryName.keys)

dictionaryName.values

Returns an array of all values in the dictionary, which can
be used for iterating over those values (see “Iterating Over
Dictionaries” on page 60). To use this in an array context,
copy it to a new array. For example:

let newArrayName = [Type](dictionaryName.values)

Modifying a Mutable Dictionary
You can modify mutable dictionaries in the following ways:

dictionaryName[key] = value
Sets (or updates) the value of the element identified by
key. To remove this key-value pair from the dictionary, set
value to nil.

dictionaryName.updateValue(newValue, forKey: key)
Sets (or updates) the value of the element identified by
key. Returns the old value as an optional (see “Optionals”
on page 81) if there was one.

dictionaryName.popFirst()

Removes and returns the first key-value pair
of dictionaryName, or returns nil if the dictionary was
empty.

dictionaryName.removeAll([keepCapacity:Bool])

Removes all elements from the dictionary. The
keepCapacity argument is optional, and defaults to false.

Dictionaries | 59

If set to true, the capacity of the dictionary will remain
unchanged.

dictionaryName.removeValueForKey(key)

Removes a key-value pair from the dictionary identified
by key. Returns the value that was removed or nil if there
was no value for key.

Iterating Over Dictionaries
To iterate over all elements in a dictionary, you use a for-in
loop, as follows:

for (key, value) in dictionaryName {
 …
}

Let’s take a closer look at how this works:

• The code inside the braces is executed once for each item
in the array.

• For each execution, key and value take on successive key-
value pairs from the dictionary.

• key and value are constant—although their values
change with each iteration, they cannot be modified in
the loop.

To iterate over just the keys or values of the dictionary, use the
keys or values property, which returns an array:

for value in dictionaryName.values {
 …
}

for key in dictionaryName.keys {
 …
}

Dictionary Inherited Functionality
Dictionaries inherit from a number of standard Swift proto‐
cols, some of which include CollectionType, SequenceType,

60 | Swift Pocket Reference

Indexable, DictionaryLiteralConvertible, and CustomString
Convertible (see “Built-In Protocols” on page 175).

Since dictionaries inherit from the Indexable and SequenceType
protocols, their elements can be accessed by index, but since
dictionary contents are stored in arbitrary order, indexed
access is less useful than it is for arrays. Dictionary indices are
specified using DictionaryIndex values, not integer positions.

dictionaryName.dropFirst([i])

Returns a dictionary slice that contains all but the
first i elements of dictionaryName. If i is omitted, it
defaults to 1. See “Slices” on page 56.

dictionaryName.dropLast([i])

Returns a dictionary slice that contains all but the
last i elements of dictionaryName. If i is omitted, it
defaults to 1. See “Slices” on page 56.

dictionaryName.endIndex

Returns the index value that represents the “past the end”
position of dictionaryName. The returned value cannot be
used as a subscript on the dictionary, but can be used in
comparisons with other DictionaryIndex values.

 dictionaryName.forEach()
Calls the body of a closure on each key-value pair of
the dictionary, producing similar functionality to for i in
dictionaryName { ... }. The key-value pair is available in
$0 as a tuple.

dictionaryName.indexForKey(keyValue)

Returns an optional DictionaryIndex value that represents
the position of the element with the specified key, or nil if
the key is not present.

dictionaryName.removeAtIndex(someIndex)

Removes and returns the key-value pair at the position
indicated by someIndex. Will cause a runtime error if the
dictionary is empty or the index is not valid.

Dictionaries | 61

dictionaryName.startIndex

Returns the index value that represents the position of the
first element of dictionaryName, assuming it is not empty.
For an empty dictionary, this value is identical to that
returned by endIndex.

Sets
A set is an unordered collection of unique values of the same
type, which can be a simple type (such as Int, Double,
or String) or a more complex type (such as a class or struc‐
ture). Sets were first introduced in Swift 1.2.

The type of a set is formally specified as Set<Type>. There is no
shorthand equivalent.

You declare sets in a similar way to variables and constants. You
create empty sets as follows:

var setName = Set<Type>()
var daysOfWeek = Set<String>()

You can declare an empty set with space for a specified mini‐
mum number of members:

var vowels = Set<Character>(minimumCapacity: 5)

You can initialize a set using an array literal:
var chessPieces: Set =
 ["King", "Queen", "Rook", "Bishop", "Knight", "Pawn"]

Here are some more characteristics of sets in Swift:

• A set’s type does not need to be specified if it is initialized
from an array literal, because the type can be inferred.

• All items in a set must be the same type.
• You can compare two sets of the same item type with the
== and != operators. Sets are considered equal if they
contain the same items.

62 | Swift Pocket Reference

• All items in a set are unique. If you try to add an item to
a set that already exists in that set, the set will still only
hold one instance of that item.

• Set is a value type and instances are copied when
assigned or passed to a function or method (unlike NSSet,
which is passed by reference).

• The type used for a set must conform to the Hashable
protocol, which includes all of Swift’s basic types such as
Int, String, and Double. See “Protocols” on page 162 for
more information.

Accessing Set Items and Properties
You can use the following features to access the set and its
properties:

someSet.contains(someValue)

Returns true, if someValue is a member of the set.

someSet.count

Returns the number of items in the set as an integer.

someSet.isEmpty

Returns true if the set contains no items.

Modifying a Mutable Set
You can modify mutable sets in the following ways:

someSet.insert(newValue)

Inserts a new item newValue into someSet. If the item is
already present in the set, this has no effect.

setA.exclusiveOrInPlace(setB)

Replaces the contents of setA with the items that are
unique to setA and unique to setB (the “opposite” of the
intersection of the sets).

Sets | 63

setA.intersectInPlace(setB)

Removes from setA all items that are not also present in
setB (setA becomes the intersection of setA and setB).

someSet.remove(someValue)

Removes and returns the item someValue in someSet, or
returns nil if the item is not present.

someSet.removeAll([keepCapacity: Bool])
Removes all items from someSet. The keepCapacity argu‐
ment is optional, and defaults to false. If set to true, the
capacity of the set will remain unchanged.

someSet.removeFirst()

Removes and returns the first item in someSet. If the set is
empty, this will cause a runtime error.

setA.subtractInPlace(setB)

Removes any items that exist in both setA and setB from
setA.

setA.unionInPlace(setB)

Inserts into setA all of the items in setB that are not
already present in setA.

Iterating Over Sets
To iterate over all items in a set, use a for-in loop:

for item in someSet {
 …
}

Let’s take a closer look at how this works:

• The code in the braces is executed once for each item in
the array.

• For each execution, item takes on the value of the next
item in the set, starting at the first element.

64 | Swift Pocket Reference

• item is a constant—although its value changes with each
iteration, it cannot be modified in the loop.

Since the order of items stored in a set is arbitrary, use the
sort() method to return an ordered sequence of items:

for item in someSet.sort() {
 …
}

Set Operations
The following operations can be performed on sets:

setA.exclusiveOr(setB)

Returns a new set that contains only the items that are
unique to setA and unique to setB (the “opposite” of the
intersection of the sets).

setA.intersect(setB)

Returns a new set that contains the items that are common
to both setA and setB.

setA.isDisjointWith(setB)

Returns a Bool value that indicates if the intersection
of setA and setB is an empty set (i.e., that they do not have
any elements in common).

setA.isStrictSubsetOf(setB)

Returns a Bool value that indicates if all of the items
in setA are also present in setB, and that setB contains ele‐
ments that are not present in setA.

setA.isStrictSupersetOf(setB)

Returns a Bool value that indicates if all of the items
in setB are also present in setA, and that setA contains ele‐
ments that are not present in setB.

setA.isSubsetOf(setB)

Returns a Bool value that indicates if all of the items
in setA are also present in setB.

Sets | 65

setA.isSupersetOf(setB)

Returns a Bool value that indicates if all of the items
in setB are also present in setA.

setA.subtract(setB)

Returns a new set that contains only the items in setA that
are not present in setB.

setA.union(setB)

Returns a new set that contains all of the items in setA and
all of the items in setB.

Set Inherited Functionality
Sets inherit from a number of standard Swift protocols, includ‐
ing ArrayLiteralConvertible, CollectionType, CustomString
Convertible, Equatable, Hashable, Indexable, and Sequence
Type (see “Built-In Protocols” on page 175).

Since sets inherit from the Indexable and SequenceType proto‐
cols, their elements can be accessed by index. Set indices are
specified using SetIndex values, not integer positions.

someSet.endIndex

Returns the index value that represents the “past the end”
position of someSet. The returned value cannot be used as
a subscript on the set, but can be used in comparisons
with other SetIndex values.

 someSet.forEach()
Calls the body of a closure on each member of the set,
producing similar functionality to for i in setName

{ ... }.

someSet.indexOf(someItem)

Returns the index value of someItem, or nil if the item is
not present in someSet.

someSet.removeAtIndex(someIndex)

Removes and returns the item at the position indicated
by someIndex, or returns nil if the set is empty.

66 | Swift Pocket Reference

someSet.startIndex

Returns the index value that represents the position of the
first element of someSet, assuming it is not empty. For an
empty set, this value is identical to .endIndex.

Option Sets
A common way to represent a set of related features or charac‐
teristics in programming is to establish a single (possibly
unsigned) integer value for storage, and use individual bits in
that value to represent each feature or characteristic.

For example, a single integer could be used to represent multi‐
ple stylistic variants affecting the way a piece of text is to be
rendered. Setting the least significant bit to 1 might mean the
text should be displayed in bold. Setting the next most signifi‐
cant bit to 1 might mean the text should be displayed in italics.
If both of these bits were set to 1, it would mean the text should
be displayed in bold italics.

This approach is used in a number of C and Cocoa
APIs. Determining the status of individual bits typically
requires a bitwise AND operation. Setting a single bit requires a
bitwise OR operation, and clearing a single bit requires a
bitwise AND with an appropriate mask value. All such opera‐
tions require a good understanding of Boolean logic and binary
values.

Option sets were introduced in Swift 2.0 and bring standard set
operations to bit-level values that are used in this way.

An option set to implement the simple text-style example just
outlined would be defined as follows:

struct TextStyle: OptionSetType {
 let rawValue: UInt8

 static let Bold = TextStyle(rawValue: 1)
 static let Italic = TextStyle(rawValue: 2)
 static let Underline = TextStyle(rawValue: 4)
 static let Outline = TextStyle(rawValue: 8)
}

Sets | 67

So defined, simple set operations can now be used to set and
reset bits in an instance of TextStyle, as follows:

var style: TextStyle = [] // clear all bits
style = [.Bold, .Italic]
style.insert(.Underline)
style.remove(.Bold)
if style.contains(.Outline) {
 ...
}

Functions
You declare functions in Swift by using the func keyword, as
shown in the following:

func functionName(parameters) -> returnType
{
 // function body
}

Here are some characteristics of and usage tips for Swift
functions:

• Functions can have zero or more parameters.
• If there are no parameters, empty parentheses must still

be provided.
• Functions do not have to return a value, in which case

you omit the arrow and returnType.

Parameter Types
By default, function parameters are constant (they cannot be
modified in the function body). Variable parameters are cre‐
ated by preceding them in the function declaration with the var
keyword, as shown here:

func someFunc(var s: someType) -> …

68 | Swift Pocket Reference

You can use the variable s as a local, modifiable variable in the
function body. Variable parameters are lost after the function
returns—you cannot use them to pass values outside the func‐
tion body.

In-out parameters are created by preceding them in the func‐
tion declaration with the inout keyword, like so:

func someFunc(inout i: someType) -> …

i becomes an alias for an external variable passed by reference.
Modifying i inside the function modifies the external variable.
To call such a function, you must place an ampersand (&)
before a referenced variable’s name in a function call:

var i: Int = 45
someFunc(&i)

Returning Optional Values
A function can return an optional value, which is a way to indi‐
cate that no valid return value can be provided. Suppose that
you were implementing a (pointless!) function to do division.
The function definition might start out like this:

func divide(dividend: Double, _ divisor: Double) -> Double
{
 return dividend / divisor
}

It is possible that the divisor might be zero, which would cause
a runtime error. With an optional return value, you can indi‐
cate when the result is valid and when it is not. To specify that a
return value is optional, follow it with a question mark like this:

func divide(dividend: Double, _ divisor: Double) -> Double?
{
 if (divisor == 0) { return nil }
 return dividend / divisor
}

If the divisor is zero, a nil value is returned; otherwise, the
result of the division is returned.

Functions | 69

Because the return value is now an optional, you need to test it
before using it. To do that, use this syntax:

var d = division (9.0, 0.0)
if d != nil {
 // value is valid
 print (d!)
} else {
 // value is invalid
}

Alternatively, you can use let binding to test and use values
from functions that return optionals. Let binding combines a
local assignment with a non-nil test, as in this example:

if let d2 = division(9.0, 3.0) {
 print (d2)
}

See the sections “Optional Binding” on page 84 and “Optional
Chaining” on page 85 for more information.

NOTE

Generally, a function that needs to indicate an error has
occurred should throw the error using the new Swift 2.0
error handling features, as described in “Error Handling”
on page 103.

Returning Multiple Values by using Tuples
You can have a function return more than one value by using a
tuple, as in the following example:

func getRange() -> (lower: Int, upper: Int)
{
 …
 return (someLowValue, someHighValue)
}

Because the tuple members are named in the function declara‐
tion in the preceding example, those names can be used to refer

70 | Swift Pocket Reference

to the components after the function call. Thus, you could
access the two values like this:

let limits = getRange()
for i in limits.lower...limits.upper { … }

The optional tuple return type
For cases in which a tuple is the return type of a function, you
might want to indicate the tuple has no value. Extending the
previous getRange() example, it might be the case that no valid
range exists, and thus there is nothing to return. This can be
managed by using an optional return type for the tuple, which
you indicate by following the parentheses around the return
type with a question mark, and returning nil (instead of a
tuple) if the range is not valid:

func getOptionalRange() -> (lower: Int, upper: Int)?
{
 if (rangeIsNotValid) { return nil }
 …
 return (someLowValue, someHighValue)
}

For more information, see the section “Optionals” on page 81.

Local and External Parameter Names
Parameter names such as p1 in the following example act as a
local parameter name that is used inside the function body:

func f(p1: Int) { … }

A caller of that function provides a single integer value as the
parameter value:

let a = f(45)

Where a function is defined with more than one parameter, the
second and subsequent parameter names must be used in calls
to that function. For example:

func addString(s: String, toString: String) -> String
{ … }

Functions | 71

must be called as follows:
let s = addString(someString, toString: someOtherString)

Note that the name of the first parameter is not provided in the
function call, but the name of the second parameter is.

Formally, each parameter in a function definition has two
names—a local name, used inside the function definition to
reference the value, and an external name, which must be
specified in calls to the function. Thus, every parameter in a
function definition can be expressed as externalName local
Name: type.

• For the first parameter, if an external name is not pro‐
vided, then it defaults to _ (underscore).

• For any parameter except the first, if an external name is
not provided, then it defaults to the local name.

• For any parameter, if the external name is declared, then
it must be used in calls to the function.

• If an external name is defined as _ (underscore), then
that parameter name cannot be used in calls to the func‐
tion.

• Swift’s named parameter feature does not allow for
parameters to be listed in “arbitrary order” when calling a
function—they must be listed in the order that they are
defined.

Default Parameter Values
To specify a default value for a parameter to a function, follow
the parameter’s type specification with an assignment, as in the
folowing example:

func addAnotherString (s: String,
 toString: String = "pine") -> String
{ … }

72 | Swift Pocket Reference

If the toString parameter is omitted in a call to this function,
such as in the example that follows, the default value of “pine”
will be used for that parameter:

let s3 = addAnotherString("cone")

Parameters with default values should be defined after all other
parameters in the function definition.

Variadic Parameters
A variadic parameter supports a variable number of input
values. You specify a variadic parameter by following the
parameter type with an ellipsis (…), as shown here:

func someFunc(param: Type...) -> returnType
{ … }

In the body of the function, the multiple values passed as
parameters to the function are available in an array, as shown
in the following example:

func sumOfInts(numbers: Int...) -> Int
{
 var tot = 0
 for i in numbers { tot += i }
 return tot
}

The function would then be called as follows:
sumOfInts(2, 3) // returns 5
sumOfInts(5, 9, 11, 13, 22) // returns 60

When using variadic parameters, note the following:

• A function can only have one variadic parameter, but it
can appear anywhere in the parameter list (this is a
change from Swift 1.0, where a variadic parameter had to
be the last parameter in the list).

• If the variadic parameter is not the last in the list of
parameters, then all subsequent parameters must have
external parameter names.

Functions | 73

Function Types
A function’s type is an expression of the types of its input
parameters and its result. For example, for:

func sumOfInts(numbers: Int...) -> Int {...}
func search(string s: String, forString s2: String)
 -> Int {...}
func doesNothing() {...}

the types are, respectively:
(Int...) -> Int
(String, String) -> Int
() -> ()

You can use function types in many places where you can use
simpler types (such as Int). For example, you can declare a
variable or constant to be a function type, as shown here:

var generalFunc: (Int) -> Int

You can then assign to the variable generalFunc a function of
the same type:

func addOne (i: Int) -> Int { return i+1 }
func addTwo (i: Int) -> Int { return i+2 }
func times8 (i: Int) -> Int { return i*8 }
generalFunc = addOne

That variable can then be used where the function could
be used:

addOne(4) // returns 5
generalFunc(5) // returns 6
generalFunc = addTwo
generalFunc(5) // returns 7

You can pass functions as parameters to other functions, and
functions can be returned by other functions. You specify the
function type as either the type of the parameter or the type of
the returned value.

The example that follows defines a function that takes two
parameters and then returns an integer value. The first param‐
eter is a function type that takes an integer parameter

74 | Swift Pocket Reference

and returns an integer value. The second parameter is an inte‐
ger value:

func adaptable(inputFunc: (Int)->Int, _ p: Int) -> Int
{
 return inputFunc(p)
}

adaptable(addOne, 4) // returns 5
adaptable(times8, 5) // returns 40

The next example defines a function that takes a single integer
parameter and then returns a function. The returned function
is defined as taking a single integer parameter and returning a
single integer parameter:

func selectOperation(i: Int) -> (Int) -> Int { … }

Closures
Closures are functionally similar to blocks in Objective-C and
lambdas in languages such as Scheme, C#, and Python.

Closures are anonymous functions that can be passed as argu‐
ments to other functions (known as higher-order functions) or
returned by other functions. They can refer to variables and
parameters in the scope in which they are defined (sometimes
called outer variables). In doing so, they are said to capture or
close over those values.

You typically define a closure through a closure expression,
which takes the following format:

{
 (parameters) -> returnType in
 statements
}

To gain a better understanding of where closures can be useful,
consider the operation of sorting arrays. The C standard library
provides a number of sorting functions, one of which is
qsort(), which takes as a parameter a pointer to a comparison
function. This comparison function, defined by the caller, takes
as parameters two pointers to two entities that are to be com‐

Closures | 75

pared. The comparison function returns an integer that is less
than, equal to, or greater than zero depending on whether the
first entity is less than, equal to, or greater than the second.

A closure is a concise way of providing similar functionality
without having to define a named function to do the compari‐
son. Instead, the closure is passed as an inline parameter to the
sort function.

The Array type implements a sort() method that creates a sor‐
ted copy of an array. You use it as follows:

let names = ["John", "Zoe", "Laura", "albert", "Allen"]
let s = names.sort()
// s is now ["Allen", "John", "Laura", "Zoe", "albert"]

Swift knows how to compare built-in types such as String, Int,
and Float; therefore, it can sort arrays of these types into
ascending or lexical order. In the preceding example, sort()
applies its default behavior for the String type and sorts lexi‐
cally (“albert” sorts after “Zoe” because lowercase characters
sort lexically after uppercase characters).

There exists another version of sort() that takes a closure as a
parameter. The closure takes two values (of the same type as
the array’s elements) and must return true if the first value
should sort before the second (much like the comparison func‐
tion required by qsort() described earlier). By way of example,
if the array being sorted contains strings, the closure would be
defined as follows:

(String, String) -> Bool

In other words, the closure must take two String parameters
and return a Bool value that indicates whether the first string
sorts before the second.

This is how you would call sort() and provide a closure that
replicates the behavior of the simpler version already described:

let t1 = names.sort(
 { (s1: String, s2: String) -> Bool in
 return s1<s2 }
)

76 | Swift Pocket Reference

Because Swift can infer types from context, you can usually
omit them. The array is an array of strings, so it follows that the
two closure parameters must also be of type String. The clo‐
sure must return a Bool. Because all of the types can be infer‐
red, they can be omitted. And as there are now no types to
specify, you can also omit the parentheses and the arrow. Thus,
you can reduce the closure to this:

let t2 = names.sort({ s1, s2 in return s1<s2 })

For simple closures with a single expression, such as that just
demonstrated, you can also omit the return keyword, which
reduces the closure further to the following:

let t3 = names.sort({ s1, s2 in s1<s2 })

To produce a reversed variant of the sort, switch the order of
the strings being compared. This effectively returns false if the
first value should sort before the second:

let t4 = names.sort({ s1, s2 in s2<s1 })
// t4 is ["albert", "Zoe", "Laura", "John", "Allen"]

Alternatively, reverse the comparison operator, as shown here:
let t5 = names.sort({ s1, s2 in s1>=s2 })
// t5 is now ["albert", "Zoe", "Laura", "John", "Allen"]

To sort by string length instead of lexically, modify the compar‐
ison operands in the closure to compare the lengths of the two
strings being compared:

let t6 = names.sort({ s1, s2 in
 s1.characters.count < s2.characters.count })
// t6 is now ["Zoe", "John", "Laura", "Allen", "albert"]

Automatic Argument Names
In the discussion of closures, parameter names were defined to
refer to each argument required by the closure. For example,
when sorting an array of strings, the arguments were named s1
and s2 so the parameters could be referenced in the compari‐
son expression:

let t2 = names.sort({ s1, s2 in return s1<s2 })

Closures | 77

For simple inline closures, having to first name the arguments
just so you can subsequently refer to them makes the closure
longer than it needs to be. For inline closures, Swift assigns
automatic argument names to each parameter by using a dollar
sign followed by a position number ($0, $1, $2, etc.).

Recall from earlier that (for sorting a string array) the closure
required by the sort() method is defined as follows:

(String, String) -> Bool

There are two string parameters and Swift aliases their argu‐
ments as $0 and $1. Using these aliases means you don’t have to
define them yourself, and the sort() closure examples reduce
further still to:

let u1 = names.sort({ $0 < $1 })
let u2 = names.sort({ $1 < $0 })
let u3 = names.sort(
 { $0.characters.count < $1.characters.count })

Trailing Closures
When the last (or only) argument provided to a function is a
closure, you can write it as a trailing closure. Trailing closures
are written after the parentheses that wrap the function’s
arguments:

let v1 = names.sort() { $0 < $1 }
let v2 = names.sort() { $1 < $0 }
let v3 = names.sort()
 { $0.characters.count < $1.characters.count }

If the function has no other arguments than the closure itself,
and you’re using trailing closure syntax, you can omit the
empty parentheses, reducing the closure to the simplest variant:

let w1 = names.sort { $0 < $1 }
let w2 = names.sort { $1 > $0 }
let w3 = names.sort
 { $0.characters.count < $1.characters.count }

78 | Swift Pocket Reference

Capturing Values
As with any regular function, closures are able to refer to the
state of the scope in which they are defined (e.g., local variables
or constants defined in the same scope). But, like functions,
closures can be returned by their containing function, which
means a closure could be executed after the values it refers to
have gone out of scope.

This situation does not result in a runtime error. The closure is
said to capture those values, and extend their lifetime beyond
the scope in which they are defined.

In the example that follows, a function (makeTranslator) cre‐
ates new functions (closures) and returns them as its result. It
takes a single parameter (a string) with the local name
greeting. The function it returns takes a single parameter (a
string) and returns a single parameter (a string):

func makeTranslator(greeting: String) -> (String) -> String
{
 return {
 (name: String) -> String in
 return (greeting + " " + name)
 }
}

The closures that are built by this function capture the
greeting string value and use it later whenever they are exe‐
cuted, even though that value has since gone out of scope.

Here is how you might use this function:
var englishWelcome = makeTranslator("Hello")
var germanWelcome = makeTranslator("Guten Tag")

After this has been executed, englishWelcome will refer to a clo‐
sure that takes a single string argument and will return it with
the word “Hello” prepended, whereas germanWelcome will refer
to a closure that takes a single string argument and will return
it with the words “Guten Tag” prepended.

Closures | 79

Because englishWelcome and germanWelcome refer to closures,
and closures are functions, you call them in the same manner
you call any function:

englishWelcome ("Bill")
// returns "Hello Bill"
germanWelcome ("Johan")
// returns "Guten Tag Johan"

The closures and the values they have captured will remain
available until the variables that refer to them go out of scope
or are set to new values. For example, if you change the defini‐
tion of englishWelcome like this:

englishWelcome = makeTranslator("G'day")
englishWelcome ("Bruce")
// returns "G'day Bruce"

then the storage allocated to the “Hello” version of the closure
and its captured values will be released.

Capturing Values by Reference
In the preceding discussion, the value captured (the greeting
string value) is actually copied when the closure is constructed,
because that value is never modified by the closure.

Values a closure modifies are not copied but are instead cap‐
tured by reference. Here’s a revised example that keeps count of
the number of times it has been called:

func makeCountingTranslator(greeting: String,
 _ personNo: String) -> (String) -> String
{
 var count = 0

 return {
 (name: String) -> String in
 count++
 return (greeting + " " + name + ", " +
 personNo + " \(count)")
 }
}

80 | Swift Pocket Reference

Next, construct two new closures to make greetings:
var germanReception =
 makeCountingTranslator("Guten Tag", "Sie sind Nummer")
var aussieReception =
 makeCountingTranslator("G'day", "you're number")

And then call them:
germanReception ("Johan")
// returns "Guten Tag Johan, Sie sind Nummer 1"
aussieReception ("Bruce")
// returns "G'day Bruce, you're number 1"
aussieReception ("Kylie")
// returns "G'day Kylie, you're number 2"

Each closure stores a reference to count, which is a local vari‐
able in the makeCountingTranslator() function. In doing so,
they extend the lifetime of that local variable to the lifetime of
the closure.

Note that each closure still gets its own instance of count
because they existed as two different instances, separated by the
two executions of makeCountingTranslator().

Optionals
Swift’s optionals provide a way to indicate a value exists without
usurping some part of the value’s set of possible states to do so.

For example, an application might want to record if a piece of
string is present in the physical world, and if so, record what
the length of that piece of string is. In this example, a negative
value (such as –1) could be used to indicate the string is not
present, because such a value could never represent an actual
length. This example uses a single store to represent whether
the string is present and (only if it is) what its length is.

A similar technique is often used in Objective-C, where objects
(or, more precisely, pointers to objects) may be nil, indicating
there is no object. Many Objective-C method calls return either
(a pointer to) an object or nil if the method call has failed or
some other error has occurred.

Optionals | 81

In Swift, object references are not pointers and may not nor‐
mally be set to nil, unless they are explicitly declared to be
optional values. An example of the syntax for such a declara‐
tion is as follows:

var str: String?

The question mark, which immediately follows the type,
declares that the variable str is an optional. Its value might
exist or it might not. Not having a value is not the same as str
storing an empty string. (When a new optional is created in
this way, its initial value is set to nil).

When a variable has been declared to be optional, it must
either be used in places where an optional context for that type
is allowed, or it must be unwrapped (see the section “Unwrap‐
ping Optionals” on page 82) to reveal the underlying value.

For example, you can assign an optional to another optional
without issue, as shown here:

var n: String?
n = str

However, you cannot assign it to a nonoptional:
var r: String
r = str // will produce a compile-time error

Because r is not an optional, the compiler won’t allow an
optional to be assigned to it.

If an optional’s value exists, assign nil to it to remove that
value:

str = nil

Only optionals can be assigned nil in this way. Attempting to
assign nil to a nonoptional variable or constant will result in a
compile-time error.

Unwrapping Optionals
To access the value stored by an optional, first check if a value
exists with an if statement. If it does exist, use the exclamation

82 | Swift Pocket Reference

mark to force unwrap the optional and access the raw value it
stores, as demonstrated here:

if str != nil { // check if the optional has a value
 r = str! // it does – unwrap it and copy it
} else {
 // the optional had no value
}

• Force unwrapping an optional for which no value exists
will result in a runtime error.

• The more usual way to unwrap optionals is to use
optional binding, as described later in this section.

Implicitly Unwrapped Optionals
In some situations, it might be appropriate to use an optional,
even if it will always have a value. For example, an optional cre‐
ated by using let cannot be mutated (so it cannot be reset to
nil), and it must be initialized when it is declared, so it can
never not have a value:

let constantString: String? = "Hello"

Even though its value cannot change, the value must be still
unwrapped to use it in a nonoptional context:

var mutableString: String
mutableString = constantString // compile-time error
mutableString = constantString! // allowed

For this and other uses, Swift provides implicitly unwrapped
optionals, which are defined by using an exclamation mark
after the type instead of a question mark. After it is defined, a
reference to the optional’s value does not need to be unwrap‐
ped; it is implicitly unwrapped whenever it is referenced:

let constantString: String! = "Hello"
mutableString = constantString

This example is contrived, but implicitly unwrapped optionals
play a role during class initialization. See the section “Classes”
on page 106 for more information.

Optionals | 83

Optional Binding
Optional binding is a way to test whether an optional has a
value, and, if it does, make a scoped non-optional copy, all in
one operation.

You can use optional binding with the if statement (where
the scoped non-optional copy is only valid inside the first set of
braces) or the guard statement (where the scoped non-optional
copy is valid for the remainder of the scope in which it was
created).

Following is the syntax for optional binding with if:
if let aConst = someOptional {
 // aConst is now an unwrapped version of someOptional
 print (aConst)
}
// aConst is out of scope at this point

Assuming that someOptional has a value, aConst holds a non-
optional copy of that value inside the first set of braces of the
if statement. Because aConst is not an optional, its value can be
used directly—the unwrapping has been handled in the let
statement.

Similarly, here is the syntax for optional binding with guard:
guard let aConst = someOptional else {
 // aConst is not valid here - exit this scope
 return
}
// aConst is valid in this scope

With guard, if the optional can be unwrapped, then the binding
remains in place until the scope that contains the guard state‐
ment terminates.

Some other points about optional binding include:

• You can use var instead of let to create a mutable
unwrapped copy of the optional.

84 | Swift Pocket Reference

• You can add a where clause immediately before the else
clause to further constrain whether the optional is
unwrapped.

• You can use compound bindings—multiple comma-
separated let or var assignments—to unwrap multiple
optionals at the one time. If any of the bindings fail, the
compound binding fails.

Optional Chaining
When you access an optional, it either has a value or is nil, and
you need to test that the value exists before unwrapping it, as in
the following example:

var s: String?

if s { // check if the optional has a value
 var r = s! // it does – do something with it
} else {
 // the optional had no value
}

You can use optionals anywhere a value might or might not
exist:

• A property of a class, structure, or enumeration might
hold an optional value.

• A method of a class, structure, or enumeration might
return an optional value.

• A subscript of a class, structure, or enumeration might
return an optional value.

Optional chaining is a facility by which you can query an
optional, or something that depends on an optional having a
value, without specifically having to test the optional first.
You can use optional chaining when accessing class, structure,
or enumeration properties, methods, or subscripts using dot-
syntax.

Optionals | 85

Consider this simple example of two classes, in which class A
contains an optional reference to an instance of class B:

class A
{
 var otherClass: B?
}

class B
{
 var someProperty: Int = 7
 func someMethod()
 {
 print ("someMethod called!")
 }
 subscript (index: Int) -> String
 {
 get {
 print ("getter for [\(index)] called")
 return "sample string"
 }
 set { print ("setter for [\(index)] called") }
 }
 }

Now, assume you have an optional reference to an instance of
class A, as in the following example:

var a: A?

Let’s further assume you want to follow the path from the
optional reference a through to someProperty or someMethod()
of class B. Without optional chaining, you would need to check
that each optional has a value; if it does (and only if it does),
could you descend down to the next level, like this:

if a != nil {
 if a!.otherClass != nil {
 print (a!.otherClass!.someProperty)
 } else {
 print ("no property available")
 }
} else {
 print ("no property available")
}

86 | Swift Pocket Reference

This leads to potentially deep conditional tests, which is what
optional chaining simplifies. With optional chaining (and let
binding), you can reduce the code to the following:

if let p = a?.otherClass?.someProperty {
 print (p)
} else {
 print ("no property available")
}

If any optional in the chain returns a nil value, the entire
expression returns nil.

The use of optional chaining isn’t restricted to reading property
values; you can also write them like this:

a?.otherClass?.someProperty = 6

The statement will return nil if the assignment failed because
some part of the optional chain returned nil, which can be tes‐
ted like this:

if (a?.otherClass?.someProperty = 6) == nil {
 // unable to write the property
}

You can call methods using optional chaining, as follows:
a?.otherClass?.someMethod()

Again, the method call will return nil if the call failed because
some part of the chain returned nil. Even if the method nor‐
mally returns a nonoptional value, it will always be returned as
an optional when used in an optional chain context.

You can also use optional chaining with subscripts:
a?.otherClass?[1]
// returns nil, or prints "getter for [1] called"

a?.otherClass?[3] = "Optional chaining is neat"
// returns nil if the assignment fails

Optionals | 87

Program Flow
Swift includes the usual collection of loops and conditional
execution features. Most of these are superficially the same as
their counterparts in C-like languages, but in some cases (e.g.,
the switch statement) they offer considerably expanded and
safer functionality.

Loops
Swift provides the standard loop constructs you would expect,
including for, while, and repeat-while loop variants.

for-condition-increment loops
The for-condition-increment loop is functionally the same as
the for loop in C. The loop consists of an initialization phase, a
test, an increment, and a set of statements that are executed for
each iteration of the loop. Here’s an example:

for initialization; condition; increment {
 statements
}

The three phases work as follows:

• The initialization phase sets up the conditions for the
start of the loop (typically, initializing a loop counter).

• The condition tests whether the loop’s termination condi‐
tion has been met—whenever this evaluates to true, the
statements in the body of the loop are executed once.

• The increment phase adjusts some variable or value that
forms part of the condition test to ensure a stopping
condition can be reached (typically, incrementing the
loop counter).

It is possible that the statements in the body of the loop will
never execute. For this to happen, the condition would have to
evaluate to false the first time it was executed.

88 | Swift Pocket Reference

The body of the loop defines a new scope, inside which local
variables and constants can be defined. These go out of scope
as soon as the loop terminates, and their values are lost.

The most familiar version of this loop would be as follows:
for var i=10; i<15; i++ {
 print (i)
}

Note the following:

• Semicolons must separate the three expressions that
define the setup, test, and increment phases.

• Unlike C, parentheses are optional around the setup, test,
and increment code.

for-in loops

You use the for-in loop to iterate over sequences or collections
of things, such as the elements of an array or dictionary, the
characters in a string, or a range of numbers.

Here’s the general format:
for index in sequence {
 statements
}

In the following example, which iterates over a range of num‐
bers, the loop index variable (i) takes on the value of the next
number in the range each time through the loop:

for i in 3...8 {
 print (i)
}

The example that follows iterates over the contents of an array.
The loop index variable (i) takes on the value of the next entry
in the array each time through the loop (see also the section
“Iterating Over Arrays” on page 51):

var microprocessors = ["Z80", "6502", "i386"]
for i in microprocessors {

Program Flow | 89

 print (i)
}
// prints:
// Z80
// 6502
// i386

This next example iterates over the contents of a dictionary. A
tuple is used as the loop index, so that for each iteration, you
get the next key and its associated value (see also the section
“Iterating Over Dictionaries” on page 60). This example also
demonstrates that dictionaries are stored in arbitrary order:

var vehicles = ["bike":2, "trike":3, "car":4, "lorry":18]
for (vehicle, wheels) in vehicles {
 print (vehicle)
}
// prints:
// car
// lorry
// trike
// bike

If you want to implement a loop that runs for a specific number
of iterations, and the code inside the loop does not need to
know the current iteration number, you can replace the loop
index variable with _ (underscore). For example:

for _ in 3...8 {
 print ("***")
}

for-in variations. The index value of a for-in loop can be fil‐
tered with a where clause to exclude specific iterations. The fol‐
lowing example skips iterations where the index is evenly divis‐
ible by 3:

var out = ""
for i in 0...15 where (i % 3) != 0 {
 if (out != "") { out += ", " }
 out += String(i)
}
print (out)
// prints "1, 2, 4, 5, 7, 8, 10, 11, 13, 14"

90 | Swift Pocket Reference

Instead of testing a condition, a for-in loop can take a
case pattern match, which can include enumeration values
and let variable binding (and an optional where clause). This
example iterates through an array of tupples where the bus‐
width member has the value 8:

let processors: [(name: String, buswidth: Int)] = [
 ("Z80", 8),
 ("16032", 16),
 ("80286", 16),
 ("6502", 8)
]
for case let (name, 8) in processors {
 print ("the", name, "has a bus width of 8 bits")
}
// outputs
// the Z80 has a bus width of 8 bits
// the 6502 has a bus width of 8 bits

This example iterates through an enumeration for .IPv4 cases,
and extracts the associated values for printing:

enum NetworkAddress {
 case MAC(String)
 case IPv4(UInt8, UInt8, UInt8, UInt8)
}
let addresses = [
 NetworkAddress.IPv4(192, 168, 0, 1),
 NetworkAddress.IPv4(8, 8, 8, 8),
 NetworkAddress.MAC("00:DE:AD:BE:EF:00")
]
for case let .IPv4(a, b, c, d) in addresses {
 print (a, b, c, d, separator:".")
}
// outputs:
// 192.168.0.1
// 8.8.8.8

See also “switch” on page 96 and “Enumerations” on page
144 for additional information.

while loops

while loops test a condition ahead of the loop body; only if the
condition evaluates to true is the loop body executed. The gen‐
eral format is as follows:

Program Flow | 91

while condition {
 statements
}

You can use the while loop to replicate the functionality of the
for-condition-increment loop, as follows:

var count = 0
while (count < 10) {
 print (count)
 count ++
}

The condition is tested before the body of the loop is executed.
If it evaluates to false the first time it is executed, the state‐
ments in the body of the loop will never execute.

Instead of testing a condition, while can take a case pattern
match, which can include enumeration values, let variable
binding, and a where clause. See “for-in variations” on page 90
for related information and examples.

repeat-while loops

repeat-while loops test the termination condition at the end of
the loop, rather than at the start. This means the statements in
the body of the loop are guaranteed to be executed at least
once. Loop execution continues until the condition evaluates
to false.

The general format for a repeat-while loop looks like this:
repeat {
 statements
} while condition

Here is an example:
var t = 0
repeat {
 print (t)
 t++
} while (t < 10)

92 | Swift Pocket Reference

NOTE

The repeat-while loop in Swift 2.0 replaces the do-while
loop from Swift 1.0.

Early termination of loops

You can use a continue statement anywhere in the body of the
loop to stop the current iteration and begin the next iteration.

To terminate the loop, you use a break statement anywhere in
the body of the loop, which continues execution at the next
statement after the loop.

Conditional Execution
There are three statements in Swift that support conditional
execution of blocks of code: the if-else statement, the guard-
else statement, and the switch statement.

if-else

The if statement tests a condition, and executes a block of code
only if that condition evaluates to true.

Here’s the simple form:
if condition {
 // statements to execute
}

Note that unlike many other languages, in Swift the parenthe‐
ses are optional around the condition and the braces are
required, even if only a single statement is to be executed when
the condition evaluates to true.

The if statement has an optional else clause. If the condition
evaluates to false, the statements in the else clause
are executed:

if condition {
 // statements to execute when condition met

Program Flow | 93

} else {
 // statements to execute when condition not met
}

In all but one situation, braces are required around the state‐
ments in the else clause. That situation is when the else clause
is immediately followed by another if, as demonstrated here:

if condition {
 print ("shouldn't see this")
} else if condition {
 print ("should see this")
}

You can chain multiple if statements in this way, optionally
ending with a final else clause.

if-case. Swift 2.0 adds the option of a case pattern match (as
used in a switch statement) as an alternative to a condition test
in an if statement, as in the following example:

var age = 23
if case 16...35 = age {
 print ("You're our target demographic!")
}

The case pattern is not limited to simple ranges like that just
shown, but can include enumeration values, let variable bind‐
ing, and a where clause. See “for-in variations” on page 90 for
related information and examples.

guard-else

The guard statement provides similar functionality to the if
statement, but is intended for use in situations where you want
to do an early bailout of the current scope if one or more con‐
ditions are not met.

The basic structure of the guard statement in a function is
as follows:

func someFunc()
{
 guard condition else {
 return // exit function

94 | Swift Pocket Reference

 }
 // continue execution
 // ...
}

In this example, return was used to exit the function. Other
statements that end the current scope can be used in other con‐
texts, such as break or continue.

Optional binding (see “Optionals” on page 81) can be used as
part of the condition, in which case the bound values are avail‐
able for the remainder of the guard statement’s scope.

The following example shows a loop that processes an array of
strings to see which can be interpreted as integers:

var input = ["45", "27", "Apple", "3"]

for str in input {
 guard let ageAsInt = Int(str) else {
 // not an int, so ignore
 continue
 }
 print ("age:", ageAsInt)
}

• Generally in functions, use guard-let rather than if-let
to ensure an optional holds a value.

• The guard statement can include an optional where

condition clause. Both conditions must be true in order
for the guard statement to not execute the else clause.

• If using optional binding (as in guard-let), you can use
compound conditions—multiple comma-separated bind‐
ing let assignments that must all resolve to non-nil val‐
ues in order for the guard statement to not execute
the else clause.

As with if-case, guard can take a case pattern match instead of
a condition, and can include enumeration values, let variable
binding, and a where clause. See “for-in variations” on page
90 for related information and examples.

Program Flow | 95

switch

The switch statement provides an alternative (and more con‐
cise) way to express a series of condition (or pattern) tests,
which you might otherwise implement by using a chain of if-
else statements.

The basic structure of the statement is as follows:
switch expression {
 case pattern1:
 // statements to execute
 case pattern2:
 // statements to execute
 case patternN:
 // statements to execute
 default:
 // statements to execute
}

The expression is evaluated, and the result is compared to each
of the patterns associated with each case clause. If a match is
found, the statements that form part of the matching case are
executed. If no match is found, the statements that follow the
optional default clause are executed.

A pattern may contain a single value or a series of values sepa‐
rated by commas, as shown here:

case 2, 4, 6:

The switch statement in Swift is considerably enhanced com‐
pared to its counterpart in C-like languages. Here are the nota‐
ble differences:

• The case clauses must be exhaustive (all possible values
of expression must match a cast pattern, or there must
be a default case to catch those that aren’t); otherwise,
the compiler will report an error.

• Execution of statements attached to a case clause will not
fall through into another case unless this behavior is
explicitly enabled with the fallthrough keyword (this

96 | Swift Pocket Reference

prevents a common error in C, where a break statement
may have been accidentally omitted).

• Every case must contain at least one executable
statement.

• If more than one case pattern matches, the first matching
case is the one that is used.

• A single case can test for a match against a range of
values.

• You can use tuples to test multiple values in a single
case pattern.

• The case clause can use an optional where clause to fur‐
ther refine the case match (see the section “The where
qualifier” on page 100).

• The break statement is not required to prevent fall-
through into the next case, but you can use it as a “no-
operation” statement to terminate a case and continue
execution at the next statement after the switch state‐
ment. This is useful when you need to match a specific
case and exclude it ahead of another more general case
that would otherwise include it.

Here is a simple example of a switch statement with multiple
cases:

var a = "c"
switch a {
 case "a", "e", "i", "o", "u":
 print("this letter is a vowel")
 case "b", "d", "g", "k", "p", "t":
 print("this letter may be a plosive sound in "
 + "English")
 fallthrough
 case "c", "f", "h", "j", "l", "m", "n", "q", "r", "s",
 "v", "w", "x", "y", "z":
 print("this letter is a consonant")
 default:
 print("this character doesn't interest me")
}

Program Flow | 97

Let’s analyze this example a little closer:

• If a pattern match is made in the first case clause, a mes‐
sage is printed indicating the letter is a vowel, and execu‐
tion continues at the next statement after the switch
statement.

• If a pattern match is found in the second case clause, the
print() function is called, but the fallthrough keyword
causes execution to continue into the statement(s)
defined as part of the next case clause (in this example, a
second print() function is called).

Matching ranges in a case clause. A case pattern can be a range. If
the switch expression is contained within the range, that case
is executed, as in this example:

var marbles = 600
switch marbles {
 case 0:
 print("You've lost your marbles!")
 case 1:
 print("I see you have a marble")
 case 2...5:
 print("I see you have some marbles")
 case 6...10:
 print("That's quite a handful of marbles!")
 case 10...99:
 print("That's lots and lots of marbles")
 default:
 print("Were marbles on sale?")
}

Using tuples in a case clause. A case pattern can be a tuple. The
following example demonstrates a crude class scheduling case
statement, in which students in different grades (7–10) and
from different houses (“Columbus,” “Cook”) are scheduled for
specific activities on different days of the week:

let year = 9 // 7-10
let house: String = "Columbus" // "Columbus" or "Cook"
let weekday = "Fri" // "Mon" through "Fri"

98 | Swift Pocket Reference

let record = (house, year, weekday)

switch record {
 case ("Columbus", 7...8, "Mon"):
 print ("Sports: Cricket")
 case ("Cook", 7...8, "Mon"):
 print ("Sports: Netball")
 case ("Columbus", 9...10, "Tue"):
 print ("Sports: Football")
 case ("Cook", 9...10, "Tue"):
 print ("Sports: Tennis")
 case (_, 7...8, "Wed"):
 print ("Music")
 case (_, 9...10, "Wed"):
 print ("Theater")
 case (_, 7...10, "Thu"):
 print ("Sciences")
 case (_, 7...10, "Fri"):
 print ("Humanities")
 default:
 print("nothing scheduled or invalid input")
}
// outputs "Humanities"

In this example, the underscore (_) is used in some case pat‐
terns to match all possible values. This example also demon‐
strates matching a range of values (e.g., all students in grades
7–10, regardless of house, study Humanities on Fridays).

Value binding with tuples and ranges. Because a tuple in a switch-
case pattern matches a range of inputs, you can use let or var
value binding in a case clause to assign a temporary name to,
or make a temporary copy of, part of a matched value, as
shown here:

switch record {
 // ... preceding cases
 case (_, let yr, "Thu"):
 print ("Sciences - customized for year \(yr)")
 // subsequent cases...
}

In this example, the second component of the tuple still
matches any input value. You use the let keyword to make a

Program Flow | 99

temporary local constant named yr; thus, you can subsequently
use whatever value that might be in the scope of the case
clause. Alternatively, use the var keyword to create a mutable
copy of the value and then modify that copy in the scope of the
case clause.

The where qualifier. You can use a where qualifier to further
refine a case clause in a switch statement. The following exam‐
ple uses the where clause with a value bound to the day of the
week to match cases in which students are of either house, in
year 7, and the day is any day that begins with the letter “T”:

switch record {
 // ... preceding cases
 case (_, 7, let day) where day.hasPrefix("T"):
 print ("Home Economics")
 // subsequent cases...
}

Using switch with enumerations. You can use an enumeration as
the value of a switch statement that is to be matched against
each case clause, as illustrated here:

enum TravelClass {
 case First, Business, Economy
}

var thisTicket = TravelClass.First

switch thisTicket {
 case .First:
 print ("Cost is $800")
 case .Business:
 print ("Cost is $550")
 case .Economy:
 print ("Cost is $200")
}
// outputs "Cost is $800"

Because switch statements must be exhaustive, all possible enu‐
meration values must be checked, or there must be a default
clause. See the section “Enumerations” on page 144 for more
information.

100 | Swift Pocket Reference

Statement labels

You can precede switch statements and loop constructs by an
optional label, which you can then use as an argument to a
break or continue statement to indicate to which switch or
loop that break or continue should apply.

Statement labels precede the switch or loop construct as
follows:

label: repeat {
 // some loop content
} while (someCondition)

Or alternatively:
label: switch expression {
 // cases
}

Here’s a simple example of nested loops with a continue state‐
ment that causes early termination under some conditions:

outerloop: for var i=1; i<10; i++ {
 for var j=1; j<10; j++ {
 if ((i == 6) && ((i * j) >= 30))
 { continue outerloop }
 print (i * j)
 }
 print ("-")
}

Without the use of the statement label, the continue statement
would skip the inner print function in some circumstances,
but it would always execute nine inner loops for each outer
loop. The presence of the label changes this, because it causes
early termination of the inner loop in some circumstances and
affects the overall number of iterations of both loops.

Do scopes

The do statement creates a new scope that can contain its own
local variables, functions, and other definitions that will not be
visible outside the scope. The syntax is as follows:

Program Flow | 101

do {
 // code
}

On its own, this is not something that has much practical value.
The do construct is wrapped around calls to functions that can
throw an error, and is followed by one or more catch clauses to
deal with those errors. See the section “Error Handling” on
page 103 for more information.

Deferred execution

Swift 2.0 introduces the defer statement, which allows you to
specify a block of code that will be executed as the current
scope exits.

The following example defers execution of a print statement
until the end of the do scope:

do {
 defer {
 print ("Goodbye")
 }
 print ("Hello")
}
// prints:
// Hello
// Goodbye

defer is useful for placing clean-up code near set-up code, clar‐
ifying intent. For example, a function that opens a file can
ensure the method for closing that file is always executed,
regardless of how the function returns, by wrapping it in
a defer statement at the same place in the code that the file
is opened:

func parseFile()
{
 let handle = openSomeFile()
 defer { closeSomeFile() }

 // code to parse file

 return
}

102 | Swift Pocket Reference

Some other points to note about deferred execution are:

• Deferred code cannot include break, continue, return, or
other statements that would transfer control elsewhere,
and cannot throw errors.

• You can use multiple defer statements in a scope—they
will be executed in the reverse of the order in which they
are declared.

Error Handling
Swift 2.0 introduces error-handling support in the form of a
do-try-catch sequence, used in conjunction with a throw state‐
ment and the throws annotation on function and method dec‐
larations.

NOTE

In earlier versions of Swift, it was common practice to
return an optional with the value nil from a function or
method to indicate an error condition had occurred. With
Swift 2.0, you are encouraged to use the error-handling
model to indicate errors, and use optionals only to indicate
the presence or absence of a value (see “Optionals” on page
81 for more information).

A function (or method) that can detect errors it needs to pass
out to its caller is declared with the throws annotation. If the
error is detected, the function is terminated with the throw key‐
word, as follows:

func someFunc(parameters) throws -> returnType
{
 // ...
 if errorDetected { throw error }
 // ...
}

Program Flow | 103

The throw statement must “throw” an instance that indicates
what the error is. Specifically, it must be something that con‐
forms to the ErrorType protocol, which can include enums,
structs, and classes.

A function (or method) that can throw is normally called with a
do-try-catch construct:

do {
 try someFunc(params)
}
catch [error] {
 // deal with error
}

You can provide multiple catch clauses, each matching specific
errors, much like case clauses in a switch statement. The catch
clauses must be exhaustive—i.e., they must match all possible
errors that could be thrown by the called function or method.

The example that follows defines an enum, InputError, and
conforms to the ErrorType protocol, with a single case for
reporting input that is “not an integer.” The function takes an
array of strings that represent integer values, sums them, and
returns the result as an integer. If any of the array entries are
not convertible to integers, the function throws the error:

enum InputError: ErrorType {
 case notAnInt
}

func sumArrayOfStrInts(strs: [String]) throws -> Int
{
 var tot = 0
 for str in strs {
 guard let strAsInt = Int(str) else
 { throw InputError.notAnInt }
 tot += strAsInt
 }
 return tot
}

This function might be called as follows:
nums = ["12", "24", "8", "17"]

104 | Swift Pocket Reference

do {
 let result = try sumArrayOfStrInts(nums)
 print ("Sum of ints is", result)
}
catch InputError.notAnInt {
 print ("Input error: string not an integer literal")
}
catch {
 print ("Some other error occurred")
}

Some points to note in relation to error handling include:

• An error will continue to propagate out of the current
scope until it is handled by a catch clause that matches it.

• A catch keyword with no pattern acts as a default case,
and will match any otherwise unmatched error and bind
it to a local constant named error.

• If the containing function’s catch clauses do not match
the error that is thrown, that function must also be anno‐
tated with throws so the error can be propagated out‐
ward.

• The throws annotation is part of the function’s (or meth‐
od’s) type.

Rethrowing functions and methods

A function or method can be annotated with rethrows (instead
of throws) if it throws an error only as a result of one of its
function parameters throwing an error.

• In subclasses, a throwing method cannot override a
rethrowing method, but a rethrowing method can over‐
ride a throwing method.

• In protocols, a throwing method cannot satisfy a
rethrowing method requirement, but a rethrowing
method can satisfy a throwing method requirement.

Program Flow | 105

Forced Try
If you’re sure an error won’t actually be thrown when calling a
function or method that throws, or you specifically want to
abort with a runtime error if an error is thrown, use try!
instead of try.

This forced try does not propagate errors, and does not need to
be used in a do-catch sequence. In the following example, the
function will return normally, or the program will crash:

try! sumArrayOfStrInts(["12", "24", "8", "17"])
// returns 61
try! sumArrayOfStrInts(["3", "0.4"])
// will produce a runtime error

Optional Try
You can disable error propagation from a throwing function or
method by calling it using the try? keyword.

If the function returns normally (without throwing an error),
the result it returns is wrapped in an optional. If the function
throws an error, that error is discarded, and the returned val‐
ued is nil.

Note that if the function (or method) originally returned an
optional, the result returned by try? is an optional optional (it
needs to be unwrapped twice to obtain a non-nil value).

try? sumArrayOfStrInts(["12", "24", "8", "17"])
// returns an Int? of value 61
try? sumArrayOfStrInts(["3", "0.4"])
// returns an Int? of value nil

Classes
A class is a flexible entity that encapsulates properties (or data)
and the methods that operate on them. You can derive classes
from other classes (a feature called inheritance), in which case
the derived class is referred to as the subclass, and the class
from which it is derived is referred to as the superclass.

106 | Swift Pocket Reference

NOTE

Much of what is described here also applies, to a greater or
lesser degree, to structures and enumerations, which are
closely related to classes in Swift. See the sections “Struc‐
tures” on page 139 and “Enumerations” on page 144 for
more details on how they differ.

Unlike Objective-C, in which all classes are subclasses of
NSObject, Swift allows for classes that are not derived from
other classes. Such a class is referred to as base class.

Another significant implementation difference between
Objective-C and Swift is that Swift does not use a separate
header file. An Objective-C class is typically implemented using
two separate files—a .h file containing the class declaration, and
a .m file containing the class implementation. With Swift, there
is no separation of declaration and definition—the definition
serves as the declaration in a single .swift file.

NOTE

Classes are reference types—when an instance of a class is
passed to a function or stored in a variable of the same
type, the instance is not copied. Instead, a new reference to
the original instance is created.

This is in contrast to Swift’s primitive types, such as Int,
Double, and String, as well as some of Swift’s more com‐
plex types, such as Array, Dictionary, structures, and
enumerations, all of which are value types. When a value
type is passed to a function or stored in another variable of
the same type, a complete copy is made. Swift handles this
efficiently, only copying array elements that need to be
mutated and only if they are actually accessed.

Classes | 107

Defining a Base Class
You declare a base class by using the following syntax:

class ClassName
{
 // property, member and related definitions
}

Here is an example of a simple base class that could be used to
store a description of a microprocessor:

class Processor
{
 var dataWidth = 0
 var addressWidth = 0
 var registers = 0
 var name = ""
}

When it’s defined, a class is like a new type: you can create vari‐
ables or constants whose type is the class name, or use instan‐
ces of the class in dictionaries and arrays as you would for
built-in types.

The four variables defined in the class just shown are
called properties. In other languages, they are variously
called instance variables, ivars, or data members.

You must initialize properties that can store values. In the pre‐
ceding example, they are initialized with an assignment
(dataWidth = 0). Alternatively, you can initialize them by using
a separate initialization method, which is described in the sec‐
tion “Initialization” on page 130.

Instances
You can think of a class as a recipe for constructing something,
but it isn’t the something that is actually constructed. The entity
made from the recipe is called an instance or an object. In the
same way, Int is a type of data, and a variable of type Int is an
instance of that type of data.

108 | Swift Pocket Reference

You create instances of simple classes, such as the Processor
class shown in the example in the previous section, by using the
class name followed by empty parentheses, as shown here:

let proc = Processor()

This process, referred to as instantiation, constructs a new
instance of the Processor class and creates a constant called
proc that refers to it.

After you’ve created an instance, you can access its properties
and modify them by using dot syntax:

proc.name = "Z80"
proc.dataWidth = 8
print (proc.name)

NOTE

You might wonder why proc can be declared as an immut‐
able constant (with let), and yet you can modify its prop‐
erties. Although proc itself is immutable (and cannot later
be used to refer to a different instance of the class), it is a
reference to an instance of the class that is mutable. There is
currently no way in Swift to create an immutable instance
of a class that has mutable properties.

At this level, classes are not substantially different to structs in
C. The usefulness of classes comes through the methods you
can add to them, which can use and manipulate the properties
of the class.

Because classes are reference types, new copies are not made
during assignment. Consider this code:

var newProc = proc

Classes | 109

Upon execution, newProc is a reference to the same object as
proc. You can verify this by modifying a property of proc and
checking that same property of newProc:

proc.name = "6502"
print (newProc.name)
// will output "6502"

You can test that proc and newProc refer to the same instance by
using Swift’s identicality operators (=== and !==). These opera‐
tors test whether two references point to the same object:

if (proc === newProc) {
 print ("references are to same instance")
}
// will output "references are to same instance"

Properties
Properties are values associated with a class or an instance of a
class and the methods for accessing them. When they are asso‐
ciated with each instance of a class, they are known as instance
properties, and when they are associated with the class itself,
they are known as type properties. Properties can be stored val‐
ues or they can be computed from other properties or values
at runtime.

Stored properties
Stored properties are those for which space in memory is allo‐
cated to store the property’s value. This is in contrast to compu‐
ted properties (described a little later) for which no such space
is allocated.

You declare stored properties with var (if they are to be muta‐
ble) or let (if they are to be immutable) inside the class defini‐
tion. In the Processor() example from earlier, dataWidth,
addressWidth, registers, and name are all examples of stored
properties.

110 | Swift Pocket Reference

Stored properties must be initialized either by direct assign‐
ment in the class definition, or by using an initialization
method, as described in the section “Initialization” on page 130.

NOTE

You can define stored properties for both classes and
structures.

Lazy initialization of stored properties. Lazy evaluation is the
practice of not computing a value until it is actually needed,
which is sometimes useful when setting the initial value of a
stored property.

Consider the following cases:

• A property may not actually be required during the life
cycle of an instance. Not initializing it unless it’s needed
saves time, especially if it’s computationally expensive to
generate the initial value.

• A property’s initial value might depend on the result of a
method call or the value of another property in the same
class. The problem here is that none of the other methods
or properties are available until after the class is fully ini‐
tialized, and it can’t be fully initialized until all properties
are given initial values. (Notably, self isn’t defined until
the instance is fully initialized.)

One solution is to use a computed property (described next),
which is in reality a method call, and consequently isn’t evalu‐
ated until it is called.

Another approach is to mark the property as lazy, which
means its initial value won’t be computed until the first time its
value is used, as in the following contrived example:

Classes | 111

class LazyClass
{
 var aString = "elephant"
 lazy var bString: String = self.aString + " trunk"
}

Without the lazy prefix, the compiler will declare that “self is
an unresolved identifier” and the code will not compile. With
the lazy prefix, the class can be instantiated. The following
code shows that bString really is only initialized when its value
is referenced, as it uses the modified version of aString:

var lazyInst = LazyClass()
lazyInst.aString // returns "elephant"
lazyInst.aString = "tree"
lazyInst.bString // returns "tree trunk"

Here are some other points to note in relation to lazy stored
properties:

• Lazy stored properties must be declared with var, not
let.

• If any of the code that initializes a lazy property refer‐
ences other members of the class (or structure), those
references must explicitly include the self. prefix.

• The lazy property’s type must be explicitly declared.

Computed properties
Like computed variables, computed properties do not store a
value but are methods that look like properties. They are
defined in terms of a getter (identified with the keyword get,
which returns the computed property) and a setter (identified
with the keyword set, which might change the conditions that
affect the value returned by the getter). You can also use the
getter and setter to read and write other properties, or call
other methods of the class. You define a computed property
as follows:

class someClass
{

112 | Swift Pocket Reference

 var propertyName: someType {
 get {
 // code that computes and returns
 // a value of someType
 }
 set(valueName) {
 // code that sets up conditions using valueName
 }
 }
}

valueName is optional. It is used to refer to the value passed into
the set method. If you omit it, you can refer to the parameter
by using the default name of newValue.

The setter is optional. If the setter is not used, the get clause is
not required, and all that is needed is code to compute and
return a value:

class someClass
{
 var propertyName: someType {
 // compute and return a value of someType
 }
}

After a computed property is defined, it is used exactly like any
other property. If its name is used in an expression, the getter is
called. If it is assigned a value, the setter is called.

Here is an example of a simple class named Rect that represents
a rectangle in terms of a corner point, a width and a height, and
defines a computed property called area to return the area of
the Rect:

class Rect
{
 var x = 0.0, y = 0.0
 var width = 0.0, height = 0.0
 var area: Double { return (width * height) }
}

You could use this as follows:
var q = Rect()
q.width = 2.7
q.height = 1.4

Classes | 113

q.area
// returns 3.78

NOTE

You can define computed properties for classes, structures,
and enumerations.

Property observers
Property observers are functions you can attach to stored prop‐
erties and that are called when the value of the property is
about to change (identified with the willSet keyword) or after
it has changed (identified with the didSet keyword). The decla‐
ration looks as follows:

class Observer
{
 var name: String = "" {
 willSet(valueName) {
 // code called before the value is changed
 }
 didSet(valueName) {
 // code called after the value is changed
 }
 }
}

Both valueName identifiers (and their enclosing parentheses)
are optional.

The willSet function is called immediately before the property
is about to be changed (except for assignment during initializa‐
tion). The new value is visible inside willSet as either value
Name, or newValue if valueName was not specified. The function
can’t prevent the assignment from happening and can’t change
the value that will be stored in the property.

The didSet function is called immediately after the property
has been changed (except for assignment during initialization).

114 | Swift Pocket Reference

The old value is visible inside didSet as either valueName or old
Value if valueName was not specified.

Here are some other points about property observers:

• When creating a subclass, you can override properties of
the superclass and then add property observers to them,
allowing you to create new behaviors the designer of the
superclass did not plan for or consider.

• Property observers in a superclass are called when a
property is set in the initializer of a subclass.

• You can’t define a property observer for a lazy stored
property.

NOTE

Observers can be defined for regular variables in the same
way they are defined for properties. See the section “Vari‐
able Observers” on page 25 for more details.

Instance versus type properties
For most applications of classes, properties are associated with
each instance of the class. Using the Processor() class example
from earlier, each microprocessor has a different name, differ‐
ent numbers of registers, and potentially different widths for
their data and address paths. Each instance of the class requires
its own set of these property values. Properties used in this way
are called instance properties—there are unique copies associ‐
ated with each instance of the class.

Some applications only require a single instance of a given
property for the entire class. Consider a class that records
employee data and must keep a record of the next available ID
for a new employee. This ID should not be stored in each

Classes | 115

instance, but it does need to be associated with the class in
some way.

For such purposes, Swift provides type properties, which are
properties associated with the class, not with a specific instance
of the class. The same feature is referred to generically as a class
variable, or in C++, Java, and C#, as a static member variable.

NOTE

Swift supports computed type properties in classes, but it
does not currently support stored type properties in classes.
Both are available in structures and enumerations. If you
try to create a stored type property in a class, the compiler
(as of the version of Xcode 7 available when this edition
was updated) will give the error “class stored properties
not yet supported in classes; did you mean static?” This
would seem to imply that support may be coming in a
future release.
To further complicate things, static stored properties are
supported in classes and provide similar functionality.
They are discussed next.

Static properties. In most cases where you would want to use
the (unimplemented) stored type property in a class, you can
use a static property instead. To create a static property, precede
the property’s definition with the keyword static, as in the fol‐
lowing example:

class Employee
{
 static var nextID = 1

 var familyName = ""
 var givenName = ""
 var employeeID = 0
}

116 | Swift Pocket Reference

In this class, only a single instance of the property nextID
exists, regardless of how many employee instances are cre‐
ated. To access a static property use dot-syntax with the class
name, as in this example:

var emp = Employee()
emp.employeeID = Employee.nextID++

Note the following points when using static properties:

• Static properties must be assigned a default value as
part of the class definition (the initialization routines,
described later, only get called when instances are cre‐
ated).

• Static properties are inherited and shared by their sub‐
classes. For example, if a new class is defined that is a
subclass of the Employee class, it will inherit and share the
same single instance of the nextID property.

Computed type properties. To declare a computed type property
for a class, precede the type property’s definition with the key‐
word class. The syntax for creating a read/write computed
type property is as follows:

class SomeClass
{
 class var someComputedProperty: SomeType
 {
 get { return SomeType }
 set(valueName) {
 // do something with valueName
 // that sets the property
 }
 }
}

The get method performs some operation to produce a value
of the declared type, and then returns it.

The set method performs some operation to initialize things
associated with the class—for example, it could modify a static
property, and/or call system functions that have some interac‐

Classes | 117

tion with the class. valueName is optional. It is used to refer to
the value passed into the function. If you omit it, you can refer
to the value with the default name newValue.

If you want a read-only computed type property, omit the set
definition. In this case, you can also omit the get keyword and
reduce the var body to just the code that calculates and returns
the desired value.

The next example reimplements the Employee class from earlier
to show a computed type property in action. The _nextID static
variable is still present, but it is now protected from external
access (see “Access Control” on page 151) and a computed type
property is implemented to provide gated access to that static
value.

class BetterEmployee
{
 private static var _nextID = 1
 class var nextID: Int
 {
 get { return _nextID }
 set { _nextID = newValue }
 }
 var familyName = ""
 var givenName = ""
 var employeeID = 0
}

To access the computed type property, use dot-syntax with the
class name, as before:

var be = BetterEmployee()
be.employeeID = BetterEmployee.nextID++

Even though this code appears to be the same as the earlier ver‐
sion, access to the static _nextID property is now only available
indirectly through the nextID computed type property’s get
and set methods, which are called automatically when the
property is read and written.

118 | Swift Pocket Reference

Note the following when using computed type properties:

• A computed type property cannot access instance prop‐
erties or instance methods because it is not called in rela‐
tion to an instance, but it can call type methods (see
“Type methods” on page 122) and other computed type
properties, and it can access static properties in the class.

• Computed type properties can be overridden in sub‐
classes. See “Overriding Superclass Entities” on page 126
for more information.

Constant properties
You can declare properties as constants by using the keyword
let. Unlike regular constants, constant properties do not need
to be assigned a value when they are defined. Instead, the
setting of their value can be deferred until the instance is ini‐
tialized.

The following example demonstrates a simple class that
includes an uninitialized constant property, cp, the value of
which is set by the initializer function (see “Initialization” on
page 130):

class ConstPropClass
{
 let cp: Int

 init(v: Int)
 {
 self.cp = v
 }
}

var cpDemo = ConstPropClass(v: 8)
cpDemo.cp
// returns 8

Classes | 119

When using constant properties, you should note the
following:

• Constant properties can only be initialized by the class in
which they are defined; they cannot be initialized in a
subclass.

• A constant property’s value can be modified during initi‐
alization, but it must have a value before the initialization
process has completed.

Methods
Methods are functions that are either associated with a class
(in which case, they are known as type methods) or with every
instance of a class (in which case, they are known as instance
methods).

You define methods like functions inside the class definition, as
in the following example, which revises the earlier example of
the Rect class to use a method to return the area of the
rectangle:

class Rect2
{
 var x = 0.0, y = 0.0
 var width = 0.0, height = 0.0
 func area() -> Double
 {
 return width * height
 }
}

The method is called using dot syntax, as in this example:
var r2 = Rect2()
r2.width = 5.0
r2.height = 2.0
r2.area()
// returns 10.0

120 | Swift Pocket Reference

Local and external parameter names
In Swift 2.0, the rules for local and external parameter names in
methods match those for functions. Each parameter in a
method definition has two names—a local name, used inside
the method definition to reference the value, and an external
name, which must be specified in calls to the method. Thus,
every parameter in a method definition can be expressed as
externalName localName: type.

• For the first parameter, if an external name is not pro‐
vided, then it defaults to _ (underscore).

• For any parameter except the first, if an external name is
not provided, then it defaults to the local name.

• For any parameter, if the external name is declared, then
it must be used in calls to the method.

• If an external name is defined as _ (underscore), then
that parameter name can not be used in calls to the
method.

• Swift’s named parameter feature does not allow for
parameters to be listed in “arbitrary order” when calling a
method—they must be listed in the order they are
defined.

Self
Every instance of a class (and other types) has an automatically
generated property named self that refers to that instance.
Consider this extended version of the Rect class:

class Rect3
{
 var x = 0.0, y = 0.0
 var width = 0.0, height = 0.0
 func area() -> Double
 {
 return width * height
 }
 func sameSizeAs(width: Double, _ height:Double) -> Bool

Classes | 121

 {
 return width == self.width && height == self.height
 }
}

In the area() method, both width and height are properties of
the instance, and the return statement could have explicitly
referred to them as:

return self.width * self.height

But this is not necessary, because in method calls, self is nor‐
mally implied whenever properties or methods of that class
are used.

The exception is when a parameter name for a method is the
same as a property name for the class, such as occurs with the
sameSizeAs() method. Parameter names take precedence over
property names in methods; therefore, self must be explicitly
used to differentiate the width and height properties from the
width and height parameters.

Type methods
To define a type method for a class, precede the method’s defi‐
nition with the keyword class, as in the following example:

class someClass
{
 class func someTypeMethod()
 {
 // implementation
 }
}

Despite appearances, this is not a nested class definition.

To call a type method for a class, precede it with the class name
using dot syntax:

someClass.someTypeMethod()

Note the following points when using type methods:

122 | Swift Pocket Reference

• A type method cannot access instance properties or
instance methods because it is not called in relation to
an instance, but it can call other type methods and access
computed type properties and static properties in the
class.

• To access static or computed type properties, or to call
one type method from another within the same class, you
can omit the class name because it is equivalent to self.

• Type methods can be overridden in subclasses. See
“Overriding Superclass Entities” on page 126 for more
information.

Subscripts
In Swift, you can define subscript methods for your own
classes, which makes it possible to use subscript syntax to read
and write values appropriate for an instance of your class.

Subscript syntax is how you access members of arrays and dic‐
tionaries, as shown here:

var m = [Int](count:10, repeatedValue:0)
m[1] = 45
m[2] = m[1] * 2

var cpus = ["BBC Model B":"6502",
 "Lisa":"68000",
 "TRS-80":"Z80"]
let cpu = cpus["BBC Model B"]

Subscript syntax affords both reading and writing of values,
and adheres to the following general pattern:

class SomeClass
{
 subscript(index: someIndexType) -> someReturnType
 {
 get {
 // return someReturnType based on index
 }
 set(valueName) {
 // write valueName based on index

Classes | 123

 }
 }
}

You can omit the valueName parameter name, in which case the
parameter to be written can be accessed as newValue.

Here’s an example class that can represent byte values. It also
defines a subscript method by which you can access individual
bits as though the byte is an array of bits:

class Byte
{
 var d: UInt8 = 0

 subscript(whichBit: UInt8) -> UInt8
 {
 get { return (d >> whichBit) & 1 }
 set {
 let mask = 0xFF ^ (1 << whichBit)
 let bit = newValue << whichBit
 d = d & mask | bit
 }
 }
}

After it is defined, you can use the class like this:
var b = Byte()
b[0] = 1
// b is now 0000 0001, or 1
b[2] = 1
// b is now 0000 0101, or 5
b[0] = 0
// b is now 0000 0100, or 4

Here are some additional things you can do in relation to
subscripts:

• For a read-only subscript, omit the set definition—in
this case, you can also omit the get keyword and reduce
the subscript body to just the code that calculates and
returns the desired value.

• Subscript parameters aren’t limited to single integer val‐
ues; you can declare a subscript method that takes any

124 | Swift Pocket Reference

number of floats, strings, or other types that suit your
requirements.

• You can define multiple overloaded subscript methods as
long as they take different numbers and/or types of
parameters, or return different types of value. Swift will
determine the appropriate method to call using type
inferencing.

Member Protection
Swift provides a mechanism for controlling access to proper‐
ties, methods, and subscripts of classes as part of a broader
access control system. Read the section “Access Control” on
page 151 for more information.

Inheritance: Deriving One Class from Another
You can define new classes in terms of existing classes. In doing
so, the new class is said to inherit all of the properties and
methods of the existing class; the new class is derived from the
existing class.

A common example used to illustrate inheritance is 2D geo‐
metric shapes. The generic base class contains methods and
properties that should be common to all shapes, such as color,
fill, line thickness, and perhaps origin or enclosing rectangle.
Derived classes include actual geometric shapes, such as lines,
circles, ellipses, quads, polygons, and so on. Each of these
introduce new methods and properties specific to that shape
(such as a draw method and properties to store the geometric
details), but all inherit from the base class the common set of
properties and methods that all shapes have.

In Swift, you derive one class from another by using this
syntax:

class NewClassName: BaseClassName
{

Classes | 125

 // property and method definitions for the new class
}

Overriding Superclass Entities
When one class is derived from another, the new class is called
the subclass, and the class from which it is derived is called the
superclass. Although much of the time a subclass will add its
own properties and methods to those inherited from the super‐
class, a subclass also has the ability to override methods and
properties of the superclass by redefining them itself.

To override something already defined in a superclass, you
must precede its definition in the subclass with the override
keyword. This is a signal to the Swift compiler that the redefini‐
tion is intentional, and that you haven’t accidentally created a
method or property with the same name.

In Swift, you can override methods, properties, and subscripts.

Accessing overridden superclass entities
At times it is necessary for a method in a subclass to access a
method or property in its superclass, rather than an overridden
version in the subclass. This is accomplished with the super
prefix, as follows:

• To access an overridden method, call it with
super.methodName().

• To access an overridden property, refer to it as
super.propertyName in the getter, setter, or observer defi‐
nitions.

• To access an overridden subscript, use super[index
Value].

Overriding properties
You can’t actually override a property in a superclass with your
own property (it wouldn’t make sense to duplicate the storage

126 | Swift Pocket Reference

space), but you can override a property in order to provide
your own custom getter and setter for the superclass instance,
or add a property observer so you can be informed when the
property value changes.

Earlier in this section, the Rect class was demonstrated as an
example for storing arbitrary rectangles. The example that fol‐
lows creates a derived class, Square(), that overrides the width
and height properties with new getters and setters that ensure
the width and height always match, and therefore that instan‐
ces of the Square class are always in fact square:

class Square: Rect
{
 override var width: Double {
 get { return super.width }
 set {
 super.width = newValue
 super.height = newValue
 }
 }
 override var height: Double {
 get { return super.height }
 set {
 super.width = newValue
 super.height = newValue
 }
 }
}

Note that the getter and setter still access the properties that are
stored in the superclass via the super prefix. Here is an example
of the class in use:

var s = Square()
s.width = 20.0
s.height = 10.0
s.area
// returns 100.0
s.width
// returns 10.0 (not 20.0)

Classes | 127

When overriding properties, note the following:

• You can override inherited read-only properties as read/
write properties, by defining both a getter and setter.

• You cannot override inherited read/write properties as
read-only properties.

• If you provide a setter, you must also provide a getter
(even if it only returns the superclass property
unmodified).

• You can override inherited mutable properties (declared
with var) with property observers, but you cannot over‐
ride inherited immutable properties (declared with let)
in this way (because property observers are intended to
observe writes to the property).

• You cannot override a property with both a setter and an
observer (because the setter can act as the observer).

Overriding methods and subscripts
To override a method or a subscript that exists in the super‐
class, precede the method or subscript name in the derived
class with the override keyword.

In the earlier section on subscripts, the class Byte was used to
demonstrate how a subscript method can be used to provide
access to each bit of a byte as though it were an array of bits,
using subscript syntax.

A serious omission with this class is that it does not perform
bounds-checking on either the subscript value or the value to
be written. If you refer to a bit position higher than 7, the pro‐
gram will terminate because the mask assignment in the setter
will generate an overflow. If you assign a bit value of something
other than 0 or 1, the assignment will happen, but it will pollute
other bits in the byte property presented as the array of bits.

128 | Swift Pocket Reference

The following example demonstrates a safer derived class that
overrides the subscript definition to ensure these values are
valid:

class SafeByte: Byte
{
 override subscript(whichBit: UInt8) -> UInt8 {
 get { return super[whichBit & 0x07] }
 set { super[whichBit & 0x07] = newValue & 1 }
 }
}

Note that this still uses the superclass implementation of the
subscript function; it just sanitizes the bit value and bit position
before doing so.

Preventing Overrides and Subclassing
Prepending the keyword final to a property, method, or sub‐
script definition prevents that entity from being overridden in a
derived class. Here is a modified version of the Rect class that
uses the final keyword to prevent the width and height prop‐
erties from being overridden:

class Rect4
{
 var x = 0.0, y = 0.0
 final var width = 0.0, height = 0.0
 // rest of definition
}

Note that the use of final in this context does not mean the
values of width and height are locked; it just means the proper‐
ties cannot be overridden in a subclass.

This change means the Square class from earlier would no
longer compile, because it overrides these properties with a
custom setter and getter.

You can also use the final keyword in front of a class defini‐
tion to prevent that class from being subclassed.

Classes | 129

Initialization
Initialization is the process of setting up appropriate default
values for stored properties in a new instance of a class, struc‐
ture, or enumeration. The process is similar to a constructor in
C++, C#, or Java, or the Init selector in Objective-C. It ensures
a new instance is ready for use and does not contain random or
uninitialized data.

Initialization happens automatically for a new instance of a
class; you do not call the initializer explicitly, although you do
need to call initializers in a superclass from the initializer of a
derived class (this is discussed more in “Initialization and
Inheritance” on page 137).

You can initialize stored properties by either assignment of
default values in the class definition or by defining one or more
init() functions in the class. The Byte class introduced earlier
demonstrated initialization by assignment:

class Byte
{
 var d: UInt8 = 0
 // rest of class definition
}

For more complex classes, it is common to write one or more
init() functions to manage the process of instantiating a new
instance of an object. For classes, Swift supports two kinds of
initialization: designated initializers and convenience initializers.

A designated initializer must initialize all of the properties of a
class. In a subclass, it must initialize all of the properties
defined in that subclass and then call a designated initializer in
the superclass to continue the initialization process for any
inherited properties.

A convenience initializer provides a way to call a designated
initializer with some of the designated initializer’s parameters
set to common default values.

130 | Swift Pocket Reference

A designated initializer is defined by using the following
syntax:

class ClassName
{
 init(parameterList)
 {
 // statements to initialize instance
 }
 // rest of class definition
}

A convenience initializer is defined by using the following
syntax:

class ClassName
{
 convenience init(parameterList)
 {
 // statements to initialize instance
 }
 // rest of class definition
}

Here are some important characteristics of the initialization
process:

• If a property has a property observer, that observer is not
called when the property is initialized.

• Properties whose type is optional are automatically ini‐
tialized to nil if you do not separately initialize them.

• Immutable properties (declared with let) can be modi‐
fied during initialization, even if assigned a default value
in the class definition.

• A designated initializer is the main initializer for a class.
Most classes will only have one, but more than one is
allowed: for example, one with no arguments that sets all
properties to default values, and one with arguments that
serve as initialization values for specific properties.

• A designated initializer must call a designated initializer
for its superclass.

Classes | 131

• Convenience initializers are optional secondary initializ‐
ers; they must call another initializer in the same class.

• A convenience initializer’s execution must eventually lead
to the execution of a designated initializer.

Swift also supports deinitializers, which are invoked automati‐
cally immediately before an object is deallocated (see the sec‐
tion “Deinitialization” on page 138 for more information).

Designated initializers

The Rect class described earlier demonstrated initialization by
assignment in the class definition:

class Rect
{
 var x = 0.0, y = 0.0
 var width = 0.0, height = 0.0
 // rest of definition
}

This can be rewritten to use a designated initializer function
instead, like this:

class Rect
{
 var x, y, width, height: Double
 init()
 {
 x = 0.0; y = 0.0
 width = 0.0; height = 0.0
 }
 // remainder of class definition
}

This default init() function, without parameters, is the initial‐
izer that is called when you create a new object with no initiali‐
zation parameters, as in the following:

var q = Rect()

You can create additional initializers, each of which takes dif‐
ferent numbers and/or types of parameters. The following
extended version of the Rect class includes two different desig‐

132 | Swift Pocket Reference

nated initializer methods, either of which will be called
depending on how the Rect is instantiated:

class Rect6
{
 var x, y, width, height: Double
 init()
 {
 x = 0.0; y = 0.0
 width = 0.0; height = 0.0
 }
 init(x: Double, y: Double,
 width: Double, height: Double)
 {
 self.x = x
 self.y = y
 self.width = width
 self.height = height
 }
}

Now, either init() method can be used to construct Rect
instances:

var rectI1 = Rect6()
var rectI2 = Rect6(x: 2.0, y: 2.0, width: 5.0, height: 5.0)

Note that the second init() function has only defined local
parameter names, but the instantiation of rectI2 shows they
are externally visible.

NOTE

For init() functions, Swift will always generate an exter‐
nal parameter name if one hasn’t been defined. Moreover,
external parameter names (whether explicitly defined or
implicitly generated) must be used when the class is
instantiated.

If you want to prevent the generation of an external parameter
name, precede the local parameter name with an underscore,
like this:

Classes | 133

class Rect6
{
 var x, y, width, height: Double
 init()
 {
 x = 0.0; y = 0.0
 width = 0.0; height = 0.0
 }
 init(_ x: Double, _ y: Double,
 _ width: Double, _ height: Double)
 {
 self.x = x
 self.y = y
 self.width = width
 self.height = height
 }
}

Because there are now no external parameter names, new
instances of the class can be created just by specifying the
parameter values, as shown here:

var rectI3 = Rect6(2.0, 2.0, 5.0, 5.0)

Convenience initializers
Convenience initializers are secondary initialization functions
that must call some other initializer within the same class, and
ultimately they must cause the execution of a designated
initializer.

In “Defining a Base Class” on page 108, a simple class called
Processor was introduced to represent microprocessors. The
use of this class might require frequent instantiation of a partic‐
ular type of processor, and hence warrant the inclusion of a
convenience initializer:

class Processor2
{
 var dataWidth = 0
 var addressWidth = 0
 var registers = 0
 var name = ""

 init (name: String, dWidth: Int, aWidth: Int, regs: Int)
 {

134 | Swift Pocket Reference

 self.name = name
 dataWidth = dWidth
 addressWidth = aWidth
 registers = regs
 }

 convenience init (eightbitName: String, regs: Int)
 {
 self.init(name: eightbitName, dWidth:8,
 aWidth:16, regs: regs)
 }
}

Note that the convenience initializer defaults two of the four
parameters required by the designated initializer, which it calls
as self.init().

The convenience initializer is called automatically when a new
instance is created with parameters that match its signature, as
in the following example:

var p = Processor2(eightbitName:"6502", regs:3)

Failable initializers

A failable initializer is one that can return nil if a class, struc‐
ture, or enumeration is unable to properly initialize an instance
of itself. For example, a class might require that a resource be
available on disk, or a network connection be available, before
it can be instantiated.

You indicate that an initializer is failable by defining it
as init?().

Following is a version of the Employee class that includes a fail‐
able initializer. The initialization will fail if the family name
concatenated with the given name is an empty string:

class Employee3
{
 static var nextID = 1

 var familyName: String
 var givenName: String
 var employeeID = 0

Classes | 135

 init?(familyName: String, givenName: String)
 {
 self.familyName = familyName
 self.givenName = givenName
 if familyName + givenName == "" {
 return nil
 }
 employeeID = Employee3.nextID++
 }
}

When instances of this class are created using this specific ini‐
tializer, they are optionals. Consider the following code:

var emp1 = Employee3(familyName: "Jones", givenName: "Bob")
var emp2 = Employee3(familyName: "", givenName: "")
emp1?.givenName // returns "Bob"
emp2?.givenName // returns nil

Both emp1 and emp2 are of type Employee3?—optional values
that must be unwrapped in order to access the employee
record. emp1 contains a valid employee record, whereas emp2
is nil.

Some other points to note include:

• For classes, a failable initializer must not fail (return nil)
until after all stored properties for the class have been
set to an initial value, and a designated initializer has
been run.

• A failable initializer can call another failable initializer in
the same class or a superclass. If that initializer fails, the
entire initialization process fails immediately.

• A failable initializer can be overridden in a subclass with
either a failable or a nonfailable initializer.

• A failable initializer cannot override a nonfailable initial‐
izer in a superclass.

• You can create an implicitly unwrapped failable initializer
by defining it as init!(). If you do so, you must check
that the created instance is not nil before accessing its

136 | Swift Pocket Reference

methods and properties, otherwise a runtime error will
occur.

Initialization and Inheritance
Hierarchies of classes introduce additional complexity into the
way initializers are defined and used, including the following:

• A designated initializer must set values for all properties
introduced in its own class before calling a superclass
initializer.

• A designated initializer must call a superclass initializer
before setting the value of any inherited property.

• A convenience initializer must call another initializer in
its class (convenience or designated) before setting the
value of any property.

• Initializers cannot call instance methods, read instance
properties, or refer to self until all properties introduced
by the class and all properties of its superclass hierarchy
have been initialized.

A derived class in Swift does not usually inherit initializers
from a superclass, but there are two circumstances in which
it does:

• If the derived class does not define any designated initial‐
izers of its own, it will automatically inherit all of the des‐
ignated initializers of its superclass.

• If the derived class implements all of its superclass desig‐
nated initializers, by any combination of defining them
itself and inheriting them, it will automatically inherit all
of its superclass convenience initializers.

Classes | 137

Overriding initializers
You can override initialization functions in a derived class, but
you must consider the following:

• To override a designated initializer, you must precede its
definition with the keyword override.

• To override a convenience initializer, it must use the
same number of parameters, with the same names and
types, as the superclass initializer it is overriding, but you
must not use the override keyword.

Required initializers

The required keyword, when used in front of an initializer,
means the initializer must be implemented in a derived class.
Here are two issues to keep in mind:

• A required designated initializer must be redefined in the
derived class.

• A required convenience initializer does not need to be
redefined in the derived class if it will be automatically
inherited, unless the inherited behavior is not desirable.

Deinitialization
Deinitialization is the process of cleaning up anything related to
an instance of a class immediately before that instance is deal‐
located. The process is similar to a destructor in C++ and C#,
or a finalize method in Java.

A deinitializer is declared by using the deinit keyword, as
shown here:

class SomeClass
{
 // other parts of class definition
 deinit
 {

138 | Swift Pocket Reference

 // code to tidy up before deallocation
 }
}

The deinit function is called automatically and cannot be
called directly.

A derived class inherits its superclass deinitializer, and the
superclass deinitializer is automatically called at the end of the
derived deinitializer’s implementation.

Structures
In Swift, structures are closely related to classes (see “Classes”
on page 106), which can be surprising for C and Objective-C
programmers, but less surprising for those familiar with C++,
in which classes and structs are also closely related.

Here are some notable similarities and differences:

• Like classes, structures can have properties, instance and
type methods, subscripts, and initializers, and they can
support extensions and protocols (see the sections
“Extensions” on page 155 and “Protocols” on page 162).

• Structures can’t inherit from or be derived from other
structures and can’t have deinitializers.

• Structures are value types, whereas classes are reference
types. This means structures are always copied when
assigned or used as arguments to functions; they don’t
use reference counts.

The syntax for declaring a new structure is as follows:
struct StructureName
{
 // property, member and related definitions
}

Structures | 139

Properties in Structures
Properties and property features in structures are largely iden‐
tical to those of classes, and you should read the subsection
“Properties” on page 110 to learn the basics.

Like classes, structures support stored and computed proper‐
ties, property observers, and constant properties.

Structures also support type properties. While classes introduce
these by using the keyword class, in structures they are intro‐
duced with the keyword static.

Methods in Structures
Structures can have instance methods, defined by using the
same syntax as they are with classes. The following example
demonstrates a structure for representing rectangles in terms of
a corner point, a width, and a height, and includes a method
area() that computes the area of the shape:

struct Rect1
{
 var x = 0.0, y = 0.0, width = 0.0, height = 0.0

 func area() -> Double
 {
 return width * height
 }
}

Mutating methods
By default, instance methods defined in a structure are not able
to modify that instance’s properties. You can enable this behav‐
ior, however, by defining the instance method as a mutating
method.

The following example modifies the earlier Rect structure to
include a mutating method embiggenBy(), which modifies the
width and height properties:

struct Rect2
{

140 | Swift Pocket Reference

 var x = 0.0, y = 0.0, width = 0.0, height = 0.0

 mutating func embiggenBy(size: Double)
 {
 width += size
 height += size
 }
}

A mutating method can also replace the current instance of the
structure with a new instance by direct assignment to self.

Type Methods for Structures
When declaring a type method for a structure, precede the
method’s definition with the keyword static (in contrast to
classes, for which the keyword class is used), as illustrated in
this example:

struct someStructure
{
 static func someTypeMethod()
 {
 // implementation
 }
}

To call the type method for a structure, you precede it with the
structure name using dot syntax, as shown here:

someStructure.someTypeMethod()

Note the following additional issues when using type methods:

• A type method cannot access instance properties or
instance methods because it is not called in relation to an
instance, but it can call other type methods and access
type properties in the structure.

• To access a type property or call a type method from
another type method within the same structure, you can
omit the structure name because it is equivalent to self.

Structures | 141

Initializers in Structures
As with classes, there are a number of different ways you can
initialize a structure before it is used. The most direct way is by
assigning default values to stored property members in the
structure definition, as in this example:

struct Rect3
{
 var x=0.0, y=0.0, width=0.0, height=0.0
}

New instances of this structure can be instantiated without
specifying any parameters:

var r3a = Rect3()

If no initializer methods are included in a structure definition,
Swift will automatically create a memberwise initializer that
allows each stored property to be specified during instantiation,
such as the following:

var q2 = Rect3(x:2.0, y:2.0, width:2.0, height:5.0)

If you require more flexibility than what is provided by either
the memberwise initializer or default values, you can write
your own init() method (or methods) to do custom
initialization. For example, here is a variation of the Rect class
that includes an init() method for creating squares:

struct Rect4
{
 var x=0.0, y=0.0, width=0.0, height=0.0

 init (x: Double, y: Double, side: Double)
 {
 self.x = x
 self.y = y
 self.width = side
 self.height = side
 }
}

142 | Swift Pocket Reference

Initializer delegation in structures

For structures that include more than a few init() methods,
you can use initializer delegation, by which one init() method
calls another to carry out some part of the initialization
process. Here is an example of a structure for implementing a
Rect class that includes two different init() methods:

struct Rect5
{
 var x, y, width, height: Double

 init(_ x: Double, _ y: Double,
 _ width: Double, _ height: Double)
 {
 self.x = x
 self.y = y
 self.width = width
 self.height = height
 }

 init()
 {
 self.init(0.0, 0.0, 0.0, 0.0)
 }

}

The first init() method provides a way to initialize the struc‐
ture so that each initial property value is specified when the
structure is instantiated:

var r5a = Rect5(0.0, 0.0, 3.0, 4.0)

The second init() method provides another way to instantiate
the structure, as in the following:

var r5b = Rect5()

In this case, the second init() function delegates all of its work
to the first init() function by using the self prefix, with each
parameter set to 0. Only initializers are allowed to call other
initializers in this way.

Structures | 143

Enumerations
An enumeration is a user-defined type that consists of a set of
named values. With enumerations, algorithms can be more
naturally expressed by using the language of the problem set
rather than having to manually map values from another type
(such as Int) to some representation of the problem set.

For example, you might want to store information about the
class of travel for a ticket. Without enumerations, you might
use “1” to represent first class, “2” to represent business class,
and “3” to represent economy class.

Using an enumeration, you could instead represent the classes
as named values such as first, business, and economy.

Enumerations in Swift are considerably enhanced compared to
their counterparts in C-based languages, and they share many
characteristics with classes and structures. Following are some
of the notable similarities and differences:

• Enumerations can have computed properties (but not
stored properties), instance and type methods, and ini‐
tializers (see the relevant sections in “Classes” on page
106).

• Enumerations support extensions and protocols (see the
sections ““Extensions” on page 155 and “Protocols” on
page 162).

• Enumerations can’t inherit or be derived from other enu‐
merations and can’t have deinitializers.

The syntax for declaring a new enumeration is as follows:
enum EnumName {
 // list(s) of enumeration member values
}

Using the travel class analogy, the example thus becomes:
enum TravelClass {
 case First

144 | Swift Pocket Reference

 case Business
 case Economy
}

You can write the same definition more concisely like this:
enum TravelClass {
 case First, Business, Economy
}

Unlike C, enumerations in Swift are not assigned equivalent
integer values, but such values can be optionally assigned to
them (see the next section, “Raw Member Values”).

Once defined, enumerations are used much like any other type:
var thisTicket = TravelClass.First
var thatTicket: TravelClass
thatTicket = .Economy

Note that dot syntax is required when referring to a named
value from an enumeration. In the second assignment in the
preceding example, the enumeration name is omitted because
it can be inferred from the variable type, but the dot is still
required.

Raw Member Values
In C, each member of an enumeration has an underlying inte‐
ger value, and you can use that value in place of the member
name. Swift does not assign values to enumeration members by
default, but you can include values in the definition. These are
called raw values. Moreover, raw values aren’t limited to integer
values; they can be strings, characters, or floating-point values,
but all raw values for a given enumeration must be the
same type.

This example declares an enumeration with raw values of
Int type:

enum AtomicNumber: Int {
 case Hydrogen = 1
 case Helium = 2
 case Lithium = 3

Enumerations | 145

 case Beryllium = 4
}

For enumerations where the raw value is of Int type, successive
members will be given auto-incrementing raw values if no
value is provided:

enum AtomicNumber: Int {
 case Hydrogen = 1, Helium, Lithium, Beryllium
}
// Helium = 2, Lithium = 3, Beryllium = 4

The rawValue property in this example gives you access to a
member’s raw value:

AtomicNumber.Lithium.rawValue
// returns 3

var mysteryElement = AtomicNumber.Helium
mysteryElement.rawValue
// returns 2

The (rawValue: n) initializer lets you translate a raw value
back its enumeration value, if one exists. Because there might
not exist a member with the specified raw value, this returns an
optional value, which must be unwrapped:

if let r = AtomicNumber(rawValue: 2) {
 print (r)
} else {
 print ("no match for raw value 2")
}

In the previous example, note that the text “Helium” will be
output, but r is not a string. Swift 2.0 added reflection informa‐
tion to enumerations so the print statement displays some‐
thing useful. You can convert an enumeration to a string using
string interpolation. For example:

var s: String
if let r = AtomicNumber(rawValue: 3) {
 s = "\(r)"
} else {
 s = ""
}

146 | Swift Pocket Reference

Associated Values
Raw member values are invariant (i.e., they are constant values
that are associated with each enumeration member). Enumera‐
tions in Swift support another kind of value called an associated
value. These are more like properties of a class—you can set
them differently for each instance of the enumeration.

You define associated values for an enumeration as follows:
enum EnumName {
 case MemberName(SomeType [, SomeType…])
 case AnotherMemberName(SomeType [, SomeType…])
}

The associated value(s)—expressed as a tuple—can have one or
more values, each of which can be of a different type.

Let’s consider a concrete example. The term “network address”
can be generically used to mean an address for the type of pro‐
tocol being considered, even though network addresses for two
different protocols might look very different from each other.

For example, an Ethernet MAC address consists of six 2-digit
hex values separated by colons (e.g., “00:01:23:45:CD:EF”),
whereas an IPv4 consists of four 8-bit unsigned values (or
octets). You can represent this as an enumeration with associ‐
ated values like this:

enum NetworkAddress {
 case MAC(String)
 case IPv4(UInt8, UInt8, UInt8, UInt8)
}

When a variable of this enumeration type is defined, you can
associate IP addresses with each IPv4 case, and MAC addresses
with each MAC case:

var routerAddress = NetworkAddress.IPv4(192, 168, 0, 1)
var dnsServerAddress = NetworkAddress.IPv4(8, 8, 8, 8)
var ethernetIF = NetworkAddress.MAC("00:DE:AD:BE:EF:00")

Note that the associated value is stored with the instance; it is
not part of the enumeration. You can even reassign a different

Enumerations | 147

type of network address to an existing variable of that type and
store a different type of associated value:

var someAddress = NetworkAddress.IPv4(192, 168, 0, 1)
someAddress = NetworkAddress.MAC("00:DE:AD:BE:EF:00")
someAddress = NetworkAddress.IPv4(10, 10, 0, 1)

To check for different types of network addresses, use a switch
statement:

someAddress = NetworkAddress.IPv4(10, 10, 0, 1)
switch someAddress {
 case .MAC:
 print ("got a MAC address")
 case .IPv4:
 print ("got an IP address")
}
// prints "got an IP address"

To access the associated value, use a switch statement with let
value binding:

someAddress = NetworkAddress.MAC("00:DE:AD:BE:EF:00")
switch someAddress {
 case let .MAC(theaddress):
 print ("got a MAC address of \(theaddress)")
 case let .IPv4(a, b, c, d):
 print ("got an IP address with" +
 "a low octet of \(d)")
}
// prints "got a MAC address of 00:DE:AD:BE:EF:00"

Methods in Enumerations
Enumerations can have instance methods, which you define
using the same syntax as when defining classes. The following
example extends the NetworkAddress enumeration to include a
method printable() that returns the associated value of either
enumeration type as a string:

enum NetworkAddress2 {
 case MAC(String)
 case IPv4(UInt8, UInt8, UInt8, UInt8)

 func printable() -> String
 {
 switch self {

148 | Swift Pocket Reference

 case let .MAC(theAddress):
 return theAddress
 case let .IPv4(a, b, c, d):
 return ("\(a).\(b).\(c).\(d)")
 }
 }
}

You use this as follows:
var deviceAddress = NetworkAddress2.IPv4(192, 168, 0, 1)
deviceAddress.printable()
// returns "192.168.0.1"
deviceAddress = NetworkAddress2.MAC("00:DE:AD:BE:EF:00")
deviceAddress.printable()
// returns "00:DE:AD:BE:EF:00"

By default, instance methods defined in an enumeration are
not able to modify the instance’s value, but you can enable this
behavior by defining the instance method as a mutating method
(see the subsection “Mutating methods” on page 140).

Type Methods for Enumerations
To declare a type method for an enumeration, you precede the
method’s definition with the keyword static (in contrast to
classes, where the keyword class is used), as shown in the fol‐
lowing example:

enum SomeEnumeration {
 static func someTypeMethod()
 {
 // implementation
 }
}

Type methods defined in enumerations can access other type
methods and type properties defined for the same enumera‐
tions (indicated with the keyword static).

To call a type method for an enumeration, precede it with the
enumeration name using dot syntax, like so:

SomeEnumeration.someTypeMethod()

Enumerations | 149

Note the following additional issues when using type methods
in enumerations:

• A type method cannot access associated values or
instance methods because it is not called in relation to an
instance, but it can call other type methods in the enu‐
meration.

• To call a type method from another type method within
the same enumeration, you can omit the enumeration
name because it is equivalent to self.

Recursive Enumerations
Swift 2.0 introduced support for recursive enumerations—i.e.,
enumerations that can contain cases with associated values that
are instances of the same enumeration. Such enumerations
must be annotated with the keyword indirect.

Following is an example that defines an enum List, which can
either be empty, or can contain a head value (an Int) followed
by a tail value (a List):

indirect enum List {
 case Empty
 case SubList(head: Int, tail: List)
}

let list1 = List.SubList(value: 4, tail: List.Empty)
let list2 = List.SubList(value: 1, tail: list1)
let list3 = List.SubList(value: 2, tail: list2)
print (list3)
// will output:
// SubList(2, List.SubList(1, List.SubList(4, List.Empty)))

Failable Initializers in Enumerations
Failable initializers are available in enumerations.

For more information, see “Failable initializers” on page 135,
which discusses failable initializers in the context of classes.

150 | Swift Pocket Reference

Access Control
Many object-oriented languages feature a method of access
control for limiting access to members of classes. For example,
C++ supports public, protected, and private access levels for
data and function members of a class or structure.

Swift provides a similar mechanism, but it extends it to provide
access control for higher-order types (classes, structures, and
enumerations) as well as their members, and for globally
defined values, such as functions and variables, type aliases,
protocols, extensions, and generics.

The access control levels provided by Swift are public, internal,
and private. Following are descriptions of each and some limi‐
tations of their use:

• Public entities are accessible from any source file in the
module in which they are defined as well as any source
file that imports that module.

• Internal entities are accessible from any source file in the
module in which they are defined, but not from else‐
where. Internal access is the default access level applied
in most cases for which access control is not otherwise
specified.

• Private entities are only accessible within the source file
in which they are defined (and thus are not even
accessible from other source files that are part of the
same module).

• It is not possible to specify an access level for an entity
that is more open than the access level of its type. For
example, if the class SomeClass has an access level of
internal, it is not possible to define an instance of this
class and assign it an access level of public.

• It is not possible to specify an access level for a member
of an entity that is more open than the entity itself. For
example, if the class SomeClass has an access level of

Access Control | 151

internal, it is not possible for a member of the class to
have an access level of public.

Specifying Access Control Levels
You specify access control levels by preceding the entity to
which they refer with one of the keywords, public, internal, or
private, as in the following:

public let APIVersion = "1.0.0"
private struct HashingRecord { }
internal class Byte { }

The access level specified for a type affects the default access
level for its members:

• If a type’s access is marked as private, its members will
default to private.

• If a type’s access is marked as public or internal, its mem‐
bers will default to internal—you need to explicitly
declare members as public if you want them visible out‐
side the current module, even if the containing entity
itself is marked as public.

• If a type’s access is not specified, it, and its members, will
default to internal.

In the earlier section on classes a Byte class was introduced to
demonstrate the use of the subscript function, which provided
access to Byte instances as though they were an array of bits. If
this class was to be included in a framework for other programs
to use, it would be necessary to make the class and its subscript
member public, but it would also be reasonable to mark the
variable that stores the byte value as private, so the implemen‐
tation is opaque to callers, as in this example:

public class Byte
{
 private var d: UInt8 = 0

 public subscript(whichBit: UInt8) -> UInt8 {

152 | Swift Pocket Reference

 // rest of subscript definition
 }
}

Other code that imported this library module would be able to
create instances of the Byte class, and could set and get their
value by subscript, but could not access the d property directly.

Default Access Control Levels
Although the default access level for most entities is internal,
there are some exceptions and caveats you might need to con‐
sider, which are presented in Table 6.

Table 6. Access control restrictions

Type Default/available access level(s)

Constants,
variables,
properties

Constants, variables, and properties must have either the same
access level as their type, or a more restrictive level. For example,
a variable of type SomeClass that is marked internal
cannot itself be marked as public.

Enumeration
cases

The access level of the cases of an enumeration is the same as the
access level of the enumeration itself (enumeration cases are not
members in the usual sense).

Enumeration
values

The default access level is the same as the access level of the
enumeration with which the values are associated and cannot be
overridden with a more restrictive access level.

Extensions When extending a class, structure, or enumeration, new
members defined in the extension have the same default access
level as members of the original entity:

• You can override the default for new members by
specifying a different access level on the extension.

• The access level for new members can override the
default but cannot be more open than the access level of
the original entity.

• You cannot specify an access level on an extension that
adds protocol conformance.

Access Control | 153

Type Default/available access level(s)

Function The default access level is the most restrictive of all of the
function’s parameter and return types. You can override the
default but only with a more restrictive level.

Generics The effective access level for generics is the most restrictive of the
access level of the generic itself as well as the access level of any
of its constraining types.

Getters,
setters

The default access level for getters and setters is the same as the
access level for the entity on which they are defined. The setter
can have a more restrictive level than the getter (limiting
modification of the entity without affecting its readability),
which is specified by preceding the variable or property name
with either private(set) or internal(set).

Initializers The default access level for initializers is the same as the access
level of the class to which they belong. You can override the
default for a custom initializer with a more restrictive level.

Nested types • Types defined within private types will also be private.

• Types defined within internal types will default to the
internal access level but can be made private.

• Types defined within public types will default to the
internal access level, and you can override with any access
level.

Protocols The default access level is internal, but you can override this with
any level. Each requirement within the protocol has the same
access level as the protocol itself, and this cannot be overridden.

Subclasses The default access level is the same as that of the superclass, but
you can override this with a more restrictive level. A subclass can
override the implementation of an inherited class member and
override that member’s access level as long as it is not more open
than the access level of the subclass.

Subscripts The default access level for a subscript is the most restrictive of its
index and return types. You can override this only with a more
restrictive level.

154 | Swift Pocket Reference

Type Default/available access level(s)

Tuple The only available access level is the most restrictive level of all of
the types that comprise the tuple. You cannot override this
because tuples are not explicitly defined like other types.

Type aliases The default access level for a type alias is the same as that of the
type that it aliases. You can override the default with a more
restrictive level.

Extensions
Swift’s extensions mechanism makes it possible for you to add
new functionality to existing classes, structures, and enumera‐
tions, even if you did not create them yourself, and you do not
have their source code. This is a hugely powerful feature and
one that opens opportunities for extending Swift itself—if the
language is missing a feature you need, you can often add it
yourself as an extension.

The basic syntax of an extension is as follows:
extension Type
{
 // code that extends Type
}

Extensions can only add new functionality to existing types;
they cannot override existing properties, methods, subscripts,
or any other functionality already defined in a type.

Computed Property Extensions
You can use extensions to add computed type properties and
computed instance properties to an existing type, but you can‐
not use them to add stored properties or property observers.

Here is a simple extension that adds a computed property to
the Int class that returns a hex representation of the integer as
a string:

extension Int
{

Extensions | 155

 var asHex: String {
 var temp = self
 var result = ""
 let digits = Array("0123456789abcdef".characters)
 while (temp > 0) {
 result = String(digits[Int(temp & 0x0f)])
 + result
 temp >>= 4
 }
 return result
 }
}

With this extension in place, you can query the asHex property
of any Int type to get its hex equivalent as a string:

45.asHex
// returns "2d"
var s = 100.asHex
// stores "64" in a new String variable s

Initializer Extensions
Extensions can be used to add convenience initializers to a
class, but you cannot add designated initializers or deinitializ‐
ers.

Extensions can also be used to add initializers to structures. If
the structure does not define its own initializers, your exten‐
sion initializer can call the default member-wise initializer if
required to set all default property values.

Method Extensions
You can use extensions to add instance methods and type
methods to an existing type. The following example extends the
Int type to provide a facility for converting an integer to a
fixed-width string with leading spaces:

extension Int
{
 func asRightAlignedString(width: Int) -> String
 {
 var s = "\(self)"
 while (s.characters.count) <= width) {

156 | Swift Pocket Reference

 s = " " + s
 }
 return s
 }
}

let x = -45
x.asRightAlignedString(5)
// returns " -45"

An instance method added with an extension can modify the
instance with the mutating keyword. This example extends the
Double type with a method that truncates a double to its nearest
integer value that is not larger than the original value:

extension Double
{
 mutating func trunc()
 {
 self = Double(Int(self))
 }
}

var d = 45.5
d.trunc()
// d is now 45.0

Subscript Extensions
Here is an example that extends the String class to support
subscripted character referencing:

extension String
{
 subscript (i: Int) -> Character {
 return Array(self.characters)[i]
 }
}

To use this, follow a string with a subscript:
"Hello"[4]
// returns "o"
var a = "Alphabetical"
a[0]
// returns "A"

Extensions | 157

Earlier, the section on classes presented a Byte class that
included a subscript definition with which you could treat a
Byte object as an array of bits. Using extensions, you can apply
the same feature to the UInt8 type, as demonstrated here:

extension UInt8
{
 subscript(whichBit: UInt8) -> UInt8 {
 get { return (self >> whichBit) & 1 }
 set {
 let mask = 0xFF ^ (1 << whichBit)
 let bit = (newValue & 1) << whichBit
 self = self & mask | bit
 }
 }
}

var b: UInt8 = 0
b[0] = 1
b[7] = 1
b
// returns 129

Checking and Casting Types
Swift is a strongly typed language, but there are times when
some relaxation of type rules is warranted, and there are times
when you want to check what an object’s type is or downcast a
reference to a subclass type.

Using Swift’s is, as, as!, and as? type casting operators, you
can test types and protocol conformance, and downcast types
and protocols.

Any and AnyObject
One Swift mechanism that provides type flexibility comes via
the keywords AnyObject and Any, which are special built-in type
aliases. AnyObject can represent an instance of any class,
whereas Any can represent an instance of any type except for
function types.

158 | Swift Pocket Reference

You can use these two type aliases to create complex enti‐
ties. For example, an array that can store any type of data:

var v = [Any]()
v.append(2)
v.append(3.4)
v.append("crunch")

Or you can create a function that can take an instance of any
class type:

func someFunc(t: AnyObject)
{
 // do something with t
}

Another example of where AnyObject is required is when call‐
ing Objective-C APIs that return an NSArray. Because an
Objective-C array can contain arbitrary object types, it must be
represented in Swift as an array of type [AnyObject]. To work
with such an array, you will likely need to use Swift’s type-
casting operators to cast references to the array entries to an
appropriate Swift class, such as a String.

Checking Types
You use the is operator to check whether an instance is of a
specific type. Consider the following example of three classes
A, B, and C. Note that B is a subclass of A:

class A { }
class B: A { }
class C { }

var a = A()
var b = B()
var c = C()

The following function takes an instance of any object as a
parameter and uses the is operator to check whether it is an
instance of class A:

func typeCheck(t: AnyObject) -> Bool
{
 return t is A

Checking and Casting Types | 159

}

typeCheck(a) // true
typeCheck(b) // true
typeCheck(c) // false

The first typeCheck call returns true because a is an instance of
class A. The second call also returns true, because b is an
instance of B, which in turn is a subclass of A. The third call
returns false because c is not of type A or a subclass of A.

Downcasting Types
Using downcasting, you can treat an instance of a class as an
instance of one of its subclasses.

Consider the scaffolding in the example that follows for a sys‐
tem for representing geometric shapes. The example starts with
a generic base class called shape and then defines specific
shapes as subclasses of the base class to represent circles and
squares. Note that the subclasses have different functionality. In
this contrived example, one has a describe method, while the
other has an identify method—a small difference purely for
the sake of demonstration:

class Shape { }
class Square: Shape
{
 func describe()
 {
 print("I am a square")
 }
}
class Circle: Shape
{
 func identify()
 {
 print("I am a circle")
 }
 }

Now, an array is defined for storing shapes, some of which are
then added to it:

160 | Swift Pocket Reference

var shapes = [Shape]()

let sq = Square()
let ci = Circle()

shapes.append(sq)
shapes.append(ci)

The array is defined to store generic shapes, but because both
Circle and Square are subclasses of Shape, they too can be
stored in the array.

With this structure in place, you now want to create a general-
purpose function to do something with the array of shapes
(e.g., drawing them on a display or calling some other subclass-
specific method). As you walk through the array, you might
want to know the type of each member (whether it’s a circle or
a square, or something else), but you might also want to be able
to treat each member as its subclass type (rather than the
generic type of the array) so you can use features unique to
each subclass. For you can use the as and as? downcast
operators.

The as! operator forcibly downcasts to a specific subclass type.
If the object you’re trying to downcast is not actually of the
specified class or is not a subclass of the specified class, Swift
will terminate with a runtime error.

The as? operator attempts to downcast to a specific subclass
type and returns an optional value. If the downcast fails (i.e.,
the object you’re trying to downcast is not of the specified class
or a subclass of the specified class), the value returned is nil. If
the downcast succeeds, the returned value is the type to which
it was downcast.

Suppose you wanted to walk through the shape array searching
for a specific type of entry. Even though you could do that by
using the is operator, here’s how you would do it using the as?
operator and let binding:

for s in shapes
{
 if let c = s as? Circle {

Checking and Casting Types | 161

 // c is now a reference to an array entry downcast
 // as a circle instead of as a generic shape
 } else {
 // downcast failed
 }
}

Alternatively, you could use a switch statement to achieve a
similar goal:

for s in shapes
{
 switch s {
 case let cc as Circle:
 cc.identify()
 case let ss as Square:
 ss.describe()
 default:
 break;
 }
}

Note that the preceding example again used let binding so that
you have a reference to the array entry, but the reference is cast
to the subclass type so that cc refers to a Circle. This allows
you to call methods unique to the Circle type, whereas ss
refers to a Square, and lets you call methods unique to the
square type.

If you’re sure a downcast won’t fail and you don’t want to use
let binding, you can use the as! operator to forcibly downcast
from the generic class to the subclass like this:

for s in shapes {
 if s is Circle {
 let c = s as! Circle
 c.identify()
 }
}

Protocols
A protocol defines a standard set of features, expressed via
properties, methods, operators, and subscripts, that embody a
specific role or provide a specific set of functionality. A proto‐

162 | Swift Pocket Reference

col isn’t the implementation of this functionality; it just
describes what must be implemented.

A class, structure, or enumeration can subsequently adopt the
protocol, which implies the class, structure, or
enumeration will include its own definitions of the features the
protocol declares, thereby conforming to the protocol.

NOTE

Swift 2.0 allows you to use protocol extensions to provide
default implementations of methods and properties for all
conforming types. See “Protocol Extensions” on page
173 for more information.

The syntax for declaring a new protocol is as follows:
protocol ProtocolName
{
 // protocol definition
}

To restrict a protocol such that it can only be adopted by classes
(and not by structures or enumerations), add a class annota‐
tion, as in this example:

protocol ProtocolName: class
{
 // protocol definition
}

The syntax for adopting one or more protocols (in this case, for
a class) is as follows:

class ClassName : [SuperClassName]
 ProtocolName [, ProtocolName…]
{
 // class definition and code that
 // implements the requirements of ProtocolName(s)
}

Protocols | 163

If the class is derived from an existing class, the superclass
name appears before any protocol names.

The protocol body consists of a series of declarations that
define the requirements that must be implemented in order for
the adopter to conform to the protocol. This includes a list of
the required properties and methods the adopter must define
and any constraints on them (e.g., whether a property is read-
only or read/write).

Required Properties
A property requirement for a protocol specifies both the name
of the property and its type as well as whether the property is
read-only or read/write. It does not specify whether the prop‐
erty is implemented as a stored property or as a computed
property, because that is up to the adopter.

You declare properties by using var in this fashion:
protocol SomeProtocol
{
 var aWritableProperty: Double { get set }
 var aReadOnlyProperty: Int { get }
 static var aTypeProperty: String { get set }
}

This example also demonstrates how the type of a property is
specified and whether it must be implemented as a read-only
property (by using just the get keyword) or read/write (by
using both the get and set keywords).

To conform to this protocol, an adopter must define a read/
write property named aWritableProperty, a read-only property
named aReadOnlyProperty, and a read/write static (type) prop‐
erty named aTypeProperty.

Note that the static keyword is used to specify a type property
(as opposed to an instance property), even if the protocol will
be adopted by a class (see “Static properties” on page 116 for
more information).

164 | Swift Pocket Reference

Required Methods
A method requirement for a protocol specifies the name,
parameters, and return type of the method. You write it in the
same way as you would define an ordinary method in a class,
except for the method body. This next example defines a proto‐
col that requires adopters to implement a method that returns a
(presumably) printable string:

protocol Printable
{
 func printable() -> String
}

A class adopting this protocol must include a method that
returns a printable representation of the instance.

A required method in a protocol can be an instance method (as
shown in the example) or a type method (by preceding it with
the keyword class).

If a required method needs to be able to mutate the instance
that it refers to, precede it with the keyword mutating (see the
subsection “Mutating methods” on page 140.

Optional Methods and Properties
You can use the keyword optional in front of a method or
property name in a protocol to indicate the method or property
does not have to be implemented by a class that adopts that
protocol.

There is an important restriction, though, in the use of the
optional keyword: the protocol definition must be prefixed
with the @objc keyword, even if there is no intention to interact
with Objective-C code or data. This immediately places further
restrictions on what you can do with the protocol, notably
the following:

• @objc protocols can only be adopted by classes, not by
structures or enumerations.

Protocols | 165

• The module must import the Foundation framework.
• You cannot use generic types in the protocol (using the
typealias keyword, as described in the section “Generic
Protocols” on page 200).

• You cannot use any Swift data type in the protocol that
has no Objective-C equivalent (so, for example, the pro‐
tocol cannot define anything that uses or requires a
tuple).

The example that follows demonstrates a protocol that defines
an optional property and an optional method. The property is
defined as a read-only string (because only the get keyword is
present), and the method is defined as taking an integer param‐
eter and returning an integer string:

@objc protocol Optionals
{
 optional var optProperty: String { get }
 optional func optMethod(i: Int) -> String
}

The next step is to define two classes that adopt the protocol.
The first only implements the optional property; the second
only implements the optional method. Note that in both cases,
the implementation of the optional entity must be annotated
with a preceding @objc keyword:

class ImplementsProperty: Optionals
{
 @objc let optProperty = "I'm a property!"
}

class ImplementsMethod: Optionals
{
 @objc func optMethod(i: Int) -> String
 {
 return "I'm a method and was passed \(i)"
 }
}

Finally, the following code creates an instance of each class to
demonstrate how to access the optionally defined features.

166 | Swift Pocket Reference

In doing so, note that the variables a and b are declared as
Optionals (the protocol), not of either of the class types:

var optA: Optionals = ImplementsProperty()
var optB: Optionals = ImplementsMethod()

Looking first at the instance optA, you might expect that you
can reference it directly, and, technically, you can:

optA.optProperty
// returns an optional String? "I am a property!"
optB.optProperty
// returns nil

Notice, though, that the returned value is an optional string,
even though the property is declared in the protocol as a non‐
optional string, and the class actually implements the property.
Because optional methods and properties might not have been
implemented in an adopting class, they always return an
optional value. Thus, you must test for a non-nil value and
then unwrap it to safely use the property value.

Because you can access the property, you might wonder what
happens if you try to access the (unimplemented) method:

optA.optMethod(45)
// compiler error

Rather than returning an optional value of nil, this code gener‐
ates an error because the method hasn’t actually been imple‐
mented. Instead, you must call the method with a question
mark immediately following its name, as in this example:

optA.optMethod?(45)
// returns nil

When called this way, you do get a nil value—in this case, indi‐
cating the method has not been defined.

Finally, consider the instance optB, created earlier, that imple‐
ments the optional method but not the optional property:

optB.optMethod?(1)
// returns an optional String?
// "I am a method and was passed 1"

Protocols | 167

optB.optProperty
// returns nil

This time the method return (defined as a nonoptional string)
is wrapped in an optional because the method implementation
itself is optional, whereas the property, which has not been
implemented, returns nil.

When a protocol is defined with an optional method or prop‐
erty, you can also use optional chaining to access the optional
entities. See also the sections “Optionals” on page 81 and
“Optional Chaining” on page 85 for more information.

Initializers in Protocols
Initialization methods, including failable initializers, can be
included in protocol definitions, i.e., conforming types must
implement those initializers.

When implementing a protocol-defined initializer in a class
that adopts that protocol, note the following:

• The initializer can be implemented as either a conve‐
nience or a designated initializer.

• The initializer definition must be preceded by the key‐
word required, and must be overridden in subclasses to
ensure they conform.

• A failable initializer requirement can be implemented as
failable or nonfailable.

Adopting Protocols with Extensions
Protocol use isn’t limited to classes, structures, and enumera‐
tions you define yourself: you can use Swift’s extension mecha‐
nism (see “Extensions” on page 155) to conform any existing
type to a protocol, including simple built-in types such as Int,
Double, and String.

The basic syntax for defining such an extension is as follows:

168 | Swift Pocket Reference

extension Type : ProtocolName [, ProtocolName…]
{
 // code that extends Type and implements
 // the requirements of ProtocolName(s)
}

Following is an example of using an extension to conform the
Bool type to the Printable protocol that was introduced earlier.
This example is somewhat contrived because the global print
function will print Bool types as either “true” or “false,” so this
implementation is defined to return “YES” and “NO” instead:

extension Bool: Printable
{
 func printable() -> String
 {
 return self ? "YES":"NO"
 }
}

Here’s how to use this with Bool types:
var a = false
a.printable()
// returns "NO"

Inheritance and Protocols
In the same way you can use inheritance with classes, you can
use inheritance with protocols—one protocol inherits all of the
requirements of another and then adds further requirements of
its own.

The syntax for basing one protocol on another is as follows:
protocol ProtocolName : ProtocolName [, ProtocolName…]
{
 // protocol definition
}

The following example demonstrates a simple protocol that
requires that adopters implement the method asHex() to return
a hex representation of the type, but because it inherits from
the Printable protocol (described earlier), adopters must also
implement a method named printable():

Protocols | 169

protocol Hexable : Printable
{
 func asHex() -> String
}

And here is an extension to the Bool type that adopts the
Hexable protocol and implements the required methods:

extension Bool: Hexable
{
 func asHex() -> String
 {
 return self ? "1":"0"
 }

 func printable() -> String
 {
 return self ? "YES":"NO"
 }
}

var b = true
b.asHex()
// returns "1"
b.printable()
// returns "YES"

NOTE

For the purpose of demonstration, we’ll assume the reader
is happy to forgive the contrivance that “1” is the hex
equivalent of true and that “0” is the hex equivalent
of false.

Using a Protocol as a Type
A protocol is a type in the same way a class is a type, and you
can use protocols in most places you can use types. This is a
hugely powerful feature, especially when you begin to think of
types not in terms of what they can store (Int, String, data) but
in terms of the functionality they can provide (methods,
actions, conformed behavior).

170 | Swift Pocket Reference

With this mindset, you can think of a variable not as a place to
store a specific type of value but as a place to store anything
that implements specific behavior. Similarly, you can think of
an array not as a place to store a collection of one type of data
but as a place to store a collection of anything that implements
a specific behavior.

An earlier example demonstrated an extension to the Bool type
that adopted the Hexable protocol. Here’s a similar extension
for the Int type:

extension Int: Hexable
{
 func asHex() -> String
 {
 var temp = self
 var result = ""
 let digits = Array("0123456789abcdef".characters)
 while (temp > 0) {
 result = String(digits[Int(temp & 0x0f)])
 + result
 temp >>= 4
 }
 return result
 }

 func printable() -> String
 {
 return "\(self)"
 }
}

With both Bool and Int conforming to the Hexable protocol,
you can create some interesting behavior with variables:

var c: Hexable = true
c.printable() // returns "YES"
c.asHex() // returns "1"
c = 45
c.printable() // returns "45"
c.asHex() // returns "2d"

The variable c is of type Hexable; it can store anything that con‐
forms to the Hexable protocol, which means it can store both
Bool and Int data.

Protocols | 171

This next example defines an array of type Hexable and popu‐
lates it with some values:

var ar = [Hexable]()
ar.append(true)
ar.append(45)
ar[0].asHex() // returns "1"
ar[1].asHex() // returns "2d"

Again, the array is not limited to being able to store just Bool
data or just Int data: it can store Hexable data, which, due to
protocol conformance, includes both Bool and Int types.

Checking Protocol Conformance
You can use the is, as, and as? type casting operators to check
for protocol conformance and to downcast protocols in the
same way you can use them to check and downcast class types,
because you can define protocols in terms of other protocols
(inheritance) in the same way you can define classes in terms of
other classes.

There is an important restriction, though, in the use of these
operators in checking and downcasting protocols: the protocol
definition must be prefixed with the @objc keyword, even if
there is no intention to interact with Objective-C code or data.
This is the same restriction that was described earlier in the
section “Optional Methods and Properties” on page 165, and it
imposes the same limitations when checking for protocol
conformance.

The @objc keyword requirement also means you cannot check
if an instance conforms to a built-in Swift protocol, because
those protocols aren’t defined with the @objc keyword.

If you can work within these restrictions, you can use the type
checking and downcasting operators in the same way you
would use types. For example, the following defines a basic
protocol, a class that adopts that protocol, and a general func‐
tion to check if any instance conforms to the protocol using the
is keyword:

172 | Swift Pocket Reference

@objc protocol DemoProto
{
}

class DemoClass: DemoProto
{
}

func protoCheck(t: AnyObject) -> Bool
{
 return t is DemoProto
}

Next, create some objects that can be passed to the protocol
checking function:

var s = DemoClass()
var i = 4
protoCheck(s) // returns true
protoCheck(i) // returns false

When protoCheck() is called with s as a parameter, it returns
the value true because s is an instance of DemoClass, which
adopts the DemoProto protocol.

When protoCheck() is called with i as a parameter, it returns
false because i has been created as an Int type through type
inferencing, and the Int type does not conform to the Demo
Proto protocol.

Protocol Extensions
Swift 2.0 allows you to use protocol extensions to provide
default implementations of methods and properties for all con‐
forming types. In other words, a protocol extension can imple‐
ment functionality, and conforming types automatically gain
the implementation with no further code.

A protocol extension is defined as follows:
extension ProtocolName
{
 // function and/or property definitions
}

Protocols | 173

Following is an example of a reworked version of the asHex()
converter for unsigned integers—this time implemented as a
read-only property. This version determines the storage size of
the type using the sizeof() global function to ensure an appro‐
priate number of leading zeros are included:

extension UnsignedIntegerType
{
 var asHex: String {
 var temp: UInt = numericCast(self)
 var result = ""
 let digits = Array("0123456789abcdef".characters)
 for _ in 0..<sizeof(self.dynamicType) * 2 {
 result = String(digits[Int(temp & 0x0f)])
 + result
 temp >>= 4
 }
 return result
 }
}

Since this type is an extension on the UnsignedIntegerType
protocol, it is automatically available for UInt8, UInt16, and any
other unsigned integer types that adopt the protocol. Without
implementing any extensions on those types, we can access the
property, as follows:

let u1: UInt8 = 16
let u2: UInt16 = 38
let u3: UInt32 = 32767
u1.asHex // returns "10"
u2.asHex // returns "0026"
u3.asHex // returns "00007fff"

Here are some other important aspects of protocol extensions:

• If a type implements a requirement that is already satis‐
fied through a protocol extension, that type’s implemen‐
tation will override the default version in the extension.

• A protocol extension can be constrained with a where
clause. See “The “where” type constraint clause” on page
198 for more information.

174 | Swift Pocket Reference

Built-In Protocols
There are many built-in protocols in Swift: some are used to
define the language itself, while others are useful to adopt for
your own classes so you can use them in many of the same con‐
texts as Swift’s built-in types.

The first group of these to consider are the literal converti‐
ble protocols, which includes the following:

• ArrayLiteralConvertible

• BooleanLiteralConvertible

• DictionaryLiteralConvertible

• ExtendedGraphemeClusterLiteralConvertible

• FloatLiteralConvertible

• IntegerLiteralConvertible

• NilLiteralConvertible

• StringLiteralConvertible

• UnicodeScalarLiteralConvertible

An instance conforming to a literal convertible protocol can be
initialized with a corresponding literal value. For example:

var x: Float = 21.0
// x is a float, which conforms to FloatLiteralConvertible,
// and so x can be initialized from 21.0

var freeDays: [String] = ["Sunday", "Saturday"]
// freeDays is an array of strings, which conforms to
// ArrayLiteralConvertible, so freeDays can be initialized
// from the array literal

var b: Bool = 3
// 'Int' is not convertible to 'Bool'
// b is a Bool, which does not conform to
// IntegerLiteralConvertible so b cannot be initialized from 3

Swift’s other built-in protocols are listed in Table 7.

Protocols | 175

Table 7. Built-in protocols

Protocol Description

AbsoluteValuable Conforming types implement an abs() (absolute
value) function (implying they are signed
numbers).

Any A protocol to which all types implicitly conform.

AnyClass A protocol to which all class types implicitly
conform.

AnyObject A protocol to which all classes implicitly conform.

BidirectionalIndex

Type

Inherits from ForwardIndexType and adds the
requirement that conforming types implement
the predecessor() method to step backwards
from one value to the previous.

BitwiseOperations

Type

A protocol that defines bitwise operations & (AND),
| (OR), ^ (XOR), and ~ (NOT), which is adopted by
Swift’s integer types.

BooleanType Conforming types represent Boolean values, and
can be used as conditions (such as in if and other
control statements).

CollectionType Conforming types are sequences of elements that
can be addressed by position using an Index type
(e.g., arrays).

Comparable For types that can be magnitude-compared using
relational operators. Conforming types need to
implement at least < and ==. If the other relational
operators are not implemented, default versions
defined by the standard library will be used.

CustomDebugString

Convertible

Replaces the DebugPrintable protocol from
Swift 1, but otherwise unchanged. Conforming
types implement a debugDescription
property that returns a textual representation of
the type that can be written to an output stream
(such as by print).

176 | Swift Pocket Reference

Protocol Description

CustomLeaf

Reflectable

Used to build a custom mirror of an instance (like
CustomReflectable). Descendant classes are
not represented in the mirror unless they override
customMirror().

CustomPlayground

QuickLookable

Used to implement custom Quick Look views in
Xcode Playgrounds. Conforming types implement
the method customPlaygroundQuick
Look(), which returns a member of the Quick
LookObject enum.

CustomReflectable Used to build a custom mirror of an instance, which
allows you create alternate views of your data.
Conforming types implement a
customMirror() function that returns a
Mirror object. (Mirrors are used by Playgrounds
and by the Xcode debugger).

CustomString

Convertible

Replaces the Printable protocol from Swift 1,
but otherwise unchanged. Conforming types
implement a description property that
returns a textual representation of the type that
can be written to an output stream (such as
by print).

Equatable For types that can be compared for equality using
== and !=.

ErrorType Conforming types can be used as arguments to
throw and catch.

FloatingPointType Defines a set of common requirements for Swift’s
floating-point types.

ForwardIndexType Instances of conforming types can represent
discrete values in a series, and implement the
successor() method to step from one value to
the next.

Protocols | 177

Protocol Description

GeneratorType Conforming types can be used to iterate over a
sequence, and must implement a function
next() that returns the next element in the
sequence, or nil if no further elements exist.
See “The GeneratorType Protocol” on page 180.

Hashable Conforming types can be used as keys in a
Dictionary, and must implement an Int
property hashValue, which returns a hashed
version of an instance.

Indexable Conforming types can be accessed via a subscripted
Index value.

IntegerArithmetic

Type

Defines arithmetic operations + (add), - (subtract),
* (multiply), / (divide), and % (modulus), which is
adopted by Swift’s integer types.

IntegerType Defines a set of common requirements for Swift’s
integer types.

IntervalType Defines an interval, comprised of a starting bound
and an ending bound, and associated with the idea
of containment. See also “Intervals” on page 207.

LazyCollectionType A collection on which methods (like map and filter)
are implemented lazily. They compute elements on
demand using the underlying storage, rather than
all at once and by creating a mutated copy of the
original collection.

LazySequenceType A sequence on which methods (like map and filter)
are implemented lazily. They compute elements on
demand using the underlying storage, rather than
all at once and by creating a mutated copy of the
original sequence.

MutableCollection

Type

Conforming types are collections that support
assignment via subscripts.

MutableIndexable Conforming types can be read and written via a
subscripted index value (e.g., the Array type).

178 | Swift Pocket Reference

Protocol Description

MutableSliceable Conforming types are collections with mutable
slices (e.g., the Array type). See “Slices” on page
56.

OptionSetType Defines conformance to the SetAlgebraType
protocol for types whose RawValue is a Bit
WiseOperationsType. See “Option Sets” on
page 67.

OutputStreamType Conforming types can be a target of a text stream.
String adopts this protocol, meaning you can
print() to a string.

RandomAccessIndex

Type

Conforming types are indexes that can be offset by
arbitrary amounts in constant time. This includes
all of the integer types.

RangeReplaceable

CollectionType

Conforming types are collections that support
replacement of an arbitrary range of their
elements with the elements of another collection.

RawRepresentable A type that can be converted to an associated raw
type, and then back to an instance equivalent of
the original. Used to implement Option Sets.

ReverseIndexType An extension of BidirectionalIndexType
that reverses the direction of successor() and
predecessor().

SequenceType Conforming types are sequences of elements that
can be iterated over (e.g., in a for-in loop), and
must implement the generate() method that
returns a generator over the elements in the
sequence. Swift types that adopt this protocol
include Array, Dictionary, Range, Set, and
strides (and many others). See “The SequenceType
Protocol” on page 184.

SetAlgebraType Defines a set of common set algebra operations,
such as union and intersect. See “Sets” on page 62.

Protocols | 179

Protocol Description

SignedIntegerType Defines a set of common requirements for Swift’s
signed integer types.

StringInterpola

tionConvertible

Conforming types can be initialized with string
interpolation, i.e., "\(...)".

SignedNumberType Conforming types that can be subtracted, negated,
or initialized from 0.

Streamable Conforming types can be written to an output
stream (this includes the Character, String,
and UnicodeScalar types).

Strideable Conforming types represent a continuous sequence
of values that can be offset and measured.

UnicodeCodecType Defines requirements for translating between
sequences of Unicode code units and Unicode
scalar values.

UnsignedInteger

Type

Defines a set of common requirements for Swift’s
unsigned integer types.

The GeneratorType Protocol
A generator is an instance that conforms to the GeneratorType
protocol. It carries state (i.e., a “current” value) and includes a
method next(), which advances the current state to the next
state, and returns it.

Generators are used to build sequences, and there exist many
generators in Swift that implement basic aspects of the lan‐
guage, including ranges, strides, intervals, enumeration, and
iteration.

One way to create a generator is with the anyGenerator()
global function. This takes a trailing closure, and returns an
instance of type AnyGenerator, which you save in a variable or
constant, or pass around as a parameter. The closure typically
captures an in-scope variable and implements the functionality

180 | Swift Pocket Reference

of the next() method using it. The closure returns either the
updated value, or nil to indicate that the sequence has ended.

Following is an example of a very basic generator:
var state = 0
let intSeq = anyGenerator { state++ }

intSeq.next() // returns 0
intSeq.next() // returns 1
intSeq.next() // returns 2
state // returns 2

This creates a generator (in this case, of type AnyGenera
tor<Int>), which is saved as the constant intSeq, and which
produces a sequence of integers. The closure used to define
the behavior of the generator’s next() method captures the
integer variable state, and increments and returns it every
time it is called.

Used in this way, generators are of limited use, but since clo‐
sures capture state, they can be used even after the scope that
created them has exited. Consider this slightly more complex
example:

var intSeq2: AnyGenerator<Int>
do {
 var n = 10
 intSeq2 = anyGenerator { n++ }
}

intSeq2.next() // returns 10
intSeq2.next() // returns 11
intSeq2.next() // returns 12

In this example, the generator is created inside a do scope using
a local variable n defined inside that scope as the generator state
value. Even though n has gone out of scope when the generator
is actually used, the closure keeps it alive and the generator
continues to return new values in the sequence each time it
is called.

The following example shows a more complex generator that
advances its state by 7 on each iteration, and returns nil to

Protocols | 181

indicate the end of the sequence after 12 iterations. This exam‐
ple intentionally shows a more verbose closure definition (it
could be simplified). The closure indicates that it takes no
parameters and returns an optional Int?, and includes two
return statements to return either the next value in the
sequence, or nil.

var stepState = 0
let stepBy7 = anyGenerator {
 () -> Int? in
 if (stepState < (12*7))
 {
 stepState += 7
 return stepState
 }
 return nil
 }

Since this generator is bound (it stops producing values after 12
iterations), it can be used in more interesting contexts, like this:

let a = Array(stepBy7)
// a = [7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84]

This works because one of the initializers for the Array() type
takes a generator as a parameter. It’s important that the genera‐
tor has some notion of ending; otherwise the assignment would
fill up all available memory as it tried to create an infinitely
large array.

After the array has been initialized, the generator is exhausted
—it can’t be used to produce a second identical sequence
because the state variable now has the value 84, which is the
stopping condition. If the state variable is still in scope, you can
reset it to refresh the generator:

stepState = 0
let b = Array(stepBy7)
// b = [7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84]

Following is an example function that can produce a “times
table.” If you are of a certain age, it’s likely you rote-learned
these in the earlier years of your schooling!

182 | Swift Pocket Reference

func timesTable(which: Int) -> [Int]
{
 var i = 0
 return Array(anyGenerator
 { return i++ < 12 ? i * which : nil })
}
timesTable(1)
// returns [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
timesTable(2)
// returns [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24]

Another way to create a generator is to define a class, struct, or
enum that adopts the GeneratorType protocol, which has only
two requirements:

protocol GeneratorType {
 typealias Element
 mutating func next() -> Element?
}

The typealias requirement identifies the type the generator
will work with, and the next() method requirement advances
and returns the generator state, or returns nil to indicate no
more values are available. Following is an example of a struc‐
ture that adopts this protocol to implement “times tables” in a
different way than the earlier examples:

struct timesTable2 : GeneratorType
{
 var table: Int
 var state: Int = 0

 init(_ table: Int) { self.table = table }

 typealias Element = Int
 mutating func next() -> Element?
 {
 return (state++ < 12) ? state * table : nil
 }
}

var ttGen = timesTable2(6)
while let i = ttGen.next() {
 print (i, terminator: ", ")
}
// output
// 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72,

Protocols | 183

The struct defines an initializer to establish which particular
table is being generated, and the while loop uses optional bind‐
ing to end once the generator is exhausted.

The SequenceType Protocol
A sequence is an instance that conforms to the Sequence
Type protocol, and can be iterated over (e.g., with a for-in
loop). Many Swift types adopt this protocol, including arrays,
dictionaries, ranges, sets, and strides. Sequences are dependent
on generators.

To conform to the SequenceType protocol you need to imple‐
ment the following requirements:

• A generate() method that returns an instance of a gener‐
ator.

• A type alias Generator for the generator’s type. This can
often be inferred from the generate() method, so it is
not always required.

Following is a reimplementation of the earlier “times table”
structure that now conforms to SequenceType:

struct timesTable3 : SequenceType
{
 var table: Int
 init(_ table: Int) { self.table = table }

 func generate() -> AnyGenerator<Int>
 {
 var state = 0
 return anyGenerator(
 { state++ < 12 ? state * self.table : nil }
)
 }
}

With a sequence defined, you can now create instances and do
things such as:

var f = timesTable3(7)
for i in f {
 print (i, terminator: ", ")

184 | Swift Pocket Reference

}
// outputs 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84,

for i in timesTable3(4) {
 print (i, terminator: ", ")
}
// outputs 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48,

This isn’t substantially different than what you can do more
directly with generators, but the utility of sequences comes
with the many default method implementations the protocol
defines. These include methods like filter(), map(), reduce(),
and sort(). For example:

let c = timesTable3(3).map({$0*2}).filter({$0%4==0})
// c is [12, 24, 36, 48, 60, 72]

timesTable3(9).contains(18) // returns true
timesTable3(9).contains(12) // returns false

See “Array Inherited Functionality” on page 52 for more exam‐
ples of some of the functionality available to sequences.

Note that SequenceType imposes no requirements about the
behavior of a sequence that is used after it reaches its terminat‐
ing condition, or that is aborted before reaching its terminating
condition.

The CollectionType Protocol
A collection is an instance that conforms to the CollectionType
protocol. It is defined as a multipass sequence with positions
that can be addressed by an associated Index type.

CollectionType adopts the SequenceType protocol, so much
of the functionality of sequences can also be applied to collec‐
tions.

In order to conform to CollectionType, you need to implement
the following requirements:

• A type alias named Index for the type to be used to index
the collection. This type must conform to ForwardIndex
Type (this includes the integer types).

Protocols | 185

• A property startIndex that represents the first valid
index for the collection. This can be a constant or a
variable.

• A property endIndex that represents the “past the end”
position of the collection. This can be a constant or a
variable.

• A generate() method that returns an instance of a
generator.

• A subscript(position) method that returns an element
from the collection based on the index value position.

Following is a reimplementation of the earlier “times table”
structure that now conforms to CollectionType:

struct timesTable4 : CollectionType
{
 var table: Int
 init(_ table: Int) { self.table = table }

 typealias Index = Int
 let startIndex = 1
 let endIndex = 13

 func generate() -> AnyGenerator<Int>
 {
 var state = startIndex
 return anyGenerator(
 { state < self.endIndex ?
 state++ * self.table : nil }
)
 }

 subscript(i: Index) -> Int {
 return i * self.table
 }
}

With this definition in place, the structure exhibits all of the
functionality that it had as a sequence, as well as features
unique to collections, such as subscript access and default
methods defined on CollectionType such as reverse(). For
example:

186 | Swift Pocket Reference

let d = timesTable4(9).reverse() as Array
// d is [108, 99, 90, 81, 72, 63, 54, 45, 36, 27, 18, 9]

print(timesTable4(6)[2])
// outputs "12" - the second element of the 6 times table

Memory Management
Swift, like Objective-C, uses reference counting as the main
technique for keeping track of when dynamically allocated
memory is no longer being used and can be released for other
purposes.

For many years, Objective-C used (and can still use) manual
reference counting, but this requires diligence on the part of
the developer, and even though it can be mastered, it is a chal‐
lenge for those new to the language to understand the nuances
of when to use certain methods associated with reference
counting, and when not to use them.

After a brief experiment with an Objective-C garbage collector
for automatic memory management, Apple announced ARC
in 2011. ARC—which stands for Automatic Reference Count‐
ing—uses the same approach a programmer would use, but it
does so in a rigorous and deterministic manner.

How Reference Counting Works
The principle underpinning reference counting is quite simple.
Every object (i.e., every instance of a class) has a built-in
reference count property that is set to 1 when the object is
instantiated.

Whenever a piece of code wants to express an interest in or
ownership over the object (i.e., when a pointer is created that
points to the object), it must increment the reference counter.
When it has finished with the object and has no further interest
in it (i.e., when its pointer to the object is no longer needed), it
must decrement the reference counter. (In Objective-C, the way
to express interest in an object is to call its retain method, and

Memory Management | 187

the way to express no further interest is to call the object’s
release method.)

When the reference counter for an object is decremented to
zero, it means there are no current references to the object and
the object can be destroyed and the memory allocated to it can
be released.

As long as an object’s instantiation and release happens in the
one function, the process of reference counting is very simple
to master. The intricacies of reference counting don’t really
become apparent until the instantiation of an object is discon‐
nected (code or execution-wise) from its release. At this point,
it is relatively easy for a novice programmer to not release an
object to which they created a reference (which results in a
memory leak) or to release an object they don’t actually own
(which can result in a crash).

ARC manages the entire process of reference counting, auto‐
matically determining where to add retain and release calls,
and thus relieves the programmer from the responsibility of
doing so.

Retain Cycles and Strong References
One of the main problems with a reference counting approach
to memory management is that of retain cycles. At their sim‐
plest, these occur when two objects contain strong references to
each other. Consider the following code:

class A { }
var a = A()

The variable a stores a strong reference to the newly created
instance of class A.

Strong references are also created by default when objects store
references to each other. This next example has been trimmed
to the bare minimum, but this situation can occur in many
places where complex interlinked data structures are used:

188 | Swift Pocket Reference

class A
{
 var otherObject: B?
}

class B
{
 var otherObject: A?
}

var a = A() // retain count for new instance of A set to 1
var b = B() // retain count for new instance of B set to 1
a.otherObject = b
// B instance retain count incremented to 2
b.otherObject = a
// A instance retain count incremented to 2

The code demonstrates two instances, referred to by a and b,
that also refer to each other. After this code has executed, the
retain count for each of the instances will be 2.

When the section of code that instantiates these two classes
goes out of scope, a and b, being local variables, also go out of
scope and are deleted. When a is deleted, the retain count for
the instance it refers to is decremented (to 1), but because it is
not zero, the instance itself is not deleted. Similarly, when b is
deleted, the retain count for the instance it refers to is decre‐
mented (again, to 1), but, again, because it is not zero, that
instance is also not deleted.

As a consequence, there exist two instances (one of class A,
one of class B) that refer to each other and thus keep each
other “alive.” Because the retain count for both instances never
reaches zero, neither object can be deleted, and both take
up memory.

This situation is a referred to as a memory leak, and if the situa‐
tion that created it occurs repeatedly during the execution of
the program, the amount of memory allocated to the program
will continue to grow, possibly causing performance issues or
termination by the operating system if it limits the amount of
memory an application can claim.

Memory Management | 189

Although retain cycles are something an experienced coder
might consider when manually managing memory, they are
not something ARC can prevent without some assistance from
the programmer. Essentially, if ARC is to manage memory
automatically, it requires some additional information about
the nature of references to other objects—they need to be clas‐
sified as either weak or unowned.

Weak References
One way to prevent a retain cycle is to change one of the strong
references to a weak reference. You do this by preceding the var
declaration with the keyword weak, as in this example:

class A
{
 var otherObject: B?
}

class B
{
 weak var otherObject: A?
}

Weak references have two effects:

• There is no assertion that the referrer “owns” the instance
it refers to, and it can deal with the fact that the instance
might go away (in practical terms, this means that when a
weak reference is established, the retain count is not
incremented).

• When an instance referred to by a weak reference is deal‐
located, ARC sets the weak reference value to nil (thus,
weak references must be declared as variables, not
constants).

With a weak reference in place, consider in this next example
how the retain counts change as the code executes:

var a = A() // retain count for new instance of A set to 1
var b = B() // retain count for new instance of B set to 1
a.otherObject = b

190 | Swift Pocket Reference

// B instance retain count incremented to 2
b.otherObject = a
// A instance retain count remains at 1

Because the reference that the instance of B holds to A is a weak
reference, the retain count for the A instance remains at 1.

As before, when the local variables a and b go out of scope and
are deleted, the retain count for the instances they refer to are
both decremented, which means the retain count for the
instance of A drops to zero, and the retain count for the
instance of B drops to 1.

Because the instance of A now has a retain count of zero, it is no
longer required in memory, and the process of its deinitializa‐
tion and deallocation can begin. During deallocation, two
things to happen:

• The weak reference to the instance of A that is stored in
the instance of B is set to nil.

• Because the instance of A holds a strong reference to the
instance of B (and A is being deallocated), the deallocation
process sends B a release message, decrementing its retain
count to zero.

At this point, the instance of A has been removed from mem‐
ory, and what remains is an instance of B that has a retain count
of zero. The process of its deinitialization and deallocation now
begins.

When using weak references, consider the following:

• Use a weak reference if your code and data model allows
for a reference to have no value (i.e., be nil) at times dur‐
ing the execution of your program.

• Weak references must always be defined as optionals.
• Weak references must be declared as variables (not con‐

stants).

Memory Management | 191

Unowned References
An unowned reference is similar to a weak reference in that
there is no assertion that the referrer “owns” the instance to
which it refers, and when an unowned reference is established,
the instance’s retain count is not incremented.

The main difference between a weak reference and an
unowned reference is that while a weak reference may at times
validly be nil without causing errors, an unowned reference,
once established, must always have a value.

An unowned reference is defined by preceding the var declara‐
tion with the keyword unowned, as in this example:

class B
{
 unowned var otherObject: A
}

When using unowned references, consider the following:

• Use an unowned reference if your code or data model
expects that the reference, after creation, will always exist
and be valid (at least until such time as the referrer goes
out of scope or is deleted).

• Unowned references must always be defined as
nonoptionals.

• If you try to access an instance that has been deallocated
via an unowned reference, Swift will terminate with a
runtime error.

Retain Cycles and Closures
Like classes, closures are actually reference types. If you assign
a closure to a property of an instance and that closure captures
the instance, either by reference to a property of the instance or
by a method call on the instance, you will have created a retain
cycle between the instance and the closure.

192 | Swift Pocket Reference

The solution to this is to use either a weak or an unowned ref‐
erence in the closure to the instance or method that is being
captured, but the syntax is not the same as for references, as
described earlier. Instead, references are specified in a capture
list as part of the definition of the closure.

A capture list is defined inside the closure definition either
immediately prior to the parameter list or immediately prior to
the in keyword if the closure has no parameters. The capture
list is a series of one or more reference types (unowned or weak,
followed by the property or method it refers to) and separated
by commas, as follows:

{
 [referenceType propertyOrMethod [, ...]]
 (parameters) -> returnType in
 statements
}

For example, a closure being stored in a property aClosure, and
referencing self, would look like:

var aClosure: (parameters) -> returnType =
{
 [unowned self]
 (parameters) -> returnType in
 statements
}

The rules as to which type of reference you should use remain
the same as they do for instance-to-instance references. Use a
weak reference (defined as an optional) if the reference may val‐
idly become nil; use an unowned reference if the closure and the
instance it captures refer to each other, and the reference will
remain valid until both objects can be deallocated.

Generics
Swift’s generics feature provides you with the ability to write
generic code that can work with any type of data. Similar fea‐
tures exist in C++ (as templates) and C# (as generics). Parts of
the Swift standard library are implemented as generics. For

Generics | 193

example, the Array type and the Dictionary type are generic
collections that can store any type of data.

In Swift, you can write generic code in a number of ways,
including generic functions, generic types, and generic
protocols.

Generic Functions
To see a classic example of where generics are useful, consider
the Swift standard library function swap, which is defined
as follows:

func swap<T>(inout a: T, inout b: T)

From this function definition, you can see swap takes two inout
parameters, of some type T, but there is nothing to indicate
what type T actually is. (The two parameters are declared as
inout parameters because the function must swap two existing
items, not copies of them.)

swap is a generic function that can swap a pair of Ints, Doubles,
or even a pair of user-defined type instances. It can swap any
two variables, as long as they are the same type. To get a better
understanding of what swap is doing, take a look at this next
example to consider how it would be implemented:

func swap<T>(inout a: T, inout b: T)
{
 let temp = a
 a = b
 b = temp
}

Nothing in the body of the function definition is type specific.
As long as the constant temp is the same type as a (which it will
be due to type inferencing), and a is the same type as b (which
it must be according to the types specified in the parameter list
of the function), this function can swap any two same-typed
values.

You define generic functions by using the following syntax:

194 | Swift Pocket Reference

func someFunc<Placeholder, [Placeholder…]>(parameterList)
{
 // function body
}

The key parts of the definition that indicate this is a generic
function are the angle brackets immediately following the func‐
tion name; these contain one or more type placeholders. These
placeholders, called type parameters, stand in for actual types
throughout the body of the function.

In much the same way that “i” has become a de facto loop vari‐
able, “T” is commonly used as the name for a type parameter in
generic functions, but you can use any valid identifier.

Generic Types
In the section “Arrays” on page 48, it was noted that the prefer‐
red way to refer to an array of a specific type is [SomeType], but
that the formal way is Array<SomeType>. The angle brackets
reveal the Array type is actually implemented as a generic type,
and you can create your own generic types in the same way,
using classes, structures, or enumerations.

This next example is a generic struct-based implementation of
a queue:

struct Queue<T>
{
 var entries = [T]()

 mutating func enqueue(item: T)
 {
 entries.append(item)
 }

 mutating func dequeue() -> T
 {
 return entries.removeAtIndex(0)
 }
}

The queued data is stored in an array, entries, of type T,
and defines two methods: enqueue (to add an item to the end of

Generics | 195

the queue) and dequeue (to pull an item from the beginning of
the queue).

So defined, Queue is now a new, generic type, and you can cre‐
ate queues for integers, strings, and any other data type to
which you have access. For example, you can create and use a
queue for Int data as follows:

var q1 = Queue<Int>()
q1.enqueue(45)
q1.enqueue(39)
q1.enqueue(61)
q1.enqueue(98)
dump(q1)
// dumps the equivalent of [45, 39, 61, 98]
q1.dequeue()
// returns 45
dump(q1)
// dumps the equivalent of [39, 61, 98]

Constraining Types
In designing a generic function or type, you might want to
place some limits on what types it can support. You can con‐
strain types based on their class (or subclass) or by protocol
conformance, and with an optional where qualifier. A basic
constraint is specified in the angle brackets immediately follow‐
ing the type parameter you want to constrain, as follows:

<T where T:SomeClass>
<T where T:SomeProtocol>

For the simplest of cases, these can be abbreviated as:
<T: SomeClass>
<T: SomeProtocol>

In the first example, T can act only as a placeholder for instan‐
ces of SomeClass (or its subclasses). In the second example,
T can act only as a placeholder for types that conform to
SomeProtocol.

You can specify multiple types with a protocol composition
that can include as many protocols as necessary:

196 | Swift Pocket Reference

<T: protocol<SomeProtocol, SomeOtherProtocol>>

Revisiting the Queue example from earlier, a constraint can be
added so that it will only work with signed integers as follows:

struct SignedQueue<T: SignedIntegerType>
{
 // existing definition
}

SignedIntegerType is a protocol built into Swift the signed inte‐
ger types (Int, Int8, Int16, Int32, and Int64) conform to, but
which the unsigned types (UInt, UInt8, etc.) do not.

With this constraint in place, you can no longer create a queue
for UInt data:

var q = SignedQueue<UInt>()
// error – Type 'UInt' does not conform to
// protocol 'SignedIntegerType'

The example that follows is a generic function that can merge
two sorted arrays into a third. Because this function compares
entries from each array, it is necessary that comparison is a
defined operation for the type of data stored in the arrays,
which is accomplished by constraining the type T to the
Comparable protocol. Types that conform to this protocol can
be compared with the relational operators <, <=, >=, and >, and
many of Swift’s built-in types (such as Double, Int, and String)
conform:

func merge<T:Comparable>(a:[T], _ b:[T]) -> [T]
{
 var output = [T]()
 var i = 0, j = 0

 let sizea = a.count
 let sizeb = b.count
 output.reserveCapacity(sizea + sizeb)

 while (i < sizea) && (j < sizeb) {
 if a[i] < b[j] { output.append(a[i++]) }
 else { output.append(b[j++]) }
 }

 while i < sizea { output.append(a[i++]) }

Generics | 197

 while j < sizeb { output.append(b[j++]) }

 return output
}

Here’s a simple example of using the merge() function with
arrays of strings:

let s = ["allan", "fred", "mike"]
let t = ["brenda", "geraldine", "ruth"]
let u = merge(s, t)
u
// returns ["allan", "brenda", "fred", "geraldine",
// "mike", "ruth"]

Since the function is generic, it can also be used to merge two
arrays of integers:

let v = [3, 9, 17, 21]
let w = [1, 2, 12, 36]
let x = merge(v, w)
x
// returns [1, 2, 3, 9, 12, 17, 21, 36]

The “where” type constraint clause

More complex constraints can be specified with a where clause,
which can include multiple comma-separated conditions that
must all be matched so the constraint is satisfied.

The sorts of constraints that can follow the where clause can
include:

• that a type conforms to a protocol or class, e.g., <T where
T:CollectionType>

• that a type matches the type of another type’s property,
e.g., <U where U.Generator.Element == T>

• that a type conforms to several protocols through a pro‐
tocol composition, e.g., <T where T:protocol<aProtocol,
anotherProtocol>>

Following is a more complex example that partially implements
an array whose contents are always stored in sorted order. This

198 | Swift Pocket Reference

implementation includes an initializer that allows instances to
be constructed from an existing type. That type (identified by
the placeholder U) is constrained with a where clause such that
it must conform to the SequenceType protocol (which includes
the Array type) and furthermore that its elements are of the
same type as the sorted array (identified by the placeholder T):

struct SortedArray<T: Comparable>
{
 private var elements: [T] = []

 init<U where U:SequenceType,
 U.Generator.Element == T>(_ sequence: U) {
 elements = sequence.sort()
 }

 // binary search elements for specific value
 private func bsearch(value: T) -> Int
 {
 guard elements.count > 0 else { return 0 }
 var middle = 0, lower = 0
 var upper = elements.count - 1
 while lower < upper {
 middle = (lower + upper) >> 1
 if elements[middle] < value
 { lower = middle + 1 }
 else { upper = middle }
 }
 if (elements[lower] < value) { return lower+1 }
 return lower
 }

 mutating func insert(value: T)
 {
 elements.insert(value, atIndex: bsearch(value))
 }
}

With this definition in place, it is possible to create an instance
from an unsorted array, and start inserting new elements in
sorted order:

var sa = SortedArray([15, 3, 9, 7])
sa.insert(13)
sa.elements
// returns [3, 7, 9, 13, 15]

Generics | 199

Since the structure is generic, it can also be used with non-
integer types, such as strings:

var sb = SortedArray(["Wilma", "Albert"])
sb.insert("Geraldine")
sb.elements
// returns ["Albert", "Geraldine", "Wilma"]

Generic Protocols
With Swift, you can also write generic protocols, although the
way this works is a little different than the way generic types are
expressed in function and type definitions. Instead of a <T>
placeholder, unknown types in protocols are identified by using
the typealias keyword, which was introduced earlier in the
section “Types” on page 18. When type aliases are used in this
way in protocol definitions, they are known as associated types.

To use an associated type, the protocol definition takes
this form:

protocol SomeProtocol
{
 typealias SomeName
 // remainder of protocol definition with the generic
 // type references expressed as SomeName
}

The actual type the type alias SomeName refers to is defined when
the protocol is adopted, in the same way the other required
parts of the protocol must be defined to provide conformance:

class SomeClass : SomeProtocol
{
 typealias SomeName = SomeActualType
 // rest of class definition
}

Here’s an example of a generic protocol, Queueable, that dem‐
onstrates the use of an associated type:

protocol Queueable
{
 typealias NativeType
 mutating func enqueue(item: NativeType)

200 | Swift Pocket Reference

 mutating func dequeue() -> NativeType
}

A class or structure that adopts this protocol must implement
the enqueue and dequeue methods (thus, behaving like a queue),
but the type of data these methods use is defined in the adopt‐
ing class at the same place the methods themselves are defined
—in the protocol definition, it’s referred to as NativeType.

Following is an example of a structure that stores a list of
strings and adopts the Queueable protocol so the list can also be
treated as a queue. You can see that the NativeType from the
protocol is defined as a String type for this particular adopter:

struct StringList: Queueable
{
 var list = [String]()

 typealias NativeType = String

 mutating func enqueue(item: NativeType)
 {
 list.append(item)
 }

 mutating func dequeue() -> NativeType
 {
 return list.removeAtIndex(0)
 }
}

You could use the structure as follows:
var sl = StringList()
sl.enqueue("Joshua")
sl.enqueue("Nadia")
sl.enqueue("Paul")
sl.dequeue()
// returns "Joshua"
dump(sl)
// dumps the equivalent of ["Nadia", "Paul"]

Operator Overloading
Operator overloading is the ability to define custom behavior
for standard operators (+, /, =, etc.) when they are used with

Operator Overloading | 201

custom types. Overloading is a controversial feature because it
can lead to ambiguous code.

For example, all programmers understand that the + operator is
traditionally associated with addition when both operands are
numeric. A slightly smaller group generally associates + with
concatenation when both operands are strings, so + is already
overloaded in languages that support concatenation with it.

A language that supports programmer-defined operator over‐
loading takes this further, allowing the programmer to add new
custom behavior to any of the standard operators when they
are applied to custom types. For example, you could define a
struct type to represent vectors. Adding vectors is a natural
operation for people who think in terms of motion, and over‐
loading + to add two vector types allows vector addition to be
expressed naturally in code.

You overload binary infix operators in Swift by using the fol‐
lowing syntax:

func + ([inout] left: SomeType, right: SomeType)
 -> SomeType
{
 // code that returns a value of SomeType
}

Let’s look closer at this syntax:

• The parameter names are shown as left and right, but
you can use any other parameter names. The first param‐
eter is the one that appears on the lefthand side of the
operator, and the second parameter is the one that
appears on the righthand side.

• This example overloads +, but you can overload any
existing binary operator (including compound assign‐
ment operators and comparison operators) except for
assignment (=).

• When overloading compound assignment operators
(such as +=), the first (left) parameter must be prefixed

202 | Swift Pocket Reference

with inout because the body of the function will directly
modify the left parameter.

• The two input types are both shown as SomeType, but
these do not have to be of the same type.

• The return value does not have to be the same type as
either of the operands.

In the section “Structures” on page 139, a simple struc‐
ture Rect was used to represent rectangular shapes, as shown in
this example:

struct Rect
{
 var x = 0.0, y = 0.0, width = 0.0, height = 0.0

 func area() -> Double
 {
 return (width * height)
 }
}

Here is an overloaded version of the + operator that returns a
new Rect that represents the smallest rectangle that would con‐
tain the two operand rectangles (assuming the origin is at the
upper left):

func + (left: Rect, right: Rect) -> Rect
{
 return Rect (
 x: min(left.x, right.x),
 y: min(left.y, right.y),
 width: max(left.width, right.width),
 height: max(left.height, right.height)
)
}

This new operator could be used as follows:
var a = Rect (x:5, y:5, width:5, height:5)
var b = Rect (x:6, y:6, width:10, height:10)
var c = a + b
// c is now a Rect where
// (x=5.0, y=5.0, width=10.0, height=10.0)

Operator Overloading | 203

The following example overloads the < operator so that two
Rects can be compared in terms of area:

func < (left: Rect, right: Rect) -> Bool
{
 return left.area() < right.area()
}

You could use this as follows:
var e = Rect(x:0, y:0, width:4, height:5)
var f = Rect(x:5, y:5, width:5, height:5)
e<f
// returns true

Overloading Unary Operators
The incrementing and decrementing unary operators (++,
--) are overloaded by preceding the function definition with
either the prefix or postfix keyword. The general pattern is
as follows:

prefix func ++ (someName: someType) -> someType
{
 // code that returns a value of SomeType
}

Here’s an alternative:
postfix func -- (someName: someType) -> someType
{
 // code that returns a value of SomeType
}

The parameter names are shown as someName, but you can use
any parameter names.

Note that the return value does not have to be the same type as
the operand.

The following example defines a ++ postfix operator for
the Rect type that adds 1.0 to the x- and y-coordinates but
leaves the width and height unmodified:

postfix func ++ (inout r: Rect) -> Rect
{
 let temp = r;

204 | Swift Pocket Reference

 r.x += 1.0
 r.y += 1.0
 return temp
}

Note that this function copies the operand so that the value
returned is the original, unmodified value (thus mimicking the
expected behavior of a postfix ++ operator). In use, this would
behave as follows:

var d = Rect(x:5, y:5, width:5, height:5)
d++
// returns a Rect where
// (x=5.0, y=5.0, width=5.0, height=5.0)
// but d is a Rect where
// (x=6.0, y=6.0, width=5.0, height=5.0)

Custom Operators
As well as overloading the built-in operators, you can create
custom operators that can begin with any of the ASCII charac‐
ters +, -, *, /, =, !, %, <, >, &, |, ^, and ~, as well as a range of
Unicode character blocks, including the math, symbol, arrow,
dingbat, line drawing, and box drawing sets. The second and
subsequent characters can be any of those listed as well as any
of the Unicode combining characters (which are characters that
modify other characters, such as diacritical marks and accents).

Unusually, custom operators in Swift need to be declared
before they are defined, using this syntax:

[prefix|postfix|infix] operator symbols {}

For example, you could declare a prefix operator that used the
square root symbol (√) to calculate square roots, as follows:

prefix operator √ {}

With the declaration in place, you could then define the func‐
tion:

prefix func √ (operand: Double) -> Double
{
 return sqrt(operand)
}

Operator Overloading | 205

So defined, you can then use the operator as follows:
print (√25)
// outputs 5.0

Custom Operator Precedence
When you define custom infix operators, you can also specify
optional precedence and associativity values. These values are
specified when the custom operator is declared (not when it is
subsequently defined) as follows:

operator symbols { associativity someValue
 precedence someValue }

Precedence is specified as a numeric value, and defaults to 100
if not provided.

Associativity is specified as left, right, or none, and defaults to
none if not provided.

See the subsection “Operator Precedence” on page 37 for more
information.

Ranges, Intervals, and Strides
An earlier section of this book introduced the closed range
operator (x...y) and the half-open range operator (x..<y).
These operators represent two of the more commonly used
types of ranges (they’re used frequently in iteration), but Swift
supports two other range types: intervals and strides.

Let’s look at all three of these types a little more closely.

Ranges
A range is a collection of consecutive discrete values. The end
of the range must be reachable from the start by a process of
repeated incrementation (so the start can’t be a value that is
later in the series than the end).

206 | Swift Pocket Reference

Typically, you will use ranges with integer types, but you can
use them with any type that conforms to the ForwardIndexType
protocol.

Ranges are types (so, for example, a variable can be of type
Range) and include the properties startIndex and endIndex, as
demonstrated in this example:

var r = 1...5
r
// returns "1..<6"
r.startIndex
// returns 1
r.endIndex
// returns 6

for x in r {
 print (x, terminator: ", ")
}
// prints:
// 1, 2, 3, 4, 5,

Observe that even though the closed range 1...5 was assigned
to r, Swift converted this internally to the half-open range
1..<6. This is because it always represents ranges internally in
half-open format.

The endIndex represents the end of a range but is not a value in
the range, which is why the for loop only outputs five values.

Intervals
Like a range, an interval consists of a start value and an end
value, and the start must be less than the end, but intervals are
not associated with indexing or the concept of advancing pro‐
gressively from the start to the end by incrementation. Instead,
they are associated with the idea of containment—for example,
checking whether a value is contained within the interval.

You can use intervals with any type that conforms to the
Comparable protocol, which includes the integer and floating-
point types.

Ranges, Intervals, and Strides | 207

Intervals are types, and a variable or constant can be of type
HalfOpenInterval or ClosedInterval.

Intervals include as properties start and end (both of type
Bound, which is a type alias for Comparable), and isEmpty, which
has the value true if the interval is empty.

Intervals include the following instance methods:

someInterval.contains(someValue)

Returns true if someValue lies within the someInterval.

someInterval.clamp(someOtherInterval)
Returns a new interval that is essentially the intersection
of someInterval and someOtherInterval. The start of the
returned interval will never be less than the start of some
Interval, and the end of the returned interval will never
be greater than the end of someInterval.

someInterval.overlaps(someOtherInterval)

Returns true if the intersection of someInterval and some
OtherInterval is nonempty.

Here are some examples of creating and using intervals:
var i = 1.0...2.0
i.start // returns 1.0
i.end // returns 2.0
i.isEmpty // returns false

// contains
i.contains(3.4) // returns false
i.contains(1.6) // returns true

// clamping
let c = i.clamp(1.5...2.5) // 1.5...2.0
let d = i.clamp(0.1...0.2) // 1.0...1.0
let e = i.clamp(3.0...4.0) // 2.0...2.0

// overlaps
i.overlaps(1.2...1.4) // true
i.overlaps(2.0...3.0) // true
i.overlaps(4.0...5.0) // false

208 | Swift Pocket Reference

Like ranges, you can define intervals as either half-open or
closed. Since the same operators are used to create ranges and
intervals, it is important to understand the default behavior:

• When a type used with the half-open or closed range
operator conforms to only the Comparable protocol (this
includes the floating-point types) the operator will always
return an interval.

• When a type used with the half-open or closed range
operator conforms to both the Comparable and
ForwardIndexType protocols (this includes the integer
types), the operator will return an interval when it is used
in a pattern-matching context (e.g., a switch case), but it
will return a range in any other context.

If you need to create an integer interval for use outside of pat‐
tern matching, you can specify the type as follows:

let j = HalfOpenInterval(2..<3)
let k: ClosedInterval = 4...14

Strides
Like ranges and intervals, a stride consists of a start and an end,
but it also includes a distance to step as the sequence
progresses. You can use strides with any type that conforms to
the Strideable protocol, which includes floating-point and
integer types.

Strides are initialized with the .stride() method, which takes
one of two forms, as follows:

type.stride(to:endValue, by:increment)
type.stride(through:endValue, by:increment)

The first form is said to be exclusive —the last value of the
stride will always be less than the value of the to parameter.

The second form is said to be inclusive—the last value of the
stride may equal the to value, but will never exceed it.

Ranges, Intervals, and Strides | 209

Unlike ranges and intervals, the to/through and by values are
not accessible as properties of the stride.

The following example creates an exclusive stride from 2 to 8.
The type of s in this example is StrideTo<Int>.

var s = 2.stride(to:8, by:2)
for x in s {
 print (x)
}
// prints:
// 2
// 4
// 6

In this next example, a stride is used directly, but this time it is
initialized by using the through parameter so the end value
(2.8) is included in the sequence. The type of the stride in this
example is StrideThrough<Double>:

for x in 2.2.stride(through:2.8, by:0.3) {
 print (x)
}
// prints:
// 2.2
// 2.5
// 2.8

Note that since it is impossible to exactly represent all floating-
point values, a stride initialized with a floating-point to param‐
eter may appear to return the end value as the last value in a
sequence. This is not an issue with strides, but a reminder that
floating-point values should not be relied on for certain values.

Global Functions
All of Swift’s global functions are listed here. While this may
seem like a small list, remember that a substantial amount of
Swift’s functionality is defined using protocols and extensions.

abs(x)

Returns the absolute value of x, which must conform to
the AbsoluteValuable protocol.

210 | Swift Pocket Reference

alignof(type)
Returns the minimum memory alignment of the type
type.

alignofValue(value)
Returns the minimum memory alignment of the instance
value.

anyGenerator(body)

Returns an instance of a GeneratorType. body is a closure
that typically captures a value in scope, and returns the
next value in a sequence every time it is called, or nil if
the sequence has ended.

assert(condition: Bool [, message: String])

C-style assert with optional message. Tests condition. If it
evaluates to false, the program is terminated and message
(if provided) is displayed as an error. Ignored in Release
builds.

assertionFailure([message: String])

Terminates the program and displays message (if pro‐
vided) as an error. Ignored in Release builds.

debugPrint(items... [, separator: String] [, terminator:

String])

Writes a debug representation of the list of comma-
separated items to the output stream. separator defaults
to a space, and is output between each item. termina
tor defaults to a new line, and is output at the end of the
sequence.

dump(x)

Dumps the contents of x using its mirror to standard out‐
put. Useful for debugging and exploring the contents of
instances.

fatalError([message: String])
Unconditionally terminates the program and displays
message (if provided) as an error.

getVAList(args: CVarArgType)

Returns a CVaListPointer built from args that’s backed by
autoreleased storage. Use withVAList() in preference to
this where possible.

Global Functions | 211

isUniquelyReferenced(someObject)

Returns a Bool value of true if there is a single strong
reference to someObject, which must be derived from the
NonObjectiveCBase class. someObject is not modified,
despite the inout annotation. Useful for implementing
copy-on-write optimization of value types.

isUniquelyReferencedNonObjC(&someObject)

Returns a Bool value of true if there is a single strong ref‐
erence to someObject. If someObject is an instance of an
Objective-C class, always returns false. someObject is not
modified, despite the inout annotation. Useful for imple‐
menting copy-on-write optimization of value types.

max(list)

Returns the greatest argument in list, which consists of
comma-separated arguments of the same type. That type
must conform to the Comparable protocol, which includes
Int and Double (and their variants), and String.

min(list)

Returns the lesser argument in list, which consists of
comma-separated arguments of the same type. That type
must conform to the Comparable protocol, which includes
Int and Double (and their variants), and String.

numericCast(x)

Used to convert one integer type to another contextually-
deduced integer type, trapping on overflow. For example,
func f(x: Int) cannot be called with any other integer
parameter type (such as UInt), but if called as f(numeric
Cast(UInt)), then the UInt parameter will be cast to an
Int.

precondition(condition: Bool[, message: String])

The condition must evaluate to true for execution to con‐
tinue; otherwise execution terminates and the optional
message is displayed. Unlike assert(), this will terminate
Release builds as well as Debug builds.

212 | Swift Pocket Reference

preconditionFailure([message: String])

Terminates the program and displays message (if pro‐
vided) as an error. Unlike asserionFailure(), this will ter‐
minate Release builds as well as Debug builds.

print(items... [, separator: String] [, terminator:

String] [, toStream: &target])

Writes a textual representation of the list of comma-
separated items to the output stream. separator defaults
to a space, and is output between each item. terminator
defaults to a new line, and is output at the end of the
sequence. toStream defaults to stdout.

readLine([stripNewLine: Bool])

Returns standard input as an optional String, through to
the end of the current line or until EOF is encountered, or
nil if EOF has been reached. If the optional stripNewLine
parameter is true (the default), newline characters and
character combinations are removed from the result.

sizeof(type)
Returns the contiguous storage space for an instance of
type, but does not include dynamically allocated storage
associated with that type. The size returned includes space
allocated for stored properties if the type is a struct, but
does not count stored properties if the type is a class.

sizeofValue(x)

Returns the contiguous storage space for x, but does not
include dynamically allocated storage associated with x.
The size returned includes space allocated for stored prop‐
erties if x is a struct, but does not count stored properties
if x is a class.

strideof(type)
Returns the least possible interval between instances of
type in memory.

strideofValue(value)
Returns the least possible interval between separate
instances of value in memory.

swap(&x, &y)

Swaps x and y, which must be the same type.

Global Functions | 213

transcode(inputEncoding: InputEncoding.Type, outputEncod

ing: outputEncoding.Type, input: Input, output: Output,

stopOnError: Bool)

Transcodes input (in the given InputEncoding) to output
(in the given OutputEncoding). If stopOnError is true, and
an encoding error is detected, the function will stop and
return false. If stopOnError is false, the Unicode
REPLACEMENT CHARACTER U+FFFD is inserted into
the output for each encoding error detected.

unsafeAddressOf(x)

Returns the address of the storage allocated for x.
unsafeBitCast(x, t)

Returns the bits of x, recast as type t. Considered danger‐
ous, as it breaks Swift’s type checking.

unsafeDowncast(x)

Returns x recast as type t where t is the type of the
receiver. If x is not of type t, will generate a runtime error.
Trades type safety for performance.

unsafeUnwrap(x)

Returns an unwrapped copy of x. If x is nil, will generate a
runtime error. Trades safety for performance.

withExtendedLifetime(x, f)

Evaluates the function f() and returns its result, ensuring
x is not destroyed before f() returns. f() can either take
no parameters, or can take x as a single parameter. f() has
a throws annotation—this function will rethrow any error
thrown by it.

withUnsafeMutablePointer(&x, f)

Evaluates the function f() with an UnsafeMutablePointer
to x, and returns the result. f() has a throws annotation—
this function will rethrow any error thrown by it.

withUnsafeMutablePointers(&x, &y [,&z], f)

Performs the same function as withUnsafeMutable

Pointer() but calls f() with pointers to x, y, and (if pro‐
vided), z.

214 | Swift Pocket Reference

withUnsafePointer(&x, f)

Evaluates the function f() with an UnsafePointer to x, and
returns the result. f() has a throws annotation—this func‐
tion will rethrow any error thrown by it.

withUnsafePointers(&x, &y [,&z], f)

Performs the same function as withUnsafePointer() but
calls f() with pointers to x, y, and (if provided), z.

withVaList(args: [CVarArgType], f)

Invokes the function f() with a C-language va_list argu‐
ment derived from args, and returns the result of f().

zip(SequenceType1, SequenceType2)
Returns a sequence of tuples, with each tuple consisting of
one item from SequenceType1, and the matching item
from SequenceType2. If one sequence is longer than the
other, any unmatched items are discarded.

Changes From Swift 1.0
Swift 2.0 includes a number of syntax changes from earlier ver‐
sions that will prevent programs you have already written from
compiling. Xcode 7 offers an option to convert existing code to
the latest Swift syntax (click Edit → Convert → To Latest Swift
Syntax... to use this feature).

Here is a list of the major changes (note that some were actually
added in Swift 1.1 or Swift 1.2):

• The println() function has been removed.
• The print() function has been extended to support

printing a list of comma-separated items, with an
optional separator and terminator strings.

• The overflow division (&/) and overflow remainder (&%)
operators have been removed.

• The as keyword, which forcibly downcasts an instance
reference to a specific subclass type, or an instance refer‐
ence to a specific protocol type, has been replaced with
as!.

Changes From Swift 1.0 | 215

• In Swift 1.0, a String was an Array of Character (much
like an array in C). In Swift 2.0, this is no longer the case,
but the characters that comprise the string are now acces‐
sible via the .characters property.

• The do-while loop construct has been replaced with
repeat-while.

• The do keyword now opens a new scope.
• The defer statement has been added, which allows you to

specify a block of code that is guaranteed to be executed
as the current scope exits, regardless of how it exits.

• The guard-else statement has been added, for testing
that a condition is met before continuing with the rest of
the current scope.

• A new error-handling model has been introduced. Func‐
tions annotated with throws can throw errors. Such func‐
tions are called with do-try and errors are caught
with catch.

• The if, guard, and while statements can now take a case
pattern as would appear in a switch statement as the con‐
dition to be tested, including optional let variable bind‐
ing and an optional where clause.

• Optional binding (e.g., if-let and guard-let) now sup‐
ports a where clause, as well as compound let and var
assignments, separated by commas.

• The index value in for-in loops can be filtered with a
where clause as part of the loop construct.

• Enumerations can now be self-referential using the
indirect keyword.

• Failable initializers can now be defined, allowing an initi‐
alization function to return nil if it cannot properly initi‐
alize a structure, class, or enumeration.

• A new collection type Set has been added, which
includes support for set algebra operations.

• Option sets can be now used, providing set-type behavior
for bit-field Boolean values.

• Extensions can now be defined for protocols and provide
default implementations of methods and properties.

216 | Swift Pocket Reference

Index

Symbols
! exclamation mark

as logical operator, 35
custom operators and, 205
unwrapping optionals and, 82

!= comparison operator, 34
strings, 41

!== comparison operator, 34
#include statements, 16
% percent sign

custom operators and, 205
remainder operator, 31

%= assignment operator, 33
& operator (bitwise AND), 32

custom operators and, 205
&& logical operator, 35
&* overflow multiplication opera‐

tor, 35
&+ overflow addition operator,

35
&- overflow subtraction operator,

35
&= assignment operator, 33
(double quotes), 20
* operator, 31

custom operators and, 205
*= assignment operator, 33

+ operator, 31
custom operators and, 205
string concatenation, 16

++ operator, 32
+= assignment operator, 33
- operator, 31

custom operators and, 205
-- operator (decrement), 32
-= assignment operator, 33
-> closure expression, 75
..< half-open range operator, 37
/ operator, 31

custom operators and, 205
/* */ (multiline comment delim‐

iter), 15
// (comment marker), 15
/= assignment operator, 33
; (semicolons), 15
< comparison operator, 34

custom operators and, 205
strings, 41

<< operator (bitwise left-shift), 32
<<= assignment operator, 33
<= comparison operator, 34

strings, 41
= assignment operator, 33

custom operators and, 205

217

== comparison operator, 34
strings, 41

=== comparison operator, 34
> comparison operator, 34

custom operators and, 205
strings, 41

>= comparison operator, 34
strings, 41

>> operator (bitwise right-shift),
32

>>= assignment operator, 33
? (question mark), 82
[] syntax

for arrays, 49
for dictionaries, 57

\" (double quote) escape
sequence, 42

\' (single quote) escape sequence,
42

\n (line feed) escape sequence, 42
\r (carriage return) escape

sequence, 42
\t (tab) escape sequence, 42
\u{n} arbitrary Unicode scalar

escape sequence, 42
\\ (backslash) escape sequence, 42
^ operator

bitwise XOR, 32
custom operators and, 205

^= assignment operator, 33
_ underscore character, 99
` (back ticks), 24
| operator

bitwise OR, 32
custom operators and, 205

|= assignment operator, 33
|| logical operator, 35
~ operator

bitwise NOT, 32
custom operators and, 205

~= comparison operator, 34
… range operator, 36
√ (square root), 205

A
abs() global function, 210
AbsoluteValuable protocol, 176
access control, 151-155

default, 153-155
of class members, 125
specifying level of, 152

addWithOverflow() function, 35
alignof() global function, 211
alignofValue() global function,

211
Any

protocol, 176
type alias, 158

AnyClass protocol, 176
AnyGenerator type, 180
anyGenerator() global function,

180, 211
AnyObject

protocol, 176
type alias, 158

append() method
in arrays, 50
in strings, 47

appendContentsOf() method
in strings, 47

Apple Worldwide Developers
Conference, 1

ARC, 2, 187
arguments, automatic names, 77
arithmetic operators, 31
arrays, 48-57

append method, 50
appending two, 50
assigning value to element, 50
assigning value to range of

elements, 50
capacity property, 50
capacity, reserving, 51
contains() method, 52
count property, 50
dropFirst() method, 52
dropLast() method, 53

218 | Index

elements, accessing, 49
elementsEqual() method, 53
filter() method, 53
flatMap() method, 53
forEach() method, 53
indexOf() method, 54
inherited funcionality, 52
inserting values into, 50
isEmpty property, 50
iterating over, 51
joinWithSeparator() method,

54
map() method, 54
maxElement() method, 49
minElement() method, 50
modifying, 50
mutable, 50
prefix() method, 54
properties of, 50
reduce() method, 54
remove and return last ele‐

ment of, 51
remove and return single ele‐

ments from, 51
removing all elements from,

51
reverse() method, 55
slices of, 56
sort() method, 55
sorting, 51
split() method, 55
startsWith() method, 55
suffix() method, 56

as operator
checking for protocol con‐

formance, 172
type casting, 36, 158

as! operator
downcasting with, 161
type casting, 36

as? operator
checking for protocol con‐

formance, 172

downcasting with, 161
type casting, 36, 158

assert() global function, 211
assertionFailure() global function,

211
assignment operators, 33-34
associated types, 200

B
base classes, 125
BidirectionalIndexType protocol,

176
binary operators, 30
bitwise operators, 32
BitwiseOperationsType protocol,

176
blocks, 75
Bool values, 35
BooleanType protocol, 176
break statements, 101

C
capture list, 193
case

in for-in statement, 91
in guard-else statement, 95
in if statement, 94
in switch statement, 96
in while statement, 92
matching ranges in, 98
using tuples in, 98

catch statement, 103
characters, 39

literals, 20
clamp() method (intervals), 208
Clang, 2
classes, 107-139

computed properties, 112-114
computed type properties,

117
constant properties, 23, 119
defining, 108

Index | 219

deinitialization, 138
inheritance, 125
initialization, 130-139
instances, 108
member protection, 125
methods, 120-125
nested types and, 21
overrides, preventing, 129
overriding superclass entities,

126-129
properties of, 110
properties, instance vs. type,

115
property observers, 114
self property, 121
static properties, 116
stored properties, 110
subclassing, preventing, 129

closures, 75-81
automatic argument names,

77
capturing values by reference,

80
capturing values with, 79-80
retain cycles and, 192
trailing, 78

Cocoa Framework, 9
collections, 185
CollectionType protocol, 176, 185
command line access, 6-8
comments, 15
Comparable protocol, 176, 197
comparison operators, 34, 197
computed properties, 112-114

extensions, 156
computed type properties, 117
computed variables, 24
conditionals, 93

guard-else statement, 94
if-else statement, 93
switch statements, 96-102

constant properties, 23
in classes, 119

constants, 23
default access level of, 153
tuples, 28

constraining types (where clause),
196

contains() method
in arrays, 52
in intervals, 208
in sets, 63

continue statements, 101
convenience initializers, 130, 134

overriding, 138
count property

in arrays, 50
in dictionaries, 58
in sets, 63
in strings, 40, 45

curly braces, 93
custom operators, 205

precedence, 206
CustomDebugStringConvertible

protocol, 176
CustomLeafReflectable protocol,

177
CustomPlaygroundQuickLooka‐

ble protocol, 177
CustomReflectable protocol, 177
CustomStringConvertible proto‐

col, 177

D
data types, 18-22
debugPrint() global function, 211
default clause (switch statements),

96
defer statement, 102
deferred execution, 102
deinitialization, 138
designated initializers, 130,

132-134
overriding, 138

developer resources, 5
Developer Tools Access prompt, 7

220 | Index

dictionaries, 57-62
accessing elements of, 58
count property, 58
dropFirst() method, 61
dropLast() method, 61
endIndex property, 61
forEach() method, 61
indexForKey() method, 61
inherited functionality, 60
isEmpty property, 59
iterating over, 60
keys property, 59
modifying, 59
mutable, 59
pop and return first element

from, 59
properties of, 58
remove all elements from, 59
remove specified elements

from, 60
removeAtIndex method, 61
setting values for specified

elements, 59
startIndex property, 62
updating values for specified

elements, 59
values property, 59

didSet keyword
property observers, 114
variable observers, 26

divideWithOverflow() function,
35

do statement, 101, 103
do-try-catch sequence, 103
downcasting, 160-162
dropFirst() method

in arrays, 52
in dictionaries, 61

dropLast() method
in arrays, 53
in dictionaries, 61

dump() global function, 211

E
elementsEqual() (arrays), 53
else clause, 94
endIndex property

in dictionaries, 61
in sets, 66
in strings, 46

enumerations, 144-150
associated values, 147-148
default access level of, 153
methods in, 148
raw member values, 145
recursive, 150
type methods in, 149
using switch statements with,

100
Equatable protocol, 177
ErrorType protocol, 104, 177
escaped characters in strings, 42
extended grapheme cluster, 43
extensions, 155-158

adopting protocols with, 168
computed properties, 156
default access level of, 153
initializers, 156
methods, 156
subscripts, 157

external parameter names
in functions, 71
in init() methods, 133
in methods, 121-121

F
failable initializers, 135, 168
fatalError() global function, 211
filter() (arrays), 53
final keyword, 129
flatMap() (arrays), 53
floating point literals, 19
FloatingPointType protocol, 177
for-condition-increment loops,

88
for-in loops, 89

Index | 221

case pattern, 91
index value filtering, 90
iterating over arrays with, 51
iterating over dictionaries

with, 60
iterating over sets with, 64
where clause, 90, 91

forEach() method
in arrays, 53
in dictionaries, 61
in sets, 66

ForwardIndexType protocol, 177
Foundation, 47
Foundation framework, 166
functions, 68-75

computed variables, 24
default access level of, 154
default parameter values, 72
external parameter names, 71
generic, 194
global, 210-215
local parameter names, 71
parameter types, 68
returning multiple values, 70
returning optional values, 69
returning tuples, 70
types, 74
variadic parameters for, 73

G
generators, 180
GeneratorType

protocol, 180
GeneratorType protocol, 178
generics, 193-201

constraining types, 196-200
default access level of, 154
functions, 194
protocols, 200-201
types, 195

getter functions
computed properties, 112
computed variables, 24

default access level of, 154
getVAList() global function, 211
guard statements, 84
guard-else statement, 94

case pattern, 95
optional binding and, 84
where clause, 95

H
half-open range operator, 37
Hashable protocol, 178

I
if-else statement, 93

case pattern, 94
optional binding and, 84
where clause, 94

import statements, 16
in-out parameters, 69
Indexable protocol, 178
indexOf() method

in arrays, 54
in sets, 66

inheritance, 106, 125
initializers and, 137-138
protocols and, 169

inherited functionality
arrays, 52
dictionaries, 60
sets, 66
strings, 46

initializer delegation, 143
initializers, 130-139

convenience, 134
default access level of, 154
designated, 132-134
extensions, 156
failable, 135
for structures, 142
in protocols, 168
inheritance and, 137-138
overriding, 138

222 | Index

required, 138
instances, 108
instantiation, 109
Int types, 18
integer types, 18

overflow operators, 35
IntegerArithmeticType protocol,

178
IntegerType protocol, 178
internal access control level, 151
intervals, 207
IntervalType protocol, 178
iOS 7, 5
is operator

checking for protocol con‐
formance, 172

checking types with, 161
type casting, 36, 158

isEmpty property
in arrays, 50
in dictionaries, 59
in sets, 63

isUniquelyReferenced() global
function, 212

isUniquelyReferencedNonObjC()
global function, 212

J
joinWithSeparator() method

(arrays), 54

K
keys property (dictionaries), 59

L
lambdas, 75
Lattner, Chris, 1
lazy evaluation, 111
lazy initialization of stored prop‐

erties, 111
LazyCollectionType protocol, 178
LazySequenceType protocol, 178

let keyword
declaring constants, 23

let statement
optional binding with, 84
value binding, 161
value binding with, 99

literals
array, 48, 62
character, 20
dictionary, 57
floating point, 19
numeric, 19
string, 20

LLDB, 2
LLVM, 2
local parameter names, 121-121

in functions, 71
in methods, 121-121

logical operators, 35
loops, 88-93

early termination of, 93
for-condition-increment, 88
for-in, 89
repeat-while, 92
while, 91

M
map() method (arrays), 54
max() global function, 212
memberwise initializer, 142
memory leaks, 189
memory management, 187-193

closures and, 192
reference counting, 187
retain cycles, 188, 192
strong references, 188
unowned references, 192
weak references, 190

methods, 120-125
extensions, 156
in enumerations, 148
in structures, 140
optional, in protocols, 165

Index | 223

overriding, 128
parameter names, local/exter‐

nal, 121-121
required in protocols, 165
self property and, 121
subscripts, 123-125
type, 122

min() global function, 212
multiplyWithOverflow() func‐

tion, 35
mutable dictionaries, 59
mutable sets, 63
MutableCollectionType protocol,

178
MutableIndexable protocol, 178
MutableSliceable, 179
mutating methods, 140, 149, 157

N
naming conventions, 16
nested types

default access level of, 154
null escape sequence, 42
numeric literals, 19
numericCast() global function,

212

O
Objective-C, 1
operators, 30-39

arithmetic, 31
assignment, 33-34
binary, 30
binary, overloading, 202
bitwise, 32
comparison, 34
custom, 205
implicit type conversion, 30
overflow, 35
overloading, 201-205
precedence, 37-39
range, 36

ternary, 30
ternary conditional, 37
type casting, 36
unary, 30
unary, overloading, 204

option sets, 67
optional binding, 84
optional tuple return type, 71
optionals, 81-87

as return value, 69
binding, 84
implicitly unwrapped, 83
Objective-C pointers vs., 81
testing value, 84
unwrapping, 82

OptionSetType protocol, 179
OS X 10.10 (Yosemite), 5
OS X 10.11 (El Capitan), 5
OutputStreamType protocol, 179
overflow operators, 31, 35
overlaps() method (intervals), 208
overridden superclass entities,

126-129
accessing, 126
initializers, 138
methods, 128
properties, 126-128
subscripts, 128

P
parameters, function, 68

default values for, 72
external names for, 71
local names for, 71
variadic, 73

patterns, 96
Perl, 8
playground, 8-12

creating, 5
pointers

in Objective-C, 81
precedence

custom operators, 206

224 | Index

operators, 37-39
preconditionFailure() global

function, 212, 213
predecessor() method, 46
prefix() method (arrays), 54
prefixes, finding in strings, 42
print, 210-215
print() global function, 213
private access control level, 151
program flow, 88

conditional execution, 93-102
loops, 88-93

properties
computed, 112-114, 156
computed type, 117
constant, 119
default access level of, 153
in classes, 110
in structures, 140
instance vs. type, 115
optional, in protocols,

165-168
overriding, 126-128
required in protocols, 164
static, 116
stored, 110

property observers, 114
protocols, 162-186

adopting with extensions, 168
built-in, 175
checking conformance of, 172
default access level of, 154
default implementations with

extensions, 173
generic, 200-201
inheritance and, 169
initializers, 168
literal convertible, 175
optional methods, 165-168
optional properties, 165-168
required methods, 165
required properties, 164
using as types, 170-172

public access control level, 151
Python, 8

Q
qsort() (C standard library), 75
Quick Look view (Xcode), 10

R
RandomAccessIndexType proto‐

col, 179
range operators, 36
RangeReplaceableCollectionType

protocol, 179
ranges, 206

matching, in case clauses, 98
value binding with, 99

raw values (enumerations), 145
RawRepresentable protocol, 179
readLine() global function, 213
recursive enumerations, 150
reduce() method (arrays), 54
reference counting, 187
remainderWithOverflow() func‐

tion, 35
removeAll() method

in strings, 47
removeAtIndex() method

in arrays, 51
in sets, 66
in strings, 47

removeRange() method
in strings, 47

repeat-while loops, 92
required initializers, 138
required properties, 164
reserveCapacity() method

in arrays, 51
in strings, 47

reserved words, 24
retain cycles, 188
rethrows annotation, 105
return values

Index | 225

multiple, 70
optional, 69
tuples as, 29

reverse() method (arrays), 55
ReverseIndexType protocol, 179
Ruby, 8
Run-Evaluate-Print-Loop (REPL),

6-8
starting, 7

S
scope

capturing values by reference,
80

closures and, 79-80
creating new, with do state‐

ment, 101
self property, 121
sequences, 184
SequenceType protocol, 179, 184
SetAlgebraType protocol, 179
sets, 62-68

accessing, 63
comparing, 62
contains(), 63
count property, 63
endIndex property, 66
exclusiveOr() method, 65
exclusiveOrInPlace() method,

63
forEach() method, 66
indexOf() method, 66
inherited functionality, 66
insert() method, 63
intersect() method, 65
intersectInPlace() method, 64
isDisjointWith() method, 65
isEmpty property, 63
isStrictSubsetOf() method, 65
isStrictSupersetOf() method,

65
isSubsetOf() method, 65
isSupersetOf() method, 66

iterating over, 64
modifying, 63
mutable, 63
operations on, 65
properties, 63
remove() method, 64
removeAll() method, 64
removeAtIndex() method, 66
removeFirst() method, 64
startIndex property, 67
subtract() method, 66
subtractInPlace() method, 64
union() method, 66
unionInPlace() method, 64

setter functions
computed properties, 112
computed variables, 24
default access level of, 154

SignedIntegerType protocol, 180
SignedNumberType protocol, 180
sizeof() global function, 174, 213
sizeofValue() global function, 213
slices, 56
sort() method (arrays), 55, 76
split() method (arrays), 55
startIndex property

in dictionaries, 62
in sets, 67
in strings, 46

startsWith() method
in arrays, 55

statement labels, 101
static properties, 116
stored properties, 110
Streamable protocol, 180
Strideable protocol, 180
strideof() global function, 213
strideofValue() global function,

213
strides, 209
StringInterpolationConvertible

protocol, 180
strings, 39-47

226 | Index

append() method, 47
appendContentsOf() method,

47
characters property, 40, 44
comparing, 41
concatenation of, 40
converting to numeric types,

43
count property, 45
endIndex property, 46
escaped characters in, 42
hasPrefix() method, 42
hasSuffix() method, 42
inherited functionality, 46
interpolation, 43
isEmpty property, 40
length of, 40
literals, 20
lowercase property, 40
NSString extensions, 47
properties of, 40
removeAll() method, 47
removeAtIndex() method, 47
removeRange() method, 47
reserveCapacity() method, 47
startIndex property, 46
unicodeScalars property, 41
unicodeScalars propery, 45
uppercase property, 40
utf16 property, 41, 45
utf8 property, 41, 44

strong references, 188
structures, 139-143

initializers delegation in, 143
initializers for, 142
methods in, 140
mutating methods, 140
properties in, 140
type methods for, 141

subclass, 106
subclasses, 126-129

default access level of, 154
subscripts, 123-125

default access level of, 154
extensions, 157
overriding, 128

subtractWithOverflow() function,
35

successor() method, 46
suffix() method (arrays), 56
suffixes, finding in strings, 42
super prefix, 126
superclasses, 106

deinitializer, inheritance of,
139

initialization and, 130
overriding entities, 126-129
protocol inheritance and, 164

swap() global function, 213
Swift

access control, 151-155
arrays, 48-57
as scripting language, 8
classes, 107-139
constants, 23
data types, 18-22
dictionaries, 57-62
functions, 68-75
generics, 193-201
importing modules in, 16
loops, 88-93
memory management,

187-193
operators, 30-39
playground, 8-12
program flow, 88
protocols, 162-186
reserved words, 24
sets, 62-68
simple program in, 12-14
structures, 139-143
tuples, 27-30
variables, 23-27
Xcode, 5-12

switch statements, 96-102

Index | 227

matching ranges in case clau‐
ses, 98

statement labels, 101
using tuples in case clause, 98
using with enumerations, 100
value binding, 99
where qualifier, 100

T
ternary conditional operator, 37
ternary operator, 30
throw statement, 103
throws annotation, 103
transcode() global function, 214
try statement, 103
try! statement, 106
try? statement, 106
tuples, 27-30

as return type, 29
as return values, 70
constants, 28
default access level of, 155
extracting components of, 28
naming components, 28
using type aliases with, 29
value binding with, 99
variables, 28

type aliases, 21
default access level of, 155
using with tuples, 29

type casting
as! operator, 36, 36
as? operator, 36

type casting operators, 36
type inferencing, 23

tuples and, 29
type methods

for structures, 141
in enumerations, 149

type placeholders, 195
type properties

in structures, 140
typealias keyword, 21, 200

types, 18-22
character literals, 20
checking, 159
downcasting, 160-162
generic, 195
integer, 18
numeric literals, 19
string literals, 20
using protocols as, 170-172

U
UIKit Framework, 9
UInt types, 18
unary operators, 30

overloading, 204
Unicode, 1

\u{n} arbitrary Unicode scalar
character, 42

UnicodeCodecType protocol, 180
UnicodeScalars format of strings,

41
unowned references, 192
unsafeAddressOf() global func‐

tion, 214
unsafeBitCast() global function,

214
unsafeDowncast() global func‐

tion, 214
unsafeUnwrap() global function,

214
UnsignedIntegerType protocol,

180
unwrapping optionals, 82
UTF-16, view of string in, 41
UTF-8, view of string in, 41

V
value types

arrays as, 49
dictionaries as, 58
sets as, 63
structures as, 139

228 | Index

values property (dictionaries), 59
var keyword

declaring variables, 23
function parameters and, 68
value binding with, 99

variable parameters, 68
variables, 23-27

computed, 24
default access level of, 153
observers, 25-27
tuples, 28

variadic parameters, 73

W
weak references, 190
where

as type constraint, 198
in for-in statement, 91
in guard-else statement, 95
in if-else statement, 94
in switch statement, 100
in while statement, 92

while loops, 91
case pattern, 92
where clause, 92

whitespace, 15
willSet keyword

property observers, 114

variable observers, 25
withExtendedLifetime() global

function, 214
withUnsafeMutablePointer()

global function, 214
withUnsafeMutablePointers()

global function, 214
withUnsafePointer() global func‐

tion, 215
withUnsafePointers() global func‐

tion, 215
withVaList() global function, 215
Worldwide Developers Confer‐

ence (2014), 12

X
Xcode, 5-12

multiple installs of, 6
new projects, creating, 5
playground, 8-12
playground, creating, 5
Swift REPL, 6-8

xcode-select command, 6

Z
zip() global function, 215

Index | 229

About the Author
Anthony Gray (you can call him Tony) has over 25 years of
experience working in tertiary education, where he’s provided
technical and systems support for academic and research staff,
and for some very smart students. He loves to teach, with his
favorite subjects being operating systems, computer graphics
and animation with OpenGL, and most recently mobile devel‐
opment for iOS. In his spare time, he writes software to scratch
his own itch, some of which is available at squidman.net.
Secretly he pines for the days when you could handcode assem‐
bler for your 6502 and occasionally writes emulators so he can
do just that.

Colophon
The animal on the cover of Swift Pocket Reference is an African
palm swift (Cypsiurus parvus). This bird seeks palm trees for
dwelling in the savannas and grasslands of sub-Saharan Africa
and of the Arabian Peninsula. 16 centimeters in length, with a
thin body and a long tail, the African palm swift is mostly
brown with a gray throat and a black bill. Differences in color‐
ing between genders (mostly in the tail) lessen with age. To
avoid the ground, these birds use their short purple legs to
cling to vertical surfaces.

The species’s population appears to be on the rise, thanks
largely to growth in the planting of the Washington palm tree.

Many of the animals on O’Reilly covers are endangered; all of
them are important to the world. To learn more about how you
can help, go to animals.oreilly.com.

The cover image is from Wood’s Illustrated Natural History.
The cover fonts are URW Typewriter and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

http://squidman.net
http://animals.oreilly.com

	Copyright
	Table of Contents
	Swift Pocket Reference
	Introduction
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Getting Started with Swift 2
	The Swift REPL
	Swift as a Scripting Language
	Swift Playgrounds

	A Taste of Swift
	Basic Language Features
	Comments
	Semicolons
	Whitespace
	Naming Conventions
	Importing Code from Other Modules

	Types
	Specific Integer Types
	Numeric Literals
	Character and String Literals
	Type Aliases
	Nested Types
	Other Types

	Variables and Constants
	Computed Variables
	Variable Observers

	Tuples
	Tuple Variables and Constants
	Extracting Tuple Components
	Naming Tuple Components
	Using Type Aliases with Tuples
	Tuples as Return Types

	Operators
	No Implicit Type Conversion
	Arithmetic Operators
	Bitwise Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Overflow Operators
	Type Casting Operators
	Range Operators
	Ternary Conditional Operator
	Operator Precedence

	Strings and Characters
	String Properties
	Comparing Strings
	Escaped Characters in Strings
	String Interpolation
	Converting Strings to Numeric Types
	Character-Level Access in Strings
	String Inherited Functionality

	Arrays
	Accessing Array Elements
	Array Properties
	Modifying a Mutable Array
	Iterating Over Arrays
	Array Inherited Functionality
	Slices

	Dictionaries
	Accessing Dictionary Elements
	Dictionary Properties
	Modifying a Mutable Dictionary
	Iterating Over Dictionaries
	Dictionary Inherited Functionality

	Sets
	Accessing Set Items and Properties
	Modifying a Mutable Set
	Iterating Over Sets
	Set Operations
	Set Inherited Functionality
	Option Sets

	Functions
	Parameter Types
	Returning Optional Values
	Returning Multiple Values by using Tuples
	Local and External Parameter Names
	Default Parameter Values
	Variadic Parameters
	Function Types

	Closures
	Automatic Argument Names
	Trailing Closures
	Capturing Values
	Capturing Values by Reference

	Optionals
	Unwrapping Optionals
	Implicitly Unwrapped Optionals
	Optional Binding
	Optional Chaining

	Program Flow
	Loops
	Conditional Execution
	Error Handling

	Classes
	Defining a Base Class
	Instances
	Properties
	Methods
	Subscripts
	Member Protection
	Inheritance: Deriving One Class from Another
	Overriding Superclass Entities
	Preventing Overrides and Subclassing
	Initialization
	Initialization and Inheritance
	Deinitialization

	Structures
	Properties in Structures
	Methods in Structures
	Type Methods for Structures
	Initializers in Structures

	Enumerations
	Raw Member Values
	Associated Values
	Methods in Enumerations
	Type Methods for Enumerations
	Recursive Enumerations
	Failable Initializers in Enumerations

	Access Control
	Specifying Access Control Levels
	Default Access Control Levels

	Extensions
	Computed Property Extensions
	Initializer Extensions
	Method Extensions
	Subscript Extensions

	Checking and Casting Types
	Any and AnyObject
	Checking Types
	Downcasting Types

	Protocols
	Required Properties
	Required Methods
	Optional Methods and Properties
	Initializers in Protocols
	Adopting Protocols with Extensions
	Inheritance and Protocols
	Using a Protocol as a Type
	Checking Protocol Conformance
	Protocol Extensions
	Built-In Protocols
	The GeneratorType Protocol
	The SequenceType Protocol
	The CollectionType Protocol

	Memory Management
	How Reference Counting Works
	Retain Cycles and Strong References
	Weak References
	Unowned References
	Retain Cycles and Closures

	Generics
	Generic Functions
	Generic Types
	Constraining Types
	Generic Protocols

	Operator Overloading
	Overloading Unary Operators
	Custom Operators
	Custom Operator Precedence

	Ranges, Intervals, and Strides
	Ranges
	Intervals
	Strides

	Global Functions
	Changes From Swift 1.0

	Index

